blob: bf1963be7a1d85130d4ddd13807b5c710b222f18 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "class_linker.h"
#include <fcntl.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <unistd.h>
#include <deque>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/casts.h"
#include "base/logging.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
#include "compiler_callbacks.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "gc_root-inl.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "handle_scope.h"
#include "intern_table.h"
#include "interpreter/interpreter.h"
#include "leb128.h"
#include "method_helper-inl.h"
#include "oat.h"
#include "oat_file.h"
#include "object_lock.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/iftable-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/proxy.h"
#include "mirror/reference-inl.h"
#include "mirror/stack_trace_element.h"
#include "mirror/string-inl.h"
#include "os.h"
#include "runtime.h"
#include "entrypoints/entrypoint_utils.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "utils.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
namespace art {
static void ThrowNoClassDefFoundError(const char* fmt, ...)
__attribute__((__format__(__printf__, 1, 2)))
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void ThrowNoClassDefFoundError(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Thread* self = Thread::Current();
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
self->ThrowNewExceptionV(throw_location, "Ljava/lang/NoClassDefFoundError;", fmt, args);
va_end(args);
}
static void ThrowEarlierClassFailure(mirror::Class* c)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// The class failed to initialize on a previous attempt, so we want to throw
// a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we
// failed in verification, in which case v2 5.4.1 says we need to re-throw
// the previous error.
if (!Runtime::Current()->IsCompiler()) { // Give info if this occurs at runtime.
LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c);
}
CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus();
Thread* self = Thread::Current();
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
if (c->GetVerifyErrorClass() != nullptr) {
// TODO: change the verifier to store an _instance_, with a useful detail message?
std::string temp;
self->ThrowNewException(throw_location, c->GetVerifyErrorClass()->GetDescriptor(&temp),
PrettyDescriptor(c).c_str());
} else {
self->ThrowNewException(throw_location, "Ljava/lang/NoClassDefFoundError;",
PrettyDescriptor(c).c_str());
}
}
static void WrapExceptionInInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
CHECK(cause.get() != nullptr);
env->ExceptionClear();
bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
env->Throw(cause.get());
// We only wrap non-Error exceptions; an Error can just be used as-is.
if (!is_error) {
ThrowLocation throw_location = self->GetCurrentLocationForThrow();
self->ThrowNewWrappedException(throw_location, "Ljava/lang/ExceptionInInitializerError;",
nullptr);
}
}
const char* ClassLinker::class_roots_descriptors_[] = {
"Ljava/lang/Class;",
"Ljava/lang/Object;",
"[Ljava/lang/Class;",
"[Ljava/lang/Object;",
"Ljava/lang/String;",
"Ljava/lang/DexCache;",
"Ljava/lang/ref/Reference;",
"Ljava/lang/reflect/ArtField;",
"Ljava/lang/reflect/ArtMethod;",
"Ljava/lang/reflect/Proxy;",
"[Ljava/lang/String;",
"[Ljava/lang/reflect/ArtField;",
"[Ljava/lang/reflect/ArtMethod;",
"Ljava/lang/ClassLoader;",
"Ljava/lang/Throwable;",
"Ljava/lang/ClassNotFoundException;",
"Ljava/lang/StackTraceElement;",
"Z",
"B",
"C",
"D",
"F",
"I",
"J",
"S",
"V",
"[Z",
"[B",
"[C",
"[D",
"[F",
"[I",
"[J",
"[S",
"[Ljava/lang/StackTraceElement;",
};
ClassLinker::ClassLinker(InternTable* intern_table)
// dex_lock_ is recursive as it may be used in stack dumping.
: dex_lock_("ClassLinker dex lock", kDefaultMutexLevel),
dex_cache_image_class_lookup_required_(false),
failed_dex_cache_class_lookups_(0),
class_roots_(nullptr),
array_iftable_(nullptr),
find_array_class_cache_next_victim_(0),
init_done_(false),
log_new_dex_caches_roots_(false),
log_new_class_table_roots_(false),
intern_table_(intern_table),
portable_resolution_trampoline_(nullptr),
quick_resolution_trampoline_(nullptr),
portable_imt_conflict_trampoline_(nullptr),
quick_imt_conflict_trampoline_(nullptr),
quick_generic_jni_trampoline_(nullptr),
quick_to_interpreter_bridge_trampoline_(nullptr),
image_pointer_size_(sizeof(void*)) {
CHECK_EQ(arraysize(class_roots_descriptors_), size_t(kClassRootsMax));
memset(find_array_class_cache_, 0, kFindArrayCacheSize * sizeof(mirror::Class*));
}
// To set a value for generic JNI. May be necessary in compiler tests.
extern "C" void art_quick_generic_jni_trampoline(mirror::ArtMethod*);
extern "C" void art_quick_resolution_trampoline(mirror::ArtMethod*);
extern "C" void art_quick_imt_conflict_trampoline(mirror::ArtMethod*);
extern "C" void art_quick_to_interpreter_bridge(mirror::ArtMethod*);
void ClassLinker::InitWithoutImage(const std::vector<const DexFile*>& boot_class_path) {
VLOG(startup) << "ClassLinker::Init";
CHECK(!Runtime::Current()->GetHeap()->HasImageSpace()) << "Runtime has image. We should use it.";
CHECK(!init_done_);
// java_lang_Class comes first, it's needed for AllocClass
Thread* self = Thread::Current();
gc::Heap* heap = Runtime::Current()->GetHeap();
// The GC can't handle an object with a null class since we can't get the size of this object.
heap->IncrementDisableMovingGC(self);
StackHandleScope<64> hs(self); // 64 is picked arbitrarily.
Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
heap->AllocNonMovableObject<true>(self, nullptr,
mirror::Class::ClassClassSize(),
VoidFunctor()))));
CHECK(java_lang_Class.Get() != nullptr);
mirror::Class::SetClassClass(java_lang_Class.Get());
java_lang_Class->SetClass(java_lang_Class.Get());
if (kUseBakerOrBrooksReadBarrier) {
java_lang_Class->AssertReadBarrierPointer();
}
java_lang_Class->SetClassSize(mirror::Class::ClassClassSize());
heap->DecrementDisableMovingGC(self);
// AllocClass(mirror::Class*) can now be used
// Class[] is used for reflection support.
Handle<mirror::Class> class_array_class(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray<mirror::Class>::ClassSize())));
class_array_class->SetComponentType(java_lang_Class.Get());
// java_lang_Object comes next so that object_array_class can be created.
Handle<mirror::Class> java_lang_Object(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize())));
CHECK(java_lang_Object.Get() != nullptr);
// backfill Object as the super class of Class.
java_lang_Class->SetSuperClass(java_lang_Object.Get());
java_lang_Object->SetStatus(mirror::Class::kStatusLoaded, self);
// Object[] next to hold class roots.
Handle<mirror::Class> object_array_class(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::ObjectArray<mirror::Object>::ClassSize())));
object_array_class->SetComponentType(java_lang_Object.Get());
// Setup the char (primitive) class to be used for char[].
Handle<mirror::Class> char_class(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::Class::PrimitiveClassSize())));
// Setup the char[] class to be used for String.
Handle<mirror::Class> char_array_class(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(),
mirror::Array::ClassSize())));
char_array_class->SetComponentType(char_class.Get());
mirror::CharArray::SetArrayClass(char_array_class.Get());
// Setup String.
Handle<mirror::Class> java_lang_String(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize())));
mirror::String::SetClass(java_lang_String.Get());
java_lang_String->SetObjectSize(mirror::String::InstanceSize());
java_lang_String->SetStatus(mirror::Class::kStatusResolved, self);
// Setup Reference.
Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize())));
mirror::Reference::SetClass(java_lang_ref_Reference.Get());
java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
java_lang_ref_Reference->SetStatus(mirror::Class::kStatusResolved, self);
// Create storage for root classes, save away our work so far (requires descriptors).
class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class> >(
mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
kClassRootsMax));
CHECK(!class_roots_.IsNull());
SetClassRoot(kJavaLangClass, java_lang_Class.Get());
SetClassRoot(kJavaLangObject, java_lang_Object.Get());
SetClassRoot(kClassArrayClass, class_array_class.Get());
SetClassRoot(kObjectArrayClass, object_array_class.Get());
SetClassRoot(kCharArrayClass, char_array_class.Get());
SetClassRoot(kJavaLangString, java_lang_String.Get());
SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get());
// Setup the primitive type classes.
SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
// Create array interface entries to populate once we can load system classes.
array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2));
// Create int array type for AllocDexCache (done in AppendToBootClassPath).
Handle<mirror::Class> int_array_class(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize())));
int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
mirror::IntArray::SetArrayClass(int_array_class.Get());
SetClassRoot(kIntArrayClass, int_array_class.Get());
// now that these are registered, we can use AllocClass() and AllocObjectArray
// Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize())));
SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
java_lang_DexCache->SetStatus(mirror::Class::kStatusResolved, self);
// Constructor, Field, Method, and AbstractMethod are necessary so
// that FindClass can link members.
Handle<mirror::Class> java_lang_reflect_ArtField(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::ArtField::ClassSize())));
CHECK(java_lang_reflect_ArtField.Get() != nullptr);
java_lang_reflect_ArtField->SetObjectSize(mirror::ArtField::InstanceSize());
SetClassRoot(kJavaLangReflectArtField, java_lang_reflect_ArtField.Get());
java_lang_reflect_ArtField->SetStatus(mirror::Class::kStatusResolved, self);
mirror::ArtField::SetClass(java_lang_reflect_ArtField.Get());
Handle<mirror::Class> java_lang_reflect_ArtMethod(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(), mirror::ArtMethod::ClassSize())));
CHECK(java_lang_reflect_ArtMethod.Get() != nullptr);
java_lang_reflect_ArtMethod->SetObjectSize(mirror::ArtMethod::InstanceSize(sizeof(void*)));
SetClassRoot(kJavaLangReflectArtMethod, java_lang_reflect_ArtMethod.Get());
java_lang_reflect_ArtMethod->SetStatus(mirror::Class::kStatusResolved, self);
mirror::ArtMethod::SetClass(java_lang_reflect_ArtMethod.Get());
// Set up array classes for string, field, method
Handle<mirror::Class> object_array_string(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(),
mirror::ObjectArray<mirror::String>::ClassSize())));
object_array_string->SetComponentType(java_lang_String.Get());
SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
Handle<mirror::Class> object_array_art_method(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(),
mirror::ObjectArray<mirror::ArtMethod>::ClassSize())));
object_array_art_method->SetComponentType(java_lang_reflect_ArtMethod.Get());
SetClassRoot(kJavaLangReflectArtMethodArrayClass, object_array_art_method.Get());
Handle<mirror::Class> object_array_art_field(hs.NewHandle(
AllocClass(self, java_lang_Class.Get(),
mirror::ObjectArray<mirror::ArtField>::ClassSize())));
object_array_art_field->SetComponentType(java_lang_reflect_ArtField.Get());
SetClassRoot(kJavaLangReflectArtFieldArrayClass, object_array_art_field.Get());
// Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
// DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
// these roots.
CHECK_NE(0U, boot_class_path.size());
for (const DexFile* dex_file : boot_class_path) {
CHECK(dex_file != nullptr);
AppendToBootClassPath(*dex_file);
}
// now we can use FindSystemClass
// run char class through InitializePrimitiveClass to finish init
InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
SetClassRoot(kPrimitiveChar, char_class.Get()); // needs descriptor
// Create runtime resolution and imt conflict methods. Also setup the default imt.
Runtime* runtime = Runtime::Current();
runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod());
runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod());
runtime->SetDefaultImt(runtime->CreateDefaultImt(this));
// Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
// we do not need friend classes or a publicly exposed setter.
quick_generic_jni_trampoline_ = reinterpret_cast<void*>(art_quick_generic_jni_trampoline);
if (!runtime->IsCompiler()) {
// We need to set up the generic trampolines since we don't have an image.
quick_resolution_trampoline_ = reinterpret_cast<void*>(art_quick_resolution_trampoline);
quick_imt_conflict_trampoline_ = reinterpret_cast<void*>(art_quick_imt_conflict_trampoline);
quick_to_interpreter_bridge_trampoline_ = reinterpret_cast<void*>(art_quick_to_interpreter_bridge);
}
// Object, String and DexCache need to be rerun through FindSystemClass to finish init
java_lang_Object->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Object_class = FindSystemClass(self, "Ljava/lang/Object;");
CHECK_EQ(java_lang_Object.Get(), Object_class);
CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
java_lang_String->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* String_class = FindSystemClass(self, "Ljava/lang/String;");
std::ostringstream os1, os2;
java_lang_String->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
String_class->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
CHECK_EQ(java_lang_String.Get(), String_class) << os1.str() << "\n\n" << os2.str();
CHECK_EQ(java_lang_String->GetObjectSize(), mirror::String::InstanceSize());
java_lang_DexCache->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* DexCache_class = FindSystemClass(self, "Ljava/lang/DexCache;");
CHECK_EQ(java_lang_String.Get(), String_class);
CHECK_EQ(java_lang_DexCache.Get(), DexCache_class);
CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
// Setup the primitive array type classes - can't be done until Object has a vtable.
SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
mirror::Class* found_char_array_class = FindSystemClass(self, "[C");
CHECK_EQ(char_array_class.Get(), found_char_array_class);
SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
mirror::Class* found_int_array_class = FindSystemClass(self, "[I");
CHECK_EQ(int_array_class.Get(), found_int_array_class);
SetClassRoot(kLongArrayClass, FindSystemClass(self, "[J"));
mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
mirror::Class* found_class_array_class = FindSystemClass(self, "[Ljava/lang/Class;");
CHECK_EQ(class_array_class.Get(), found_class_array_class);
mirror::Class* found_object_array_class = FindSystemClass(self, "[Ljava/lang/Object;");
CHECK_EQ(object_array_class.Get(), found_object_array_class);
// Setup the single, global copy of "iftable".
mirror::Class* java_lang_Cloneable = FindSystemClass(self, "Ljava/lang/Cloneable;");
CHECK(java_lang_Cloneable != nullptr);
mirror::Class* java_io_Serializable = FindSystemClass(self, "Ljava/io/Serializable;");
CHECK(java_io_Serializable != nullptr);
// We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
// crawl up and explicitly list all of the supers as well.
{
mirror::IfTable* array_iftable = array_iftable_.Read();
array_iftable->SetInterface(0, java_lang_Cloneable);
array_iftable->SetInterface(1, java_io_Serializable);
}
// Sanity check Class[] and Object[]'s interfaces.
CHECK_EQ(java_lang_Cloneable, mirror::Class::GetDirectInterface(self, class_array_class, 0));
CHECK_EQ(java_io_Serializable, mirror::Class::GetDirectInterface(self, class_array_class, 1));
CHECK_EQ(java_lang_Cloneable, mirror::Class::GetDirectInterface(self, object_array_class, 0));
CHECK_EQ(java_io_Serializable, mirror::Class::GetDirectInterface(self, object_array_class, 1));
// Run Class, ArtField, and ArtMethod through FindSystemClass. This initializes their
// dex_cache_ fields and register them in class_table_.
mirror::Class* Class_class = FindSystemClass(self, "Ljava/lang/Class;");
CHECK_EQ(java_lang_Class.Get(), Class_class);
java_lang_reflect_ArtMethod->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Art_method_class = FindSystemClass(self, "Ljava/lang/reflect/ArtMethod;");
CHECK_EQ(java_lang_reflect_ArtMethod.Get(), Art_method_class);
java_lang_reflect_ArtField->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Art_field_class = FindSystemClass(self, "Ljava/lang/reflect/ArtField;");
CHECK_EQ(java_lang_reflect_ArtField.Get(), Art_field_class);
mirror::Class* String_array_class =
FindSystemClass(self, class_roots_descriptors_[kJavaLangStringArrayClass]);
CHECK_EQ(object_array_string.Get(), String_array_class);
mirror::Class* Art_method_array_class =
FindSystemClass(self, class_roots_descriptors_[kJavaLangReflectArtMethodArrayClass]);
CHECK_EQ(object_array_art_method.Get(), Art_method_array_class);
mirror::Class* Art_field_array_class =
FindSystemClass(self, class_roots_descriptors_[kJavaLangReflectArtFieldArrayClass]);
CHECK_EQ(object_array_art_field.Get(), Art_field_array_class);
// End of special init trickery, subsequent classes may be loaded via FindSystemClass.
// Create java.lang.reflect.Proxy root.
mirror::Class* java_lang_reflect_Proxy = FindSystemClass(self, "Ljava/lang/reflect/Proxy;");
SetClassRoot(kJavaLangReflectProxy, java_lang_reflect_Proxy);
// java.lang.ref classes need to be specially flagged, but otherwise are normal classes
// finish initializing Reference class
java_lang_ref_Reference->SetStatus(mirror::Class::kStatusNotReady, self);
mirror::Class* Reference_class = FindSystemClass(self, "Ljava/lang/ref/Reference;");
CHECK_EQ(java_lang_ref_Reference.Get(), Reference_class);
CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
CHECK_EQ(java_lang_ref_Reference->GetClassSize(), mirror::Reference::ClassSize());
mirror::Class* java_lang_ref_FinalizerReference =
FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
java_lang_ref_FinalizerReference->SetAccessFlags(
java_lang_ref_FinalizerReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsFinalizerReference);
mirror::Class* java_lang_ref_PhantomReference =
FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
java_lang_ref_PhantomReference->SetAccessFlags(
java_lang_ref_PhantomReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsPhantomReference);
mirror::Class* java_lang_ref_SoftReference =
FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
java_lang_ref_SoftReference->SetAccessFlags(
java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference);
mirror::Class* java_lang_ref_WeakReference =
FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
java_lang_ref_WeakReference->SetAccessFlags(
java_lang_ref_WeakReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsWeakReference);
// Setup the ClassLoader, verifying the object_size_.
mirror::Class* java_lang_ClassLoader = FindSystemClass(self, "Ljava/lang/ClassLoader;");
CHECK_EQ(java_lang_ClassLoader->GetObjectSize(), mirror::ClassLoader::InstanceSize());
SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader);
// Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
// java.lang.StackTraceElement as a convenience.
SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
SetClassRoot(kJavaLangClassNotFoundException,
FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
SetClassRoot(kJavaLangStackTraceElementArrayClass,
FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit(self);
VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
}
void ClassLinker::FinishInit(Thread* self) {
VLOG(startup) << "ClassLinker::FinishInit entering";
// Let the heap know some key offsets into java.lang.ref instances
// Note: we hard code the field indexes here rather than using FindInstanceField
// as the types of the field can't be resolved prior to the runtime being
// fully initialized
mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference);
mirror::Class* java_lang_ref_FinalizerReference =
FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
mirror::ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
CHECK_STREQ(pendingNext->GetName(), "pendingNext");
CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
mirror::ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
CHECK_STREQ(queue->GetName(), "queue");
CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
mirror::ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
CHECK_STREQ(queueNext->GetName(), "queueNext");
CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
mirror::ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
CHECK_STREQ(referent->GetName(), "referent");
CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
mirror::ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
CHECK_STREQ(zombie->GetName(), "zombie");
CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
// ensure all class_roots_ are initialized
for (size_t i = 0; i < kClassRootsMax; i++) {
ClassRoot class_root = static_cast<ClassRoot>(i);
mirror::Class* klass = GetClassRoot(class_root);
CHECK(klass != nullptr);
DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
// note SetClassRoot does additional validation.
// if possible add new checks there to catch errors early
}
CHECK(!array_iftable_.IsNull());
// disable the slow paths in FindClass and CreatePrimitiveClass now
// that Object, Class, and Object[] are setup
init_done_ = true;
VLOG(startup) << "ClassLinker::FinishInit exiting";
}
void ClassLinker::RunRootClinits() {
Thread* self = Thread::Current();
for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
mirror::Class* c = GetClassRoot(ClassRoot(i));
if (!c->IsArrayClass() && !c->IsPrimitive()) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
EnsureInitialized(h_class, true, true);
self->AssertNoPendingException();
}
}
}
bool ClassLinker::GenerateOatFile(const char* dex_filename,
int oat_fd,
const char* oat_cache_filename,
std::string* error_msg) {
Locks::mutator_lock_->AssertNotHeld(Thread::Current()); // Avoid starving GC.
std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
gc::Heap* heap = Runtime::Current()->GetHeap();
std::string boot_image_option("--boot-image=");
if (heap->GetImageSpace() == nullptr) {
// TODO If we get a dex2dex compiler working we could maybe use that, OTOH since we are likely
// out of space anyway it might not matter.
*error_msg = StringPrintf("Cannot create oat file for '%s' because we are running "
"without an image.", dex_filename);
return false;
}
boot_image_option += heap->GetImageSpace()->GetImageLocation();
std::string dex_file_option("--dex-file=");
dex_file_option += dex_filename;
std::string oat_fd_option("--oat-fd=");
StringAppendF(&oat_fd_option, "%d", oat_fd);
std::string oat_location_option("--oat-location=");
oat_location_option += oat_cache_filename;
std::vector<std::string> argv;
argv.push_back(dex2oat);
argv.push_back("--runtime-arg");
argv.push_back("-classpath");
argv.push_back("--runtime-arg");
argv.push_back(Runtime::Current()->GetClassPathString());
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv);
if (!Runtime::Current()->IsVerificationEnabled()) {
argv.push_back("--compiler-filter=verify-none");
}
if (Runtime::Current()->MustRelocateIfPossible()) {
argv.push_back("--runtime-arg");
argv.push_back("-Xrelocate");
} else {
argv.push_back("--runtime-arg");
argv.push_back("-Xnorelocate");
}
if (!kIsTargetBuild) {
argv.push_back("--host");
}
argv.push_back(boot_image_option);
argv.push_back(dex_file_option);
argv.push_back(oat_fd_option);
argv.push_back(oat_location_option);
const std::vector<std::string>& compiler_options = Runtime::Current()->GetCompilerOptions();
for (size_t i = 0; i < compiler_options.size(); ++i) {
argv.push_back(compiler_options[i].c_str());
}
if (!Exec(argv, error_msg)) {
// Manually delete the file. Ensures there is no garbage left over if the process unexpectedly
// died. Ignore unlink failure, propagate the original error.
TEMP_FAILURE_RETRY(unlink(oat_cache_filename));
return false;
}
return true;
}
const OatFile* ClassLinker::RegisterOatFile(const OatFile* oat_file) {
WriterMutexLock mu(Thread::Current(), dex_lock_);
if (kIsDebugBuild) {
for (size_t i = 0; i < oat_files_.size(); ++i) {
CHECK_NE(oat_file, oat_files_[i]) << oat_file->GetLocation();
}
}
VLOG(class_linker) << "Registering " << oat_file->GetLocation();
oat_files_.push_back(oat_file);
return oat_file;
}
OatFile& ClassLinker::GetImageOatFile(gc::space::ImageSpace* space) {
VLOG(startup) << "ClassLinker::GetImageOatFile entering";
OatFile* oat_file = space->ReleaseOatFile();
CHECK_EQ(RegisterOatFile(oat_file), oat_file);
VLOG(startup) << "ClassLinker::GetImageOatFile exiting";
return *oat_file;
}
const OatFile::OatDexFile* ClassLinker::FindOpenedOatDexFileForDexFile(const DexFile& dex_file) {
const char* dex_location = dex_file.GetLocation().c_str();
uint32_t dex_location_checksum = dex_file.GetLocationChecksum();
return FindOpenedOatDexFile(nullptr, dex_location, &dex_location_checksum);
}
const OatFile::OatDexFile* ClassLinker::FindOpenedOatDexFile(const char* oat_location,
const char* dex_location,
const uint32_t* dex_location_checksum) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (const OatFile* oat_file : oat_files_) {
DCHECK(oat_file != nullptr);
if (oat_location != nullptr) {
if (oat_file->GetLocation() != oat_location) {
continue;
}
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location,
dex_location_checksum,
false);
if (oat_dex_file != nullptr) {
return oat_dex_file;
}
}
return nullptr;
}
// Loads all multi dex files from the given oat file returning true on success.
