blob: 7dfb5952eb08948873e1d3e24128a34bc3ef9821 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm64.h"
#include "arch/arm64/instruction_set_features_arm64.h"
#include "common_arm64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_arm64.h"
#include "mirror/array-inl.h"
#include "mirror/art_method.h"
#include "mirror/class.h"
#include "offsets.h"
#include "thread.h"
#include "utils/arm64/assembler_arm64.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
using namespace vixl; // NOLINT(build/namespaces)
#ifdef __
#error "ARM64 Codegen VIXL macro-assembler macro already defined."
#endif
namespace art {
namespace arm64 {
using helpers::CPURegisterFrom;
using helpers::DRegisterFrom;
using helpers::FPRegisterFrom;
using helpers::HeapOperand;
using helpers::HeapOperandFrom;
using helpers::InputCPURegisterAt;
using helpers::InputFPRegisterAt;
using helpers::InputRegisterAt;
using helpers::InputOperandAt;
using helpers::Int64ConstantFrom;
using helpers::LocationFrom;
using helpers::OperandFromMemOperand;
using helpers::OutputCPURegister;
using helpers::OutputFPRegister;
using helpers::OutputRegister;
using helpers::RegisterFrom;
using helpers::StackOperandFrom;
using helpers::VIXLRegCodeFromART;
using helpers::WRegisterFrom;
using helpers::XRegisterFrom;
using helpers::ARM64EncodableConstantOrRegister;
static constexpr size_t kHeapRefSize = sizeof(mirror::HeapReference<mirror::Object>);
static constexpr int kCurrentMethodStackOffset = 0;
inline Condition ARM64Condition(IfCondition cond) {
switch (cond) {
case kCondEQ: return eq;
case kCondNE: return ne;
case kCondLT: return lt;
case kCondLE: return le;
case kCondGT: return gt;
case kCondGE: return ge;
default:
LOG(FATAL) << "Unknown if condition";
}
return nv; // Unreachable.
}
Location ARM64ReturnLocation(Primitive::Type return_type) {
DCHECK_NE(return_type, Primitive::kPrimVoid);
// Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
// same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
// but we use the exact registers for clarity.
if (return_type == Primitive::kPrimFloat) {
return LocationFrom(s0);
} else if (return_type == Primitive::kPrimDouble) {
return LocationFrom(d0);
} else if (return_type == Primitive::kPrimLong) {
return LocationFrom(x0);
} else {
return LocationFrom(w0);
}
}
Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) {
return ARM64ReturnLocation(return_type);
}
#define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value()
class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
BoundsCheckSlowPathARM64(HBoundsCheck* instruction,
Location index_location,
Location length_location)
: instruction_(instruction),
index_location_(index_location),
length_location_(length_location) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
index_location_, LocationFrom(calling_convention.GetRegisterAt(0)),
length_location_, LocationFrom(calling_convention.GetRegisterAt(1)));
arm64_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
private:
HBoundsCheck* const instruction_;
const Location index_location_;
const Location length_location_;
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
};
class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
arm64_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
private:
HDivZeroCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
};
class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
public:
LoadClassSlowPathARM64(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = at_->GetLocations();
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex());
arm64_codegen->LoadCurrentMethod(calling_convention.GetRegisterAt(1).W());
int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
: QUICK_ENTRY_POINT(pInitializeType);
arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
if (do_clinit_) {
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t, mirror::ArtMethod*>();
} else {
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t, mirror::ArtMethod*>();
}
// Move the class to the desired location.
Location out = locations->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
Primitive::Type type = at_->GetType();
arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The instruction where this slow path is happening.
// (Might be the load class or an initialization check).
HInstruction* const at_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
};
class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit LoadStringSlowPathARM64(HLoadString* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
arm64_codegen->LoadCurrentMethod(calling_convention.GetRegisterAt(1).W());
__ Mov(calling_convention.GetRegisterAt(0).W(), instruction_->GetStringIndex());
arm64_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t, mirror::ArtMethod*>();
Primitive::Type type = instruction_->GetType();
arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
private:
HLoadString* const instruction_;
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
};
class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit NullCheckSlowPathARM64(HNullCheck* instr) : instruction_(instr) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
arm64_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
private:
HNullCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
};
class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit SuspendCheckSlowPathARM64(HSuspendCheck* instruction,
HBasicBlock* successor)
: instruction_(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
arm64_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
RestoreLiveRegisters(codegen, instruction_->GetLocations());
if (successor_ == nullptr) {
__ B(GetReturnLabel());
} else {
__ B(arm64_codegen->GetLabelOf(successor_));
}
}
vixl::Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
private:
HSuspendCheck* const instruction_;
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
vixl::Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
};
class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
public:
TypeCheckSlowPathARM64(HInstruction* instruction,
Location class_to_check,
Location object_class,
uint32_t dex_pc)
: instruction_(instruction),
class_to_check_(class_to_check),
object_class_(object_class),
dex_pc_(dex_pc) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
class_to_check_, LocationFrom(calling_convention.GetRegisterAt(0)),
object_class_, LocationFrom(calling_convention.GetRegisterAt(1)));
if (instruction_->IsInstanceOf()) {
arm64_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc_, this);
Primitive::Type ret_type = instruction_->GetType();
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t,
const mirror::Class*, const mirror::Class*>();
} else {
DCHECK(instruction_->IsCheckCast());
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc_, this);
CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
private:
HInstruction* const instruction_;
const Location class_to_check_;
const Location object_class_;
uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
};
class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
public:
explicit DeoptimizationSlowPathARM64(HInstruction* instruction)
: instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
DCHECK(instruction_->IsDeoptimize());
HDeoptimize* deoptimize = instruction_->AsDeoptimize();
uint32_t dex_pc = deoptimize->GetDexPc();
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), instruction_, dex_pc, this);
}
private:
HInstruction* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
};
#undef __
Location InvokeDexCallingConventionVisitor::GetNextLocation(Primitive::Type type) {
Location next_location;
if (type == Primitive::kPrimVoid) {
LOG(FATAL) << "Unreachable type " << type;
}
if (Primitive::IsFloatingPointType(type) &&
(fp_index_ < calling_convention.GetNumberOfFpuRegisters())) {
next_location = LocationFrom(calling_convention.GetFpuRegisterAt(fp_index_++));
} else if (!Primitive::IsFloatingPointType(type) &&
(gp_index_ < calling_convention.GetNumberOfRegisters())) {
next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
: Location::StackSlot(stack_offset);
}
// Space on the stack is reserved for all arguments.
stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
return next_location;
}
CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
const Arm64InstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options)
: CodeGenerator(graph,
kNumberOfAllocatableRegisters,
kNumberOfAllocatableFPRegisters,
kNumberOfAllocatableRegisterPairs,
callee_saved_core_registers.list(),
callee_saved_fp_registers.list(),
compiler_options),
block_labels_(nullptr),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
isa_features_(isa_features) {
// Save the link register (containing the return address) to mimic Quick.
