blob: 8111db67a7314123bfc867c58349fd1075c9e319 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "reg_type.h"
#include "base/casts.h"
#include "dex_file-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "object_utils.h"
#include "reg_type_cache-inl.h"
#include "scoped_thread_state_change.h"
#include <limits>
#include <sstream>
namespace art {
namespace verifier {
UndefinedType* UndefinedType::instance_ = NULL;
ConflictType* ConflictType::instance_ = NULL;
BooleanType* BooleanType::instance = NULL;
ByteType* ByteType::instance_ = NULL;
ShortType* ShortType::instance_ = NULL;
CharType* CharType::instance_ = NULL;
FloatType* FloatType::instance_ = NULL;
LongLoType* LongLoType::instance_ = NULL;
LongHiType* LongHiType::instance_ = NULL;
DoubleLoType* DoubleLoType::instance_ = NULL;
DoubleHiType* DoubleHiType::instance_ = NULL;
IntegerType* IntegerType::instance_ = NULL;
int32_t RegType::ConstantValue() const {
ScopedObjectAccess soa(Thread::Current());
LOG(FATAL) << "Unexpected call to ConstantValue: " << *this;
return 0;
}
int32_t RegType::ConstantValueLo() const {
ScopedObjectAccess soa(Thread::Current());
LOG(FATAL) << "Unexpected call to ConstantValueLo: " << *this;
return 0;
}
int32_t RegType::ConstantValueHi() const {
ScopedObjectAccess soa(Thread::Current());
LOG(FATAL) << "Unexpected call to ConstantValueHi: " << *this;
return 0;
}
PrimitiveType::PrimitiveType(mirror::Class* klass, const std::string& descriptor, uint16_t cache_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: RegType(klass, descriptor, cache_id) {
CHECK(klass != NULL);
CHECK(!descriptor.empty());
}
Cat1Type::Cat1Type(mirror::Class* klass, const std::string& descriptor, uint16_t cache_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: PrimitiveType(klass, descriptor, cache_id) {
}
Cat2Type::Cat2Type(mirror::Class* klass, const std::string& descriptor, uint16_t cache_id)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: PrimitiveType(klass, descriptor, cache_id) {
}
std::string PreciseConstType::Dump() const {
std::stringstream result;
uint32_t val = ConstantValue();
if (val == 0) {
CHECK(IsPreciseConstant());
result << "Zero/null";
} else {
result << "Precise ";
if (IsConstantShort()) {
result << StringPrintf("Constant: %d", val);
} else {
result << StringPrintf("Constant: 0x%x", val);
}
}
return result.str();
}
std::string BooleanType::Dump() const {
return "boolean";
}
std::string ConflictType::Dump() const {
return "Conflict";
}
std::string ByteType::Dump() const {
return "Byte";
}
std::string ShortType::Dump() const {
return "short";
}
std::string CharType::Dump() const {
return "Char";
}
std::string FloatType::Dump() const {
return "float";
}
std::string LongLoType::Dump() const {
return "long (Low Half)";
}
std::string LongHiType::Dump() const {
return "long (High Half)";
}
std::string DoubleLoType::Dump() const {
return "Double (Low Half)";
}
std::string DoubleHiType::Dump() const {
return "Double (High Half)";
}
std::string IntegerType::Dump() const {
return "Integer";
}
DoubleHiType* DoubleHiType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new DoubleHiType(klass, descriptor, cache_id);
}
return instance_;
}
DoubleHiType* DoubleHiType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void DoubleHiType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
DoubleLoType* DoubleLoType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new DoubleLoType(klass, descriptor, cache_id);
}
return instance_;
}
DoubleLoType* DoubleLoType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void DoubleLoType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
LongLoType* LongLoType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new LongLoType(klass, descriptor, cache_id);
}