//
// Parameters:
// oat_file - the oat file to load from
// dex_location - the dex location used to generate the oat file
// dex_location_checksum - the checksum of the dex_location (may be null for pre-opted files)
// generated - whether or not the oat_file existed before or was just (re)generated
// error_msgs - any error messages will be appended here
// dex_files - the loaded dex_files will be appended here (only if the loading succeeds)
static bool LoadMultiDexFilesFromOatFile(const OatFile* oat_file,
const char* dex_location,
const uint32_t* dex_location_checksum,
bool generated,
std::vector<std::string>* error_msgs,
std::vector<const DexFile*>* dex_files) {
if (oat_file == nullptr) {
return false;
}
size_t old_size = dex_files->size(); // To rollback on error.
bool success = true;
for (size_t i = 0; success; ++i) {
std::string next_name_str = DexFile::GetMultiDexClassesDexName(i, dex_location);
const char* next_name = next_name_str.c_str();
uint32_t next_location_checksum;
uint32_t* next_location_checksum_pointer = &next_location_checksum;
std::string error_msg;
if ((i == 0) && (strcmp(next_name, dex_location) == 0)) {
// When i=0 the multidex name should be the same as the location name. We already have the
// checksum it so we don't need to recompute it.
if (dex_location_checksum == nullptr) {
next_location_checksum_pointer = nullptr;
} else {
next_location_checksum = *dex_location_checksum;
}
} else if (!DexFile::GetChecksum(next_name, next_location_checksum_pointer, &error_msg)) {
DCHECK_EQ(false, i == 0 && generated);
next_location_checksum_pointer = nullptr;
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(next_name, nullptr, false);
if (oat_dex_file == nullptr) {
if (i == 0 && generated) {
std::string error_msg;
error_msg = StringPrintf("\nFailed to find dex file '%s' (checksum 0x%x) in generated out "
" file'%s'", dex_location, next_location_checksum,
oat_file->GetLocation().c_str());
error_msgs->push_back(error_msg);
}
break; // Not found, done.
}
// Checksum test. Test must succeed when generated.
success = !generated;
if (next_location_checksum_pointer != nullptr) {
success = next_location_checksum == oat_dex_file->GetDexFileLocationChecksum();
}
if (success) {
const DexFile* dex_file = oat_dex_file->OpenDexFile(&error_msg);
if (dex_file == nullptr) {
success = false;
error_msgs->push_back(error_msg);
} else {
dex_files->push_back(dex_file);
}
}
// When we generated the file, we expect success, or something is terribly wrong.
CHECK_EQ(false, generated && !success)
<< "dex_location=" << next_name << " oat_location=" << oat_file->GetLocation().c_str()
<< std::hex << " dex_location_checksum=" << next_location_checksum
<< " OatDexFile::GetLocationChecksum()=" << oat_dex_file->GetDexFileLocationChecksum();
}
if (dex_files->size() == old_size) {
success = false; // We did not even find classes.dex
}
if (success) {
return true;
} else {
// Free all the dex files we have loaded.
auto it = dex_files->begin() + old_size;
auto it_end = dex_files->end();
for (; it != it_end; it++) {
delete *it;
}
dex_files->erase(dex_files->begin() + old_size, it_end);
return false;
}
}
// Multidex files make it possible that some, but not all, dex files can be broken/outdated. This
// complicates the loading process, as we should not use an iterative loading process, because that
// would register the oat file and dex files that come before the broken one. Instead, check all
// multidex ahead of time.
bool ClassLinker::OpenDexFilesFromOat(const char* dex_location, const char* oat_location,
std::vector<std::string>* error_msgs,
std::vector<const DexFile*>* dex_files) {
// 1) Check whether we have an open oat file.
// This requires a dex checksum, use the "primary" one.
uint32_t dex_location_checksum;
uint32_t* dex_location_checksum_pointer = &dex_location_checksum;
bool have_checksum = true;
std::string checksum_error_msg;
if (!DexFile::GetChecksum(dex_location, dex_location_checksum_pointer, &checksum_error_msg)) {
// This happens for pre-opted files since the corresponding dex files are no longer on disk.
dex_location_checksum_pointer = nullptr;
have_checksum = false;
}
bool needs_registering = false;
const OatFile::OatDexFile* oat_dex_file = FindOpenedOatDexFile(oat_location, dex_location,
dex_location_checksum_pointer);
std::unique_ptr<const OatFile> open_oat_file(
oat_dex_file != nullptr ? oat_dex_file->GetOatFile() : nullptr);
// 2) If we do not have an open one, maybe there's one on disk already.
// In case the oat file is not open, we play a locking game here so
// that if two different processes race to load and register or generate
// (or worse, one tries to open a partial generated file) we will be okay.
// This is actually common with apps that use DexClassLoader to work
// around the dex method reference limit and that have a background
// service running in a separate process.
ScopedFlock scoped_flock;
if (open_oat_file.get() == nullptr) {
if (oat_location != nullptr) {
// Can only do this if we have a checksum, else error.
if (!have_checksum) {
error_msgs->push_back(checksum_error_msg);
return false;
}
std::string error_msg;
// We are loading or creating one in the future. Time to set up the file lock.
if (!scoped_flock.Init(oat_location, &error_msg)) {
error_msgs->push_back(error_msg);
return false;
}
// TODO Caller specifically asks for this oat_location. We should honor it. Probably?
open_oat_file.reset(FindOatFileInOatLocationForDexFile(dex_location, dex_location_checksum,
oat_location, &error_msg));
if (open_oat_file.get() == nullptr) {
std::string compound_msg = StringPrintf("Failed to find dex file '%s' in oat location '%s': %s",
dex_location, oat_location, error_msg.c_str());
VLOG(class_linker) << compound_msg;
error_msgs->push_back(compound_msg);
}
} else {
// TODO: What to lock here?
bool obsolete_file_cleanup_failed;
open_oat_file.reset(FindOatFileContainingDexFileFromDexLocation(dex_location,
dex_location_checksum_pointer,
kRuntimeISA, error_msgs,
&obsolete_file_cleanup_failed));
// There's no point in going forward and eventually try to regenerate the
// file if we couldn't remove the obsolete one. Mostly likely we will fail
// with the same error when trying to write the new file.
// TODO: should we maybe do this only when we get permission issues? (i.e. EACCESS).
if (obsolete_file_cleanup_failed) {
return false;
}
}
needs_registering = true;
}
// 3) If we have an oat file, check all contained multidex files for our dex_location.
// Note: LoadMultiDexFilesFromOatFile will check for nullptr in the first argument.
bool success = LoadMultiDexFilesFromOatFile(open_oat_file.get(), dex_location,
dex_location_checksum_pointer,
false, error_msgs, dex_files);
if (success) {
const OatFile* oat_file = open_oat_file.release(); // Avoid deleting it.
if (needs_registering) {
// We opened the oat file, so we must register it.
RegisterOatFile(oat_file);
}
// If the file isn't executable we failed patchoat but did manage to get the dex files.
return oat_file->IsExecutable();
} else {
if (needs_registering) {
// We opened it, delete it.
open_oat_file.reset();
} else {
open_oat_file.release(); // Do not delete open oat files.
}
}
// 4) If it's not the case (either no oat file or mismatches), regenerate and load.
// Need a checksum, fail else.
if (!have_checksum) {
error_msgs->push_back(checksum_error_msg);
return false;
}
// Look in cache location if no oat_location is given.
std::string cache_location;
if (oat_location == nullptr) {
// Use the dalvik cache.
const std::string dalvik_cache(GetDalvikCacheOrDie(GetInstructionSetString(kRuntimeISA)));
cache_location = GetDalvikCacheFilenameOrDie(dex_location, dalvik_cache.c_str());
oat_location = cache_location.c_str();
}
bool has_flock = true;
// Definitely need to lock now.
if (!scoped_flock.HasFile()) {
std::string error_msg;
if (!scoped_flock.Init(oat_location, &error_msg)) {
error_msgs->push_back(error_msg);
has_flock = false;
}
}
if (Runtime::Current()->IsDex2OatEnabled() && has_flock && scoped_flock.HasFile()) {
// Create the oat file.
open_oat_file.reset(CreateOatFileForDexLocation(dex_location, scoped_flock.GetFile()->Fd(),
oat_location, error_msgs));
}
// Failed, bail.
if (open_oat_file.get() == nullptr) {
std::string error_msg;
// dex2oat was disabled or crashed. Add the dex file in the list of dex_files to make progress.
DexFile::Open(dex_location, dex_location, &error_msg, dex_files);
error_msgs->push_back(error_msg);
return false;
}
// Try to load again, but stronger checks.
success = LoadMultiDexFilesFromOatFile(open_oat_file.get(), dex_location,
dex_location_checksum_pointer,
true, error_msgs, dex_files);
if (success) {
RegisterOatFile(open_oat_file.release());
return true;
} else {
return false;
}
}
const OatFile* ClassLinker::FindOatFileInOatLocationForDexFile(const char* dex_location,
uint32_t dex_location_checksum,
const char* oat_location,
std::string* error_msg) {
std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_location, oat_location, nullptr, nullptr,
!Runtime::Current()->IsCompiler(),
error_msg));
if (oat_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to find existing oat file at %s: %s", oat_location,
error_msg->c_str());
return nullptr;
}
Runtime* runtime = Runtime::Current();
const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace();
if (image_space != nullptr) {
const ImageHeader& image_header = image_space->GetImageHeader();
uint32_t expected_image_oat_checksum = image_header.GetOatChecksum();
uint32_t actual_image_oat_checksum = oat_file->GetOatHeader().GetImageFileLocationOatChecksum();
if (expected_image_oat_checksum != actual_image_oat_checksum) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected image oat checksum of "
"0x%x, found 0x%x", oat_location, expected_image_oat_checksum,
actual_image_oat_checksum);
return nullptr;
}
uintptr_t expected_image_oat_offset = reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin());
uint32_t actual_image_oat_offset = oat_file->GetOatHeader().GetImageFileLocationOatDataBegin();
if (expected_image_oat_offset != actual_image_oat_offset) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected image oat offset %"
PRIuPTR ", found %ud", oat_location, expected_image_oat_offset,
actual_image_oat_offset);
return nullptr;
}
int32_t expected_patch_delta = image_header.GetPatchDelta();
int32_t actual_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
if (expected_patch_delta != actual_patch_delta) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected patch delta %d, "
" found %d", oat_location, expected_patch_delta, actual_patch_delta);
return nullptr;
}
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location,
&dex_location_checksum);
if (oat_dex_file == nullptr) {
*error_msg = StringPrintf("Failed to find oat file at '%s' containing '%s'", oat_location,
dex_location);
return nullptr;
}
uint32_t expected_dex_checksum = dex_location_checksum;
uint32_t actual_dex_checksum = oat_dex_file->GetDexFileLocationChecksum();
if (expected_dex_checksum != actual_dex_checksum) {
*error_msg = StringPrintf("Failed to find oat file at '%s' with expected dex checksum of 0x%x, "
"found 0x%x", oat_location, expected_dex_checksum,
actual_dex_checksum);
return nullptr;
}
std::unique_ptr<const DexFile> dex_file(oat_dex_file->OpenDexFile(error_msg));
if (dex_file.get() != nullptr) {
return oat_file.release();
} else {
return nullptr;
}
}
const OatFile* ClassLinker::CreateOatFileForDexLocation(const char* dex_location,
int fd, const char* oat_location,
std::vector<std::string>* error_msgs) {
// Generate the output oat file for the dex file
VLOG(class_linker) << "Generating oat file " << oat_location << " for " << dex_location;
std::string error_msg;
if (!GenerateOatFile(dex_location, fd, oat_location, &error_msg)) {
CHECK(!error_msg.empty());
error_msgs->push_back(error_msg);
return nullptr;
}
std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_location, oat_location, nullptr, nullptr,
!Runtime::Current()->IsCompiler(),
&error_msg));
if (oat_file.get() == nullptr) {
std::string compound_msg = StringPrintf("\nFailed to open generated oat file '%s': %s",
oat_location, error_msg.c_str());
error_msgs->push_back(compound_msg);
return nullptr;
}
return oat_file.release();
}
bool ClassLinker::VerifyOatImageChecksum(const OatFile* oat_file,
const InstructionSet instruction_set) {
Runtime* runtime = Runtime::Current();
const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace();
if (image_space == nullptr) {
return false;
}
uint32_t image_oat_checksum = 0;
if (instruction_set == kRuntimeISA) {
const ImageHeader& image_header = image_space->GetImageHeader();
image_oat_checksum = image_header.GetOatChecksum();
} else {
std::unique_ptr<ImageHeader> image_header(gc::space::ImageSpace::ReadImageHeaderOrDie(
image_space->GetImageLocation().c_str(), instruction_set));
image_oat_checksum = image_header->GetOatChecksum();
}
return oat_file->GetOatHeader().GetImageFileLocationOatChecksum() == image_oat_checksum;
}
bool ClassLinker::VerifyOatChecksums(const OatFile* oat_file,
const InstructionSet instruction_set,
std::string* error_msg) {
Runtime* runtime = Runtime::Current();
const gc::space::ImageSpace* image_space = runtime->GetHeap()->GetImageSpace();
if (image_space == nullptr) {
*error_msg = "No image space for verification against";
return false;
}
// If the requested instruction set is the same as the current runtime,
// we can use the checksums directly. If it isn't, we'll have to read the
// image header from the image for the right instruction set.
uint32_t image_oat_checksum = 0;
uintptr_t image_oat_data_begin = 0;
int32_t image_patch_delta = 0;
if (instruction_set == runtime->GetInstructionSet()) {
const ImageHeader& image_header = image_space->GetImageHeader();
image_oat_checksum = image_header.GetOatChecksum();
image_oat_data_begin = reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin());
image_patch_delta = image_header.GetPatchDelta();
} else {
std::unique_ptr<ImageHeader> image_header(gc::space::ImageSpace::ReadImageHeaderOrDie(
image_space->GetImageLocation().c_str(), instruction_set));
image_oat_checksum = image_header->GetOatChecksum();
image_oat_data_begin = reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin());
image_patch_delta = image_header->GetPatchDelta();
}
const OatHeader& oat_header = oat_file->GetOatHeader();
bool ret = (oat_header.GetImageFileLocationOatChecksum() == image_oat_checksum);
// If the oat file is PIC, it doesn't care if/how image was relocated. Ignore these checks.
if (!oat_file->IsPic()) {
ret = ret && (oat_header.GetImagePatchDelta() == image_patch_delta)
&& (oat_header.GetImageFileLocationOatDataBegin() == image_oat_data_begin);
}
if (!ret) {
*error_msg = StringPrintf("oat file '%s' mismatch (0x%x, %d, %d) with (0x%x, %" PRIdPTR ", %d)",
oat_file->GetLocation().c_str(),
oat_file->GetOatHeader().GetImageFileLocationOatChecksum(),
oat_file->GetOatHeader().GetImageFileLocationOatDataBegin(),
oat_file->GetOatHeader().GetImagePatchDelta(),
image_oat_checksum, image_oat_data_begin, image_patch_delta);
}
return ret;
}
bool ClassLinker::VerifyOatAndDexFileChecksums(const OatFile* oat_file,
const char* dex_location,
uint32_t dex_location_checksum,
const InstructionSet instruction_set,
std::string* error_msg) {
if (!VerifyOatChecksums(oat_file, instruction_set, error_msg)) {
return false;
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location,
&dex_location_checksum);
if (oat_dex_file == nullptr) {
*error_msg = StringPrintf("oat file '%s' does not contain contents for '%s' with checksum 0x%x",
oat_file->GetLocation().c_str(), dex_location, dex_location_checksum);
for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
*error_msg += StringPrintf("\noat file '%s' contains contents for '%s' with checksum 0x%x",
oat_file->GetLocation().c_str(),
oat_dex_file->GetDexFileLocation().c_str(),
oat_dex_file->GetDexFileLocationChecksum());
}
return false;
}
if (dex_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("oat file '%s' mismatch (0x%x) with '%s' (0x%x)",
oat_file->GetLocation().c_str(),
oat_dex_file->GetDexFileLocationChecksum(),
dex_location, dex_location_checksum);
return false;
}
return true;
}
bool ClassLinker::VerifyOatWithDexFile(const OatFile* oat_file,
const char* dex_location,
const uint32_t* dex_location_checksum,
std::string* error_msg) {
CHECK(oat_file != nullptr);
CHECK(dex_location != nullptr);
std::unique_ptr<const DexFile> dex_file;
if (dex_location_checksum == nullptr) {
// If no classes.dex found in dex_location, it has been stripped or is corrupt, assume oat is
// up-to-date. This is the common case in user builds for jar's and apk's in the /system
// directory.
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, nullptr);
if (oat_dex_file == nullptr) {
*error_msg = StringPrintf("Dex checksum mismatch for location '%s' and failed to find oat "
"dex file '%s': %s", oat_file->GetLocation().c_str(), dex_location,
error_msg->c_str());
return false;
}
dex_file.reset(oat_dex_file->OpenDexFile(error_msg));
} else {
bool verified = VerifyOatAndDexFileChecksums(oat_file, dex_location, *dex_location_checksum,
kRuntimeISA, error_msg);
if (!verified) {
return false;
}
dex_file.reset(oat_file->GetOatDexFile(dex_location,
dex_location_checksum)->OpenDexFile(error_msg));
}
return dex_file.get() != nullptr;
}
const OatFile* ClassLinker::FindOatFileContainingDexFileFromDexLocation(
const char* dex_location,
const uint32_t* dex_location_checksum,
InstructionSet isa,
std::vector<std::string>* error_msgs,
bool* obsolete_file_cleanup_failed) {
*obsolete_file_cleanup_failed = false;
bool already_opened = false;
std::string dex_location_str(dex_location);
std::unique_ptr<const OatFile> oat_file(OpenOatFileFromDexLocation(dex_location_str, isa,
&already_opened,
obsolete_file_cleanup_failed,
error_msgs));
std::string error_msg;
if (oat_file.get() == nullptr) {
error_msgs->push_back(StringPrintf("Failed to open oat file from dex location '%s'",
dex_location));
return nullptr;
} else if (oat_file->IsExecutable() &&
!VerifyOatWithDexFile(oat_file.get(), dex_location,
dex_location_checksum, &error_msg)) {
error_msgs->push_back(StringPrintf("Failed to verify oat file '%s' found for dex location "
"'%s': %s", oat_file->GetLocation().c_str(), dex_location,
error_msg.c_str()));
return nullptr;
} else if (!oat_file->IsExecutable() &&
Runtime::Current()->GetHeap()->HasImageSpace() &&
!VerifyOatImageChecksum(oat_file.get(), isa)) {
error_msgs->push_back(StringPrintf("Failed to verify non-executable oat file '%s' found for "
"dex location '%s'. Image checksum incorrect.",
oat_file->GetLocation().c_str(), dex_location));
return nullptr;
} else {
return oat_file.release();
}
}
const OatFile* ClassLinker::FindOpenedOatFileFromOatLocation(const std::string& oat_location) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i < oat_files_.size(); i++) {
const OatFile* oat_file = oat_files_[i];
DCHECK(oat_file != nullptr);
if (oat_file->GetLocation() == oat_location) {
return oat_file;
}
}
return nullptr;
}
const OatFile* ClassLinker::OpenOatFileFromDexLocation(const std::string& dex_location,
InstructionSet isa,
bool *already_opened,
bool *obsolete_file_cleanup_failed,
std::vector<std::string>* error_msgs) {
// Find out if we've already opened the file
const OatFile* ret = nullptr;
std::string odex_filename(DexFilenameToOdexFilename(dex_location, isa));
ret = FindOpenedOatFileFromOatLocation(odex_filename);
if (ret != nullptr) {
*already_opened = true;
return ret;
}
std::string dalvik_cache;
bool have_android_data = false;
bool have_dalvik_cache = false;
bool is_global_cache = false;
GetDalvikCache(GetInstructionSetString(kRuntimeISA), false, &dalvik_cache,
&have_android_data, &have_dalvik_cache, &is_global_cache);
std::string cache_filename;
if (have_dalvik_cache) {
cache_filename = GetDalvikCacheFilenameOrDie(dex_location.c_str(), dalvik_cache.c_str());
ret = FindOpenedOatFileFromOatLocation(cache_filename);
if (ret != nullptr) {
*already_opened = true;
return ret;
}
} else {
// If we need to relocate we should just place odex back where it started.
cache_filename = odex_filename;
}
ret = nullptr;
// We know that neither the odex nor the cache'd version is already in use, if it even exists.
//
// Now we do the following:
// 1) Try and open the odex version
// 2) If present, checksum-verified & relocated correctly return it
// 3) Close the odex version to free up its address space.
// 4) Try and open the cache version
// 5) If present, checksum-verified & relocated correctly return it
// 6) Close the cache version to free up its address space.
// 7) If we should relocate:
// a) If we have opened and checksum-verified the odex version relocate it to
// 'cache_filename' and return it
// b) If we have opened and checksum-verified the cache version relocate it in place and return
// it. This should not happen often (I think only the run-test's will hit this case).
// 8) If the cache-version was present we should delete it since it must be obsolete if we get to
// this point.
// 9) Return nullptr
*already_opened = false;
const Runtime* runtime = Runtime::Current();
CHECK(runtime != nullptr);
bool executable = !runtime->IsCompiler();
std::string odex_error_msg;
bool should_patch_system = false;
bool odex_checksum_verified = false;
bool have_system_odex = false;
{
// There is a high probability that both these oat files map similar/the same address
// spaces so we must scope them like this so they each gets its turn.
std::unique_ptr<OatFile> odex_oat_file(OatFile::Open(odex_filename, odex_filename, nullptr,
nullptr,
executable, &odex_error_msg));
if (odex_oat_file.get() != nullptr && CheckOatFile(runtime, odex_oat_file.get(), isa,
&odex_checksum_verified,
&odex_error_msg)) {
error_msgs->push_back(odex_error_msg);
return odex_oat_file.release();
} else {
if (odex_checksum_verified) {
// We can just relocate
should_patch_system = true;
odex_error_msg = "Image Patches are incorrect";
}
if (odex_oat_file.get() != nullptr) {
have_system_odex = true;
}
}
}
std::string cache_error_msg;
bool should_patch_cache = false;
bool cache_checksum_verified = false;
if (have_dalvik_cache) {
std::unique_ptr<OatFile> cache_oat_file(OatFile::Open(cache_filename, cache_filename, nullptr,
nullptr,
executable, &cache_error_msg));
if (cache_oat_file.get() != nullptr && CheckOatFile(runtime, cache_oat_file.get(), isa,
&cache_checksum_verified,
&cache_error_msg)) {
error_msgs->push_back(cache_error_msg);
return cache_oat_file.release();
} else if (cache_checksum_verified) {
// We can just relocate
should_patch_cache = true;
cache_error_msg = "Image Patches are incorrect";
}
} else if (have_android_data) {
// dalvik_cache does not exist but android data does. This means we should be able to create
// it, so we should try.
GetDalvikCacheOrDie(GetInstructionSetString(kRuntimeISA), true);
}
ret = nullptr;
std::string error_msg;
if (runtime->CanRelocate()) {
// Run relocation
gc::space::ImageSpace* space = Runtime::Current()->GetHeap()->GetImageSpace();
if (space != nullptr) {
const std::string& image_location = space->GetImageLocation();
if (odex_checksum_verified && should_patch_system) {
ret = PatchAndRetrieveOat(odex_filename, cache_filename, image_location, isa, &error_msg);
} else if (cache_checksum_verified && should_patch_cache) {
CHECK(have_dalvik_cache);
ret = PatchAndRetrieveOat(cache_filename, cache_filename, image_location, isa, &error_msg);
}
} else if (have_system_odex) {
ret = GetInterpretedOnlyOat(odex_filename, isa, &error_msg);
}
}
if (ret == nullptr && have_dalvik_cache && OS::FileExists(cache_filename.c_str())) {
// implicitly: were able to fine where the cached version is but we were unable to use it,
// either as a destination for relocation or to open a file. We should delete it if it is
// there.
if (TEMP_FAILURE_RETRY(unlink(cache_filename.c_str())) != 0) {
std::string rm_error_msg = StringPrintf("Failed to remove obsolete file from %s when "
"searching for dex file %s: %s",
cache_filename.c_str(), dex_location.c_str(),
strerror(errno));
error_msgs->push_back(rm_error_msg);
VLOG(class_linker) << rm_error_msg;
// Let the caller know that we couldn't remove the obsolete file.