AddAllocatedRegister(LocationFrom(lr));
}
#undef __
#define __ GetVIXLAssembler()->
void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
// Ensure we emit the literal pool.
__ FinalizeCode();
CodeGenerator::Finalize(allocator);
}
void ParallelMoveResolverARM64::EmitMove(size_t index) {
MoveOperands* move = moves_.Get(index);
codegen_->MoveLocation(move->GetDestination(), move->GetSource());
}
void ParallelMoveResolverARM64::EmitSwap(size_t index) {
MoveOperands* move = moves_.Get(index);
codegen_->SwapLocations(move->GetDestination(), move->GetSource());
}
void ParallelMoveResolverARM64::RestoreScratch(int reg) {
__ Pop(Register(VIXLRegCodeFromART(reg), kXRegSize));
}
void ParallelMoveResolverARM64::SpillScratch(int reg) {
__ Push(Register(VIXLRegCodeFromART(reg), kXRegSize));
}
void CodeGeneratorARM64::GenerateFrameEntry() {
__ Bind(&frame_entry_label_);
bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod();
if (do_overflow_check) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireX();
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
__ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64)));
__ Ldr(wzr, MemOperand(temp, 0));
RecordPcInfo(nullptr, 0);
}
if (!HasEmptyFrame()) {
int frame_size = GetFrameSize();
// Stack layout:
// sp[frame_size - 8] : lr.
// ... : other preserved core registers.
// ... : other preserved fp registers.
// ... : reserved frame space.
// sp[0] : current method.
__ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
GetAssembler()->cfi().AdjustCFAOffset(frame_size);
GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
frame_size - GetCoreSpillSize());
GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
frame_size - FrameEntrySpillSize());
}
}
void CodeGeneratorARM64::GenerateFrameExit() {
GetAssembler()->cfi().RememberState();
if (!HasEmptyFrame()) {
int frame_size = GetFrameSize();
GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
frame_size - FrameEntrySpillSize());
GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
frame_size - GetCoreSpillSize());
__ Drop(frame_size);
GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
}
__ Ret();
GetAssembler()->cfi().RestoreState();
GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorARM64::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorARM64::Move(HInstruction* instruction,
Location location,
HInstruction* move_for) {
LocationSummary* locations = instruction->GetLocations();
if (locations != nullptr && locations->Out().Equals(location)) {
return;
}
Primitive::Type type = instruction->GetType();
DCHECK_NE(type, Primitive::kPrimVoid);
if (instruction->IsIntConstant()
|| instruction->IsLongConstant()
|| instruction->IsNullConstant()) {
int64_t value = GetInt64ValueOf(instruction->AsConstant());
if (location.IsRegister()) {
Register dst = RegisterFrom(location, type);
DCHECK(((instruction->IsIntConstant() || instruction->IsNullConstant()) && dst.Is32Bits()) ||
(instruction->IsLongConstant() && dst.Is64Bits()));
__ Mov(dst, value);
} else {
DCHECK(location.IsStackSlot() || location.IsDoubleStackSlot());
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = (instruction->IsIntConstant() || instruction->IsNullConstant())
? temps.AcquireW()
: temps.AcquireX();
__ Mov(temp, value);
__ Str(temp, StackOperandFrom(location));
}
} else if (instruction->IsTemporary()) {
Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
MoveLocation(location, temp_location, type);
} else if (instruction->IsLoadLocal()) {
uint32_t stack_slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal());
if (Primitive::Is64BitType(type)) {
MoveLocation(location, Location::DoubleStackSlot(stack_slot), type);
} else {
MoveLocation(location, Location::StackSlot(stack_slot), type);
}
} else {
DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary());
MoveLocation(location, locations->Out(), type);
}
}
Location CodeGeneratorARM64::GetStackLocation(HLoadLocal* load) const {
Primitive::Type type = load->GetType();
switch (type) {
case Primitive::kPrimNot:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
return Location::StackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type " << type;
}
LOG(FATAL) << "Unreachable";
return Location::NoLocation();
}
void CodeGeneratorARM64::MarkGCCard(Register object, Register value) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register card = temps.AcquireX();
Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
vixl::Label done;
__ Cbz(value, &done);
__ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value()));
__ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
__ Strb(card, MemOperand(card, temp.X()));
__ Bind(&done);
}
void CodeGeneratorARM64::SetupBlockedRegisters(bool is_baseline) const {
// Blocked core registers:
// lr : Runtime reserved.
// tr : Runtime reserved.
// xSuspend : Runtime reserved. TODO: Unblock this when the runtime stops using it.
// ip1 : VIXL core temp.
// ip0 : VIXL core temp.
//
// Blocked fp registers:
// d31 : VIXL fp temp.