return instance_;
}
LongHiType* LongHiType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new LongHiType(klass, descriptor, cache_id);
}
return instance_;
}
LongHiType* LongHiType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void LongHiType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
LongLoType* LongLoType::GetInstance() {
CHECK (instance_ != NULL);
return instance_;
}
void LongLoType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
FloatType* FloatType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new FloatType(klass, descriptor, cache_id);
}
return instance_;
}
FloatType* FloatType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void FloatType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
CharType* CharType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new CharType(klass, descriptor, cache_id);
}
return instance_;
}
CharType* CharType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void CharType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
ShortType* ShortType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new ShortType(klass, descriptor, cache_id);
}
return instance_;
}
ShortType* ShortType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void ShortType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
ByteType* ByteType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new ByteType(klass, descriptor, cache_id);
}
return instance_;
}
ByteType* ByteType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void ByteType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
IntegerType* IntegerType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new IntegerType(klass, descriptor, cache_id);
}
return instance_;
}
IntegerType* IntegerType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void IntegerType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
ConflictType* ConflictType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new ConflictType(klass, descriptor, cache_id);
}
return instance_;
}
ConflictType* ConflictType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void ConflictType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
BooleanType* BooleanType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (BooleanType::instance == NULL) {
instance = new BooleanType(klass, descriptor, cache_id);
}
return BooleanType::instance;
}
BooleanType* BooleanType::GetInstance() {
CHECK(BooleanType::instance != NULL);
return BooleanType::instance;
}
void BooleanType::Destroy() {
if(BooleanType::instance != NULL) {
delete instance;
instance = NULL;
}
}
std::string UndefinedType::Dump() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return "Undefined";
}
UndefinedType* UndefinedType::CreateInstance(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id) {
if (instance_ == NULL) {
instance_ = new UndefinedType(klass, descriptor, cache_id);
}
return instance_;
}
UndefinedType* UndefinedType::GetInstance() {
CHECK(instance_ != NULL);
return instance_;
}
void UndefinedType::Destroy() {
if (instance_ != NULL) {
delete instance_;
instance_ = NULL;
}
}
PreciseReferenceType::PreciseReferenceType(mirror::Class* klass, const std::string& descriptor,
uint16_t cache_id)
: RegType(klass, descriptor, cache_id) {
DCHECK(klass->IsInstantiable());
}
std::string UnresolvedMergedType::Dump() const {
std::stringstream result;
std::set<uint16_t> types = GetMergedTypes();
result << "UnresolvedMergedReferences(";
typedef std::set<uint16_t>::const_iterator It; // TODO: C++0x auto
It it = types.begin();
result << reg_type_cache_->GetFromId(*it).Dump();
for (++it; it != types.end(); ++it) {
result << ", ";
result << reg_type_cache_->GetFromId(*it).Dump();
}
result << ")";
return result.str();
}
std::string UnresolvedSuperClass::Dump() const {