// This is a good indication that further writes may fail as well.
*obsolete_file_cleanup_failed = true;
}
}
if (ret == nullptr) {
VLOG(class_linker) << error_msg;
error_msgs->push_back(error_msg);
std::string relocation_msg;
if (runtime->CanRelocate()) {
relocation_msg = StringPrintf(" and relocation failed");
}
if (have_dalvik_cache && cache_checksum_verified) {
error_msg = StringPrintf("Failed to open oat file from %s (error %s) or %s "
"(error %s)%s.", odex_filename.c_str(), odex_error_msg.c_str(),
cache_filename.c_str(), cache_error_msg.c_str(),
relocation_msg.c_str());
} else {
error_msg = StringPrintf("Failed to open oat file from %s (error %s) (no "
"dalvik_cache availible)%s.", odex_filename.c_str(),
odex_error_msg.c_str(), relocation_msg.c_str());
}
VLOG(class_linker) << error_msg;
error_msgs->push_back(error_msg);
}
return ret;
}
const OatFile* ClassLinker::GetInterpretedOnlyOat(const std::string& oat_path,
InstructionSet isa,
std::string* error_msg) {
// We open it non-executable
std::unique_ptr<OatFile> output(OatFile::Open(oat_path, oat_path, nullptr, nullptr, false, error_msg));
if (output.get() == nullptr) {
return nullptr;
}
if (!Runtime::Current()->GetHeap()->HasImageSpace() ||
VerifyOatImageChecksum(output.get(), isa)) {
return output.release();
} else {
*error_msg = StringPrintf("Could not use oat file '%s', image checksum failed to verify.",
oat_path.c_str());
return nullptr;
}
}
const OatFile* ClassLinker::PatchAndRetrieveOat(const std::string& input_oat,
const std::string& output_oat,
const std::string& image_location,
InstructionSet isa,
std::string* error_msg) {
Runtime* runtime = Runtime::Current();
DCHECK(runtime != nullptr);
if (!runtime->GetHeap()->HasImageSpace()) {
// We don't have an image space so there is no point in trying to patchoat.
LOG(WARNING) << "Patching of oat file '" << input_oat << "' not attempted because we are "
<< "running without an image. Attempting to use oat file for interpretation.";
return GetInterpretedOnlyOat(input_oat, isa, error_msg);
}
if (!runtime->IsDex2OatEnabled()) {
// We don't have dex2oat so we can assume we don't have patchoat either. We should just use the
// input_oat but make sure we only do interpretation on it's dex files.
LOG(WARNING) << "Patching of oat file '" << input_oat << "' not attempted due to dex2oat being "
<< "disabled. Attempting to use oat file for interpretation";
return GetInterpretedOnlyOat(input_oat, isa, error_msg);
}
Locks::mutator_lock_->AssertNotHeld(Thread::Current()); // Avoid starving GC.
std::string patchoat(runtime->GetPatchoatExecutable());
std::string isa_arg("--instruction-set=");
isa_arg += GetInstructionSetString(isa);
std::string input_oat_filename_arg("--input-oat-file=");
input_oat_filename_arg += input_oat;
std::string output_oat_filename_arg("--output-oat-file=");
output_oat_filename_arg += output_oat;
std::string patched_image_arg("--patched-image-location=");
patched_image_arg += image_location;
std::vector<std::string> argv;
argv.push_back(patchoat);
argv.push_back(isa_arg);
argv.push_back(input_oat_filename_arg);
argv.push_back(output_oat_filename_arg);
argv.push_back(patched_image_arg);
std::string command_line(Join(argv, ' '));
LOG(INFO) << "Relocate Oat File: " << command_line;
bool success = Exec(argv, error_msg);
if (success) {
std::unique_ptr<OatFile> output(OatFile::Open(output_oat, output_oat, nullptr, nullptr,
!runtime->IsCompiler(), error_msg));
bool checksum_verified = false;
if (output.get() != nullptr && CheckOatFile(runtime, output.get(), isa, &checksum_verified,
error_msg)) {
return output.release();
} else if (output.get() != nullptr) {
*error_msg = StringPrintf("Patching of oat file '%s' succeeded "
"but output file '%s' failed verifcation: %s",
input_oat.c_str(), output_oat.c_str(), error_msg->c_str());
} else {
*error_msg = StringPrintf("Patching of oat file '%s' succeeded "
"but was unable to open output file '%s': %s",
input_oat.c_str(), output_oat.c_str(), error_msg->c_str());
}
} else if (!runtime->IsCompiler()) {
// patchoat failed which means we probably don't have enough room to place the output oat file,
// instead of failing we should just run the interpreter from the dex files in the input oat.
LOG(WARNING) << "Patching of oat file '" << input_oat << "' failed. Attempting to use oat file "
<< "for interpretation. patchoat failure was: " << *error_msg;
return GetInterpretedOnlyOat(input_oat, isa, error_msg);
} else {
*error_msg = StringPrintf("Patching of oat file '%s to '%s' "
"failed: %s", input_oat.c_str(), output_oat.c_str(),
error_msg->c_str());
}
return nullptr;
}
bool ClassLinker::CheckOatFile(const Runtime* runtime, const OatFile* oat_file, InstructionSet isa,
bool* checksum_verified,
std::string* error_msg) {
std::string compound_msg("Oat file failed to verify: ");
uint32_t real_image_checksum;
void* real_image_oat_offset;
int32_t real_patch_delta;
const gc::space::ImageSpace* image_space = Runtime::Current()->GetHeap()->GetImageSpace();
if (image_space == nullptr) {
*error_msg = "No image space present";
return false;
}
if (isa == Runtime::Current()->GetInstructionSet()) {
const ImageHeader& image_header = image_space->GetImageHeader();
real_image_checksum = image_header.GetOatChecksum();
real_image_oat_offset = image_header.GetOatDataBegin();
real_patch_delta = image_header.GetPatchDelta();
} else {
std::unique_ptr<ImageHeader> image_header(gc::space::ImageSpace::ReadImageHeaderOrDie(
image_space->GetImageLocation().c_str(), isa));
real_image_checksum = image_header->GetOatChecksum();
real_image_oat_offset = image_header->GetOatDataBegin();
real_patch_delta = image_header->GetPatchDelta();
}
const OatHeader& oat_header = oat_file->GetOatHeader();
uint32_t oat_image_checksum = oat_header.GetImageFileLocationOatChecksum();
*checksum_verified = oat_image_checksum == real_image_checksum;
if (!*checksum_verified) {
compound_msg += StringPrintf(" Oat Image Checksum Incorrect (expected 0x%x, recieved 0x%x)",
real_image_checksum, oat_image_checksum);
}
bool offset_verified;
bool patch_delta_verified;
if (!oat_file->IsPic()) {
void* oat_image_oat_offset =
reinterpret_cast<void*>(oat_header.GetImageFileLocationOatDataBegin());
offset_verified = oat_image_oat_offset == real_image_oat_offset;
if (!offset_verified) {
compound_msg += StringPrintf(" Oat Image oat offset incorrect (expected 0x%p, recieved 0x%p)",
real_image_oat_offset, oat_image_oat_offset);
}
int32_t oat_patch_delta = oat_header.GetImagePatchDelta();
patch_delta_verified = oat_patch_delta == real_patch_delta;
if (!patch_delta_verified) {
compound_msg += StringPrintf(" Oat image patch delta incorrect (expected 0x%x, recieved 0x%x)",
real_patch_delta, oat_patch_delta);
}
} else {
// If an oat file is PIC, we ignore offset and patching delta.
offset_verified = true;
patch_delta_verified = true;
}
bool ret = (*checksum_verified && offset_verified && patch_delta_verified);
if (ret) {
*error_msg = compound_msg;
}
return ret;
}
const OatFile* ClassLinker::FindOatFileFromOatLocation(const std::string& oat_location,
std::string* error_msg) {
const OatFile* oat_file = FindOpenedOatFileFromOatLocation(oat_location);
if (oat_file != nullptr) {
return oat_file;
}
return OatFile::Open(oat_location, oat_location, nullptr, nullptr, !Runtime::Current()->IsCompiler(),
error_msg);
}
static void InitFromImageInterpretOnlyCallback(mirror::Object* obj, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ClassLinker* class_linker = reinterpret_cast<ClassLinker*>(arg);
DCHECK(obj != nullptr);
DCHECK(class_linker != nullptr);
if (obj->IsArtMethod()) {
mirror::ArtMethod* method = obj->AsArtMethod();
if (!method->IsNative()) {
method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
if (method != Runtime::Current()->GetResolutionMethod()) {
method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge());
#endif
}
}
}
}
void ClassLinker::InitFromImage() {
VLOG(startup) << "ClassLinker::InitFromImage entering";
CHECK(!init_done_);
Thread* self = Thread::Current();
gc::Heap* heap = Runtime::Current()->GetHeap();
gc::space::ImageSpace* space = heap->GetImageSpace();
dex_cache_image_class_lookup_required_ = true;
CHECK(space != nullptr);
OatFile& oat_file = GetImageOatFile(space);
CHECK_EQ(oat_file.GetOatHeader().GetImageFileLocationOatChecksum(), 0U);
CHECK_EQ(oat_file.GetOatHeader().GetImageFileLocationOatDataBegin(), 0U);
const char* image_file_location = oat_file.GetOatHeader().
GetStoreValueByKey(OatHeader::kImageLocationKey);
CHECK(image_file_location == nullptr || *image_file_location == 0);
portable_resolution_trampoline_ = oat_file.GetOatHeader().GetPortableResolutionTrampoline();
quick_resolution_trampoline_ = oat_file.GetOatHeader().GetQuickResolutionTrampoline();
portable_imt_conflict_trampoline_ = oat_file.GetOatHeader().GetPortableImtConflictTrampoline();
quick_imt_conflict_trampoline_ = oat_file.GetOatHeader().GetQuickImtConflictTrampoline();
quick_generic_jni_trampoline_ = oat_file.GetOatHeader().GetQuickGenericJniTrampoline();
quick_to_interpreter_bridge_trampoline_ = oat_file.GetOatHeader().GetQuickToInterpreterBridge();
mirror::Object* dex_caches_object = space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
mirror::ObjectArray<mirror::DexCache>* dex_caches =
dex_caches_object->AsObjectArray<mirror::DexCache>();
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
space->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)->
AsObjectArray<mirror::Class>()));
class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(class_roots.Get());
// Special case of setting up the String class early so that we can test arbitrary objects
// as being Strings or not
mirror::String::SetClass(GetClassRoot(kJavaLangString));
CHECK_EQ(oat_file.GetOatHeader().GetDexFileCount(),
static_cast<uint32_t>(dex_caches->GetLength()));
for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(dex_caches->Get(i)));
const std::string& dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
const OatFile::OatDexFile* oat_dex_file = oat_file.GetOatDexFile(dex_file_location.c_str(),
nullptr);
CHECK(oat_dex_file != nullptr) << oat_file.GetLocation() << " " << dex_file_location;
std::string error_msg;
const DexFile* dex_file = oat_dex_file->OpenDexFile(&error_msg);
if (dex_file == nullptr) {
LOG(FATAL) << "Failed to open dex file " << dex_file_location
<< " from within oat file " << oat_file.GetLocation()
<< " error '" << error_msg << "'";
}
CHECK_EQ(dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum());
AppendToBootClassPath(*dex_file, dex_cache);
}
// Set classes on AbstractMethod early so that IsMethod tests can be performed during the live
// bitmap walk.
mirror::ArtMethod::SetClass(GetClassRoot(kJavaLangReflectArtMethod));
size_t art_method_object_size = mirror::ArtMethod::GetJavaLangReflectArtMethod()->GetObjectSize();
if (!Runtime::Current()->IsCompiler()) {
// Compiler supports having an image with a different pointer size than the runtime. This
// happens on the host for compile 32 bit tests since we use a 64 bit libart compiler. We may
// also use 32 bit dex2oat on a system with 64 bit apps.
CHECK_EQ(art_method_object_size, mirror::ArtMethod::InstanceSize(sizeof(void*)))
<< sizeof(void*);
}
if (art_method_object_size == mirror::ArtMethod::InstanceSize(4)) {
image_pointer_size_ = 4;
} else {
CHECK_EQ(art_method_object_size, mirror::ArtMethod::InstanceSize(8));
image_pointer_size_ = 8;
}
// Set entry point to interpreter if in InterpretOnly mode.
if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) {
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->VisitObjects(InitFromImageInterpretOnlyCallback, this);
}
// reinit class_roots_
mirror::Class::SetClassClass(class_roots->Get(kJavaLangClass));
class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(class_roots.Get());
// reinit array_iftable_ from any array class instance, they should be ==
array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable());
DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable());
// String class root was set above
mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference));
mirror::ArtField::SetClass(GetClassRoot(kJavaLangReflectArtField));
mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit(self);
VLOG(startup) << "ClassLinker::InitFromImage exiting";
}
void ClassLinker::VisitClassRoots(RootCallback* callback, void* arg, VisitRootFlags flags) {
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
if ((flags & kVisitRootFlagAllRoots) != 0) {
for (GcRoot<mirror::Class>& root : class_table_) {
root.VisitRoot(callback, arg, 0, kRootStickyClass);
}
for (GcRoot<mirror::Class>& root : pre_zygote_class_table_) {
root.VisitRoot(callback, arg, 0, kRootStickyClass);
}
} else if ((flags & kVisitRootFlagNewRoots) != 0) {
for (auto& root : new_class_roots_) {
mirror::Class* old_ref = root.Read<kWithoutReadBarrier>();
root.VisitRoot(callback, arg, 0, kRootStickyClass);
mirror::Class* new_ref = root.Read<kWithoutReadBarrier>();
if (UNLIKELY(new_ref != old_ref)) {
// Uh ohes, GC moved a root in the log. Need to search the class_table and update the
// corresponding object. This is slow, but luckily for us, this may only happen with a
// concurrent moving GC.
auto it = class_table_.Find(GcRoot<mirror::Class>(old_ref));
class_table_.Erase(it);
class_table_.Insert(GcRoot<mirror::Class>(new_ref));
}
}
}
if ((flags & kVisitRootFlagClearRootLog) != 0) {
new_class_roots_.clear();
}
if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
log_new_class_table_roots_ = true;
} else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
log_new_class_table_roots_ = false;
}
// We deliberately ignore the class roots in the image since we
// handle image roots by using the MS/CMS rescanning of dirty cards.
}
// Keep in sync with InitCallback. Anything we visit, we need to
// reinit references to when reinitializing a ClassLinker from a
// mapped image.
void ClassLinker::VisitRoots(RootCallback* callback, void* arg, VisitRootFlags flags) {
class_roots_.VisitRoot(callback, arg, 0, kRootVMInternal);
Thread* self = Thread::Current();
{
ReaderMutexLock mu(self, dex_lock_);
if ((flags & kVisitRootFlagAllRoots) != 0) {
for (GcRoot<mirror::DexCache>& dex_cache : dex_caches_) {
dex_cache.VisitRoot(callback, arg, 0, kRootVMInternal);
}
} else if ((flags & kVisitRootFlagNewRoots) != 0) {
for (size_t index : new_dex_cache_roots_) {
dex_caches_[index].VisitRoot(callback, arg, 0, kRootVMInternal);
}
}
if ((flags & kVisitRootFlagClearRootLog) != 0) {
new_dex_cache_roots_.clear();
}
if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
log_new_dex_caches_roots_ = true;
} else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
log_new_dex_caches_roots_ = false;
}
}
VisitClassRoots(callback, arg, flags);
array_iftable_.VisitRoot(callback, arg, 0, kRootVMInternal);
DCHECK(!array_iftable_.IsNull());
for (size_t i = 0; i < kFindArrayCacheSize; ++i) {
if (!find_array_class_cache_[i].IsNull()) {
find_array_class_cache_[i].VisitRoot(callback, arg, 0, kRootVMInternal);
}
}
}
void ClassLinker::VisitClasses(ClassVisitor* visitor, void* arg) {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
// TODO: why isn't this a ReaderMutexLock?
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
for (GcRoot<mirror::Class>& root : class_table_) {
if (!visitor(root.Read(), arg)) {
return;
}
}
for (GcRoot<mirror::Class>& root : pre_zygote_class_table_) {
if (!visitor(root.Read(), arg)) {
return;
}
}
}
static bool GetClassesVisitorSet(mirror::Class* c, void* arg) {
std::set<mirror::Class*>* classes = reinterpret_cast<std::set<mirror::Class*>*>(arg);
classes->insert(c);
return true;
}
struct GetClassesVisitorArrayArg {
Handle<mirror::ObjectArray<mirror::Class>>* classes;
int32_t index;
bool success;
};
static bool GetClassesVisitorArray(mirror::Class* c, void* varg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
GetClassesVisitorArrayArg* arg = reinterpret_cast<GetClassesVisitorArrayArg*>(varg);
if (arg->index < (*arg->classes)->GetLength()) {
(*arg->classes)->Set(arg->index, c);
arg->index++;
return true;
} else {
arg->success = false;
return false;
}
}
void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor, void* arg) {
// TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
// is avoiding duplicates.
if (!kMovingClasses) {
std::set<mirror::Class*> classes;
VisitClasses(GetClassesVisitorSet, &classes);
for (mirror::Class* klass : classes) {
if (!visitor(klass, arg)) {
return;
}
}
} else {
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::Class>> classes =
hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
GetClassesVisitorArrayArg local_arg;
local_arg.classes = &classes;
local_arg.success = false;
// We size the array assuming classes won't be added to the class table during the visit.
// If this assumption fails we iterate again.
while (!local_arg.success) {
size_t class_table_size;
{
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
class_table_size = class_table_.Size() + pre_zygote_class_table_.Size();
}
mirror::Class* class_type = mirror::Class::GetJavaLangClass();
mirror::Class* array_of_class = FindArrayClass(self, &class_type);
classes.Assign(
mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
CHECK(classes.Get() != nullptr); // OOME.
local_arg.index = 0;
local_arg.success = true;
VisitClasses(GetClassesVisitorArray, &local_arg);
}
for (int32_t i = 0; i < classes->GetLength(); ++i) {
// If the class table shrank during creation of the clases array we expect null elements. If
// the class table grew then the loop repeats. If classes are created after the loop has
// finished then we don't visit.
mirror::Class* klass = classes->Get(i);
if (klass != nullptr && !visitor(klass, arg)) {
return;
}
}
}
}
ClassLinker::~ClassLinker() {
mirror::Class::ResetClass();
mirror::String::ResetClass();
mirror::Reference::ResetClass();
mirror::ArtField::ResetClass();
mirror::ArtMethod::ResetClass();
mirror::BooleanArray::ResetArrayClass();
mirror::ByteArray::ResetArrayClass();
mirror::CharArray::ResetArrayClass();
mirror::DoubleArray::ResetArrayClass();
mirror::FloatArray::ResetArrayClass();
mirror::IntArray::ResetArrayClass();
mirror::LongArray::ResetArrayClass();
mirror::ShortArray::ResetArrayClass();
mirror::Throwable::ResetClass();
mirror::StackTraceElement::ResetClass();
STLDeleteElements(&boot_class_path_);
STLDeleteElements(&oat_files_);
}
mirror::DexCache* ClassLinker::AllocDexCache(Thread* self, const DexFile& dex_file) {
gc::Heap* heap = Runtime::Current()->GetHeap();
StackHandleScope<16> hs(self);
Handle<mirror::Class> dex_cache_class(hs.NewHandle(GetClassRoot(kJavaLangDexCache)));
Handle<mirror::DexCache> dex_cache(
hs.NewHandle(down_cast<mirror::DexCache*>(
heap->AllocObject<true>(self, dex_cache_class.Get(), dex_cache_class->GetObjectSize(),
VoidFunctor()))));
if (dex_cache.Get() == nullptr) {
return nullptr;
}
Handle<mirror::String>
location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str())));
if (location.Get() == nullptr) {
return nullptr;
}
Handle<mirror::ObjectArray<mirror::String>>
strings(hs.NewHandle(AllocStringArray(self, dex_file.NumStringIds())));
if (strings.Get() == nullptr) {
return nullptr;
}
Handle<mirror::ObjectArray<mirror::Class>>
types(hs.NewHandle(AllocClassArray(self, dex_file.NumTypeIds())));
if (types.Get() == nullptr) {
return nullptr;
}
Handle<mirror::ObjectArray<mirror::ArtMethod>>
methods(hs.NewHandle(AllocArtMethodArray(self, dex_file.NumMethodIds())));
if (methods.Get() == nullptr) {
return nullptr;
}
Handle<mirror::ObjectArray<mirror::ArtField>>
fields(hs.NewHandle(AllocArtFieldArray(self, dex_file.NumFieldIds())));
if (fields.Get() == nullptr) {
return nullptr;
}
dex_cache->Init(&dex_file, location.Get(), strings.Get(), types.Get(), methods.Get(),
fields.Get());
return dex_cache.Get();
}
mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class,
uint32_t class_size) {
DCHECK_GE(class_size, sizeof(mirror::Class));
gc::Heap* heap = Runtime::Current()->GetHeap();
mirror::Class::InitializeClassVisitor visitor(class_size);
mirror::Object* k = kMovingClasses ?
heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) :
heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
if (UNLIKELY(k == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
return k->AsClass();
}
mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
}
mirror::ArtField* ClassLinker::AllocArtField(Thread* self) {
return down_cast<mirror::ArtField*>(
GetClassRoot(kJavaLangReflectArtField)->AllocNonMovableObject(self));
}
mirror::ArtMethod* ClassLinker::AllocArtMethod(Thread* self) {
return down_cast<mirror::ArtMethod*>(
GetClassRoot(kJavaLangReflectArtMethod)->AllocNonMovableObject(self));
}
mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
Thread* self, size_t length) {
return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
}
mirror::Class* ClassLinker::EnsureResolved(Thread* self, const char* descriptor,
mirror::Class* klass) {
DCHECK(klass != nullptr);
// For temporary classes we must wait for them to be retired.
if (init_done_ && klass->IsTemp()) {
CHECK(!klass->IsResolved());
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass);
return nullptr;
}
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
ObjectLock<mirror::Class> lock(self, h_class);
// Loop and wait for the resolving thread to retire this class.
while (!h_class->IsRetired() && !h_class->IsErroneous()) {
lock.WaitIgnoringInterrupts();
}
if (h_class->IsErroneous()) {
ThrowEarlierClassFailure(h_class.Get());
return nullptr;
}
CHECK(h_class->IsRetired());
// Get the updated class from class table.
klass = LookupClass(descriptor, ComputeModifiedUtf8Hash(descriptor),
h_class.Get()->GetClassLoader());
}
// Wait for the class if it has not already been linked.
if (!klass->IsResolved() && !klass->IsErroneous()) {
StackHandleScope<1> hs(self);
HandleWrapper<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
ObjectLock<mirror::Class> lock(self, h_class);
// Check for circular dependencies between classes.
if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
ThrowClassCircularityError(h_class.Get());
h_class->SetStatus(mirror::Class::kStatusError, self);
return nullptr;
}
// Wait for the pending initialization to complete.
while (!h_class->IsResolved() && !h_class->IsErroneous()) {
lock.WaitIgnoringInterrupts();
}
}
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass);
return nullptr;
}
// Return the loaded class. No exceptions should be pending.
CHECK(klass->IsResolved()) << PrettyClass(klass);
self->AssertNoPendingException();
return klass;
}
typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry;
// Search a collection of DexFiles for a descriptor
ClassPathEntry FindInClassPath(const char* descriptor,
size_t hash, const std::vector<const DexFile*>& class_path) {
for (const DexFile* dex_file : class_path) {
const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash);
if (dex_class_def != nullptr) {
return ClassPathEntry(dex_file, dex_class_def);
}
}
return ClassPathEntry(nullptr, nullptr);
}
mirror::Class* ClassLinker::FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
Thread* self, const char* descriptor,
size_t hash,
Handle<mirror::ClassLoader> class_loader) {
if (class_loader->GetClass() !=
soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader) ||
class_loader->GetParent()->GetClass() !=
soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader)) {
return nullptr;
}
ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
// Check if this would be found in the parent boot class loader.
if (pair.second != nullptr) {
mirror::Class* klass = LookupClass(descriptor, hash, nullptr);
if (klass != nullptr) {
return EnsureResolved(self, descriptor, klass);
}
klass = DefineClass(self, descriptor, hash, NullHandle<mirror::ClassLoader>(), *pair.first,
*pair.second);
if (klass != nullptr) {
return klass;
}
CHECK(self->IsExceptionPending()) << descriptor;
self->ClearException();
} else {
// RegisterDexFile may allocate dex caches (and cause thread suspension).