CPURegList reserved_core_registers = vixl_reserved_core_registers;
reserved_core_registers.Combine(runtime_reserved_core_registers);
while (!reserved_core_registers.IsEmpty()) {
blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true;
}
CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
while (!reserved_fp_registers.IsEmpty()) {
blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true;
}
if (is_baseline) {
CPURegList reserved_core_baseline_registers = callee_saved_core_registers;
while (!reserved_core_baseline_registers.IsEmpty()) {
blocked_core_registers_[reserved_core_baseline_registers.PopLowestIndex().code()] = true;
}
CPURegList reserved_fp_baseline_registers = callee_saved_fp_registers;
while (!reserved_fp_baseline_registers.IsEmpty()) {
blocked_fpu_registers_[reserved_fp_baseline_registers.PopLowestIndex().code()] = true;
}
}
}
Location CodeGeneratorARM64::AllocateFreeRegister(Primitive::Type type) const {
if (type == Primitive::kPrimVoid) {
LOG(FATAL) << "Unreachable type " << type;
}
if (Primitive::IsFloatingPointType(type)) {
ssize_t reg = FindFreeEntry(blocked_fpu_registers_, kNumberOfAllocatableFPRegisters);
DCHECK_NE(reg, -1);
return Location::FpuRegisterLocation(reg);
} else {
ssize_t reg = FindFreeEntry(blocked_core_registers_, kNumberOfAllocatableRegisters);
DCHECK_NE(reg, -1);
return Location::RegisterLocation(reg);
}
}
size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
__ Str(reg, MemOperand(sp, stack_index));
return kArm64WordSize;
}
size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
__ Ldr(reg, MemOperand(sp, stack_index));
return kArm64WordSize;
}
size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
FPRegister reg = FPRegister(reg_id, kDRegSize);
__ Str(reg, MemOperand(sp, stack_index));
return kArm64WordSize;
}
size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
FPRegister reg = FPRegister(reg_id, kDRegSize);
__ Ldr(reg, MemOperand(sp, stack_index));
return kArm64WordSize;
}
void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << Arm64ManagedRegister::FromXRegister(XRegister(reg));
}
void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << Arm64ManagedRegister::FromDRegister(DRegister(reg));
}
void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
if (constant->IsIntConstant()) {
__ Mov(Register(destination), constant->AsIntConstant()->GetValue());
} else if (constant->IsLongConstant()) {
__ Mov(Register(destination), constant->AsLongConstant()->GetValue());
} else if (constant->IsNullConstant()) {
__ Mov(Register(destination), 0);
} else if (constant->IsFloatConstant()) {
__ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
} else {
DCHECK(constant->IsDoubleConstant());
__ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
}
}
static bool CoherentConstantAndType(Location constant, Primitive::Type type) {
DCHECK(constant.IsConstant());
HConstant* cst = constant.GetConstant();
return (cst->IsIntConstant() && type == Primitive::kPrimInt) ||
// Null is mapped to a core W register, which we associate with kPrimInt.
(cst->IsNullConstant() && type == Primitive::kPrimInt) ||
(cst->IsLongConstant() && type == Primitive::kPrimLong) ||
(cst->IsFloatConstant() && type == Primitive::kPrimFloat) ||
(cst->IsDoubleConstant() && type == Primitive::kPrimDouble);
}
void CodeGeneratorARM64::MoveLocation(Location destination, Location source, Primitive::Type type) {
if (source.Equals(destination)) {
return;
}
// A valid move can always be inferred from the destination and source
// locations. When moving from and to a register, the argument type can be
// used to generate 32bit instead of 64bit moves. In debug mode we also
// checks the coherency of the locations and the type.
bool unspecified_type = (type == Primitive::kPrimVoid);
if (destination.IsRegister() || destination.IsFpuRegister()) {
if (unspecified_type) {
HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
if (source.IsStackSlot() ||
(src_cst != nullptr && (src_cst->IsIntConstant()
|| src_cst->IsFloatConstant()
|| src_cst->IsNullConstant()))) {
// For stack slots and 32bit constants, a 64bit type is appropriate.
type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat;
} else {
// If the source is a double stack slot or a 64bit constant, a 64bit
// type is appropriate. Else the source is a register, and since the
// type has not been specified, we chose a 64bit type to force a 64bit
// move.
type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble;
}
}
DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(type)) ||
(destination.IsRegister() && !Primitive::IsFloatingPointType(type)));
CPURegister dst = CPURegisterFrom(destination, type);
if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
__ Ldr(dst, StackOperandFrom(source));
} else if (source.IsConstant()) {
DCHECK(CoherentConstantAndType(source, type));
MoveConstant(dst, source.GetConstant());
} else {
if (destination.IsRegister()) {
__ Mov(Register(dst), RegisterFrom(source, type));
} else {
__ Fmov(FPRegister(dst), FPRegisterFrom(source, type));
}
}
} else { // The destination is not a register. It must be a stack slot.
DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
if (source.IsRegister() || source.IsFpuRegister()) {
if (unspecified_type) {
if (source.IsRegister()) {
type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong;
} else {
type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble;
}
}
DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(type)) &&
(source.IsFpuRegister() == Primitive::IsFloatingPointType(type)));
__ Str(CPURegisterFrom(source, type), StackOperandFrom(destination));
} else if (source.IsConstant()) {
DCHECK(unspecified_type || CoherentConstantAndType(source, type));
UseScratchRegisterScope temps(GetVIXLAssembler());
HConstant* src_cst = source.GetConstant();
CPURegister temp;
if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) {
temp = temps.AcquireW();
} else if (src_cst->IsLongConstant()) {
temp = temps.AcquireX();
} else if (src_cst->IsFloatConstant()) {
temp = temps.AcquireS();
} else {
DCHECK(src_cst->IsDoubleConstant());
temp = temps.AcquireD();
}
MoveConstant(temp, src_cst);
__ Str(temp, StackOperandFrom(destination));
} else {
DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
UseScratchRegisterScope temps(GetVIXLAssembler());
// There is generally less pressure on FP registers.
FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS();
__ Ldr(temp, StackOperandFrom(source));
__ Str(temp, StackOperandFrom(destination));
}
}
}
void CodeGeneratorARM64::SwapLocations(Location loc1, Location loc2) {
DCHECK(!loc1.IsConstant());
DCHECK(!loc2.IsConstant());
if (loc1.Equals(loc2)) {
return;
}
UseScratchRegisterScope temps(GetAssembler()->vixl_masm_);
bool is_slot1 = loc1.IsStackSlot() || loc1.IsDoubleStackSlot();
bool is_slot2 = loc2.IsStackSlot() || loc2.IsDoubleStackSlot();
bool is_fp_reg1 = loc1.IsFpuRegister();
bool is_fp_reg2 = loc2.IsFpuRegister();
if (loc2.IsRegister() && loc1.IsRegister()) {
Register r1 = XRegisterFrom(loc1);
Register r2 = XRegisterFrom(loc2);
Register tmp = temps.AcquireSameSizeAs(r1);
__ Mov(tmp, r2);
__ Mov(r2, r1);
__ Mov(r1, tmp);
} else if (is_fp_reg2 && is_fp_reg1) {
FPRegister r1 = DRegisterFrom(loc1);
FPRegister r2 = DRegisterFrom(loc2);
FPRegister tmp = temps.AcquireSameSizeAs(r1);
__ Fmov(tmp, r2);
__ Fmov(r2, r1);
__ Fmov(r1, tmp);
} else if (is_slot1 != is_slot2) {
MemOperand mem = StackOperandFrom(is_slot1 ? loc1 : loc2);
Location reg_loc = is_slot1 ? loc2 : loc1;
CPURegister reg, tmp;
if (reg_loc.IsFpuRegister()) {
reg = DRegisterFrom(reg_loc);
tmp = temps.AcquireD();
} else {
reg = XRegisterFrom(reg_loc);
tmp = temps.AcquireX();
}
__ Ldr(tmp, mem);
__ Str(reg, mem);
if (reg_loc.IsFpuRegister()) {
__ Fmov(FPRegister(reg), FPRegister(tmp));
} else {
__ Mov(Register(reg), Register(tmp));
}
} else if (is_slot1 && is_slot2) {
MemOperand mem1 = StackOperandFrom(loc1);
MemOperand mem2 = StackOperandFrom(loc2);
Register tmp1 = loc1.IsStackSlot() ? temps.AcquireW() : temps.AcquireX();
Register tmp2 = temps.AcquireSameSizeAs(tmp1);
__ Ldr(tmp1, mem1);
__ Ldr(tmp2, mem2);
__ Str(tmp1, mem2);
__ Str(tmp2, mem1);
} else {
LOG(FATAL) << "Unimplemented";
}
}
void CodeGeneratorARM64::Load(Primitive::Type type,
CPURegister dst,
const MemOperand& src) {
switch (type) {
case Primitive::kPrimBoolean:
__ Ldrb(Register(dst), src);
break;
case Primitive::kPrimByte:
__ Ldrsb(Register(dst), src);
break;
case Primitive::kPrimShort:
__ Ldrsh(Register(dst), src);
break;
case Primitive::kPrimChar:
__ Ldrh(Register(dst), src);
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
__ Ldr(dst, src);
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
CPURegister dst,
const MemOperand& src) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp_base = temps.AcquireX();
Primitive::Type type = instruction->GetType();
DCHECK(!src.IsPreIndex());
DCHECK(!src.IsPostIndex());
// TODO(vixl): Let the MacroAssembler handle MemOperand.