std::stringstream result;
uint16_t super_type_id = GetUnresolvedSuperClassChildId();
result << "UnresolvedSuperClass(" << reg_type_cache_->GetFromId(super_type_id).Dump() << ")";
return result.str();
}
std::string UnresolvedReferenceType::Dump() const {
std::stringstream result;
result << "Unresolved Reference" << ": " << PrettyDescriptor(GetDescriptor());
return result.str();
}
std::string UnresolvedUninitializedRefType::Dump() const {
std::stringstream result;
result << "Unresolved And Uninitialized Reference" << ": " << PrettyDescriptor(GetDescriptor());
result << " Allocation PC: " << GetAllocationPc();
return result.str();
}
std::string UnresolvedUninitializedThisRefType::Dump() const {
std::stringstream result;
result << "Unresolved And Uninitialized This Reference" << PrettyDescriptor(GetDescriptor());
return result.str();
}
std::string ReferenceType::Dump() const {
std::stringstream result;
result << "Reference" << ": " << PrettyDescriptor(GetClass());
return result.str();
}
std::string PreciseReferenceType::Dump() const {
std::stringstream result;
result << "Precise Reference" << ": "<< PrettyDescriptor(GetClass());
return result.str();
}
std::string UninitializedReferenceType::Dump() const {
std::stringstream result;
result << "Uninitialized Reference" << ": " << PrettyDescriptor(GetClass());
result << " Allocation PC: " << GetAllocationPc();
return result.str();
}
std::string UninitializedThisReferenceType::Dump() const {
std::stringstream result;
result << "Uninitialized This Reference" << ": " << PrettyDescriptor(GetClass());
result << "Allocation PC: " << GetAllocationPc();
return result.str();
}
std::string ImpreciseConstType::Dump() const {
std::stringstream result;
uint32_t val = ConstantValue();
if (val == 0) {
CHECK(IsPreciseConstant());
result << "Zero/null";
} else {
result << "Imprecise ";
if (IsConstantShort()) {
result << StringPrintf("Constant: %d", val);
} else {
result << StringPrintf("Constant: 0x%x", val);
}
}
return result.str();
}
std::string PreciseConstLoType::Dump() const {
std::stringstream result;
int32_t val = ConstantValueLo();
result << "Precise ";
if (val >= std::numeric_limits<jshort>::min() &&
val <= std::numeric_limits<jshort>::max()) {
result << StringPrintf("Low-half Constant: %d", val);
} else {
result << StringPrintf("Low-half Constant: 0x%x", val);
}
return result.str();
}
std::string ImpreciseConstLoType::Dump() const {
std::stringstream result;
int32_t val = ConstantValueLo();
result << "Imprecise ";
if (val >= std::numeric_limits<jshort>::min() &&
val <= std::numeric_limits<jshort>::max()) {
result << StringPrintf("Low-half Constant: %d", val);
} else {
result << StringPrintf("Low-half Constant: 0x%x", val);
}
return result.str();
}
std::string PreciseConstHiType::Dump() const {
std::stringstream result;
int32_t val = ConstantValueHi();
result << "Precise ";
if (val >= std::numeric_limits<jshort>::min() &&
val <= std::numeric_limits<jshort>::max()) {
result << StringPrintf("High-half Constant: %d", val);
} else {
result << StringPrintf("High-half Constant: 0x%x", val);
}
return result.str();
}
std::string ImpreciseConstHiType::Dump() const {
std::stringstream result;
int32_t val = ConstantValueHi();
result << "Imprecise ";
if (val >= std::numeric_limits<jshort>::min() &&
val <= std::numeric_limits<jshort>::max()) {
result << StringPrintf("High-half Constant: %d", val);
} else {
result << StringPrintf("High-half Constant: 0x%x", val);
}
return result.str();
}
ConstantType::ConstantType(uint32_t constant, uint16_t cache_id)
: RegType(NULL, "", cache_id), constant_(constant) {
}
const RegType& UndefinedType::Merge(const RegType& incoming_type, RegTypeCache* reg_types) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (incoming_type.IsUndefined()) {