StackHandleScope<3> hs(self);
// The class loader is a PathClassLoader which inherits from BaseDexClassLoader.
// We need to get the DexPathList and loop through it.
Handle<mirror::ArtField> cookie_field =
hs.NewHandle(soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie));
Handle<mirror::ArtField> dex_file_field =
hs.NewHandle(
soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList$Element_dexFile));
mirror::Object* dex_path_list =
soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList)->
GetObject(class_loader.Get());
if (dex_path_list != nullptr && dex_file_field.Get() != nullptr &&
cookie_field.Get() != nullptr) {
// DexPathList has an array dexElements of Elements[] which each contain a dex file.
mirror::Object* dex_elements_obj =
soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements)->
GetObject(dex_path_list);
// Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
// at the mCookie which is a DexFile vector.
if (dex_elements_obj != nullptr) {
Handle<mirror::ObjectArray<mirror::Object>> dex_elements =
hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>());
for (int32_t i = 0; i < dex_elements->GetLength(); ++i) {
mirror::Object* element = dex_elements->GetWithoutChecks(i);
if (element == nullptr) {
// Should never happen, fall back to java code to throw a NPE.
break;
}
mirror::Object* dex_file = dex_file_field->GetObject(element);
if (dex_file != nullptr) {
const uint64_t cookie = cookie_field->GetLong(dex_file);
auto* dex_files =
reinterpret_cast<std::vector<const DexFile*>*>(static_cast<uintptr_t>(cookie));
if (dex_files == nullptr) {
// This should never happen so log a warning.
LOG(WARNING) << "Null DexFile::mCookie for " << descriptor;
break;
}
for (const DexFile* dex_file : *dex_files) {
const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash);
if (dex_class_def != nullptr) {
RegisterDexFile(*dex_file);
mirror::Class* klass = DefineClass(self, descriptor, hash, class_loader, *dex_file,
*dex_class_def);
if (klass == nullptr) {
CHECK(self->IsExceptionPending()) << descriptor;
self->ClearException();
return nullptr;
}
return klass;
}
}
}
}
}
}
}
return nullptr;
}
mirror::Class* ClassLinker::FindClass(Thread* self, const char* descriptor,
Handle<mirror::ClassLoader> class_loader) {
DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
DCHECK(self != nullptr);
self->AssertNoPendingException();
if (descriptor[1] == '\0') {
// only the descriptors of primitive types should be 1 character long, also avoid class lookup
// for primitive classes that aren't backed by dex files.
return FindPrimitiveClass(descriptor[0]);
}
const size_t hash = ComputeModifiedUtf8Hash(descriptor);
// Find the class in the loaded classes table.
mirror::Class* klass = LookupClass(descriptor, hash, class_loader.Get());
if (klass != nullptr) {
return EnsureResolved(self, descriptor, klass);
}
// Class is not yet loaded.
if (descriptor[0] == '[') {
return CreateArrayClass(self, descriptor, hash, class_loader);
} else if (class_loader.Get() == nullptr) {
// The boot class loader, search the boot class path.
ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
if (pair.second != nullptr) {
return DefineClass(self, descriptor, hash, NullHandle<mirror::ClassLoader>(), *pair.first,
*pair.second);
} else {
// The boot class loader is searched ahead of the application class loader, failures are
// expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
// trigger the chaining with a proper stack trace.
mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
self->SetException(ThrowLocation(), pre_allocated);
return nullptr;
}
} else if (Runtime::Current()->UseCompileTimeClassPath()) {
// First try with the bootstrap class loader.
if (class_loader.Get() != nullptr) {
klass = LookupClass(descriptor, hash, nullptr);
if (klass != nullptr) {
return EnsureResolved(self, descriptor, klass);
}
}
// If the lookup failed search the boot class path. We don't perform a recursive call to avoid
// a NoClassDefFoundError being allocated.
ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
if (pair.second != nullptr) {
return DefineClass(self, descriptor, hash, NullHandle<mirror::ClassLoader>(), *pair.first,
*pair.second);
}
// Next try the compile time class path.
const std::vector<const DexFile*>* class_path;
{
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject> jclass_loader(soa.Env(),
soa.AddLocalReference<jobject>(class_loader.Get()));
class_path = &Runtime::Current()->GetCompileTimeClassPath(jclass_loader.get());
}
pair = FindInClassPath(descriptor, hash, *class_path);
if (pair.second != nullptr) {
return DefineClass(self, descriptor, hash, class_loader, *pair.first, *pair.second);
}
} else {
ScopedObjectAccessUnchecked soa(self);
mirror::Class* klass = FindClassInPathClassLoader(soa, self, descriptor, hash, class_loader);
if (klass != nullptr) {
return klass;
}
ScopedLocalRef<jobject> class_loader_object(soa.Env(),
soa.AddLocalReference<jobject>(class_loader.Get()));
std::string class_name_string(DescriptorToDot(descriptor));
ScopedLocalRef<jobject> result(soa.Env(), nullptr);
{
ScopedThreadStateChange tsc(self, kNative);
ScopedLocalRef<jobject> class_name_object(soa.Env(),
soa.Env()->NewStringUTF(class_name_string.c_str()));
if (class_name_object.get() == nullptr) {
DCHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
CHECK(class_loader_object.get() != nullptr);
result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
WellKnownClasses::java_lang_ClassLoader_loadClass,
class_name_object.get()));
}
if (self->IsExceptionPending()) {
// If the ClassLoader threw, pass that exception up.
return nullptr;
} else if (result.get() == nullptr) {
// broken loader - throw NPE to be compatible with Dalvik
ThrowNullPointerException(nullptr, StringPrintf("ClassLoader.loadClass returned null for %s",
class_name_string.c_str()).c_str());
return nullptr;
} else {
// success, return mirror::Class*
return soa.Decode<mirror::Class*>(result.get());
}
}
ThrowNoClassDefFoundError("Class %s not found", PrintableString(descriptor).c_str());
return nullptr;
}
mirror::Class* ClassLinker::DefineClass(Thread* self, const char* descriptor, size_t hash,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
StackHandleScope<3> hs(self);
auto klass = hs.NewHandle<mirror::Class>(nullptr);
// Load the class from the dex file.
if (UNLIKELY(!init_done_)) {
// finish up init of hand crafted class_roots_
if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
klass.Assign(GetClassRoot(kJavaLangObject));
} else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
klass.Assign(GetClassRoot(kJavaLangClass));
} else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
klass.Assign(GetClassRoot(kJavaLangString));
} else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
klass.Assign(GetClassRoot(kJavaLangRefReference));
} else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
klass.Assign(GetClassRoot(kJavaLangDexCache));
} else if (strcmp(descriptor, "Ljava/lang/reflect/ArtField;") == 0) {
klass.Assign(GetClassRoot(kJavaLangReflectArtField));
} else if (strcmp(descriptor, "Ljava/lang/reflect/ArtMethod;") == 0) {
klass.Assign(GetClassRoot(kJavaLangReflectArtMethod));
}
}
if (klass.Get() == nullptr) {
// Allocate a class with the status of not ready.
// Interface object should get the right size here. Regular class will
// figure out the right size later and be replaced with one of the right
// size when the class becomes resolved.
klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
}
if (UNLIKELY(klass.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // Expect an OOME.
return nullptr;
}
klass->SetDexCache(FindDexCache(dex_file));
LoadClass(dex_file, dex_class_def, klass, class_loader.Get());
ObjectLock<mirror::Class> lock(self, klass);
if (self->IsExceptionPending()) {
// An exception occured during load, set status to erroneous while holding klass' lock in case
// notification is necessary.
if (!klass->IsErroneous()) {
klass->SetStatus(mirror::Class::kStatusError, self);
}
return nullptr;
}
klass->SetClinitThreadId(self->GetTid());
// Add the newly loaded class to the loaded classes table.
mirror::Class* existing = InsertClass(descriptor, klass.Get(), hash);
if (existing != nullptr) {
// We failed to insert because we raced with another thread. Calling EnsureResolved may cause
// this thread to block.
return EnsureResolved(self, descriptor, existing);
}
// Finish loading (if necessary) by finding parents
CHECK(!klass->IsLoaded());
if (!LoadSuperAndInterfaces(klass, dex_file)) {
// Loading failed.
if (!klass->IsErroneous()) {
klass->SetStatus(mirror::Class::kStatusError, self);
}
return nullptr;
}
CHECK(klass->IsLoaded());
// Link the class (if necessary)
CHECK(!klass->IsResolved());
// TODO: Use fast jobjects?
auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
mirror::Class* new_class = nullptr;
if (!LinkClass(self, descriptor, klass, interfaces, &new_class)) {
// Linking failed.
if (!klass->IsErroneous()) {
klass->SetStatus(mirror::Class::kStatusError, self);
}
return nullptr;
}
self->AssertNoPendingException();
CHECK(new_class != nullptr) << descriptor;
CHECK(new_class->IsResolved()) << descriptor;
Handle<mirror::Class> new_class_h(hs.NewHandle(new_class));
/*
* We send CLASS_PREPARE events to the debugger from here. The
* definition of "preparation" is creating the static fields for a
* class and initializing them to the standard default values, but not
* executing any code (that comes later, during "initialization").
*
* We did the static preparation in LinkClass.
*
* The class has been prepared and resolved but possibly not yet verified
* at this point.
*/
Dbg::PostClassPrepare(new_class_h.Get());
return new_class_h.Get();
}
uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
const byte* class_data = dex_file.GetClassData(dex_class_def);
size_t num_ref = 0;
size_t num_32 = 0;
size_t num_64 = 0;
if (class_data != nullptr) {
for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(it.GetMemberIndex());
const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
char c = descriptor[0];
if (c == 'L' || c == '[') {
num_ref++;
} else if (c == 'J' || c == 'D') {
num_64++;
} else {
num_32++;
}
}
}
return mirror::Class::ComputeClassSize(false, 0, num_32, num_64, num_ref);
}
bool ClassLinker::FindOatClass(const DexFile& dex_file,
uint16_t class_def_idx,
OatFile::OatClass* oat_class) {
DCHECK(oat_class != nullptr);
DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16);
const OatFile::OatDexFile* oat_dex_file = FindOpenedOatDexFileForDexFile(dex_file);
if (oat_dex_file == nullptr) {
return false;
}
*oat_class = oat_dex_file->GetOatClass(class_def_idx);
return true;
}
static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx);
const byte* class_data = dex_file.GetClassData(class_def);
CHECK(class_data != nullptr);
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
// Process methods
size_t class_def_method_index = 0;
while (it.HasNextDirectMethod()) {
if (it.GetMemberIndex() == method_idx) {
return class_def_method_index;
}
class_def_method_index++;
it.Next();
}
while (it.HasNextVirtualMethod()) {
if (it.GetMemberIndex() == method_idx) {
return class_def_method_index;
}
class_def_method_index++;
it.Next();
}
DCHECK(!it.HasNext());
LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation();
return 0;
}
bool ClassLinker::FindOatMethodFor(mirror::ArtMethod* method, OatFile::OatMethod* oat_method) {
DCHECK(oat_method != nullptr);
// Although we overwrite the trampoline of non-static methods, we may get here via the resolution
// method for direct methods (or virtual methods made direct).
mirror::Class* declaring_class = method->GetDeclaringClass();
size_t oat_method_index;
if (method->IsStatic() || method->IsDirect()) {
// Simple case where the oat method index was stashed at load time.
oat_method_index = method->GetMethodIndex();
} else {
// We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index
// by search for its position in the declared virtual methods.
oat_method_index = declaring_class->NumDirectMethods();
size_t end = declaring_class->NumVirtualMethods();
bool found = false;
for (size_t i = 0; i < end; i++) {
// Check method index instead of identity in case of duplicate method definitions.
if (method->GetDexMethodIndex() ==
declaring_class->GetVirtualMethod(i)->GetDexMethodIndex()) {
found = true;
break;
}
oat_method_index++;
}
CHECK(found) << "Didn't find oat method index for virtual method: " << PrettyMethod(method);
}
DCHECK_EQ(oat_method_index,
GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(),
method->GetDeclaringClass()->GetDexClassDefIndex(),
method->GetDexMethodIndex()));
OatFile::OatClass oat_class;
if (!FindOatClass(*declaring_class->GetDexCache()->GetDexFile(),
declaring_class->GetDexClassDefIndex(),
&oat_class)) {
return false;
}
*oat_method = oat_class.GetOatMethod(oat_method_index);
return true;
}
// Special case to get oat code without overwriting a trampoline.
const void* ClassLinker::GetQuickOatCodeFor(mirror::ArtMethod* method) {
CHECK(!method->IsAbstract()) << PrettyMethod(method);
if (method->IsProxyMethod()) {
return GetQuickProxyInvokeHandler();
}
OatFile::OatMethod oat_method;
const void* result = nullptr;
if (FindOatMethodFor(method, &oat_method)) {
result = oat_method.GetQuickCode();
}
if (result == nullptr) {
if (method->IsNative()) {
// No code and native? Use generic trampoline.
result = GetQuickGenericJniTrampoline();
#if defined(ART_USE_PORTABLE_COMPILER)
} else if (method->IsPortableCompiled()) {
// No code? Do we expect portable code?
result = GetQuickToPortableBridge();
#endif
} else {
// No code? You must mean to go into the interpreter.
result = GetQuickToInterpreterBridge();
}
}
return result;
}
#if defined(ART_USE_PORTABLE_COMPILER)
const void* ClassLinker::GetPortableOatCodeFor(mirror::ArtMethod* method,
bool* have_portable_code) {
CHECK(!method->IsAbstract()) << PrettyMethod(method);
*have_portable_code = false;
if (method->IsProxyMethod()) {
return GetPortableProxyInvokeHandler();
}
OatFile::OatMethod oat_method;
const void* result = nullptr;
const void* quick_code = nullptr;
if (FindOatMethodFor(method, &oat_method)) {
result = oat_method.GetPortableCode();
quick_code = oat_method.GetQuickCode();
}
if (result == nullptr) {
if (quick_code == nullptr) {
// No code? You must mean to go into the interpreter.
result = GetPortableToInterpreterBridge();
} else {
// No code? But there's quick code, so use a bridge.
result = GetPortableToQuickBridge();
}
} else {
*have_portable_code = true;
}
return result;
}
#endif
const void* ClassLinker::GetOatMethodQuickCodeFor(mirror::ArtMethod* method) {
if (method->IsNative() || method->IsAbstract() || method->IsProxyMethod()) {
return nullptr;
}
OatFile::OatMethod oat_method;
bool found = FindOatMethodFor(method, &oat_method);
return found ? oat_method.GetQuickCode() : nullptr;
}
const void* ClassLinker::GetQuickOatCodeFor(const DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx) {
OatFile::OatClass oat_class;
if (!FindOatClass(dex_file, class_def_idx, &oat_class)) {
return nullptr;
}
uint32_t oat_method_idx = GetOatMethodIndexFromMethodIndex(dex_file, class_def_idx, method_idx);
return oat_class.GetOatMethod(oat_method_idx).GetQuickCode();
}
#if defined(ART_USE_PORTABLE_COMPILER)
const void* ClassLinker::GetPortableOatCodeFor(const DexFile& dex_file, uint16_t class_def_idx,
uint32_t method_idx) {
OatFile::OatClass oat_class;
if (!FindOatClass(dex_file, class_def_idx, &oat_class)) {
return nullptr;
}
uint32_t oat_method_idx = GetOatMethodIndexFromMethodIndex(dex_file, class_def_idx, method_idx);
return oat_class.GetOatMethod(oat_method_idx).GetPortableCode();
}
#endif
// Returns true if the method must run with interpreter, false otherwise.
static bool NeedsInterpreter(
mirror::ArtMethod* method, const void* quick_code, const void* portable_code)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if ((quick_code == nullptr) && (portable_code == nullptr)) {
// No code: need interpreter.
// May return true for native code, in the case of generic JNI
// DCHECK(!method->IsNative());
return true;
}
#ifdef ART_SEA_IR_MODE
ScopedObjectAccess soa(Thread::Current());
if (std::string::npos != PrettyMethod(method).find("fibonacci")) {
LOG(INFO) << "Found " << PrettyMethod(method);
return false;
}
#endif
// If interpreter mode is enabled, every method (except native and proxy) must
// be run with interpreter.
return Runtime::Current()->GetInstrumentation()->InterpretOnly() &&
!method->IsNative() && !method->IsProxyMethod();
}
void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) {
DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass);
if (klass->NumDirectMethods() == 0) {
return; // No direct methods => no static methods.
}
Runtime* runtime = Runtime::Current();
if (!runtime->IsStarted() || runtime->UseCompileTimeClassPath()) {
if (runtime->IsCompiler() || runtime->GetHeap()->HasImageSpace()) {
return; // OAT file unavailable.
}
}
const DexFile& dex_file = klass->GetDexFile();
const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
CHECK(dex_class_def != nullptr);
const byte* class_data = dex_file.GetClassData(*dex_class_def);
// There should always be class data if there were direct methods.
CHECK(class_data != nullptr) << PrettyDescriptor(klass);
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
OatFile::OatClass oat_class;
bool has_oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(), &oat_class);
// Link the code of methods skipped by LinkCode.
for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
mirror::ArtMethod* method = klass->GetDirectMethod(method_index);
if (!method->IsStatic()) {
// Only update static methods.
continue;
}
const void* portable_code = nullptr;
const void* quick_code = nullptr;
if (has_oat_class) {
OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
portable_code = oat_method.GetPortableCode();
quick_code = oat_method.GetQuickCode();
}
const bool enter_interpreter = NeedsInterpreter(method, quick_code, portable_code);
bool have_portable_code = false;
if (enter_interpreter) {
// Use interpreter entry point.
// Check whether the method is native, in which case it's generic JNI.
if (quick_code == nullptr && portable_code == nullptr && method->IsNative()) {
quick_code = GetQuickGenericJniTrampoline();
#if defined(ART_USE_PORTABLE_COMPILER)
portable_code = GetPortableToQuickBridge();
#endif
} else {
#if defined(ART_USE_PORTABLE_COMPILER)
portable_code = GetPortableToInterpreterBridge();
#endif
quick_code = GetQuickToInterpreterBridge();
}
} else {
#if defined(ART_USE_PORTABLE_COMPILER)
if (portable_code == nullptr) {
portable_code = GetPortableToQuickBridge();
} else {
have_portable_code = true;
}
if (quick_code == nullptr) {
quick_code = GetQuickToPortableBridge();
}
#else
if (quick_code == nullptr) {
quick_code = GetQuickToInterpreterBridge();
}
#endif
}
runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code, portable_code,
have_portable_code);
}
// Ignore virtual methods on the iterator.
}
void ClassLinker::LinkCode(Handle<mirror::ArtMethod> method, const OatFile::OatClass* oat_class,
const DexFile& dex_file, uint32_t dex_method_index,
uint32_t method_index) {
if (Runtime::Current()->IsCompiler()) {
// The following code only applies to a non-compiler runtime.
return;
}
// Method shouldn't have already been linked.
DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
#if defined(ART_USE_PORTABLE_COMPILER)
DCHECK(method->GetEntryPointFromPortableCompiledCode() == nullptr);
#endif
if (oat_class != nullptr) {
// Every kind of method should at least get an invoke stub from the oat_method.
// non-abstract methods also get their code pointers.
const OatFile::OatMethod oat_method = oat_class->GetOatMethod(method_index);
oat_method.LinkMethod(method.Get());
}
// Install entry point from interpreter.
bool enter_interpreter = NeedsInterpreter(method.Get(),
method->GetEntryPointFromQuickCompiledCode(),
#if defined(ART_USE_PORTABLE_COMPILER)
method->GetEntryPointFromPortableCompiledCode());
#else
nullptr);
#endif
if (enter_interpreter && !method->IsNative()) {
method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge);
} else {
method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
}
if (method->IsAbstract()) {
method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge());
#endif
return;
}
bool have_portable_code = false;
if (method->IsStatic() && !method->IsConstructor()) {
// For static methods excluding the class initializer, install the trampoline.
// It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
// after initializing class (see ClassLinker::InitializeClass method).
method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionTrampoline());
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableResolutionTrampoline());
#endif
} else if (enter_interpreter) {
if (!method->IsNative()) {
// Set entry point from compiled code if there's no code or in interpreter only mode.
method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableToInterpreterBridge());
#endif
} else {
method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniTrampoline());
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge());
#endif
}
#if defined(ART_USE_PORTABLE_COMPILER)
} else if (method->GetEntryPointFromPortableCompiledCode() != nullptr) {
DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
have_portable_code = true;
method->SetEntryPointFromQuickCompiledCode(GetQuickToPortableBridge());
#endif
} else {
DCHECK(method->GetEntryPointFromQuickCompiledCode() != nullptr);
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge());
#endif
}
if (method->IsNative()) {
// Unregistering restores the dlsym lookup stub.
method->UnregisterNative(Thread::Current());
if (enter_interpreter) {
// We have a native method here without code. Then it should have either the GenericJni
// trampoline as entrypoint (non-static), or the Resolution trampoline (static).
DCHECK(method->GetEntryPointFromQuickCompiledCode() == GetQuickResolutionTrampoline()
|| method->GetEntryPointFromQuickCompiledCode() == GetQuickGenericJniTrampoline());
}
}
// Allow instrumentation its chance to hijack code.
Runtime* runtime = Runtime::Current();
runtime->GetInstrumentation()->UpdateMethodsCode(method.Get(),
method->GetEntryPointFromQuickCompiledCode(),
#if defined(ART_USE_PORTABLE_COMPILER)
method->GetEntryPointFromPortableCompiledCode(),
#else
nullptr,
#endif
have_portable_code);
}
void ClassLinker::LoadClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def,
Handle<mirror::Class> klass,
mirror::ClassLoader* class_loader) {
CHECK(klass.Get() != nullptr);
CHECK(klass->GetDexCache() != nullptr);
CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
CHECK(descriptor != nullptr);
klass->SetClass(GetClassRoot(kJavaLangClass));
if (kUseBakerOrBrooksReadBarrier) {
klass->AssertReadBarrierPointer();
}
uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
klass->SetAccessFlags(access_flags);
klass->SetClassLoader(class_loader);
DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
klass->SetStatus(mirror::Class::kStatusIdx, nullptr);
klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
klass->SetDexTypeIndex(dex_class_def.class_idx_);
CHECK(klass->GetDexCacheStrings() != nullptr);
const byte* class_data = dex_file.GetClassData(dex_class_def);
if (class_data == nullptr) {
return; // no fields or methods - for example a marker interface
}
OatFile::OatClass oat_class;
if (Runtime::Current()->IsStarted()
&& !Runtime::Current()->UseCompileTimeClassPath()
&& FindOatClass(dex_file, klass->GetDexClassDefIndex(), &oat_class)) {
LoadClassMembers(dex_file, class_data, klass, class_loader, &oat_class);
} else {
LoadClassMembers(dex_file, class_data, klass, class_loader, nullptr);
}
}
void ClassLinker::LoadClassMembers(const DexFile& dex_file,
const byte* class_data,
Handle<mirror::Class> klass,
mirror::ClassLoader* class_loader,
const OatFile::OatClass* oat_class) {
// Load fields.