__ Add(temp_base, src.base(), OperandFromMemOperand(src));
MemOperand base = MemOperand(temp_base);
switch (type) {
case Primitive::kPrimBoolean:
__ Ldarb(Register(dst), base);
MaybeRecordImplicitNullCheck(instruction);
break;
case Primitive::kPrimByte:
__ Ldarb(Register(dst), base);
MaybeRecordImplicitNullCheck(instruction);
__ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
break;
case Primitive::kPrimChar:
__ Ldarh(Register(dst), base);
MaybeRecordImplicitNullCheck(instruction);
break;
case Primitive::kPrimShort:
__ Ldarh(Register(dst), base);
MaybeRecordImplicitNullCheck(instruction);
__ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
__ Ldar(Register(dst), base);
MaybeRecordImplicitNullCheck(instruction);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
DCHECK(dst.IsFPRegister());
DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
__ Ldar(temp, base);
MaybeRecordImplicitNullCheck(instruction);
__ Fmov(FPRegister(dst), temp);
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::Store(Primitive::Type type,
CPURegister src,
const MemOperand& dst) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
__ Strb(Register(src), dst);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
__ Strh(Register(src), dst);
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
__ Str(src, dst);
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::StoreRelease(Primitive::Type type,
CPURegister src,
const MemOperand& dst) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp_base = temps.AcquireX();
DCHECK(!dst.IsPreIndex());
DCHECK(!dst.IsPostIndex());
// TODO(vixl): Let the MacroAssembler handle this.
Operand op = OperandFromMemOperand(dst);
__ Add(temp_base, dst.base(), op);
MemOperand base = MemOperand(temp_base);
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
__ Stlrb(Register(src), base);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
__ Stlrh(Register(src), base);
break;
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimLong:
DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
__ Stlr(Register(src), base);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
DCHECK(src.IsFPRegister());
DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
__ Fmov(temp, FPRegister(src));
__ Stlr(temp, base);
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
}
void CodeGeneratorARM64::LoadCurrentMethod(vixl::Register current_method) {
DCHECK(RequiresCurrentMethod());
DCHECK(current_method.IsW());
__ Ldr(current_method, MemOperand(sp, kCurrentMethodStackOffset));
}
void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
__ Ldr(lr, MemOperand(tr, entry_point_offset));
__ Blr(lr);
if (instruction != nullptr) {
RecordPcInfo(instruction, dex_pc, slow_path);
DCHECK(instruction->IsSuspendCheck()
|| instruction->IsBoundsCheck()
|| instruction->IsNullCheck()
|| instruction->IsDivZeroCheck()
|| !IsLeafMethod());
}
}
void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
vixl::Register class_reg) {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register temp = temps.AcquireW();
size_t status_offset = mirror::Class::StatusOffset().SizeValue();
bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
// Even if the initialized flag is set, we need to ensure consistent memory ordering.
if (use_acquire_release) {
// TODO(vixl): Let the MacroAssembler handle MemOperand.
__ Add(temp, class_reg, status_offset);
__ Ldar(temp, HeapOperand(temp));
__ Cmp(temp, mirror::Class::kStatusInitialized);
__ B(lt, slow_path->GetEntryLabel());
} else {
__ Ldr(temp, HeapOperand(class_reg, status_offset));
__ Cmp(temp, mirror::Class::kStatusInitialized);
__ B(lt, slow_path->GetEntryLabel());
__ Dmb(InnerShareable, BarrierReads);
}
__ Bind(slow_path->GetExitLabel());
}
void InstructionCodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
BarrierType type = BarrierAll;
switch (kind) {
case MemBarrierKind::kAnyAny:
case MemBarrierKind::kAnyStore: {
type = BarrierAll;
break;
}
case MemBarrierKind::kLoadAny: {
type = BarrierReads;
break;
}
case MemBarrierKind::kStoreStore: {
type = BarrierWrites;
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
}
__ Dmb(InnerShareable, type);
}
void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathARM64* slow_path =
new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor);
codegen_->AddSlowPath(slow_path);
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
Register temp = temps.AcquireW();
__ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue()));
if (successor == nullptr) {
__ Cbnz(temp, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ Cbz(temp, codegen_->GetLabelOf(successor));
__ B(slow_path->GetEntryLabel());
// slow_path will return to GetLabelOf(successor).
}
}
InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
CodeGeneratorARM64* codegen)
: HGraphVisitor(graph),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
#define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M) \
/* No unimplemented IR. */
#define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode
enum UnimplementedInstructionBreakCode {
// Using a base helps identify when we hit such breakpoints.