return *this; // Undefined MERGE Undefined => Undefined
}
return reg_types->Conflict();
}
const RegType& RegType::HighHalf(RegTypeCache* cache) const {
DCHECK(IsLowHalf());
if (IsLongLo()) {
return cache->LongHi();
} else if (IsDoubleLo()) {
return cache->DoubleHi();
} else {
DCHECK(IsImpreciseConstantLo());
return cache->FromCat2ConstHi(ConstantValue(), false);
}
}
Primitive::Type RegType::GetPrimitiveType() const {
if (IsNonZeroReferenceTypes()) {
return Primitive::kPrimNot;
} else if (IsBooleanTypes()) {
return Primitive::kPrimBoolean;
} else if (IsByteTypes()) {
return Primitive::kPrimByte;
} else if (IsShortTypes()) {
return Primitive::kPrimShort;
} else if (IsCharTypes()) {
return Primitive::kPrimChar;
} else if (IsFloat()) {
return Primitive::kPrimFloat;
} else if (IsIntegralTypes()) {
return Primitive::kPrimInt;
} else if (IsDoubleLo()) {
return Primitive::kPrimDouble;
} else {
DCHECK(IsLongTypes());
return Primitive::kPrimLong;
}
}
bool UninitializedType::IsUninitializedTypes() const {
return true;
}
bool UninitializedType::IsNonZeroReferenceTypes() const {
return true;
}
bool UnresolvedType::IsNonZeroReferenceTypes() const {
return true;
}
std::set<uint16_t> UnresolvedMergedType::GetMergedTypes() const {
std::pair<uint16_t, uint16_t> refs = GetTopMergedTypes();
const RegType& _left(reg_type_cache_->GetFromId(refs.first));
RegType& __left(const_cast<RegType&>(_left));
UnresolvedMergedType* left = down_cast<UnresolvedMergedType*>(&__left);
RegType& _right(
const_cast<RegType&>(reg_type_cache_->GetFromId(refs.second)));
UnresolvedMergedType* right = down_cast<UnresolvedMergedType*>(&_right);
std::set<uint16_t> types;
if (left->IsUnresolvedMergedReference()) {
types = left->GetMergedTypes();
} else {
types.insert(refs.first);
}
if (right->IsUnresolvedMergedReference()) {
std::set<uint16_t> right_types = right->GetMergedTypes();
types.insert(right_types.begin(), right_types.end());
} else {
types.insert(refs.second);
}
if (kIsDebugBuild) {
typedef std::set<uint16_t>::const_iterator It; // TODO: C++0x auto
for (It it = types.begin(); it != types.end(); ++it) {
CHECK(!reg_type_cache_->GetFromId(*it).IsUnresolvedMergedReference());
}
}
return types;
}
const RegType& RegType::GetSuperClass(RegTypeCache* cache) const {
if (!IsUnresolvedTypes()) {
mirror::Class* super_klass = GetClass()->GetSuperClass();
if (super_klass != NULL) {
// A super class of a precise type isn't precise as a precise type indicates the register
// holds exactly that type.
return cache->FromClass(ClassHelper(super_klass).GetDescriptor(), super_klass, false);
} else {
return cache->Zero();
}
} else {
if (!IsUnresolvedMergedReference() && !IsUnresolvedSuperClass() &&
GetDescriptor()[0] == '[') {
// Super class of all arrays is Object.
return cache->JavaLangObject(true);
} else {
return cache->FromUnresolvedSuperClass(*this);
}
}
}
bool RegType::CanAccess(const RegType& other) const {
if (Equals(other)) {
return true; // Trivial accessibility.
} else {
bool this_unresolved = IsUnresolvedTypes();
bool other_unresolved = other.IsUnresolvedTypes();
if (!this_unresolved && !other_unresolved) {
return GetClass()->CanAccess(other.GetClass());
} else if (!other_unresolved) {
return other.GetClass()->IsPublic(); // Be conservative, only allow if other is public.
} else {
return false; // More complicated test not possible on unresolved types, be conservative.
}
}
}
bool RegType::CanAccessMember(mirror::Class* klass, uint32_t access_flags) const {
if ((access_flags & kAccPublic) != 0) {
return true;
}
if (!IsUnresolvedTypes()) {
return GetClass()->CanAccessMember(klass, access_flags);
} else {
return false; // More complicated test not possible on unresolved types, be conservative.