ClassDataItemIterator it(dex_file, class_data);
Thread* self = Thread::Current();
if (it.NumStaticFields() != 0) {
mirror::ObjectArray<mirror::ArtField>* statics = AllocArtFieldArray(self, it.NumStaticFields());
if (UNLIKELY(statics == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetSFields(statics);
}
if (it.NumInstanceFields() != 0) {
mirror::ObjectArray<mirror::ArtField>* fields =
AllocArtFieldArray(self, it.NumInstanceFields());
if (UNLIKELY(fields == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetIFields(fields);
}
for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtField> sfield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(sfield.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetStaticField(i, sfield.Get());
LoadField(dex_file, it, klass, sfield);
}
for (size_t i = 0; it.HasNextInstanceField(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtField> ifield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(ifield.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetInstanceField(i, ifield.Get());
LoadField(dex_file, it, klass, ifield);
}
// Load methods.
if (it.NumDirectMethods() != 0) {
// TODO: append direct methods to class object
mirror::ObjectArray<mirror::ArtMethod>* directs =
AllocArtMethodArray(self, it.NumDirectMethods());
if (UNLIKELY(directs == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetDirectMethods(directs);
}
if (it.NumVirtualMethods() != 0) {
// TODO: append direct methods to class object
mirror::ObjectArray<mirror::ArtMethod>* virtuals =
AllocArtMethodArray(self, it.NumVirtualMethods());
if (UNLIKELY(virtuals == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetVirtualMethods(virtuals);
}
size_t class_def_method_index = 0;
uint32_t last_dex_method_index = DexFile::kDexNoIndex;
size_t last_class_def_method_index = 0;
for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(LoadMethod(self, dex_file, it, klass)));
if (UNLIKELY(method.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetDirectMethod(i, method.Get());
LinkCode(method, oat_class, dex_file, it.GetMemberIndex(), class_def_method_index);
uint32_t it_method_index = it.GetMemberIndex();
if (last_dex_method_index == it_method_index) {
// duplicate case
method->SetMethodIndex(last_class_def_method_index);
} else {
method->SetMethodIndex(class_def_method_index);
last_dex_method_index = it_method_index;
last_class_def_method_index = class_def_method_index;
}
class_def_method_index++;
}
for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(LoadMethod(self, dex_file, it, klass)));
if (UNLIKELY(method.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return;
}
klass->SetVirtualMethod(i, method.Get());
DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
LinkCode(method, oat_class, dex_file, it.GetMemberIndex(), class_def_method_index);
class_def_method_index++;
}
DCHECK(!it.HasNext());
}
void ClassLinker::LoadField(const DexFile& /*dex_file*/, const ClassDataItemIterator& it,
Handle<mirror::Class> klass, Handle<mirror::ArtField> dst) {
uint32_t field_idx = it.GetMemberIndex();
dst->SetDexFieldIndex(field_idx);
dst->SetDeclaringClass(klass.Get());
dst->SetAccessFlags(it.GetFieldAccessFlags());
}
mirror::ArtMethod* ClassLinker::LoadMethod(Thread* self, const DexFile& dex_file,
const ClassDataItemIterator& it,
Handle<mirror::Class> klass) {
uint32_t dex_method_idx = it.GetMemberIndex();
const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
mirror::ArtMethod* dst = AllocArtMethod(self);
if (UNLIKELY(dst == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
DCHECK(dst->IsArtMethod()) << PrettyDescriptor(dst->GetClass());
const char* old_cause = self->StartAssertNoThreadSuspension("LoadMethod");
dst->SetDexMethodIndex(dex_method_idx);
dst->SetDeclaringClass(klass.Get());
dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods());
dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes());
uint32_t access_flags = it.GetMethodAccessFlags();
if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
// Set finalizable flag on declaring class.
if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
// Void return type.
if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged.
klass->SetFinalizable();
} else {
std::string temp;
const char* klass_descriptor = klass->GetDescriptor(&temp);
// The Enum class declares a "final" finalize() method to prevent subclasses from
// introducing a finalizer. We don't want to set the finalizable flag for Enum or its
// subclasses, so we exclude it here.
// We also want to avoid setting the flag on Object, where we know that finalize() is
// empty.
if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
klass->SetFinalizable();
}
}
}
} else if (method_name[0] == '<') {
// Fix broken access flags for initializers. Bug 11157540.
bool is_init = (strcmp("<init>", method_name) == 0);
bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
if (UNLIKELY(!is_init && !is_clinit)) {
LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
} else {
if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
<< PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation();
access_flags |= kAccConstructor;
}
}
}
dst->SetAccessFlags(access_flags);
self->EndAssertNoThreadSuspension(old_cause);
return dst;
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) {
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(self, dex_file)));
CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for "
<< dex_file.GetLocation();
AppendToBootClassPath(dex_file, dex_cache);
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) {
CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
boot_class_path_.push_back(&dex_file);
RegisterDexFile(dex_file, dex_cache);
}
bool ClassLinker::IsDexFileRegisteredLocked(const DexFile& dex_file) {
dex_lock_.AssertSharedHeld(Thread::Current());
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = GetDexCache(i);
if (dex_cache->GetDexFile() == &dex_file) {
return true;
}
}
return false;
}
bool ClassLinker::IsDexFileRegistered(const DexFile& dex_file) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
return IsDexFileRegisteredLocked(dex_file);
}
void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) {
dex_lock_.AssertExclusiveHeld(Thread::Current());
CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation()))
<< dex_cache->GetLocation()->ToModifiedUtf8() << " " << dex_file.GetLocation();
dex_caches_.push_back(GcRoot<mirror::DexCache>(dex_cache.Get()));
dex_cache->SetDexFile(&dex_file);
if (log_new_dex_caches_roots_) {
// TODO: This is not safe if we can remove dex caches.
new_dex_cache_roots_.push_back(dex_caches_.size() - 1);
}
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file) {
Thread* self = Thread::Current();
{
ReaderMutexLock mu(self, dex_lock_);
if (IsDexFileRegisteredLocked(dex_file)) {
return;
}
}
// Don't alloc while holding the lock, since allocation may need to
// suspend all threads and another thread may need the dex_lock_ to
// get to a suspend point.
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(self, dex_file)));
CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for "
<< dex_file.GetLocation();
{
WriterMutexLock mu(self, dex_lock_);
if (IsDexFileRegisteredLocked(dex_file)) {
return;
}
RegisterDexFileLocked(dex_file, dex_cache);
}
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) {
WriterMutexLock mu(Thread::Current(), dex_lock_);
RegisterDexFileLocked(dex_file, dex_cache);
}
mirror::DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
// Search assuming unique-ness of dex file.
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = GetDexCache(i);
if (dex_cache->GetDexFile() == &dex_file) {
return dex_cache;
}
}
// Search matching by location name.
std::string location(dex_file.GetLocation());
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = GetDexCache(i);
if (dex_cache->GetDexFile()->GetLocation() == location) {
return dex_cache;
}
}
// Failure, dump diagnostic and abort.
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = GetDexCache(i);
LOG(ERROR) << "Registered dex file " << i << " = " << dex_cache->GetDexFile()->GetLocation();
}
LOG(FATAL) << "Failed to find DexCache for DexFile " << location;
return nullptr;
}
void ClassLinker::FixupDexCaches(mirror::ArtMethod* resolution_method) {
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* dex_cache = GetDexCache(i);
dex_cache->Fixup(resolution_method);
}
}
mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
mirror::Class* klass = AllocClass(self, mirror::Class::PrimitiveClassSize());
if (UNLIKELY(klass == nullptr)) {
return nullptr;
}
return InitializePrimitiveClass(klass, type);
}
mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class,
Primitive::Type type) {
CHECK(primitive_class != nullptr);
// Must hold lock on object when initializing.
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
ObjectLock<mirror::Class> lock(self, h_class);
primitive_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
primitive_class->SetPrimitiveType(type);
primitive_class->SetStatus(mirror::Class::kStatusInitialized, self);
const char* descriptor = Primitive::Descriptor(type);
mirror::Class* existing = InsertClass(descriptor, primitive_class,
ComputeModifiedUtf8Hash(descriptor));
CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
return primitive_class;
}
// Create an array class (i.e. the class object for the array, not the
// array itself). "descriptor" looks like "[C" or "[[[[B" or
// "[Ljava/lang/String;".
//
// If "descriptor" refers to an array of primitives, look up the
// primitive type's internally-generated class object.
//
// "class_loader" is the class loader of the class that's referring to
// us. It's used to ensure that we're looking for the element type in
// the right context. It does NOT become the class loader for the
// array class; that always comes from the base element class.
//
// Returns nullptr with an exception raised on failure.
mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash,
Handle<mirror::ClassLoader> class_loader) {
// Identify the underlying component type
CHECK_EQ('[', descriptor[0]);
StackHandleScope<2> hs(self);
Handle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1, class_loader)));
if (component_type.Get() == nullptr) {
DCHECK(self->IsExceptionPending());
// We need to accept erroneous classes as component types.
const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
component_type.Assign(LookupClass(descriptor + 1, component_hash, class_loader.Get()));
if (component_type.Get() == nullptr) {
DCHECK(self->IsExceptionPending());
return nullptr;
} else {
self->ClearException();
}
}
if (UNLIKELY(component_type->IsPrimitiveVoid())) {
ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
return nullptr;
}
// See if the component type is already loaded. Array classes are
// always associated with the class loader of their underlying
// element type -- an array of Strings goes with the loader for
// java/lang/String -- so we need to look for it there. (The
// caller should have checked for the existence of the class
// before calling here, but they did so with *their* class loader,
// not the component type's loader.)
//
// If we find it, the caller adds "loader" to the class' initiating
// loader list, which should prevent us from going through this again.
//
// This call is unnecessary if "loader" and "component_type->GetClassLoader()"
// are the same, because our caller (FindClass) just did the
// lookup. (Even if we get this wrong we still have correct behavior,
// because we effectively do this lookup again when we add the new
// class to the hash table --- necessary because of possible races with
// other threads.)
if (class_loader.Get() != component_type->GetClassLoader()) {
mirror::Class* new_class = LookupClass(descriptor, hash, component_type->GetClassLoader());
if (new_class != nullptr) {
return new_class;
}
}
// Fill out the fields in the Class.
//
// It is possible to execute some methods against arrays, because
// all arrays are subclasses of java_lang_Object_, so we need to set
// up a vtable. We can just point at the one in java_lang_Object_.
//
// Array classes are simple enough that we don't need to do a full
// link step.
auto new_class = hs.NewHandle<mirror::Class>(nullptr);
if (UNLIKELY(!init_done_)) {
// Classes that were hand created, ie not by FindSystemClass
if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
new_class.Assign(GetClassRoot(kClassArrayClass));
} else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
new_class.Assign(GetClassRoot(kObjectArrayClass));
} else if (strcmp(descriptor, class_roots_descriptors_[kJavaLangStringArrayClass]) == 0) {
new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
} else if (strcmp(descriptor,
class_roots_descriptors_[kJavaLangReflectArtMethodArrayClass]) == 0) {
new_class.Assign(GetClassRoot(kJavaLangReflectArtMethodArrayClass));
} else if (strcmp(descriptor,
class_roots_descriptors_[kJavaLangReflectArtFieldArrayClass]) == 0) {
new_class.Assign(GetClassRoot(kJavaLangReflectArtFieldArrayClass));
} else if (strcmp(descriptor, "[C") == 0) {
new_class.Assign(GetClassRoot(kCharArrayClass));
} else if (strcmp(descriptor, "[I") == 0) {
new_class.Assign(GetClassRoot(kIntArrayClass));
}
}
if (new_class.Get() == nullptr) {
new_class.Assign(AllocClass(self, mirror::Array::ClassSize()));
if (new_class.Get() == nullptr) {
return nullptr;
}
new_class->SetComponentType(component_type.Get());
}
ObjectLock<mirror::Class> lock(self, new_class); // Must hold lock on object when initializing.
DCHECK(new_class->GetComponentType() != nullptr);
mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
new_class->SetSuperClass(java_lang_Object);
new_class->SetVTable(java_lang_Object->GetVTable());
new_class->SetPrimitiveType(Primitive::kPrimNot);
new_class->SetClassLoader(component_type->GetClassLoader());
new_class->SetStatus(mirror::Class::kStatusLoaded, self);
{
StackHandleScope<mirror::Class::kImtSize> hs(self,
Runtime::Current()->GetImtUnimplementedMethod());
new_class->PopulateEmbeddedImtAndVTable(&hs);
}
new_class->SetStatus(mirror::Class::kStatusInitialized, self);
// don't need to set new_class->SetObjectSize(..)
// because Object::SizeOf delegates to Array::SizeOf
// All arrays have java/lang/Cloneable and java/io/Serializable as
// interfaces. We need to set that up here, so that stuff like
// "instanceof" works right.
//
// Note: The GC could run during the call to FindSystemClass,
// so we need to make sure the class object is GC-valid while we're in
// there. Do this by clearing the interface list so the GC will just
// think that the entries are null.
// Use the single, global copies of "interfaces" and "iftable"
// (remember not to free them for arrays).
{
mirror::IfTable* array_iftable = array_iftable_.Read();
CHECK(array_iftable != nullptr);
new_class->SetIfTable(array_iftable);
}
// Inherit access flags from the component type.
int access_flags = new_class->GetComponentType()->GetAccessFlags();
// Lose any implementation detail flags; in particular, arrays aren't finalizable.
access_flags &= kAccJavaFlagsMask;
// Arrays can't be used as a superclass or interface, so we want to add "abstract final"
// and remove "interface".
access_flags |= kAccAbstract | kAccFinal;
access_flags &= ~kAccInterface;
new_class->SetAccessFlags(access_flags);
mirror::Class* existing = InsertClass(descriptor, new_class.Get(), hash);
if (existing == nullptr) {
return new_class.Get();
}
// Another thread must have loaded the class after we
// started but before we finished. Abandon what we've
// done.
//
// (Yes, this happens.)
return existing;
}
mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
switch (type) {
case 'B':
return GetClassRoot(kPrimitiveByte);
case 'C':
return GetClassRoot(kPrimitiveChar);
case 'D':
return GetClassRoot(kPrimitiveDouble);
case 'F':
return GetClassRoot(kPrimitiveFloat);
case 'I':
return GetClassRoot(kPrimitiveInt);
case 'J':
return GetClassRoot(kPrimitiveLong);
case 'S':
return GetClassRoot(kPrimitiveShort);
case 'Z':
return GetClassRoot(kPrimitiveBoolean);
case 'V':
return GetClassRoot(kPrimitiveVoid);
default:
break;
}
std::string printable_type(PrintableChar(type));
ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
return nullptr;
}
mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass,
size_t hash) {
if (VLOG_IS_ON(class_linker)) {
mirror::DexCache* dex_cache = klass->GetDexCache();
std::string source;
if (dex_cache != nullptr) {
source += " from ";
source += dex_cache->GetLocation()->ToModifiedUtf8();
}
LOG(INFO) << "Loaded class " << descriptor << source;
}
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
mirror::Class* existing = LookupClassFromTableLocked(descriptor, klass->GetClassLoader(), hash);
if (existing != nullptr) {
return existing;
}
if (kIsDebugBuild && !klass->IsTemp() && klass->GetClassLoader() == nullptr &&
dex_cache_image_class_lookup_required_) {
// Check a class loaded with the system class loader matches one in the image if the class
// is in the image.
existing = LookupClassFromImage(descriptor);
if (existing != nullptr) {
CHECK_EQ(klass, existing);
}
}
VerifyObject(klass);
class_table_.InsertWithHash(GcRoot<mirror::Class>(klass), hash);
if (log_new_class_table_roots_) {
new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
}
return nullptr;
}
mirror::Class* ClassLinker::UpdateClass(const char* descriptor, mirror::Class* klass,
size_t hash) {
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
auto existing_it = class_table_.FindWithHash(std::make_pair(descriptor, klass->GetClassLoader()),
hash);
if (existing_it == class_table_.end()) {
CHECK(klass->IsProxyClass());
return nullptr;
}
mirror::Class* existing = existing_it->Read();
CHECK_NE(existing, klass) << descriptor;
CHECK(!existing->IsResolved()) << descriptor;
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusResolving) << descriptor;
CHECK(!klass->IsTemp()) << descriptor;
if (kIsDebugBuild && klass->GetClassLoader() == nullptr &&
dex_cache_image_class_lookup_required_) {
// Check a class loaded with the system class loader matches one in the image if the class
// is in the image.
existing = LookupClassFromImage(descriptor);
if (existing != nullptr) {
CHECK_EQ(klass, existing) << descriptor;
}
}
VerifyObject(klass);
// Update the element in the hash set.
*existing_it = GcRoot<mirror::Class>(klass);
if (log_new_class_table_roots_) {
new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
}
return existing;
}
bool ClassLinker::RemoveClass(const char* descriptor, mirror::ClassLoader* class_loader) {
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
auto pair = std::make_pair(descriptor, class_loader);
auto it = class_table_.Find(pair);
if (it != class_table_.end()) {
class_table_.Erase(it);
return true;
}
it = pre_zygote_class_table_.Find(pair);
if (it != pre_zygote_class_table_.end()) {
pre_zygote_class_table_.Erase(it);
return true;
}
return false;
}
mirror::Class* ClassLinker::LookupClass(const char* descriptor, size_t hash,
mirror::ClassLoader* class_loader) {
{
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
mirror::Class* result = LookupClassFromTableLocked(descriptor, class_loader, hash);
if (result != nullptr) {
return result;
}
}
if (class_loader != nullptr || !dex_cache_image_class_lookup_required_) {
return nullptr;
} else {
// Lookup failed but need to search dex_caches_.
mirror::Class* result = LookupClassFromImage(descriptor);
if (result != nullptr) {
InsertClass(descriptor, result, hash);
} else {
// Searching the image dex files/caches failed, we don't want to get into this situation
// often as map searches are faster, so after kMaxFailedDexCacheLookups move all image
// classes into the class table.
constexpr uint32_t kMaxFailedDexCacheLookups = 1000;
if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) {
MoveImageClassesToClassTable();
}
}
return result;
}
}
mirror::Class* ClassLinker::LookupClassFromTableLocked(const char* descriptor,
mirror::ClassLoader* class_loader,
size_t hash) {
auto descriptor_pair = std::make_pair(descriptor, class_loader);
auto it = pre_zygote_class_table_.FindWithHash(descriptor_pair, hash);
if (it == pre_zygote_class_table_.end()) {
it = class_table_.FindWithHash(descriptor_pair, hash);
if (it == class_table_.end()) {
return nullptr;
}
}
return it->Read();
}
static mirror::ObjectArray<mirror::DexCache>* GetImageDexCaches()
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
gc::space::ImageSpace* image = Runtime::Current()->GetHeap()->GetImageSpace();
CHECK(image != nullptr);
mirror::Object* root = image->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
return root->AsObjectArray<mirror::DexCache>();
}
void ClassLinker::MoveImageClassesToClassTable() {
Thread* self = Thread::Current();
WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
if (!dex_cache_image_class_lookup_required_) {
return; // All dex cache classes are already in the class table.
}
const char* old_no_suspend_cause =
self->StartAssertNoThreadSuspension("Moving image classes to class table");
mirror::ObjectArray<mirror::DexCache>* dex_caches = GetImageDexCaches();
std::string temp;
for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
mirror::DexCache* dex_cache = dex_caches->Get(i);
mirror::ObjectArray<mirror::Class>* types = dex_cache->GetResolvedTypes();
for (int32_t j = 0; j < types->GetLength(); j++) {
mirror::Class* klass = types->Get(j);
if (klass != nullptr) {
DCHECK(klass->GetClassLoader() == nullptr);
const char* descriptor = klass->GetDescriptor(&temp);
size_t hash = ComputeModifiedUtf8Hash(descriptor);
mirror::Class* existing = LookupClassFromTableLocked(descriptor, nullptr, hash);
if (existing != nullptr) {
CHECK_EQ(existing, klass) << PrettyClassAndClassLoader(existing) << " != "
<< PrettyClassAndClassLoader(klass);
} else {
class_table_.Insert(GcRoot<mirror::Class>(klass));
if (log_new_class_table_roots_) {
new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
}
}
}
}
}
dex_cache_image_class_lookup_required_ = false;
self->EndAssertNoThreadSuspension(old_no_suspend_cause);
}
void ClassLinker::MoveClassTableToPreZygote() {
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
DCHECK(pre_zygote_class_table_.Empty());
pre_zygote_class_table_ = std::move(class_table_);
class_table_.Clear();
}
mirror::Class* ClassLinker::LookupClassFromImage(const char* descriptor) {
Thread* self = Thread::Current();
const char* old_no_suspend_cause =
self->StartAssertNoThreadSuspension("Image class lookup");
mirror::ObjectArray<mirror::DexCache>* dex_caches = GetImageDexCaches();
for (int32_t i = 0; i < dex_caches->GetLength(); ++i) {
mirror::DexCache* dex_cache = dex_caches->Get(i);
const DexFile* dex_file = dex_cache->GetDexFile();
// Try binary searching the string/type index.
const DexFile::StringId* string_id = dex_file->FindStringId(descriptor);
if (string_id != nullptr) {
const DexFile::TypeId* type_id =
dex_file->FindTypeId(dex_file->GetIndexForStringId(*string_id));
if (type_id != nullptr) {
uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id);
mirror::Class* klass = dex_cache->GetResolvedType(type_idx);
if (klass != nullptr) {
self->EndAssertNoThreadSuspension(old_no_suspend_cause);
return klass;
}
}
}
}
self->EndAssertNoThreadSuspension(old_no_suspend_cause);
return nullptr;
}
void ClassLinker::LookupClasses(const char* descriptor, std::vector<mirror::Class*>& result) {
result.clear();
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
while (true) {
auto it = class_table_.Find(descriptor);
if (it == class_table_.end()) {
break;
}
result.push_back(it->Read());
class_table_.Erase(it);
}
for (mirror::Class* k : result) {
class_table_.Insert(GcRoot<mirror::Class>(k));
}
size_t pre_zygote_start = result.size();
// Now handle the pre zygote table.
// Note: This dirties the pre-zygote table but shouldn't be an issue since LookupClasses is only
// called from the debugger.
while (true) {
auto it = pre_zygote_class_table_.Find(descriptor);
if (it == pre_zygote_class_table_.end()) {
break;
}
result.push_back(it->Read());
pre_zygote_class_table_.Erase(it);
}
for (size_t i = pre_zygote_start; i < result.size(); ++i) {
pre_zygote_class_table_.Insert(GcRoot<mirror::Class>(result[i]));
}
}
void ClassLinker::VerifyClass(Handle<mirror::Class> klass) {
// TODO: assert that the monitor on the Class is held
Thread* self = Thread::Current();
ObjectLock<mirror::Class> lock(self, klass);
// Don't attempt to re-verify if already sufficiently verified.
if (klass->IsVerified()) {
EnsurePreverifiedMethods(klass);
return;
}
if (klass->IsCompileTimeVerified() && Runtime::Current()->IsCompiler()) {
return;
}
// The class might already be erroneous, for example at compile time if we attempted to verify
// this class as a parent to another.
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass.Get());
return;
}
if (klass->GetStatus() == mirror::Class::kStatusResolved) {
klass->SetStatus(mirror::Class::kStatusVerifying, self);
} else {
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
<< PrettyClass(klass.Get());
CHECK(!Runtime::Current()->IsCompiler());
klass->SetStatus(mirror::Class::kStatusVerifyingAtRuntime, self);
}
// Skip verification if disabled.
if (!Runtime::Current()->IsVerificationEnabled()) {
klass->SetStatus(mirror::Class::kStatusVerified, self);
EnsurePreverifiedMethods(klass);
return;
}
// Verify super class.
StackHandleScope<2> hs(self);
Handle<mirror::Class> super(hs.NewHandle(klass->GetSuperClass()));
if (super.Get() != nullptr) {
// Acquire lock to prevent races on verifying the super class.