UnimplementedInstructionBreakCodeBaseCode = 0x900,
#define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name),
FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION)
#undef ENUM_UNIMPLEMENTED_INSTRUCTION
};
#define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name) \
void InstructionCodeGeneratorARM64::Visit##name(H##name* instr) { \
UNUSED(instr); \
__ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name)); \
} \
void LocationsBuilderARM64::Visit##name(H##name* instr) { \
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \
locations->SetOut(Location::Any()); \
}
FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)
#undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS
#undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE
#undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION
void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
DCHECK_EQ(instr->InputCount(), 2U);
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
Primitive::Type type = instr->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
}
}
void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
Primitive::Type type = instr->GetType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
Register dst = OutputRegister(instr);
Register lhs = InputRegisterAt(instr, 0);
Operand rhs = InputOperandAt(instr, 1);
if (instr->IsAdd()) {
__ Add(dst, lhs, rhs);
} else if (instr->IsAnd()) {
__ And(dst, lhs, rhs);
} else if (instr->IsOr()) {
__ Orr(dst, lhs, rhs);
} else if (instr->IsSub()) {
__ Sub(dst, lhs, rhs);
} else {
DCHECK(instr->IsXor());
__ Eor(dst, lhs, rhs);
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FPRegister dst = OutputFPRegister(instr);
FPRegister lhs = InputFPRegisterAt(instr, 0);
FPRegister rhs = InputFPRegisterAt(instr, 1);
if (instr->IsAdd()) {
__ Fadd(dst, lhs, rhs);
} else if (instr->IsSub()) {
__ Fsub(dst, lhs, rhs);
} else {
LOG(FATAL) << "Unexpected floating-point binary operation";
}
break;
}
default:
LOG(FATAL) << "Unexpected binary operation type " << type;
}
}
void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
Primitive::Type type = instr->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected shift type " << type;
}
}
void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
Primitive::Type type = instr->GetType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
Register dst = OutputRegister(instr);
Register lhs = InputRegisterAt(instr, 0);
Operand rhs = InputOperandAt(instr, 1);
if (rhs.IsImmediate()) {
uint32_t shift_value = (type == Primitive::kPrimInt)
? static_cast<uint32_t>(rhs.immediate() & kMaxIntShiftValue)
: static_cast<uint32_t>(rhs.immediate() & kMaxLongShiftValue);
if (instr->IsShl()) {
__ Lsl(dst, lhs, shift_value);
} else if (instr->IsShr()) {
__ Asr(dst, lhs, shift_value);
} else {
__ Lsr(dst, lhs, shift_value);
}
} else {
Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W();
if (instr->IsShl()) {
__ Lsl(dst, lhs, rhs_reg);
} else if (instr->IsShr()) {
__ Asr(dst, lhs, rhs_reg);
} else {
__ Lsr(dst, lhs, rhs_reg);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected shift operation type " << type;
}
}
void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Primitive::Type type = instruction->GetType();
Register obj = InputRegisterAt(instruction, 0);
Location index = locations->InAt(1);
size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value();
MemOperand source = HeapOperand(obj);
UseScratchRegisterScope temps(GetVIXLAssembler());
if (index.IsConstant()) {
offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type);
source = HeapOperand(obj, offset);
} else {
Register temp = temps.AcquireSameSizeAs(obj);
Register index_reg = RegisterFrom(index, Primitive::kPrimInt);
__ Add(temp, obj, Operand(index_reg, LSL, Primitive::ComponentSizeShift(type)));
source = HeapOperand(temp, offset);
}
codegen_->Load(type, OutputCPURegister(instruction), source);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
__ Ldr(OutputRegister(instruction),
HeapOperand(InputRegisterAt(instruction, 0), mirror::Array::LengthOffset()));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
Primitive::Type value_type = instruction->GetComponentType();
bool is_object = value_type == Primitive::kPrimNot;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, is_object ? LocationSummary::kCall : LocationSummary::kNoCall);
if (is_object) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
Primitive::Type value_type = instruction->GetComponentType();
if (value_type == Primitive::kPrimNot) {
codegen_->InvokeRuntime(
QUICK_ENTRY_POINT(pAputObject), instruction, instruction->GetDexPc(), nullptr);
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
} else {
LocationSummary* locations = instruction->GetLocations();
Register obj = InputRegisterAt(instruction, 0);
CPURegister value = InputCPURegisterAt(instruction, 2);
Location index = locations->InAt(1);
size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
MemOperand destination = HeapOperand(obj);
UseScratchRegisterScope temps(GetVIXLAssembler());
if (index.IsConstant()) {
offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
destination = HeapOperand(obj, offset);
} else {
Register temp = temps.AcquireSameSizeAs(obj);
Register index_reg = InputRegisterAt(instruction, 1);
__ Add(temp, obj, Operand(index_reg, LSL, Primitive::ComponentSizeShift(value_type)));
destination = HeapOperand(temp, offset);
}
codegen_->Store(value_type, value, destination);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
BoundsCheckSlowPathARM64* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(
instruction, locations->InAt(0), locations->InAt(1));
codegen_->AddSlowPath(slow_path);
__ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
__ B(slow_path->GetEntryLabel(), hs);
}
void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = InputRegisterAt(instruction, 0);;
Register cls = InputRegisterAt(instruction, 1);;
Register obj_cls = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(
instruction, locations->InAt(1), LocationFrom(obj_cls), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
// TODO: avoid this check if we know obj is not null.
__ Cbz(obj, slow_path->GetExitLabel());
// Compare the class of `obj` with `cls`.
__ Ldr(obj_cls, HeapOperand(obj, mirror::Object::ClassOffset()));
__ Cmp(obj_cls, cls);
__ B(ne, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
check->GetLoadClass(), check, check->GetDexPc(), true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
}
void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
Primitive::Type in_type = compare->InputAt(0)->GetType();
switch (in_type) {
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
HInstruction* right = compare->InputAt(1);
if ((right->IsFloatConstant() && (right->AsFloatConstant()->GetValue() == 0.0f)) ||
(right->IsDoubleConstant() && (right->AsDoubleConstant()->GetValue() == 0.0))) {
locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
} else {
locations->SetInAt(1, Location::RequiresFpuRegister());
}
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
}
}
void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
Primitive::Type in_type = compare->InputAt(0)->GetType();
// 0 if: left == right
// 1 if: left > right
// -1 if: left < right
switch (in_type) {
case Primitive::kPrimLong: {
Register result = OutputRegister(compare);
Register left = InputRegisterAt(compare, 0);
Operand right = InputOperandAt(compare, 1);
__ Cmp(left, right);
__ Cset(result, ne);
__ Cneg(result, result, lt);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
Register result = OutputRegister(compare);
FPRegister left = InputFPRegisterAt(compare, 0);
if (compare->GetLocations()->InAt(1).IsConstant()) {
if (kIsDebugBuild) {
HInstruction* right = compare->GetLocations()->InAt(1).GetConstant();
DCHECK((right->IsFloatConstant() && (right->AsFloatConstant()->GetValue() == 0.0f)) ||
(right->IsDoubleConstant() && (right->AsDoubleConstant()->GetValue() == 0.0)));
}
// 0.0 is the only immediate that can be encoded directly in a FCMP instruction.