}
}
bool RegType::IsObjectArrayTypes() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (IsUnresolvedTypes() && !IsUnresolvedMergedReference() && !IsUnresolvedSuperClass()) {
// Primitive arrays will always resolve
DCHECK(descriptor_[1] == 'L' || descriptor_[1] == '[');
return descriptor_[0] == '[';
} else if (HasClass()) {
mirror::Class* type = GetClass();
return type->IsArrayClass() && !type->GetComponentType()->IsPrimitive();
} else {
return false;
}
}
bool RegType::IsJavaLangObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return IsReference() && GetClass()->IsObjectClass();
}
bool RegType::IsArrayTypes() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (IsUnresolvedTypes() && !IsUnresolvedMergedReference() && !IsUnresolvedSuperClass()) {
return descriptor_[0] == '[';
} else if (HasClass()) {
return GetClass()->IsArrayClass();
} else {
return false;
}
}
bool RegType::IsJavaLangObjectArray() const {
if (HasClass()) {
mirror::Class* type = GetClass();
return type->IsArrayClass() && type->GetComponentType()->IsObjectClass();
}
return false;
}
bool RegType::IsInstantiableTypes() const {
return IsUnresolvedTypes() || (IsNonZeroReferenceTypes() && GetClass()->IsInstantiable());
}
ImpreciseConstType::ImpreciseConstType(uint32_t constat, uint16_t cache_id)
: ConstantType(constat, cache_id) {
}
bool RegType::IsAssignableFrom(const RegType& src) const {
if (Equals(src)) {
return true;
} else {
if (IsBoolean()) {
return src.IsBooleanTypes();
} else if (IsByte()) {
return src.IsByteTypes();
} else if (IsShort()) {
return src.IsShortTypes();
} else if (IsChar()) {
return src.IsCharTypes();
} else if (IsInteger()) {
return src.IsIntegralTypes();
} else if (IsFloat()) {
return src.IsFloatTypes();
} else if (IsLongLo()) {
return src.IsLongTypes();
} else if (IsDoubleLo()) {
return src.IsDoubleTypes();
} else {
if (!IsReferenceTypes()) {
LOG(FATAL) << "Unexpected register type in 4bleFrom: '" << src << "'";
}
if (src.IsZero()) {
return true; // all reference types can be assigned null
} else if (!src.IsReferenceTypes()) {
return false; // expect src to be a reference type
} else if (IsJavaLangObject()) {
return true; // all reference types can be assigned to Object
} else if (!IsUnresolvedTypes() && GetClass()->IsInterface()) {
return true; // We allow assignment to any interface, see comment in ClassJoin
} else if (IsJavaLangObjectArray()) {
return src.IsObjectArrayTypes(); // All reference arrays may be assigned to Object[]
} else if (!IsUnresolvedTypes() && !src.IsUnresolvedTypes() &&
GetClass()->IsAssignableFrom(src.GetClass())) {
// We're assignable from the Class point-of-view
return true;
} else if (IsUnresolvedTypes()) {
// Unresolved types are only assignable for null and equality.
return src.IsZero();
} else {
return false;
}
}
}
}
int32_t ConstantType::ConstantValue() const {
DCHECK(IsConstantTypes());
return constant_;
}
int32_t ConstantType::ConstantValueLo() const {
DCHECK(IsConstantLo());
return constant_;
}
int32_t ConstantType::ConstantValueHi() const {
if (IsConstantHi() || IsPreciseConstantHi() || IsImpreciseConstantHi()) {
return constant_;
} else {
DCHECK(false);
return 0;
}
}
static const RegType& SelectNonConstant(const RegType& a, const RegType& b) {
return a.IsConstant() ? b : a;
}
const RegType& RegType::Merge(const RegType& incoming_type, RegTypeCache* reg_types) const {
DCHECK(!Equals(incoming_type)); // Trivial equality handled by caller
if (IsConflict()) {
return *this; // Conflict MERGE * => Conflict
} else if (incoming_type.IsConflict()) {
return incoming_type; // * MERGE Conflict => Conflict
} else if (IsUndefined() || incoming_type.IsUndefined()) {
return reg_types->Conflict(); // Unknown MERGE * => Conflict
} else if (IsConstant() && incoming_type.IsConstant()) {