ObjectLock<mirror::Class> lock(self, super);
if (!super->IsVerified() && !super->IsErroneous()) {
VerifyClass(super);
}
if (!super->IsCompileTimeVerified()) {
std::string error_msg(
StringPrintf("Rejecting class %s that attempts to sub-class erroneous class %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyDescriptor(super.Get()).c_str()));
LOG(ERROR) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException(nullptr)));
if (cause.Get() != nullptr) {
self->ClearException();
}
ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
if (cause.Get() != nullptr) {
self->GetException(nullptr)->SetCause(cause.Get());
}
ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
if (Runtime::Current()->IsCompiler()) {
Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
}
klass->SetStatus(mirror::Class::kStatusError, self);
return;
}
}
// Try to use verification information from the oat file, otherwise do runtime verification.
const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
if (oat_file_class_status == mirror::Class::kStatusError) {
VLOG(class_linker) << "Skipping runtime verification of erroneous class "
<< PrettyDescriptor(klass.Get()) << " in "
<< klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
ThrowVerifyError(klass.Get(), "Rejecting class %s because it failed compile-time verification",
PrettyDescriptor(klass.Get()).c_str());
klass->SetStatus(mirror::Class::kStatusError, self);
return;
}
verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure;
std::string error_msg;
if (!preverified) {
verifier_failure = verifier::MethodVerifier::VerifyClass(klass.Get(),
Runtime::Current()->IsCompiler(),
&error_msg);
}
if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) {
if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) {
VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get())
<< " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
<< " because: " << error_msg;
}
self->AssertNoPendingException();
// Make sure all classes referenced by catch blocks are resolved.
ResolveClassExceptionHandlerTypes(dex_file, klass);
if (verifier_failure == verifier::MethodVerifier::kNoFailure) {
// Even though there were no verifier failures we need to respect whether the super-class
// was verified or requiring runtime reverification.
if (super.Get() == nullptr || super->IsVerified()) {
klass->SetStatus(mirror::Class::kStatusVerified, self);
} else {
CHECK_EQ(super->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
klass->SetStatus(mirror::Class::kStatusRetryVerificationAtRuntime, self);
// Pretend a soft failure occured so that we don't consider the class verified below.
verifier_failure = verifier::MethodVerifier::kSoftFailure;
}
} else {
CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure);
// Soft failures at compile time should be retried at runtime. Soft
// failures at runtime will be handled by slow paths in the generated
// code. Set status accordingly.
if (Runtime::Current()->IsCompiler()) {
klass->SetStatus(mirror::Class::kStatusRetryVerificationAtRuntime, self);
} else {
klass->SetStatus(mirror::Class::kStatusVerified, self);
// As this is a fake verified status, make sure the methods are _not_ marked preverified
// later.
klass->SetAccessFlags(klass->GetAccessFlags() | kAccPreverified);
}
}
} else {
LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(klass.Get())
<< " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
<< " because: " << error_msg;
self->AssertNoPendingException();
ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
klass->SetStatus(mirror::Class::kStatusError, self);
}
if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) {
// Class is verified so we don't need to do any access check on its methods.
// Let the interpreter know it by setting the kAccPreverified flag onto each
// method.
// Note: we're going here during compilation and at runtime. When we set the
// kAccPreverified flag when compiling image classes, the flag is recorded
// in the image and is set when loading the image.
EnsurePreverifiedMethods(klass);
}
}
void ClassLinker::EnsurePreverifiedMethods(Handle<mirror::Class> klass) {
if ((klass->GetAccessFlags() & kAccPreverified) == 0) {
klass->SetPreverifiedFlagOnAllMethods();
klass->SetAccessFlags(klass->GetAccessFlags() | kAccPreverified);
}
}
bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, mirror::Class* klass,
mirror::Class::Status& oat_file_class_status) {
// If we're compiling, we can only verify the class using the oat file if
// we are not compiling the image or if the class we're verifying is not part of
// the app. In other words, we will only check for preverification of bootclasspath
// classes.
if (Runtime::Current()->IsCompiler()) {
// Are we compiling the bootclasspath?
if (!Runtime::Current()->UseCompileTimeClassPath()) {
return false;
}
// We are compiling an app (not the image).
// Is this an app class? (I.e. not a bootclasspath class)
if (klass->GetClassLoader() != nullptr) {
return false;
}
}
const OatFile::OatDexFile* oat_dex_file = FindOpenedOatDexFileForDexFile(dex_file);
// In case we run without an image there won't be a backing oat file.
if (oat_dex_file == nullptr) {
return false;
}
uint16_t class_def_index = klass->GetDexClassDefIndex();
oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
if (oat_file_class_status == mirror::Class::kStatusVerified ||
oat_file_class_status == mirror::Class::kStatusInitialized) {
return true;
}
if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
// Compile time verification failed with a soft error. Compile time verification can fail
// because we have incomplete type information. Consider the following:
// class ... {
// Foo x;
// .... () {
// if (...) {
// v1 gets assigned a type of resolved class Foo
// } else {
// v1 gets assigned a type of unresolved class Bar
// }
// iput x = v1
// } }
// when we merge v1 following the if-the-else it results in Conflict
// (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
// allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
// it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
// at compile time).
return false;
}
if (oat_file_class_status == mirror::Class::kStatusError) {
// Compile time verification failed with a hard error. This is caused by invalid instructions
// in the class. These errors are unrecoverable.
return false;
}
if (oat_file_class_status == mirror::Class::kStatusNotReady) {
// Status is uninitialized if we couldn't determine the status at compile time, for example,
// not loading the class.
// TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
// isn't a problem and this case shouldn't occur
return false;
}
std::string temp;
LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
<< " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " "
<< klass->GetDescriptor(&temp);
return false;
}
void ClassLinker::ResolveClassExceptionHandlerTypes(const DexFile& dex_file,
Handle<mirror::Class> klass) {
for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
ResolveMethodExceptionHandlerTypes(dex_file, klass->GetDirectMethod(i));
}
for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
ResolveMethodExceptionHandlerTypes(dex_file, klass->GetVirtualMethod(i));
}
}
void ClassLinker::ResolveMethodExceptionHandlerTypes(const DexFile& dex_file,
mirror::ArtMethod* method) {
// similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset());
if (code_item == nullptr) {
return; // native or abstract method
}
if (code_item->tries_size_ == 0) {
return; // nothing to process
}
const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
ClassLinker* linker = Runtime::Current()->GetClassLinker();
for (uint32_t idx = 0; idx < handlers_size; idx++) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
// Ensure exception types are resolved so that they don't need resolution to be delivered,
// unresolved exception types will be ignored by exception delivery
if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
mirror::Class* exception_type = linker->ResolveType(iterator.GetHandlerTypeIndex(), method);
if (exception_type == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
Thread::Current()->ClearException();
}
}
}
handlers_ptr = iterator.EndDataPointer();
}
}
static void CheckProxyConstructor(mirror::ArtMethod* constructor);
static void CheckProxyMethod(Handle<mirror::ArtMethod> method,
Handle<mirror::ArtMethod> prototype);
mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa, jstring name,
jobjectArray interfaces, jobject loader,
jobjectArray methods, jobjectArray throws) {
Thread* self = soa.Self();
StackHandleScope<8> hs(self);
Handle<mirror::Class> klass(hs.NewHandle(
AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class))));
if (klass.Get() == nullptr) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
DCHECK(klass->GetClass() != nullptr);
klass->SetObjectSize(sizeof(mirror::Proxy));
// Set the class access flags incl. preverified, so we do not try to set the flag on the methods.
klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccPreverified);
klass->SetClassLoader(soa.Decode<mirror::ClassLoader*>(loader));
DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
klass->SetName(soa.Decode<mirror::String*>(name));
mirror::Class* proxy_class = GetClassRoot(kJavaLangReflectProxy);
klass->SetDexCache(proxy_class->GetDexCache());
klass->SetStatus(mirror::Class::kStatusIdx, self);
// Instance fields are inherited, but we add a couple of static fields...
{
mirror::ObjectArray<mirror::ArtField>* sfields = AllocArtFieldArray(self, 2);
if (UNLIKELY(sfields == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetSFields(sfields);
}
// 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
// our proxy, so Class.getInterfaces doesn't return the flattened set.
Handle<mirror::ArtField> interfaces_sfield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(interfaces_sfield.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetStaticField(0, interfaces_sfield.Get());
interfaces_sfield->SetDexFieldIndex(0);
interfaces_sfield->SetDeclaringClass(klass.Get());
interfaces_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
// 2. Create a static field 'throws' that holds exceptions thrown by our methods.
Handle<mirror::ArtField> throws_sfield(hs.NewHandle(AllocArtField(self)));
if (UNLIKELY(throws_sfield.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetStaticField(1, throws_sfield.Get());
throws_sfield->SetDexFieldIndex(1);
throws_sfield->SetDeclaringClass(klass.Get());
throws_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
// Proxies have 1 direct method, the constructor
{
mirror::ObjectArray<mirror::ArtMethod>* directs = AllocArtMethodArray(self, 1);
if (UNLIKELY(directs == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetDirectMethods(directs);
mirror::ArtMethod* constructor = CreateProxyConstructor(self, klass, proxy_class);
if (UNLIKELY(constructor == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetDirectMethod(0, constructor);
}
// Create virtual method using specified prototypes.
size_t num_virtual_methods =
soa.Decode<mirror::ObjectArray<mirror::ArtMethod>*>(methods)->GetLength();
{
mirror::ObjectArray<mirror::ArtMethod>* virtuals = AllocArtMethodArray(self,
num_virtual_methods);
if (UNLIKELY(virtuals == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetVirtualMethods(virtuals);
}
for (size_t i = 0; i < num_virtual_methods; ++i) {
StackHandleScope<1> hs(self);
mirror::ObjectArray<mirror::ArtMethod>* decoded_methods =
soa.Decode<mirror::ObjectArray<mirror::ArtMethod>*>(methods);
Handle<mirror::ArtMethod> prototype(hs.NewHandle(decoded_methods->Get(i)));
mirror::ArtMethod* clone = CreateProxyMethod(self, klass, prototype);
if (UNLIKELY(clone == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
klass->SetVirtualMethod(i, clone);
}
klass->SetSuperClass(proxy_class); // The super class is java.lang.reflect.Proxy
klass->SetStatus(mirror::Class::kStatusLoaded, self); // Now effectively in the loaded state.
self->AssertNoPendingException();
std::string descriptor(GetDescriptorForProxy(klass.Get()));
mirror::Class* new_class = nullptr;
{
// Must hold lock on object when resolved.
ObjectLock<mirror::Class> resolution_lock(self, klass);
// Link the fields and virtual methods, creating vtable and iftables
Handle<mirror::ObjectArray<mirror::Class> > h_interfaces(
hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)));
if (!LinkClass(self, descriptor.c_str(), klass, h_interfaces, &new_class)) {
klass->SetStatus(mirror::Class::kStatusError, self);
return nullptr;
}
}
CHECK(klass->IsRetired());
CHECK_NE(klass.Get(), new_class);
klass.Assign(new_class);
CHECK_EQ(interfaces_sfield->GetDeclaringClass(), new_class);
interfaces_sfield->SetObject<false>(klass.Get(),
soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
CHECK_EQ(throws_sfield->GetDeclaringClass(), new_class);
throws_sfield->SetObject<false>(klass.Get(),
soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws));
{
// Lock on klass is released. Lock new class object.
ObjectLock<mirror::Class> initialization_lock(self, klass);
klass->SetStatus(mirror::Class::kStatusInitialized, self);
}
// sanity checks
if (kIsDebugBuild) {
CHECK(klass->GetIFields() == nullptr);
CheckProxyConstructor(klass->GetDirectMethod(0));
for (size_t i = 0; i < num_virtual_methods; ++i) {
StackHandleScope<2> hs(self);
mirror::ObjectArray<mirror::ArtMethod>* decoded_methods =
soa.Decode<mirror::ObjectArray<mirror::ArtMethod>*>(methods);
Handle<mirror::ArtMethod> prototype(hs.NewHandle(decoded_methods->Get(i)));
Handle<mirror::ArtMethod> virtual_method(hs.NewHandle(klass->GetVirtualMethod(i)));
CheckProxyMethod(virtual_method, prototype);
}
mirror::String* decoded_name = soa.Decode<mirror::String*>(name);
std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
decoded_name->ToModifiedUtf8().c_str()));
CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name);
std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
decoded_name->ToModifiedUtf8().c_str()));
CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name);
CHECK_EQ(klass.Get()->GetInterfaces(),
soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
CHECK_EQ(klass.Get()->GetThrows(),
soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>*>(throws));
}
mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(),
ComputeModifiedUtf8Hash(descriptor.c_str()));
CHECK(existing == nullptr);
return klass.Get();
}
std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) {
DCHECK(proxy_class->IsProxyClass());
mirror::String* name = proxy_class->GetName();
DCHECK(name != nullptr);
return DotToDescriptor(name->ToModifiedUtf8().c_str());
}
mirror::ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class,
mirror::ArtMethod* proxy_method) {
DCHECK(proxy_class->IsProxyClass());
DCHECK(proxy_method->IsProxyMethod());
// Locate the dex cache of the original interface/Object
mirror::DexCache* dex_cache = nullptr;
{
ReaderMutexLock mu(Thread::Current(), dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
mirror::DexCache* a_dex_cache = GetDexCache(i);
if (proxy_method->HasSameDexCacheResolvedTypes(a_dex_cache->GetResolvedTypes())) {
dex_cache = a_dex_cache;
break;
}
}
}
CHECK(dex_cache != nullptr);
uint32_t method_idx = proxy_method->GetDexMethodIndex();
mirror::ArtMethod* resolved_method = dex_cache->GetResolvedMethod(method_idx);
CHECK(resolved_method != nullptr);
return resolved_method;
}
mirror::ArtMethod* ClassLinker::CreateProxyConstructor(Thread* self,
Handle<mirror::Class> klass,
mirror::Class* proxy_class) {
// Create constructor for Proxy that must initialize h
mirror::ObjectArray<mirror::ArtMethod>* proxy_direct_methods =
proxy_class->GetDirectMethods();
CHECK_EQ(proxy_direct_methods->GetLength(), 16);
mirror::ArtMethod* proxy_constructor = proxy_direct_methods->Get(2);
// Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden
// constructor method.
proxy_class->GetDexCache()->SetResolvedMethod(proxy_constructor->GetDexMethodIndex(),
proxy_constructor);
// Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
// code_ too)
mirror::ArtMethod* constructor = down_cast<mirror::ArtMethod*>(proxy_constructor->Clone(self));
if (constructor == nullptr) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
// Make this constructor public and fix the class to be our Proxy version
constructor->SetAccessFlags((constructor->GetAccessFlags() & ~kAccProtected) | kAccPublic);
constructor->SetDeclaringClass(klass.Get());
return constructor;
}
static void CheckProxyConstructor(mirror::ArtMethod* constructor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(constructor->IsConstructor());
CHECK_STREQ(constructor->GetName(), "<init>");
CHECK_STREQ(constructor->GetSignature().ToString().c_str(),
"(Ljava/lang/reflect/InvocationHandler;)V");
DCHECK(constructor->IsPublic());
}
mirror::ArtMethod* ClassLinker::CreateProxyMethod(Thread* self,
Handle<mirror::Class> klass,
Handle<mirror::ArtMethod> prototype) {
// Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
// prototype method
prototype->GetDeclaringClass()->GetDexCache()->SetResolvedMethod(prototype->GetDexMethodIndex(),
prototype.Get());
// We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
// as necessary
mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(prototype->Clone(self));
if (UNLIKELY(method == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return nullptr;
}
// Set class to be the concrete proxy class and clear the abstract flag, modify exceptions to
// the intersection of throw exceptions as defined in Proxy
method->SetDeclaringClass(klass.Get());
method->SetAccessFlags((method->GetAccessFlags() & ~kAccAbstract) | kAccFinal);
// At runtime the method looks like a reference and argument saving method, clone the code
// related parameters from this method.
method->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
#if defined(ART_USE_PORTABLE_COMPILER)
method->SetEntryPointFromPortableCompiledCode(GetPortableProxyInvokeHandler());
#endif
method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge);
return method;
}
static void CheckProxyMethod(Handle<mirror::ArtMethod> method, Handle<mirror::ArtMethod> prototype)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Basic sanity
CHECK(!prototype->IsFinal());
CHECK(method->IsFinal());
CHECK(!method->IsAbstract());
// The proxy method doesn't have its own dex cache or dex file and so it steals those of its
// interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
CHECK(prototype->HasSameDexCacheResolvedMethods(method.Get()));
CHECK(prototype->HasSameDexCacheResolvedTypes(method.Get()));
CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
MethodHelper mh(method);
MethodHelper mh2(prototype);
CHECK_STREQ(method->GetName(), prototype->GetName());
CHECK_STREQ(method->GetShorty(), prototype->GetShorty());
// More complex sanity - via dex cache
CHECK_EQ(mh.GetReturnType(), mh2.GetReturnType());
}
static bool CanWeInitializeClass(mirror::Class* klass, bool can_init_statics,
bool can_init_parents)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (can_init_statics && can_init_parents) {
return true;
}
if (!can_init_statics) {
// Check if there's a class initializer.
mirror::ArtMethod* clinit = klass->FindClassInitializer();
if (clinit != nullptr) {
return false;
}
// Check if there are encoded static values needing initialization.
if (klass->NumStaticFields() != 0) {
const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
DCHECK(dex_class_def != nullptr);
if (dex_class_def->static_values_off_ != 0) {
return false;
}
}
}
if (!klass->IsInterface() && klass->HasSuperClass()) {
mirror::Class* super_class = klass->GetSuperClass();
if (!can_init_parents && !super_class->IsInitialized()) {
return false;
} else {
if (!CanWeInitializeClass(super_class, can_init_statics, can_init_parents)) {
return false;
}
}
}
return true;
}
bool ClassLinker::IsInitialized() const {
return init_done_;
}
bool ClassLinker::InitializeClass(Handle<mirror::Class> klass, bool can_init_statics,
bool can_init_parents) {
// see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
// Are we already initialized and therefore done?
// Note: we differ from the JLS here as we don't do this under the lock, this is benign as
// an initialized class will never change its state.
if (klass->IsInitialized()) {
return true;
}
// Fast fail if initialization requires a full runtime. Not part of the JLS.
if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
return false;
}
Thread* self = Thread::Current();
uint64_t t0;
{
ObjectLock<mirror::Class> lock(self, klass);
// Re-check under the lock in case another thread initialized ahead of us.
if (klass->IsInitialized()) {
return true;
}
// Was the class already found to be erroneous? Done under the lock to match the JLS.
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass.Get());
return false;
}
CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus();
if (!klass->IsVerified()) {
VerifyClass(klass);
if (!klass->IsVerified()) {
// We failed to verify, expect either the klass to be erroneous or verification failed at
// compile time.
if (klass->IsErroneous()) {
CHECK(self->IsExceptionPending());
} else {
CHECK(Runtime::Current()->IsCompiler());
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
}
return false;
} else {
self->AssertNoPendingException();
}
}
// If the class is kStatusInitializing, either this thread is
// initializing higher up the stack or another thread has beat us
// to initializing and we need to wait. Either way, this
// invocation of InitializeClass will not be responsible for
// running <clinit> and will return.
if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
// Could have got an exception during verification.
if (self->IsExceptionPending()) {
return false;
}
// We caught somebody else in the act; was it us?
if (klass->GetClinitThreadId() == self->GetTid()) {
// Yes. That's fine. Return so we can continue initializing.
return true;
}
// No. That's fine. Wait for another thread to finish initializing.
return WaitForInitializeClass(klass, self, lock);
}
if (!ValidateSuperClassDescriptors(klass)) {
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get());
// From here out other threads may observe that we're initializing and so changes of state
// require the a notification.
klass->SetClinitThreadId(self->GetTid());
klass->SetStatus(mirror::Class::kStatusInitializing, self);
t0 = NanoTime();
}
// Initialize super classes, must be done while initializing for the JLS.
if (!klass->IsInterface() && klass->HasSuperClass()) {
mirror::Class* super_class = klass->GetSuperClass();
if (!super_class->IsInitialized()) {
CHECK(!super_class->IsInterface());
CHECK(can_init_parents);
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
bool super_initialized = InitializeClass(handle_scope_super, can_init_statics, true);
if (!super_initialized) {
// The super class was verified ahead of entering initializing, we should only be here if
// the super class became erroneous due to initialization.
CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
<< "Super class initialization failed for "
<< PrettyDescriptor(handle_scope_super.Get())
<< " that has unexpected status " << handle_scope_super->GetStatus()
<< "\nPending exception:\n"
<< (self->GetException(nullptr) != nullptr ? self->GetException(nullptr)->Dump() : "");
ObjectLock<mirror::Class> lock(self, klass);
// Initialization failed because the super-class is erroneous.
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
}
}
const size_t num_static_fields = klass->NumStaticFields();
if (num_static_fields > 0) {
const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
CHECK(dex_class_def != nullptr);
const DexFile& dex_file = klass->GetDexFile();
StackHandleScope<2> hs(self);
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
// Eagerly fill in static fields so that the we don't have to do as many expensive
// Class::FindStaticField in ResolveField.
for (size_t i = 0; i < num_static_fields; ++i) {
mirror::ArtField* field = klass->GetStaticField(i);
const uint32_t field_idx = field->GetDexFieldIndex();
mirror::ArtField* resolved_field = dex_cache->GetResolvedField(field_idx);
if (resolved_field == nullptr) {
dex_cache->SetResolvedField(field_idx, field);
} else {
DCHECK_EQ(field, resolved_field);
}
}
EncodedStaticFieldValueIterator it(dex_file, &dex_cache, &class_loader,
this, *dex_class_def);
if (it.HasNext()) {
CHECK(can_init_statics);
// We reordered the fields, so we need to be able to map the
// field indexes to the right fields.
SafeMap<uint32_t, mirror::ArtField*> field_map;
ConstructFieldMap(dex_file, *dex_class_def, klass.Get(), field_map);
for (size_t i = 0; it.HasNext(); i++, it.Next()) {
if (Runtime::Current()->IsActiveTransaction()) {
it.ReadValueToField<true>(field_map.Get(i));
} else {
it.ReadValueToField<false>(field_map.Get(i));
}
}
}
}
mirror::ArtMethod* clinit = klass->FindClassInitializer();
if (clinit != nullptr) {
CHECK(can_init_statics);
JValue result;
clinit->Invoke(self, nullptr, 0, &result, "V");
}
uint64_t t1 = NanoTime();
bool success = true;
{
ObjectLock<mirror::Class> lock(self, klass);
if (self->IsExceptionPending()) {
WrapExceptionInInitializer();
klass->SetStatus(mirror::Class::kStatusError, self);
success = false;
} else {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = self->GetStats();
++global_stats->class_init_count;
++thread_stats->class_init_count;
global_stats->class_init_time_ns += (t1 - t0);
thread_stats->class_init_time_ns += (t1 - t0);
// Set the class as initialized except if failed to initialize static fields.
klass->SetStatus(mirror::Class::kStatusInitialized, self);
if (VLOG_IS_ON(class_linker)) {
std::string temp;
LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
klass->GetLocation();
}
// Opportunistically set static method trampolines to their destination.
FixupStaticTrampolines(klass.Get());
}
}
return success;
}
bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass, Thread* self,
ObjectLock<mirror::Class>& lock)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
while (true) {
self->AssertNoPendingException();
CHECK(!klass->IsInitialized());
lock.WaitIgnoringInterrupts();
// When we wake up, repeat the test for init-in-progress. If
// there's an exception pending (only possible if
// "interruptShouldThrow" was set), bail out.
if (self->IsExceptionPending()) {
WrapExceptionInInitializer();
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
// Spurious wakeup? Go back to waiting.
if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
continue;
}
if (klass->GetStatus() == mirror::Class::kStatusVerified && Runtime::Current()->IsCompiler()) {
// Compile time initialization failed.
return false;
}
if (klass->IsErroneous()) {
// The caller wants an exception, but it was thrown in a
// different thread. Synthesize one here.
ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
PrettyDescriptor(klass.Get()).c_str());
return false;
}
if (klass->IsInitialized()) {
return true;
}
LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is "
<< klass->GetStatus();
}
LOG(FATAL) << "Not Reached" << PrettyClass(klass.Get());
}
bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
if (klass->IsInterface()) {
return true;
}
// Begin with the methods local to the superclass.