__ Fcmp(left, 0.0);
} else {
__ Fcmp(left, InputFPRegisterAt(compare, 1));
}
if (compare->IsGtBias()) {
__ Cset(result, ne);
} else {
__ Csetm(result, ne);
}
__ Cneg(result, result, compare->IsGtBias() ? mi : gt);
break;
}
default:
LOG(FATAL) << "Unimplemented compare type " << in_type;
}
}
void LocationsBuilderARM64::VisitCondition(HCondition* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
if (instruction->NeedsMaterialization()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM64::VisitCondition(HCondition* instruction) {
if (!instruction->NeedsMaterialization()) {
return;
}
LocationSummary* locations = instruction->GetLocations();
Register lhs = InputRegisterAt(instruction, 0);
Operand rhs = InputOperandAt(instruction, 1);
Register res = RegisterFrom(locations->Out(), instruction->GetType());
Condition cond = ARM64Condition(instruction->GetCondition());
__ Cmp(lhs, rhs);
__ Cset(res, cond);
}
#define FOR_EACH_CONDITION_INSTRUCTION(M) \
M(Equal) \
M(NotEqual) \
M(LessThan) \
M(LessThanOrEqual) \
M(GreaterThan) \
M(GreaterThanOrEqual)
#define DEFINE_CONDITION_VISITORS(Name) \
void LocationsBuilderARM64::Visit##Name(H##Name* comp) { VisitCondition(comp); } \
void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { VisitCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
#undef DEFINE_CONDITION_VISITORS
#undef FOR_EACH_CONDITION_INSTRUCTION
void LocationsBuilderARM64::VisitDiv(HDiv* div) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
switch (div->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
Primitive::Type type = div->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
__ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
__ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
break;
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeARM64* slow_path =
new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction);
codegen_->AddSlowPath(slow_path);
Location value = instruction->GetLocations()->InAt(0);
Primitive::Type type = instruction->GetType();
if ((type != Primitive::kPrimInt) && (type != Primitive::kPrimLong)) {
LOG(FATAL) << "Unexpected type " << type << "for DivZeroCheck.";
return;
}
if (value.IsConstant()) {
int64_t divisor = Int64ConstantFrom(value);
if (divisor == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
__ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
}
}
void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitDoubleConstant(HDoubleConstant* constant) {
UNUSED(constant);
// Will be generated at use site.
}
void LocationsBuilderARM64::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitExit(HExit* exit) {
UNUSED(exit);
}
void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant) {
UNUSED(constant);
// Will be generated at use site.
}
void LocationsBuilderARM64::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
HBasicBlock* successor = got->GetSuccessor();
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ B(codegen_->GetLabelOf(successor));
}
}
void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
vixl::Label* true_target,
vixl::Label* false_target,
vixl::Label* always_true_target) {
HInstruction* cond = instruction->InputAt(0);
HCondition* condition = cond->AsCondition();
if (cond->IsIntConstant()) {
int32_t cond_value = cond->AsIntConstant()->GetValue();
if (cond_value == 1) {
if (always_true_target != nullptr) {
__ B(always_true_target);
}
return;
} else {
DCHECK_EQ(cond_value, 0);
}
} else if (!cond->IsCondition() || condition->NeedsMaterialization()) {
// The condition instruction has been materialized, compare the output to 0.
Location cond_val = instruction->GetLocations()->InAt(0);
DCHECK(cond_val.IsRegister());
__ Cbnz(InputRegisterAt(instruction, 0), true_target);
} else {
// The condition instruction has not been materialized, use its inputs as
// the comparison and its condition as the branch condition.
Register lhs = InputRegisterAt(condition, 0);
Operand rhs = InputOperandAt(condition, 1);
Condition arm64_cond = ARM64Condition(condition->GetCondition());
if ((arm64_cond != gt && arm64_cond != le) && rhs.IsImmediate() && (rhs.immediate() == 0)) {
switch (arm64_cond) {
case eq:
__ Cbz(lhs, true_target);
break;
case ne:
__ Cbnz(lhs, true_target);
break;
case lt:
// Test the sign bit and branch accordingly.
__ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, true_target);
break;
case ge:
// Test the sign bit and branch accordingly.
__ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, true_target);
break;
default:
// Without the `static_cast` the compiler throws an error for
// `-Werror=sign-promo`.
LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
}
} else {
__ Cmp(lhs, rhs);
__ B(arm64_cond, true_target);
}
}
if (false_target != nullptr) {
__ B(false_target);
}
}
void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
HInstruction* cond = if_instr->InputAt(0);
if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
vixl::Label* true_target = codegen_->GetLabelOf(if_instr->IfTrueSuccessor());
vixl::Label* false_target = codegen_->GetLabelOf(if_instr->IfFalseSuccessor());
vixl::Label* always_true_target = true_target;
if (codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfTrueSuccessor())) {
always_true_target = nullptr;
}
if (codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfFalseSuccessor())) {
false_target = nullptr;
}
GenerateTestAndBranch(if_instr, true_target, false_target, always_true_target);
}
void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
HInstruction* cond = deoptimize->InputAt(0);
DCHECK(cond->IsCondition());
if (cond->AsCondition()->NeedsMaterialization()) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena())
DeoptimizationSlowPathARM64(deoptimize);
codegen_->AddSlowPath(slow_path);
vixl::Label* slow_path_entry = slow_path->GetEntryLabel();
GenerateTestAndBranch(deoptimize, slow_path_entry, nullptr, slow_path_entry);
}
void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), instruction->GetFieldOffset());
bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
if (instruction->IsVolatile()) {
if (use_acquire_release) {
// NB: LoadAcquire will record the pc info if needed.
codegen_->LoadAcquire(instruction, OutputCPURegister(instruction), field);
} else {
codegen_->Load(instruction->GetType(), OutputCPURegister(instruction), field);
codegen_->MaybeRecordImplicitNullCheck(instruction);
// For IRIW sequential consistency kLoadAny is not sufficient.