int32_t val1 = ConstantValue();
int32_t val2 = incoming_type.ConstantValue();
if (val1 >= 0 && val2 >= 0) {
// +ve1 MERGE +ve2 => MAX(+ve1, +ve2)
if (val1 >= val2) {
if (!IsPreciseConstant()) {
return *this;
} else {
return reg_types->FromCat1Const(val1, false);
}
} else {
if (!incoming_type.IsPreciseConstant()) {
return incoming_type;
} else {
return reg_types->FromCat1Const(val2, false);
}
}
} else if (val1 < 0 && val2 < 0) {
// -ve1 MERGE -ve2 => MIN(-ve1, -ve2)
if (val1 <= val2) {
if (!IsPreciseConstant()) {
return *this;
} else {
return reg_types->FromCat1Const(val1, false);
}
} else {
if (!incoming_type.IsPreciseConstant()) {
return incoming_type;
} else {
return reg_types->FromCat1Const(val2, false);
}
}
} else {
// Values are +ve and -ve, choose smallest signed type in which they both fit
if (IsConstantByte()) {
if (incoming_type.IsConstantByte()) {
return reg_types->ByteConstant();
} else if (incoming_type.IsConstantShort()) {
return reg_types->ShortConstant();
} else {
return reg_types->IntConstant();
}
} else if (IsConstantShort()) {
if (incoming_type.IsConstantShort()) {
return reg_types->ShortConstant();
} else {
return reg_types->IntConstant();
}
} else {
return reg_types->IntConstant();
}
}
} else if (IsConstantLo() && incoming_type.IsConstantLo()) {
int32_t val1 = ConstantValueLo();
int32_t val2 = incoming_type.ConstantValueLo();
return reg_types->FromCat2ConstLo(val1 | val2, false);
} else if (IsConstantHi() && incoming_type.IsConstantHi()) {
int32_t val1 = ConstantValueHi();
int32_t val2 = incoming_type.ConstantValueHi();
return reg_types->FromCat2ConstHi(val1 | val2, false);
} else if (IsIntegralTypes() && incoming_type.IsIntegralTypes()) {
if (IsBooleanTypes() && incoming_type.IsBooleanTypes()) {
return reg_types->Boolean(); // boolean MERGE boolean => boolean
}
if (IsByteTypes() && incoming_type.IsByteTypes()) {
return reg_types->Byte(); // byte MERGE byte => byte
}
if (IsShortTypes() && incoming_type.IsShortTypes()) {
return reg_types->Short(); // short MERGE short => short
}
if (IsCharTypes() && incoming_type.IsCharTypes()) {
return reg_types->Char(); // char MERGE char => char
}
return reg_types->Integer(); // int MERGE * => int
} else if ((IsFloatTypes() && incoming_type.IsFloatTypes()) ||
(IsLongTypes() && incoming_type.IsLongTypes()) ||
(IsLongHighTypes() && incoming_type.IsLongHighTypes()) ||
(IsDoubleTypes() && incoming_type.IsDoubleTypes()) ||
(IsDoubleHighTypes() && incoming_type.IsDoubleHighTypes())) {
// check constant case was handled prior to entry
DCHECK(!IsConstant() || !incoming_type.IsConstant());
// float/long/double MERGE float/long/double_constant => float/long/double
return SelectNonConstant(*this, incoming_type);
} else if (IsReferenceTypes() && incoming_type.IsReferenceTypes()) {
if (IsZero() || incoming_type.IsZero()) {
return SelectNonConstant(*this, incoming_type); // 0 MERGE ref => ref
} else if (IsJavaLangObject() || incoming_type.IsJavaLangObject()) {
return reg_types->JavaLangObject(false); // Object MERGE ref => Object
} else if (IsUnresolvedTypes() || incoming_type.IsUnresolvedTypes()) {
// We know how to merge an unresolved type with itself, 0 or Object. In this case we
// have two sub-classes and don't know how to merge. Create a new string-based unresolved
// type that reflects our lack of knowledge and that allows the rest of the unresolved
// mechanics to continue.
return reg_types->FromUnresolvedMerge(*this, incoming_type);
} else if (IsUninitializedTypes() || incoming_type.IsUninitializedTypes()) {
// Something that is uninitialized hasn't had its constructor called. Mark any merge
// of this type with something that is initialized as conflicting. The cases of a merge
// with itself, 0 or Object are handled above.