StackHandleScope<2> hs(Thread::Current());
MethodHelper mh(hs.NewHandle<mirror::ArtMethod>(nullptr));
MethodHelper super_mh(hs.NewHandle<mirror::ArtMethod>(nullptr));
if (klass->HasSuperClass() &&
klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
mh.ChangeMethod(klass->GetVTableEntry(i));
super_mh.ChangeMethod(klass->GetSuperClass()->GetVTableEntry(i));
if (mh.GetMethod() != super_mh.GetMethod() &&
!mh.HasSameSignatureWithDifferentClassLoaders(&super_mh)) {
ThrowLinkageError(klass.Get(),
"Class %s method %s resolves differently in superclass %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyMethod(mh.GetMethod()).c_str(),
PrettyDescriptor(klass->GetSuperClass()).c_str());
return false;
}
}
}
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
if (klass->GetClassLoader() != klass->GetIfTable()->GetInterface(i)->GetClassLoader()) {
uint32_t num_methods = klass->GetIfTable()->GetInterface(i)->NumVirtualMethods();
for (uint32_t j = 0; j < num_methods; ++j) {
mh.ChangeMethod(klass->GetIfTable()->GetMethodArray(i)->GetWithoutChecks(j));
super_mh.ChangeMethod(klass->GetIfTable()->GetInterface(i)->GetVirtualMethod(j));
if (mh.GetMethod() != super_mh.GetMethod() &&
!mh.HasSameSignatureWithDifferentClassLoaders(&super_mh)) {
ThrowLinkageError(klass.Get(),
"Class %s method %s resolves differently in interface %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyMethod(mh.GetMethod()).c_str(),
PrettyDescriptor(klass->GetIfTable()->GetInterface(i)).c_str());
return false;
}
}
}
}
return true;
}
bool ClassLinker::EnsureInitialized(Handle<mirror::Class> c, bool can_init_fields,
bool can_init_parents) {
DCHECK(c.Get() != nullptr);
if (c->IsInitialized()) {
EnsurePreverifiedMethods(c);
return true;
}
const bool success = InitializeClass(c, can_init_fields, can_init_parents);
Thread* self = Thread::Current();
if (!success) {
if (can_init_fields && can_init_parents) {
CHECK(self->IsExceptionPending()) << PrettyClass(c.Get());
}
} else {
self->AssertNoPendingException();
}
return success;
}
void ClassLinker::ConstructFieldMap(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
mirror::Class* c,
SafeMap<uint32_t, mirror::ArtField*>& field_map) {
const byte* class_data = dex_file.GetClassData(dex_class_def);
ClassDataItemIterator it(dex_file, class_data);
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(c->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(c->GetClassLoader()));
CHECK(!kMovingFields);
for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) {
field_map.Put(i, ResolveField(dex_file, it.GetMemberIndex(), dex_cache, class_loader, true));
}
}
void ClassLinker::FixupTemporaryDeclaringClass(mirror::Class* temp_class, mirror::Class* new_class) {
mirror::ObjectArray<mirror::ArtField>* fields = new_class->GetIFields();
if (fields != nullptr) {
for (int index = 0; index < fields->GetLength(); index ++) {
if (fields->Get(index)->GetDeclaringClass() == temp_class) {
fields->Get(index)->SetDeclaringClass(new_class);
}
}
}
fields = new_class->GetSFields();
if (fields != nullptr) {
for (int index = 0; index < fields->GetLength(); index ++) {
if (fields->Get(index)->GetDeclaringClass() == temp_class) {
fields->Get(index)->SetDeclaringClass(new_class);
}
}
}
mirror::ObjectArray<mirror::ArtMethod>* methods = new_class->GetDirectMethods();
if (methods != nullptr) {
for (int index = 0; index < methods->GetLength(); index ++) {
if (methods->Get(index)->GetDeclaringClass() == temp_class) {
methods->Get(index)->SetDeclaringClass(new_class);
}
}
}
methods = new_class->GetVirtualMethods();
if (methods != nullptr) {
for (int index = 0; index < methods->GetLength(); index ++) {
if (methods->Get(index)->GetDeclaringClass() == temp_class) {
methods->Get(index)->SetDeclaringClass(new_class);
}
}
}
}
bool ClassLinker::LinkClass(Thread* self, const char* descriptor, Handle<mirror::Class> klass,
Handle<mirror::ObjectArray<mirror::Class>> interfaces,
mirror::Class** new_class) {
CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
if (!LinkSuperClass(klass)) {
return false;
}
StackHandleScope<mirror::Class::kImtSize> imt_handle_scope(
self, Runtime::Current()->GetImtUnimplementedMethod());
if (!LinkMethods(self, klass, interfaces, &imt_handle_scope)) {
return false;
}
if (!LinkInstanceFields(klass)) {
return false;
}
size_t class_size;
if (!LinkStaticFields(klass, &class_size)) {
return false;
}
CreateReferenceInstanceOffsets(klass);
CreateReferenceStaticOffsets(klass);
CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
// We don't need to retire this class as it has no embedded tables or it was created the
// correct size during class linker initialization.
CHECK_EQ(klass->GetClassSize(), class_size) << PrettyDescriptor(klass.Get());
if (klass->ShouldHaveEmbeddedImtAndVTable()) {
klass->PopulateEmbeddedImtAndVTable(&imt_handle_scope);
}
// This will notify waiters on klass that saw the not yet resolved
// class in the class_table_ during EnsureResolved.
klass->SetStatus(mirror::Class::kStatusResolved, self);
*new_class = klass.Get();
} else {
CHECK(!klass->IsResolved());
// Retire the temporary class and create the correctly sized resolved class.
*new_class = klass->CopyOf(self, class_size, &imt_handle_scope);
if (UNLIKELY(*new_class == nullptr)) {
CHECK(self->IsExceptionPending()); // Expect an OOME.
klass->SetStatus(mirror::Class::kStatusError, self);
return false;
}
CHECK_EQ((*new_class)->GetClassSize(), class_size);
StackHandleScope<1> hs(self);
auto new_class_h = hs.NewHandleWrapper<mirror::Class>(new_class);
ObjectLock<mirror::Class> lock(self, new_class_h);
FixupTemporaryDeclaringClass(klass.Get(), new_class_h.Get());
mirror::Class* existing = UpdateClass(descriptor, new_class_h.Get(),
ComputeModifiedUtf8Hash(descriptor));
CHECK(existing == nullptr || existing == klass.Get());
// This will notify waiters on temp class that saw the not yet resolved class in the
// class_table_ during EnsureResolved.
klass->SetStatus(mirror::Class::kStatusRetired, self);
CHECK_EQ(new_class_h->GetStatus(), mirror::Class::kStatusResolving);
// This will notify waiters on new_class that saw the not yet resolved
// class in the class_table_ during EnsureResolved.
new_class_h->SetStatus(mirror::Class::kStatusResolved, self);
}
return true;
}
bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
uint16_t super_class_idx = class_def.superclass_idx_;
if (super_class_idx != DexFile::kDexNoIndex16) {
mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get());
if (super_class == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
return false;
}
// Verify
if (!klass->CanAccess(super_class)) {
ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
PrettyDescriptor(super_class).c_str(),
PrettyDescriptor(klass.Get()).c_str());
return false;
}
CHECK(super_class->IsResolved());
klass->SetSuperClass(super_class);
}
const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
if (interfaces != nullptr) {
for (size_t i = 0; i < interfaces->Size(); i++) {
uint16_t idx = interfaces->GetTypeItem(i).type_idx_;
mirror::Class* interface = ResolveType(dex_file, idx, klass.Get());
if (interface == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
return false;
}
// Verify
if (!klass->CanAccess(interface)) {
// TODO: the RI seemed to ignore this in my testing.
ThrowIllegalAccessError(klass.Get(), "Interface %s implemented by class %s is inaccessible",
PrettyDescriptor(interface).c_str(),
PrettyDescriptor(klass.Get()).c_str());
return false;
}
}
}
// Mark the class as loaded.
klass->SetStatus(mirror::Class::kStatusLoaded, nullptr);
return true;
}
bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
CHECK(!klass->IsPrimitive());
mirror::Class* super = klass->GetSuperClass();
if (klass.Get() == GetClassRoot(kJavaLangObject)) {
if (super != nullptr) {
ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
return false;
}
return true;
}
if (super == nullptr) {
ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
PrettyDescriptor(klass.Get()).c_str());
return false;
}
// Verify
if (super->IsFinal() || super->IsInterface()) {
ThrowIncompatibleClassChangeError(klass.Get(), "Superclass %s of %s is %s",
PrettyDescriptor(super).c_str(),
PrettyDescriptor(klass.Get()).c_str(),
super->IsFinal() ? "declared final" : "an interface");
return false;
}
if (!klass->CanAccess(super)) {
ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
PrettyDescriptor(super).c_str(),
PrettyDescriptor(klass.Get()).c_str());
return false;
}
// Inherit kAccClassIsFinalizable from the superclass in case this
// class doesn't override finalize.
if (super->IsFinalizable()) {
klass->SetFinalizable();
}
// Inherit reference flags (if any) from the superclass.
int reference_flags = (super->GetAccessFlags() & kAccReferenceFlagsMask);
if (reference_flags != 0) {
klass->SetAccessFlags(klass->GetAccessFlags() | reference_flags);
}
// Disallow custom direct subclasses of java.lang.ref.Reference.
if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
ThrowLinkageError(klass.Get(),
"Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
PrettyDescriptor(klass.Get()).c_str());
return false;
}
if (kIsDebugBuild) {
// Ensure super classes are fully resolved prior to resolving fields..
while (super != nullptr) {
CHECK(super->IsResolved());
super = super->GetSuperClass();
}
}
return true;
}
// Populate the class vtable and itable. Compute return type indices.
bool ClassLinker::LinkMethods(Thread* self, Handle<mirror::Class> klass,
Handle<mirror::ObjectArray<mirror::Class>> interfaces,
StackHandleScope<mirror::Class::kImtSize>* out_imt) {
if (klass->IsInterface()) {
// No vtable.
size_t count = klass->NumVirtualMethods();
if (!IsUint(16, count)) {
ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zd", count);
return false;
}
for (size_t i = 0; i < count; ++i) {
klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i);
}
} else if (!LinkVirtualMethods(self, klass)) { // Link virtual methods first.
return false;
}
return LinkInterfaceMethods(self, klass, interfaces, out_imt); // Link interface method last.
}
// Comparator for name and signature of a method, used in finding overriding methods. Implementation
// avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
// caches in the implementation below.
class MethodNameAndSignatureComparator FINAL {
public:
explicit MethodNameAndSignatureComparator(mirror::ArtMethod* method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
name_(nullptr), name_len_(0) {
DCHECK(!method->IsProxyMethod()) << PrettyMethod(method);
}
const char* GetName() {
if (name_ == nullptr) {
name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
}
return name_;
}
bool HasSameNameAndSignature(mirror::ArtMethod* other)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(!other->IsProxyMethod()) << PrettyMethod(other);
const DexFile* other_dex_file = other->GetDexFile();
const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
if (dex_file_ == other_dex_file) {
return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
}
GetName(); // Only used to make sure its calculated.
uint32_t other_name_len;
const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
&other_name_len);
if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
return false;
}
return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
}
private:
// Dex file for the method to compare against.
const DexFile* const dex_file_;
// MethodId for the method to compare against.
const DexFile::MethodId* const mid_;
// Lazily computed name from the dex file's strings.
const char* name_;
// Lazily computed name length.
uint32_t name_len_;
};
class LinkVirtualHashTable {
public:
LinkVirtualHashTable(Handle<mirror::Class> klass, size_t hash_size, uint32_t* hash_table)
: klass_(klass), hash_size_(hash_size), hash_table_(hash_table) {
std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
}
void Add(uint32_t virtual_method_index) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(virtual_method_index);
const char* name = local_method->GetName();
uint32_t hash = ComputeModifiedUtf8Hash(name);
uint32_t index = hash % hash_size_;
// Linear probe until we have an empty slot.
while (hash_table_[index] != invalid_index_) {
if (++index == hash_size_) {
index = 0;
}
}
hash_table_[index] = virtual_method_index;
}
uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const char* name = comparator->GetName();
uint32_t hash = ComputeModifiedUtf8Hash(name);
size_t index = hash % hash_size_;
while (true) {
const uint32_t value = hash_table_[index];
// Since linear probe makes continuous blocks, hitting an invalid index means we are done
// the block and can safely assume not found.
if (value == invalid_index_) {
break;
}
if (value != removed_index_) { // This signifies not already overriden.
mirror::ArtMethod* virtual_method =
klass_->GetVirtualMethodDuringLinking(value);
if (comparator->HasSameNameAndSignature(virtual_method->GetInterfaceMethodIfProxy())) {
hash_table_[index] = removed_index_;
return value;
}
}
if (++index == hash_size_) {
index = 0;
}
}
return GetNotFoundIndex();
}
static uint32_t GetNotFoundIndex() {
return invalid_index_;
}
private:
static const uint32_t invalid_index_;
static const uint32_t removed_index_;
Handle<mirror::Class> klass_;
const size_t hash_size_;
uint32_t* const hash_table_;
};
const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
bool ClassLinker::LinkVirtualMethods(Thread* self, Handle<mirror::Class> klass) {
const size_t num_virtual_methods = klass->NumVirtualMethods();
if (klass->HasSuperClass()) {
const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
const size_t max_count = num_virtual_methods + super_vtable_length;
StackHandleScope<2> hs(self);
Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
Handle<mirror::ObjectArray<mirror::ArtMethod>> vtable;
if (super_class->ShouldHaveEmbeddedImtAndVTable()) {
vtable = hs.NewHandle(AllocArtMethodArray(self, max_count));
if (UNLIKELY(vtable.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
for (size_t i = 0; i < super_vtable_length; i++) {
vtable->SetWithoutChecks<false>(i, super_class->GetEmbeddedVTableEntry(i));
}
if (num_virtual_methods == 0) {
klass->SetVTable(vtable.Get());
return true;
}
} else {
mirror::ObjectArray<mirror::ArtMethod>* super_vtable = super_class->GetVTable();
CHECK(super_vtable != nullptr) << PrettyClass(super_class.Get());
if (num_virtual_methods == 0) {
klass->SetVTable(super_vtable);
return true;
}
vtable = hs.NewHandle(super_vtable->CopyOf(self, max_count));
if (UNLIKELY(vtable.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
}
// How the algorithm works:
// 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
// table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
// method which has not been matched to a vtable method, and j if the virtual method at the
// index overrode the super virtual method at index j.
// 2. Loop through super virtual methods, if they overwrite, update hash table to j
// (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
// the need for the initial vtable which we later shrink back down).
// 3. Add non overridden methods to the end of the vtable.
static constexpr size_t kMaxStackHash = 250;
const size_t hash_table_size = num_virtual_methods * 3;
uint32_t* hash_table_ptr;
std::unique_ptr<uint32_t[]> hash_heap_storage;
if (hash_table_size <= kMaxStackHash) {
hash_table_ptr = reinterpret_cast<uint32_t*>(
alloca(hash_table_size * sizeof(*hash_table_ptr)));
} else {
hash_heap_storage.reset(new uint32_t[hash_table_size]);
hash_table_ptr = hash_heap_storage.get();
}
LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr);
// Add virtual methods to the hash table.
for (size_t i = 0; i < num_virtual_methods; ++i) {
hash_table.Add(i);
}
// Loop through each super vtable method and see if they are overriden by a method we added to
// the hash table.
for (size_t j = 0; j < super_vtable_length; ++j) {
// Search the hash table to see if we are overidden by any method.
mirror::ArtMethod* super_method = vtable->GetWithoutChecks(j);
MethodNameAndSignatureComparator super_method_name_comparator(
super_method->GetInterfaceMethodIfProxy());
uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator);
if (hash_index != hash_table.GetNotFoundIndex()) {
mirror::ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(hash_index);
if (klass->CanAccessMember(super_method->GetDeclaringClass(),
super_method->GetAccessFlags())) {
if (super_method->IsFinal()) {
ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
PrettyMethod(virtual_method).c_str(),
super_method->GetDeclaringClassDescriptor());
return false;
}
vtable->SetWithoutChecks<false>(j, virtual_method);
virtual_method->SetMethodIndex(j);
} else {
LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(virtual_method)
<< " would have incorrectly overridden the package-private method in "
<< PrettyDescriptor(super_method->GetDeclaringClassDescriptor());
}
}
}
// Add the non overridden methods at the end.
size_t actual_count = super_vtable_length;
for (size_t i = 0; i < num_virtual_methods; ++i) {
mirror::ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i);
size_t method_idx = local_method->GetMethodIndexDuringLinking();
if (method_idx < super_vtable_length &&
local_method == vtable->GetWithoutChecks(method_idx)) {
continue;
}
vtable->SetWithoutChecks<false>(actual_count, local_method);
local_method->SetMethodIndex(actual_count);
++actual_count;
}
if (!IsUint(16, actual_count)) {
ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
return false;
}
// Shrink vtable if possible
CHECK_LE(actual_count, max_count);
if (actual_count < max_count) {
vtable.Assign(vtable->CopyOf(self, actual_count));
if (UNLIKELY(vtable.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
}
klass->SetVTable(vtable.Get());
} else {
CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject));
if (!IsUint(16, num_virtual_methods)) {
ThrowClassFormatError(klass.Get(), "Too many methods: %d",
static_cast<int>(num_virtual_methods));
return false;
}
mirror::ObjectArray<mirror::ArtMethod>* vtable = AllocArtMethodArray(self, num_virtual_methods);
if (UNLIKELY(vtable == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
for (size_t i = 0; i < num_virtual_methods; ++i) {
mirror::ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i);
vtable->SetWithoutChecks<false>(i, virtual_method);
virtual_method->SetMethodIndex(i & 0xFFFF);
}
klass->SetVTable(vtable);
}
return true;
}
bool ClassLinker::LinkInterfaceMethods(Thread* self, Handle<mirror::Class> klass,
Handle<mirror::ObjectArray<mirror::Class>> interfaces,
StackHandleScope<mirror::Class::kImtSize>* out_imt) {
StackHandleScope<2> hs(self);
Runtime* const runtime = Runtime::Current();
const bool has_superclass = klass->HasSuperClass();
const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
const bool have_interfaces = interfaces.Get() != nullptr;
const size_t num_interfaces =
have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
if (num_interfaces == 0) {
if (super_ifcount == 0) {
// Class implements no interfaces.
DCHECK_EQ(klass->GetIfTableCount(), 0);
DCHECK(klass->GetIfTable() == nullptr);
return true;
}
// Class implements same interfaces as parent, are any of these not marker interfaces?
bool has_non_marker_interface = false;
mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
for (size_t i = 0; i < super_ifcount; ++i) {
if (super_iftable->GetMethodArrayCount(i) > 0) {
has_non_marker_interface = true;
break;
}
}
// Class just inherits marker interfaces from parent so recycle parent's iftable.
if (!has_non_marker_interface) {
klass->SetIfTable(super_iftable);
return true;
}
}
size_t ifcount = super_ifcount + num_interfaces;
for (size_t i = 0; i < num_interfaces; i++) {
mirror::Class* interface = have_interfaces ?
interfaces->GetWithoutChecks(i) : mirror::Class::GetDirectInterface(self, klass, i);
DCHECK(interface != nullptr);
if (UNLIKELY(!interface->IsInterface())) {
std::string temp;
ThrowIncompatibleClassChangeError(klass.Get(), "Class %s implements non-interface class %s",
PrettyDescriptor(klass.Get()).c_str(),
PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
return false;
}
ifcount += interface->GetIfTableCount();
}
Handle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
if (UNLIKELY(iftable.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
if (super_ifcount != 0) {
mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
for (size_t i = 0; i < super_ifcount; i++) {
mirror::Class* super_interface = super_iftable->GetInterface(i);
iftable->SetInterface(i, super_interface);
}
}
// Flatten the interface inheritance hierarchy.
size_t idx = super_ifcount;
for (size_t i = 0; i < num_interfaces; i++) {
mirror::Class* interface = have_interfaces ? interfaces->Get(i) :
mirror::Class::GetDirectInterface(self, klass, i);
// Check if interface is already in iftable
bool duplicate = false;
for (size_t j = 0; j < idx; j++) {
mirror::Class* existing_interface = iftable->GetInterface(j);
if (existing_interface == interface) {
duplicate = true;
break;
}
}
if (!duplicate) {
// Add this non-duplicate interface.
iftable->SetInterface(idx++, interface);
// Add this interface's non-duplicate super-interfaces.
for (int32_t j = 0; j < interface->GetIfTableCount(); j++) {
mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
bool super_duplicate = false;
for (size_t k = 0; k < idx; k++) {
mirror::Class* existing_interface = iftable->GetInterface(k);
if (existing_interface == super_interface) {
super_duplicate = true;
break;
}
}
if (!super_duplicate) {
iftable->SetInterface(idx++, super_interface);
}
}
}
}
// Shrink iftable in case duplicates were found
if (idx < ifcount) {
DCHECK_NE(num_interfaces, 0U);
iftable.Assign(down_cast<mirror::IfTable*>(iftable->CopyOf(self, idx * mirror::IfTable::kMax)));
if (UNLIKELY(iftable.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
ifcount = idx;
} else {
DCHECK_EQ(idx, ifcount);
}
klass->SetIfTable(iftable.Get());
// If we're an interface, we don't need the vtable pointers, so we're done.
if (klass->IsInterface()) {
return true;
}
Handle<mirror::ObjectArray<mirror::ArtMethod>> vtable(
hs.NewHandle(klass->GetVTableDuringLinking()));
std::vector<mirror::ArtMethod*> miranda_list;
// Copy the IMT from the super class if possible.
bool extend_super_iftable = false;
if (has_superclass) {
mirror::Class* super_class = klass->GetSuperClass();
extend_super_iftable = true;
if (super_class->ShouldHaveEmbeddedImtAndVTable()) {
for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
out_imt->SetReference(i, super_class->GetEmbeddedImTableEntry(i));
}
} else {
// No imt in the super class, need to reconstruct from the iftable.
mirror::IfTable* if_table = super_class->GetIfTable();
mirror::ArtMethod* conflict_method = runtime->GetImtConflictMethod();
const size_t length = super_class->GetIfTableCount();
for (size_t i = 0; i < length; ++i) {
mirror::Class* interface = iftable->GetInterface(i);
const size_t num_virtuals = interface->NumVirtualMethods();
const size_t method_array_count = if_table->GetMethodArrayCount(i);
DCHECK_EQ(num_virtuals, method_array_count);
if (method_array_count == 0) {
continue;
}
mirror::ObjectArray<mirror::ArtMethod>* method_array = if_table->GetMethodArray(i);
for (size_t j = 0; j < num_virtuals; ++j) {
mirror::ArtMethod* method = method_array->GetWithoutChecks(j);
if (method->IsMiranda()) {
continue;
}
mirror::ArtMethod* interface_method = interface->GetVirtualMethod(j);
uint32_t imt_index = interface_method->GetDexMethodIndex() % mirror::Class::kImtSize;
mirror::ArtMethod* imt_ref = out_imt->GetReference(imt_index)->AsArtMethod();
if (imt_ref == runtime->GetImtUnimplementedMethod()) {
out_imt->SetReference(imt_index, method);
} else if (imt_ref != conflict_method) {
out_imt->SetReference(imt_index, conflict_method);
}
}
}
}
}
for (size_t i = 0; i < ifcount; ++i) {
size_t num_methods = iftable->GetInterface(i)->NumVirtualMethods();
if (num_methods > 0) {
StackHandleScope<2> hs(self);
const bool is_super = i < super_ifcount;
const bool super_interface = is_super && extend_super_iftable;
Handle<mirror::ObjectArray<mirror::ArtMethod>> method_array;
Handle<mirror::ObjectArray<mirror::ArtMethod>> input_array;
if (super_interface) {
mirror::IfTable* if_table = klass->GetSuperClass()->GetIfTable();
DCHECK(if_table != nullptr);
DCHECK(if_table->GetMethodArray(i) != nullptr);
// If we are working on a super interface, try extending the existing method array.
method_array = hs.NewHandle(if_table->GetMethodArray(i)->Clone(self)->
AsObjectArray<mirror::ArtMethod>());
// We are overwriting a super class interface, try to only virtual methods instead of the
// whole vtable.
input_array = hs.NewHandle(klass->GetVirtualMethods());
} else {
method_array = hs.NewHandle(AllocArtMethodArray(self, num_methods));
// A new interface, we need the whole vtable incase a new interface method is implemented
// in the whole superclass.
input_array = vtable;
}
if (UNLIKELY(method_array.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
iftable->SetMethodArray(i, method_array.Get());
if (input_array.Get() == nullptr) {
// If the added virtual methods is empty, do nothing.