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
} else {
codegen_->Load(instruction->GetType(), OutputCPURegister(instruction), field);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
Register obj = InputRegisterAt(instruction, 0);
CPURegister value = InputCPURegisterAt(instruction, 1);
Offset offset = instruction->GetFieldOffset();
Primitive::Type field_type = instruction->GetFieldType();
bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
if (instruction->IsVolatile()) {
if (use_acquire_release) {
codegen_->StoreRelease(field_type, value, HeapOperand(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
} else {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
codegen_->Store(field_type, value, HeapOperand(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
} else {
codegen_->Store(field_type, value, HeapOperand(obj, offset));
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
codegen_->MarkGCCard(obj, Register(value));
}
}
void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind =
instruction->IsClassFinal() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// The output does overlap inputs.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = InputRegisterAt(instruction, 0);;
Register cls = InputRegisterAt(instruction, 1);;
Register out = OutputRegister(instruction);
vixl::Label done;
// Return 0 if `obj` is null.
// TODO: Avoid this check if we know `obj` is not null.
__ Mov(out, 0);
__ Cbz(obj, &done);
// Compare the class of `obj` with `cls`.
__ Ldr(out, HeapOperand(obj, mirror::Object::ClassOffset()));
__ Cmp(out, cls);
if (instruction->IsClassFinal()) {
// Classes must be equal for the instanceof to succeed.
__ Cset(out, eq);
} else {
// If the classes are not equal, we go into a slow path.
DCHECK(locations->OnlyCallsOnSlowPath());
SlowPathCodeARM64* slow_path =
new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(
instruction, locations->InAt(1), locations->Out(), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
__ B(ne, slow_path->GetEntryLabel());
__ Mov(out, 1);
__ Bind(slow_path->GetExitLabel());
}
__ Bind(&done);
}
void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(invoke, LocationSummary::kCall);
locations->AddTemp(LocationFrom(x0));
InvokeDexCallingConventionVisitor calling_convention_visitor;
for (size_t i = 0; i < invoke->InputCount(); i++) {
HInstruction* input = invoke->InputAt(i);
locations->SetInAt(i, calling_convention_visitor.GetNextLocation(input->GetType()));
}
Primitive::Type return_type = invoke->GetType();
if (return_type != Primitive::kPrimVoid) {
locations->SetOut(calling_convention_visitor.GetReturnLocation(return_type));
}
}
void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
Register temp = WRegisterFrom(invoke->GetLocations()->GetTemp(0));
uint32_t method_offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
(invoke->GetImtIndex() % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
Location receiver = invoke->GetLocations()->InAt(0);
Offset class_offset = mirror::Object::ClassOffset();
Offset entry_point = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
// The register ip1 is required to be used for the hidden argument in
// art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
UseScratchRegisterScope scratch_scope(GetVIXLAssembler());
scratch_scope.Exclude(ip1);
__ Mov(ip1, invoke->GetDexMethodIndex());
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ Ldr(temp, StackOperandFrom(receiver));
__ Ldr(temp, HeapOperand(temp, class_offset));
} else {
__ Ldr(temp, HeapOperandFrom(receiver, class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetImtEntryAt(method_offset);
__ Ldr(temp, HeapOperand(temp, method_offset));
// lr = temp->GetEntryPoint();
__ Ldr(lr, HeapOperand(temp, entry_point));
// lr();
__ Blr(lr);
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorARM64 intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Register temp) {
// Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
DCHECK(temp.Is(kArtMethodRegister));
size_t index_in_cache = mirror::Array::DataOffset(kHeapRefSize).SizeValue() +
invoke->GetDexMethodIndex() * kHeapRefSize;
// TODO: Implement all kinds of calls:
// 1) boot -> boot
// 2) app -> boot
// 3) app -> app
//
// Currently we implement the app -> app logic, which looks up in the resolve cache.
// temp = method;
LoadCurrentMethod(temp);
if (!invoke->IsRecursive()) {
// temp = temp->dex_cache_resolved_methods_;
__ Ldr(temp, HeapOperand(temp, mirror::ArtMethod::DexCacheResolvedMethodsOffset()));
// temp = temp[index_in_cache];
__ Ldr(temp, HeapOperand(temp, index_in_cache));
// lr = temp->entry_point_from_quick_compiled_code_;
__ Ldr(lr, HeapOperand(temp, mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArm64WordSize)));
// lr();
__ Blr(lr);
} else {
__ Bl(&frame_entry_label_);
}
DCHECK(!IsLeafMethod());
}
void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
Register temp = WRegisterFrom(invoke->GetLocations()->GetTemp(0));
codegen_->GenerateStaticOrDirectCall(invoke, temp);
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
Register temp = WRegisterFrom(invoke->GetLocations()->GetTemp(0));
size_t method_offset = mirror::Class::EmbeddedVTableOffset().SizeValue() +
invoke->GetVTableIndex() * sizeof(mirror::Class::VTableEntry);
Offset class_offset = mirror::Object::ClassOffset();
Offset entry_point = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ Ldr(temp, MemOperand(sp, receiver.GetStackIndex()));
__ Ldr(temp, HeapOperand(temp, class_offset));
} else {
DCHECK(receiver.IsRegister());
__ Ldr(temp, HeapOperandFrom(receiver, class_offset));
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetMethodAt(method_offset);
__ Ldr(temp, HeapOperand(temp, method_offset));
// lr = temp->GetEntryPoint();
__ Ldr(lr, HeapOperand(temp, entry_point.SizeValue()));
// lr();
__ Blr(lr);
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
LocationSummary::CallKind call_kind = cls->CanCallRuntime() ? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) {
Register out = OutputRegister(cls);
if (cls->IsReferrersClass()) {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
codegen_->LoadCurrentMethod(out);
__ Ldr(out, HeapOperand(out, mirror::ArtMethod::DeclaringClassOffset()));
} else {
DCHECK(cls->CanCallRuntime());
codegen_->LoadCurrentMethod(out);
__ Ldr(out, HeapOperand(out, mirror::ArtMethod::DexCacheResolvedTypesOffset()));
__ Ldr(out, HeapOperand(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
__ Cbz(out, slow_path->GetEntryLabel());
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
MemOperand exception = MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value());
__ Ldr(OutputRegister(instruction), exception);
__ Str(wzr, exception);
}
void LocationsBuilderARM64::VisitLoadLocal(HLoadLocal* load) {
load->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitLoadLocal(HLoadLocal* load) {
// Nothing to do, this is driven by the code generator.