return reg_types->Conflict();
} else { // Two reference types, compute Join
mirror::Class* c1 = GetClass();
mirror::Class* c2 = incoming_type.GetClass();
DCHECK(c1 != NULL && !c1->IsPrimitive());
DCHECK(c2 != NULL && !c2->IsPrimitive());
mirror::Class* join_class = ClassJoin(c1, c2);
if (c1 == join_class && !IsPreciseReference()) {
return *this;
} else if (c2 == join_class && !incoming_type.IsPreciseReference()) {
return incoming_type;
} else {
return reg_types->FromClass(ClassHelper(join_class).GetDescriptor(), join_class, false);
}
}
} else {
return reg_types->Conflict(); // Unexpected types => Conflict
}
}
// See comment in reg_type.h
mirror::Class* RegType::ClassJoin(mirror::Class* s, mirror::Class* t) {
DCHECK(!s->IsPrimitive()) << PrettyClass(s);
DCHECK(!t->IsPrimitive()) << PrettyClass(t);
if (s == t) {
return s;
} else if (s->IsAssignableFrom(t)) {
return s;
} else if (t->IsAssignableFrom(s)) {
return t;
} else if (s->IsArrayClass() && t->IsArrayClass()) {
mirror::Class* s_ct = s->GetComponentType();
mirror::Class* t_ct = t->GetComponentType();
if (s_ct->IsPrimitive() || t_ct->IsPrimitive()) {
// Given the types aren't the same, if either array is of primitive types then the only
// common parent is java.lang.Object
mirror::Class* result = s->GetSuperClass(); // short-cut to java.lang.Object
DCHECK(result->IsObjectClass());
return result;
}
mirror::Class* common_elem = ClassJoin(s_ct, t_ct);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::ClassLoader* class_loader = s->GetClassLoader();
std::string descriptor("[");
descriptor += ClassHelper(common_elem).GetDescriptor();
mirror::Class* array_class = class_linker->FindClass(descriptor.c_str(), class_loader);
DCHECK(array_class != NULL);
return array_class;
} else {
size_t s_depth = s->Depth();
size_t t_depth = t->Depth();
// Get s and t to the same depth in the hierarchy
if (s_depth > t_depth) {
while (s_depth > t_depth) {
s = s->GetSuperClass();
s_depth--;
}
} else {
while (t_depth > s_depth) {
t = t->GetSuperClass();
t_depth--;
}
}
// Go up the hierarchy until we get to the common parent
while (s != t) {
s = s->GetSuperClass();
t = t->GetSuperClass();
}
return s;
}
}
void RegType::CheckInvariants() const {
if (IsConstant() || IsConstantLo() || IsConstantHi()) {
CHECK(descriptor_.empty()) << *this;
CHECK(klass_ == NULL) << *this;
}
if (klass_ != NULL) {
CHECK(!descriptor_.empty()) << *this;
}
}
void UninitializedThisReferenceType::CheckInvariants() const {
CHECK_EQ(GetAllocationPc(), 0U) << *this;
}
void UnresolvedUninitializedThisRefType::CheckInvariants() const {
CHECK_EQ(GetAllocationPc(), 0U) << *this;
CHECK(!descriptor_.empty()) << *this;
CHECK(klass_ == NULL) << *this;
}
void UnresolvedUninitializedRefType::CheckInvariants() const {
CHECK(!descriptor_.empty()) << *this;
CHECK(klass_ == NULL) << *this;
}
void UnresolvedMergedType::CheckInvariants() const {
// Unresolved merged types: merged types should be defined.
CHECK(descriptor_.empty()) << *this;
CHECK(klass_ == NULL) << *this;
CHECK_NE(merged_types_.first, 0U) << *this;
CHECK_NE(merged_types_.second, 0U) << *this;
}
void UnresolvedReferenceType::CheckInvariants() const {
CHECK(!descriptor_.empty()) << *this;
CHECK(klass_ == NULL) << *this;
}
void UnresolvedSuperClass::CheckInvariants() const {
// Unresolved merged types: merged types should be defined.
CHECK(descriptor_.empty()) << *this;
CHECK(klass_ == NULL) << *this;
CHECK_NE(unresolved_child_id_, 0U) << *this;
}
std::ostream& operator<<(std::ostream& os, const RegType& rhs) {
os << rhs.Dump();
return os;
}
} // namespace verifier
} // namespace art