DCHECK(super_interface);
continue;
}
for (size_t j = 0; j < num_methods; ++j) {
mirror::ArtMethod* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j);
MethodNameAndSignatureComparator interface_name_comparator(
interface_method->GetInterfaceMethodIfProxy());
int32_t k;
// For each method listed in the interface's method list, find the
// matching method in our class's method list. We want to favor the
// subclass over the superclass, which just requires walking
// back from the end of the vtable. (This only matters if the
// superclass defines a private method and this class redefines
// it -- otherwise it would use the same vtable slot. In .dex files
// those don't end up in the virtual method table, so it shouldn't
// matter which direction we go. We walk it backward anyway.)
for (k = input_array->GetLength() - 1; k >= 0; --k) {
mirror::ArtMethod* vtable_method = input_array->GetWithoutChecks(k);
mirror::ArtMethod* vtable_method_for_name_comparison =
vtable_method->GetInterfaceMethodIfProxy();
if (interface_name_comparator.HasSameNameAndSignature(
vtable_method_for_name_comparison)) {
if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
ThrowIllegalAccessError(
klass.Get(),
"Method '%s' implementing interface method '%s' is not public",
PrettyMethod(vtable_method).c_str(),
PrettyMethod(interface_method).c_str());
return false;
}
method_array->SetWithoutChecks<false>(j, vtable_method);
// Place method in imt if entry is empty, place conflict otherwise.
uint32_t imt_index = interface_method->GetDexMethodIndex() % mirror::Class::kImtSize;
mirror::ArtMethod* imt_ref = out_imt->GetReference(imt_index)->AsArtMethod();
mirror::ArtMethod* conflict_method = runtime->GetImtConflictMethod();
if (imt_ref == runtime->GetImtUnimplementedMethod()) {
out_imt->SetReference(imt_index, vtable_method);
} else if (imt_ref != conflict_method) {
// If we are not a conflict and we have the same signature and name as the imt entry,
// it must be that we overwrote a superclass vtable entry.
MethodNameAndSignatureComparator imt_ref_name_comparator(
imt_ref->GetInterfaceMethodIfProxy());
if (imt_ref_name_comparator.HasSameNameAndSignature(
vtable_method_for_name_comparison)) {
out_imt->SetReference(imt_index, vtable_method);
} else {
out_imt->SetReference(imt_index, conflict_method);
}
}
break;
}
}
if (k < 0 && !super_interface) {
mirror::ArtMethod* miranda_method = nullptr;
for (mirror::ArtMethod* mir_method : miranda_list) {
if (interface_name_comparator.HasSameNameAndSignature(
mir_method->GetInterfaceMethodIfProxy())) {
miranda_method = mir_method;
break;
}
}
if (miranda_method == nullptr) {
// Point the interface table at a phantom slot.
miranda_method = down_cast<mirror::ArtMethod*>(interface_method->Clone(self));
if (UNLIKELY(miranda_method == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
// TODO: If a methods move then the miranda_list may hold stale references.
miranda_list.push_back(miranda_method);
}
method_array->SetWithoutChecks<false>(j, miranda_method);
}
}
}
}
if (!miranda_list.empty()) {
int old_method_count = klass->NumVirtualMethods();
int new_method_count = old_method_count + miranda_list.size();
mirror::ObjectArray<mirror::ArtMethod>* virtuals;
if (old_method_count == 0) {
virtuals = AllocArtMethodArray(self, new_method_count);
} else {
virtuals = klass->GetVirtualMethods()->CopyOf(self, new_method_count);
}
if (UNLIKELY(virtuals == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
klass->SetVirtualMethods(virtuals);
int old_vtable_count = vtable->GetLength();
int new_vtable_count = old_vtable_count + miranda_list.size();
vtable.Assign(vtable->CopyOf(self, new_vtable_count));
if (UNLIKELY(vtable.Get() == nullptr)) {
CHECK(self->IsExceptionPending()); // OOME.
return false;
}
for (size_t i = 0; i < miranda_list.size(); ++i) {
mirror::ArtMethod* method = miranda_list[i];
// Leave the declaring class alone as type indices are relative to it
method->SetAccessFlags(method->GetAccessFlags() | kAccMiranda);
method->SetMethodIndex(0xFFFF & (old_vtable_count + i));
klass->SetVirtualMethod(old_method_count + i, method);
vtable->SetWithoutChecks<false>(old_vtable_count + i, method);
}
// TODO: do not assign to the vtable field until it is fully constructed.
klass->SetVTable(vtable.Get());
}
if (kIsDebugBuild) {
mirror::ObjectArray<mirror::ArtMethod>* vtable = klass->GetVTableDuringLinking();
for (int i = 0; i < vtable->GetLength(); ++i) {
CHECK(vtable->GetWithoutChecks(i) != nullptr);
}
}
return true;
}
bool ClassLinker::LinkInstanceFields(Handle<mirror::Class> klass) {
CHECK(klass.Get() != nullptr);
return LinkFields(klass, false, nullptr);
}
bool ClassLinker::LinkStaticFields(Handle<mirror::Class> klass, size_t* class_size) {
CHECK(klass.Get() != nullptr);
return LinkFields(klass, true, class_size);
}
struct LinkFieldsComparator {
explicit LinkFieldsComparator() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
}
// No thread safety analysis as will be called from STL. Checked lock held in constructor.
bool operator()(mirror::ArtField* field1, mirror::ArtField* field2)
NO_THREAD_SAFETY_ANALYSIS {
// First come reference fields, then 64-bit, and finally 32-bit
Primitive::Type type1 = field1->GetTypeAsPrimitiveType();
Primitive::Type type2 = field2->GetTypeAsPrimitiveType();
if (type1 != type2) {
if (type1 == Primitive::kPrimNot) {
// Reference always goes first.
return true;
}
if (type2 == Primitive::kPrimNot) {
// Reference always goes first.
return false;
}
size_t size1 = Primitive::ComponentSize(type1);
size_t size2 = Primitive::ComponentSize(type2);
if (size1 != size2) {
// Larger primitive types go first.
return size1 > size2;
}
// Primitive types differ but sizes match. Arbitrarily order by primitive type.
return type1 < type2;
}
// Same basic group? Then sort by dex field index. This is guaranteed to be sorted
// by name and for equal names by type id index.
// NOTE: This works also for proxies. Their static fields are assigned appropriate indexes.
return field1->GetDexFieldIndex() < field2->GetDexFieldIndex();
}
};
bool ClassLinker::LinkFields(Handle<mirror::Class> klass, bool is_static, size_t* class_size) {
size_t num_fields =
is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
mirror::ObjectArray<mirror::ArtField>* fields =
is_static ? klass->GetSFields() : klass->GetIFields();
// Initialize field_offset
MemberOffset field_offset(0);
if (is_static) {
field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking();
} else {
mirror::Class* super_class = klass->GetSuperClass();
if (super_class != nullptr) {
CHECK(super_class->IsResolved())
<< PrettyClass(klass.Get()) << " " << PrettyClass(super_class);
field_offset = MemberOffset(super_class->GetObjectSize());
}
}
CHECK_EQ(num_fields == 0, fields == nullptr) << PrettyClass(klass.Get());
// we want a relatively stable order so that adding new fields
// minimizes disruption of C++ version such as Class and Method.
std::deque<mirror::ArtField*> grouped_and_sorted_fields;
for (size_t i = 0; i < num_fields; i++) {
mirror::ArtField* f = fields->Get(i);
CHECK(f != nullptr) << PrettyClass(klass.Get());
grouped_and_sorted_fields.push_back(f);
}
std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
LinkFieldsComparator());
// References should be at the front.
size_t current_field = 0;
size_t num_reference_fields = 0;
for (; current_field < num_fields; current_field++) {
mirror::ArtField* field = grouped_and_sorted_fields.front();
Primitive::Type type = field->GetTypeAsPrimitiveType();
bool isPrimitive = type != Primitive::kPrimNot;
if (isPrimitive) {
break; // past last reference, move on to the next phase
}
grouped_and_sorted_fields.pop_front();
num_reference_fields++;
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(mirror::HeapReference<mirror::Object>));
}
// Now we want to pack all of the double-wide fields together. If
// we're not aligned, though, we want to shuffle one 32-bit field
// into place. If we can't find one, we'll have to pad it.
if (current_field != num_fields && !IsAligned<8>(field_offset.Uint32Value())) {
for (size_t i = 0; i < grouped_and_sorted_fields.size(); i++) {
mirror::ArtField* field = grouped_and_sorted_fields[i];
Primitive::Type type = field->GetTypeAsPrimitiveType();
CHECK(type != Primitive::kPrimNot) << PrettyField(field); // should be primitive types
if (type == Primitive::kPrimLong || type == Primitive::kPrimDouble) {
continue;
}
current_field++;
field->SetOffset(field_offset);
// drop the consumed field
grouped_and_sorted_fields.erase(grouped_and_sorted_fields.begin() + i);
break;
}
// whether we found a 32-bit field for padding or not, we advance
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(mirror::HeapReference<mirror::Object>));
}
// Alignment is good, shuffle any double-wide fields forward, and
// finish assigning field offsets to all fields.
DCHECK(current_field == num_fields || IsAligned<8>(field_offset.Uint32Value()))
<< PrettyClass(klass.Get());
while (!grouped_and_sorted_fields.empty()) {
mirror::ArtField* field = grouped_and_sorted_fields.front();
grouped_and_sorted_fields.pop_front();
Primitive::Type type = field->GetTypeAsPrimitiveType();
CHECK(type != Primitive::kPrimNot) << PrettyField(field); // should be primitive types
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() +
((type == Primitive::kPrimLong || type == Primitive::kPrimDouble)
? sizeof(uint64_t)
: sizeof(uint32_t)));
current_field++;
}
// We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
// We know there are no non-reference fields in the Reference classes, and we know
// that 'referent' is alphabetically last, so this is easy...
CHECK_EQ(num_reference_fields, num_fields) << PrettyClass(klass.Get());
CHECK_STREQ(fields->Get(num_fields - 1)->GetName(), "referent") << PrettyClass(klass.Get());
--num_reference_fields;
}
size_t size = field_offset.Uint32Value();
// Update klass
if (is_static) {
klass->SetNumReferenceStaticFields(num_reference_fields);
*class_size = size;
} else {
klass->SetNumReferenceInstanceFields(num_reference_fields);
if (!klass->IsVariableSize()) {
if (klass->DescriptorEquals("Ljava/lang/reflect/ArtMethod;")) {
klass->SetObjectSize(mirror::ArtMethod::InstanceSize(sizeof(void*)));
} else {
std::string temp;
DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
size_t previous_size = klass->GetObjectSize();
if (previous_size != 0) {
// Make sure that we didn't originally have an incorrect size.
CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
}
klass->SetObjectSize(size);
}
}
}
if (kIsDebugBuild) {
// Make sure that the fields array is ordered by name but all reference
// offsets are at the beginning as far as alignment allows.
MemberOffset start_ref_offset = is_static
? klass->GetFirstReferenceStaticFieldOffsetDuringLinking()
: klass->GetFirstReferenceInstanceFieldOffset();
MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
num_reference_fields *
sizeof(mirror::HeapReference<mirror::Object>));
MemberOffset current_ref_offset = start_ref_offset;
for (size_t i = 0; i < num_fields; i++) {
mirror::ArtField* field = fields->Get(i);
if (false) { // enable to debug field layout
LOG(INFO) << "LinkFields: " << (is_static ? "static" : "instance")
<< " class=" << PrettyClass(klass.Get())
<< " field=" << PrettyField(field)
<< " offset="
<< field->GetField32(MemberOffset(mirror::ArtField::OffsetOffset()));
}
if (i != 0) {
mirror::ArtField* prev_field = fields->Get(i - 1u);
// NOTE: The field names can be the same. This is not possible in the Java language
// but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
CHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
}
Primitive::Type type = field->GetTypeAsPrimitiveType();
bool is_primitive = type != Primitive::kPrimNot;
if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
strcmp("referent", field->GetName()) == 0) {
is_primitive = true; // We lied above, so we have to expect a lie here.
}
MemberOffset offset = field->GetOffsetDuringLinking();
if (is_primitive) {
if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
// Shuffled before references.
size_t type_size = Primitive::ComponentSize(type);
CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
}
} else {
CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
sizeof(mirror::HeapReference<mirror::Object>));
}
}
CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
}
return true;
}
// Set the bitmap of reference instance field offsets.
void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
uint32_t reference_offsets = 0;
mirror::Class* super_class = klass->GetSuperClass();
if (super_class != nullptr) {
reference_offsets = super_class->GetReferenceInstanceOffsets();
// If our superclass overflowed, we don't stand a chance.
if (reference_offsets == CLASS_WALK_SUPER) {
klass->SetReferenceInstanceOffsets(reference_offsets);
return;
}
}
CreateReferenceOffsets(klass, false, reference_offsets);
}
void ClassLinker::CreateReferenceStaticOffsets(Handle<mirror::Class> klass) {
CreateReferenceOffsets(klass, true, 0);
}
void ClassLinker::CreateReferenceOffsets(Handle<mirror::Class> klass, bool is_static,
uint32_t reference_offsets) {
size_t num_reference_fields =
is_static ? klass->NumReferenceStaticFieldsDuringLinking()
: klass->NumReferenceInstanceFieldsDuringLinking();
if (num_reference_fields != 0u) {
// All of the fields that contain object references are guaranteed be grouped in memory
// starting at an appropriately aligned address after super class object data for instances
// and after the basic class data for classes.
uint32_t start_offset =
!is_static
? klass->GetFirstReferenceInstanceFieldOffset().Uint32Value()
// Can't use klass->GetFirstReferenceStaticFieldOffset() yet.
: klass->ShouldHaveEmbeddedImtAndVTable()
? mirror::Class::ComputeClassSize(
true, klass->GetVTableDuringLinking()->GetLength(), 0, 0, 0)
: sizeof(mirror::Class);
uint32_t start_bit = start_offset / sizeof(mirror::HeapReference<mirror::Object>);
if (start_bit + num_reference_fields > 32) {
reference_offsets = CLASS_WALK_SUPER;
} else {
reference_offsets |= (0xffffffffu >> start_bit) &
(0xffffffffu << (32 - (start_bit + num_reference_fields)));
}
}
// Update fields in klass
if (is_static) {
klass->SetReferenceStaticOffsets(reference_offsets);
} else {
klass->SetReferenceInstanceOffsets(reference_offsets);
}
}
mirror::String* ClassLinker::ResolveString(const DexFile& dex_file, uint32_t string_idx,
Handle<mirror::DexCache> dex_cache) {
DCHECK(dex_cache.Get() != nullptr);
mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
if (resolved != nullptr) {
return resolved;
}
uint32_t utf16_length;
const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data);
dex_cache->SetResolvedString(string_idx, string);
return string;
}
mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx,
mirror::Class* referrer) {
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
return ResolveType(dex_file, type_idx, dex_cache, class_loader);
}
mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader) {
DCHECK(dex_cache.Get() != nullptr);
mirror::Class* resolved = dex_cache->GetResolvedType(type_idx);
if (resolved == nullptr) {
Thread* self = Thread::Current();
const char* descriptor = dex_file.StringByTypeIdx(type_idx);
resolved = FindClass(self, descriptor, class_loader);
if (resolved != nullptr) {
// TODO: we used to throw here if resolved's class loader was not the
// boot class loader. This was to permit different classes with the
// same name to be loaded simultaneously by different loaders
dex_cache->SetResolvedType(type_idx, resolved);
} else {
CHECK(self->IsExceptionPending())
<< "Expected pending exception for failed resolution of: " << descriptor;
// Convert a ClassNotFoundException to a NoClassDefFoundError.
StackHandleScope<1> hs(self);
Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException(nullptr)));
if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
DCHECK(resolved == nullptr); // No Handle needed to preserve resolved.
self->ClearException();
ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
self->GetException(nullptr)->SetCause(cause.Get());
}
}
}
DCHECK((resolved == nullptr) || resolved->IsResolved() || resolved->IsErroneous())
<< PrettyDescriptor(resolved) << " " << resolved->GetStatus();
return resolved;
}
mirror::ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file, uint32_t method_idx,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
Handle<mirror::ArtMethod> referrer,
InvokeType type) {
DCHECK(dex_cache.Get() != nullptr);
// Check for hit in the dex cache.
mirror::ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx);
if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
return resolved;
}
// Fail, get the declaring class.
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
if (klass == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr;
}
// Scan using method_idx, this saves string compares but will only hit for matching dex
// caches/files.
switch (type) {
case kDirect: // Fall-through.
case kStatic:
resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx);
break;
case kInterface:
resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx);
DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
break;
case kSuper: // Fall-through.
case kVirtual:
resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx);
break;
default:
LOG(FATAL) << "Unreachable - invocation type: " << type;
}
if (resolved == nullptr) {
// Search by name, which works across dex files.
const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
const Signature signature = dex_file.GetMethodSignature(method_id);
switch (type) {
case kDirect: // Fall-through.
case kStatic:
resolved = klass->FindDirectMethod(name, signature);
break;
case kInterface:
resolved = klass->FindInterfaceMethod(name, signature);
DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
break;
case kSuper: // Fall-through.
case kVirtual:
resolved = klass->FindVirtualMethod(name, signature);
break;
}
}
// If we found a method, check for incompatible class changes.
if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
// Be a good citizen and update the dex cache to speed subsequent calls.
dex_cache->SetResolvedMethod(method_idx, resolved);
return resolved;
} else {
// If we had a method, it's an incompatible-class-change error.
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer.Get());
} else {
// We failed to find the method which means either an access error, an incompatible class
// change, or no such method. First try to find the method among direct and virtual methods.
const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
const Signature signature = dex_file.GetMethodSignature(method_id);
switch (type) {
case kDirect:
case kStatic:
resolved = klass->FindVirtualMethod(name, signature);
// Note: kDirect and kStatic are also mutually exclusive, but in that case we would
// have had a resolved method before, which triggers the "true" branch above.
break;
case kInterface:
case kVirtual:
case kSuper:
resolved = klass->FindDirectMethod(name, signature);
break;
}
// If we found something, check that it can be accessed by the referrer.
if (resolved != nullptr && referrer.Get() != nullptr) {
mirror::Class* methods_class = resolved->GetDeclaringClass();
mirror::Class* referring_class = referrer->GetDeclaringClass();
if (!referring_class->CanAccess(methods_class)) {
ThrowIllegalAccessErrorClassForMethodDispatch(referring_class, methods_class,
resolved, type);
return nullptr;
} else if (!referring_class->CanAccessMember(methods_class,
resolved->GetAccessFlags())) {
ThrowIllegalAccessErrorMethod(referring_class, resolved);
return nullptr;
}
}
// Otherwise, throw an IncompatibleClassChangeError if we found something, and check interface
// methods and throw if we find the method there. If we find nothing, throw a
// NoSuchMethodError.
switch (type) {
case kDirect:
case kStatic:
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer.Get());
} else {
resolved = klass->FindInterfaceMethod(name, signature);
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer.Get());
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
}
break;
case kInterface:
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer.Get());
} else {
resolved = klass->FindVirtualMethod(name, signature);
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer.Get());
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
}
break;
case kSuper:
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer.Get());
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
break;
case kVirtual:
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer.Get());
} else {
resolved = klass->FindInterfaceMethod(name, signature);
if (resolved != nullptr) {
ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer.Get());
} else {
ThrowNoSuchMethodError(type, klass, name, signature);
}
}
break;
}
}
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr;
}
}
mirror::ArtField* ClassLinker::ResolveField(const DexFile& dex_file, uint32_t field_idx,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader,
bool is_static) {
DCHECK(dex_cache.Get() != nullptr);
mirror::ArtField* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != nullptr) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
Thread* const self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(
hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
if (klass.Get() == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr;
}
if (is_static) {
resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx);
} else {
resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
}
if (resolved == nullptr) {
const char* name = dex_file.GetFieldName(field_id);
const char* type = dex_file.GetFieldTypeDescriptor(field_id);
if (is_static) {
resolved = mirror::Class::FindStaticField(self, klass, name, type);
} else {
resolved = klass->FindInstanceField(name, type);
}
if (resolved == nullptr) {
ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass.Get(), type, name);
return nullptr;
}
}
dex_cache->SetResolvedField(field_idx, resolved);
return resolved;
}
mirror::ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
uint32_t field_idx,
Handle<mirror::DexCache> dex_cache,
Handle<mirror::ClassLoader> class_loader) {
DCHECK(dex_cache.Get() != nullptr);
mirror::ArtField* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != nullptr) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(
hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
if (klass.Get() == nullptr) {
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr;
}
StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_));
StringPiece type(dex_file.StringDataByIdx(
dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_));
resolved = mirror::Class::FindField(self, klass, name, type);
if (resolved != nullptr) {
dex_cache->SetResolvedField(field_idx, resolved);
} else {
ThrowNoSuchFieldError("", klass.Get(), type, name);
}
return resolved;
}
const char* ClassLinker::MethodShorty(uint32_t method_idx, mirror::ArtMethod* referrer,
uint32_t* length) {
mirror::Class* declaring_class = referrer->GetDeclaringClass();
mirror::DexCache* dex_cache = declaring_class->GetDexCache();
const DexFile& dex_file = *dex_cache->GetDexFile();
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
return dex_file.GetMethodShorty(method_id, length);
}
void ClassLinker::DumpAllClasses(int flags) {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
// TODO: at the time this was written, it wasn't safe to call PrettyField with the ClassLinker
// lock held, because it might need to resolve a field's type, which would try to take the lock.
std::vector<mirror::Class*> all_classes;
{
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
for (GcRoot<mirror::Class>& it : class_table_) {
all_classes.push_back(it.Read());
}
}
for (size_t i = 0; i < all_classes.size(); ++i) {
all_classes[i]->DumpClass(std::cerr, flags);
}
}
void ClassLinker::DumpForSigQuit(std::ostream& os) {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
os << "Zygote loaded classes=" << pre_zygote_class_table_.Size() << " post zygote classes="
<< class_table_.Size() << "\n";
}
size_t ClassLinker::NumLoadedClasses() {
if (dex_cache_image_class_lookup_required_) {
MoveImageClassesToClassTable();
}
ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
// Only return non zygote classes since these are the ones which apps which care about.
return class_table_.Size();
}
pid_t ClassLinker::GetClassesLockOwner() {
return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
}
pid_t ClassLinker::GetDexLockOwner() {
return dex_lock_.GetExclusiveOwnerTid();
}
void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) {
DCHECK(!init_done_);
DCHECK(klass != nullptr);
DCHECK(klass->GetClassLoader() == nullptr);
mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
DCHECK(class_roots != nullptr);
DCHECK(class_roots->Get(class_root) == nullptr);
class_roots->Set<false>(class_root, klass);
}
std::size_t ClassLinker::ClassDescriptorHashEquals::operator()(const GcRoot<mirror::Class>& root)
const {
std::string temp;
return ComputeModifiedUtf8Hash(root.Read()->GetDescriptor(&temp));
}
bool ClassLinker::ClassDescriptorHashEquals::operator()(const GcRoot<mirror::Class>& a,
const GcRoot<mirror::Class>& b) {
if (a.Read()->GetClassLoader() != b.Read()->GetClassLoader()) {
return false;
}
std::string temp;
return a.Read()->DescriptorEquals(b.Read()->GetDescriptor(&temp));
}
std::size_t ClassLinker::ClassDescriptorHashEquals::operator()(
const std::pair<const char*, mirror::ClassLoader*>& element) const {
return ComputeModifiedUtf8Hash(element.first);
}
bool ClassLinker::ClassDescriptorHashEquals::operator()(
const GcRoot<mirror::Class>& a, const std::pair<const char*, mirror::ClassLoader*>& b) {
if (a.Read()->GetClassLoader() != b.second) {
return false;
}
return a.Read()->DescriptorEquals(b.first);
}
bool ClassLinker::ClassDescriptorHashEquals::operator()(const GcRoot<mirror::Class>& a,
const char* descriptor) {
return a.Read()->DescriptorEquals(descriptor);
}
std::size_t ClassLinker::ClassDescriptorHashEquals::operator()(const char* descriptor) const {
return ComputeModifiedUtf8Hash(descriptor);
}
} // namespace art