UNUSED(load);
}
void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) {
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load);
codegen_->AddSlowPath(slow_path);
Register out = OutputRegister(load);
codegen_->LoadCurrentMethod(out);
__ Ldr(out, HeapOperand(out, mirror::ArtMethod::DeclaringClassOffset()));
__ Ldr(out, HeapOperand(out, mirror::Class::DexCacheStringsOffset()));
__ Ldr(out, HeapOperand(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
__ Cbz(out, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderARM64::VisitLocal(HLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitLocal(HLocal* local) {
DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
}
void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
codegen_->InvokeRuntime(instruction->IsEnter()
? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
instruction,
instruction->GetDexPc(),
nullptr);
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
}
void LocationsBuilderARM64::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
__ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
__ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
__ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
__ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
locations->SetOut(LocationFrom(x0));
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1)));
CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck,
void*, uint32_t, int32_t, mirror::ArtMethod*>();
}
void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations = instruction->GetLocations();
InvokeRuntimeCallingConvention calling_convention;
Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
DCHECK(type_index.Is(w0));
Register current_method = RegisterFrom(locations->GetTemp(1), Primitive::kPrimNot);
DCHECK(current_method.Is(w2));
codegen_->LoadCurrentMethod(current_method);
__ Mov(type_index, instruction->GetTypeIndex());
codegen_->InvokeRuntime(
GetThreadOffset<kArm64WordSize>(instruction->GetEntrypoint()).Int32Value(),
instruction,
instruction->GetDexPc(),
nullptr);
CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck,
void*, uint32_t, int32_t, mirror::ArtMethod*>();
}
void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, mirror::ArtMethod*>();
}
void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
DCHECK(type_index.Is(w0));
Register current_method = RegisterFrom(locations->GetTemp(1), Primitive::kPrimNot);
DCHECK(current_method.Is(w1));
codegen_->LoadCurrentMethod(current_method);
__ Mov(type_index, instruction->GetTypeIndex());
codegen_->InvokeRuntime(
GetThreadOffset<kArm64WordSize>(instruction->GetEntrypoint()).Int32Value(),
instruction,
instruction->GetDexPc(),
nullptr);
CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, mirror::ArtMethod*>();
}
void LocationsBuilderARM64::VisitNot(HNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
switch (instruction->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
__ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
break;
default:
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
}
}
void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
DCHECK_EQ(instruction->InputAt(0)->GetType(), Primitive::kPrimBoolean);
__ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1));
}
void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (codegen_->CanMoveNullCheckToUser(instruction)) {
return;
}
Location obj = instruction->GetLocations()->InAt(0);
__ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void InstructionCodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
if (codegen_->GetCompilerOptions().GetImplicitNullChecks()) {
GenerateImplicitNullCheck(instruction);
} else {
GenerateExplicitNullCheck(instruction);
}
}
void LocationsBuilderARM64::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorARM64::VisitParameterValue(HParameterValue* instruction) {
// Nothing to do, the parameter is already at its location.
UNUSED(instruction);
}
void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderARM64::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
LocationSummary::CallKind call_kind =
Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
switch (type) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
UseScratchRegisterScope temps(GetVIXLAssembler());
Register dividend = InputRegisterAt(rem, 0);
Register divisor = InputRegisterAt(rem, 1);
Register output = OutputRegister(rem);
Register temp = temps.AcquireSameSizeAs(output);
__ Sdiv(temp, dividend, divisor);
__ Msub(output, temp, divisor, dividend);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf)
: QUICK_ENTRY_POINT(pFmod);
codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr);
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
Primitive::Type return_type = instruction->InputAt(0)->GetType();
locations->SetInAt(0, ARM64ReturnLocation(return_type));
}
void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction) {
UNUSED(instruction);
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
instruction->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction) {
UNUSED(instruction);
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM64::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderARM64::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderARM64::VisitStoreLocal(HStoreLocal* store) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(store);
Primitive::Type field_type = store->InputAt(1)->GetType();
switch (field_type) {
case Primitive::kPrimNot:
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
default:
LOG(FATAL) << "Unimplemented local type " << field_type;
}
}
void InstructionCodeGeneratorARM64::VisitStoreLocal(HStoreLocal* store) {
UNUSED(store);
}
void LocationsBuilderARM64::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), instruction->GetFieldOffset());
bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
if (instruction->IsVolatile()) {
if (use_acquire_release) {
// NB: LoadAcquire will record the pc info if needed.
codegen_->LoadAcquire(instruction, OutputCPURegister(instruction), field);
} else {
codegen_->Load(instruction->GetType(), OutputCPURegister(instruction), field);
// For IRIW sequential consistency kLoadAny is not sufficient.
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
} else {
codegen_->Load(instruction->GetType(), OutputCPURegister(instruction), field);
}
}
void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
Register cls = InputRegisterAt(instruction, 0);
CPURegister value = InputCPURegisterAt(instruction, 1);
Offset offset = instruction->GetFieldOffset();
Primitive::Type field_type = instruction->GetFieldType();
bool use_acquire_release = codegen_->GetInstructionSetFeatures().PreferAcquireRelease();
if (instruction->IsVolatile()) {
if (use_acquire_release) {
codegen_->StoreRelease(field_type, value, HeapOperand(cls, offset));
} else {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
codegen_->Store(field_type, value, HeapOperand(cls, offset));
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
} else {
codegen_->Store(field_type, value, HeapOperand(cls, offset));
}
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
codegen_->MarkGCCard(cls, Register(value));
}
}
void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void LocationsBuilderARM64::VisitTemporary(HTemporary* temp) {
temp->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM64::VisitTemporary(HTemporary* temp) {
// Nothing to do, this is driven by the code generator.
UNUSED(temp);
}
void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(
QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
Primitive::Type input_type = conversion->GetInputType();
Primitive::Type result_type = conversion->GetResultType();
DCHECK_NE(input_type, result_type);
if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
(result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
}
if (Primitive::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresRegister());
}
if (Primitive::IsFloatingPointType(result_type)) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(input_type, result_type);
if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
int result_size = Primitive::ComponentSize(result_type);
int input_size = Primitive::ComponentSize(input_type);
int min_size = std::min(result_size, input_size);
Register output = OutputRegister(conversion);
Register source = InputRegisterAt(conversion, 0);
if ((result_type == Primitive::kPrimChar) && (input_size < result_size)) {
__ Ubfx(output, source, 0, result_size * kBitsPerByte);
} else if ((result_type == Primitive::kPrimChar) ||
((input_type == Primitive::kPrimChar) && (result_size > input_size))) {
__ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
} else {
__ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
}
} else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
__ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
__ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
} else if (Primitive::IsFloatingPointType(result_type) &&
Primitive::IsFloatingPointType(input_type)) {
__ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
} else {
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderARM64::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
#undef __
#undef QUICK_ENTRY_POINT
} // namespace arm64
} // namespace art