blob: 4d56e1f9c15088e890ea460f94f67b6501aaa4e0 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
#define ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
#include "nodes.h"
namespace art {
class BlockInfo : public ArenaObject {
public:
BlockInfo(ArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values)
: block_(block),
live_in_(allocator, number_of_ssa_values, false),
live_out_(allocator, number_of_ssa_values, false),
kill_(allocator, number_of_ssa_values, false) {
live_in_.ClearAllBits();
live_out_.ClearAllBits();
kill_.ClearAllBits();
}
private:
const HBasicBlock& block_;
ArenaBitVector live_in_;
ArenaBitVector live_out_;
ArenaBitVector kill_;
friend class SsaLivenessAnalysis;
DISALLOW_COPY_AND_ASSIGN(BlockInfo);
};
/**
* A live range contains the start and end of a range where an instruction
* is live.
*/
class LiveRange : public ArenaObject {
public:
LiveRange(size_t start, size_t end, LiveRange* next) : start_(start), end_(end), next_(next) {
DCHECK_LT(start, end);
DCHECK(next_ == nullptr || next_->GetStart() > GetEnd());
}
size_t GetStart() const { return start_; }
size_t GetEnd() const { return end_; }
LiveRange* GetNext() const { return next_; }
bool IntersectsWith(const LiveRange& other) {
return (start_ >= other.start_ && start_ < other.end_)
|| (other.start_ >= start_ && other.start_ < end_);
}
bool IsBefore(const LiveRange& other) {
return end_ <= other.start_;
}
void Dump(std::ostream& stream) {
stream << "[" << start_ << ", " << end_ << ")";
}
private:
size_t start_;
size_t end_;
LiveRange* next_;
friend class LiveInterval;
DISALLOW_COPY_AND_ASSIGN(LiveRange);
};
/**
* A use position represents a live interval use at a given position.
*/
class UsePosition : public ArenaObject {
public:
UsePosition(HInstruction* user, size_t position, UsePosition* next)
: user_(user), position_(position), next_(next) {
DCHECK(user->AsPhi() != nullptr || GetPosition() == user->GetLifetimePosition());
DCHECK(next_ == nullptr || next->GetPosition() >= GetPosition());
}
size_t GetPosition() const { return position_; }
UsePosition* GetNext() const { return next_; }
HInstruction* GetUser() const { return user_; }
void Dump(std::ostream& stream) {
stream << position_;
}
private:
HInstruction* const user_;
const size_t position_;
UsePosition* const next_;
DISALLOW_COPY_AND_ASSIGN(UsePosition);
};
/**
* An interval is a list of disjoint live ranges where an instruction is live.
* Each instruction that has uses gets an interval.
*/
class LiveInterval : public ArenaObject {
public:
LiveInterval(ArenaAllocator* allocator, Primitive::Type type)
: allocator_(allocator),
first_range_(nullptr),
last_range_(nullptr),
first_use_(nullptr),
type_(type),
next_sibling_(nullptr),
register_(kNoRegister) {}
void AddUse(HInstruction* instruction) {
size_t position = instruction->GetLifetimePosition();
size_t start_block_position = instruction->GetBlock()->GetLifetimeStart();
size_t end_block_position = instruction->GetBlock()->GetLifetimeEnd();
if (first_range_ == nullptr) {
// First time we see a use of that interval.
first_range_ = last_range_ = new (allocator_) LiveRange(start_block_position, position, nullptr);
} else if (first_range_->GetStart() == start_block_position) {
// There is a use later in the same block.
DCHECK_LE(position, first_range_->GetEnd());
} else if (first_range_->GetStart() == end_block_position) {
// Last use is in the following block.
first_range_->start_ = start_block_position;
} else {
// There is a hole in the interval. Create a new range.
first_range_ = new (allocator_) LiveRange(start_block_position, position, first_range_);
}
first_use_ = new (allocator_) UsePosition(instruction, position, first_use_);
}
void AddPhiUse(HInstruction* instruction, HBasicBlock* block) {
DCHECK(instruction->AsPhi() != nullptr);
first_use_ = new (allocator_) UsePosition(instruction, block->GetLifetimeEnd(), first_use_);
}
void AddRange(size_t start, size_t end) {
if (first_range_ == nullptr) {
first_range_ = last_range_ = new (allocator_) LiveRange(start, end, first_range_);
} else if (first_range_->GetStart() == end) {
// There is a use in the following block.
first_range_->start_ = start;
} else {
// There is a hole in the interval. Create a new range.
first_range_ = new (allocator_) LiveRange(start, end, first_range_);
}
}
void AddLoopRange(size_t start, size_t end) {
DCHECK(first_range_ != nullptr);
while (first_range_ != nullptr && first_range_->GetEnd() < end) {
DCHECK_LE(start, first_range_->GetStart());
first_range_ = first_range_->GetNext();
}
if (first_range_ == nullptr) {
// Uses are only in the loop.
first_range_ = last_range_ = new (allocator_) LiveRange(start, end, nullptr);
} else {
// There are uses after the loop.
first_range_->start_ = start;
}
}
void SetFrom(size_t from) {
DCHECK(first_range_ != nullptr);
first_range_->start_ = from;
}
LiveRange* GetFirstRange() const { return first_range_; }
int GetRegister() const { return register_; }
void SetRegister(int reg) { register_ = reg; }
void ClearRegister() { register_ = kNoRegister; }
bool HasRegister() const { return register_ != kNoRegister; }
bool IsDeadAt(size_t position) {
return last_range_->GetEnd() <= position;
}
bool Covers(size_t position) {
LiveRange* current = first_range_;
while (current != nullptr) {
if (position >= current->GetStart() && position < current->GetEnd()) {
return true;
}
current = current->GetNext();
}
return false;
}
/**
* Returns the first intersection of this interval with `other`.
*/
size_t FirstIntersectionWith(LiveInterval* other) {
// We only call this method if there is a lifetime hole in this interval
// at the start of `other`.
DCHECK(!Covers(other->GetStart()));
DCHECK_LE(GetStart(), other->GetStart());
// Move to the range in this interval that starts after the other interval.
size_t other_start = other->GetStart();
LiveRange* my_range = first_range_;
while (my_range != nullptr) {
if (my_range->GetStart() >= other_start) {
break;
} else {
my_range = my_range->GetNext();
}
}
if (my_range == nullptr) {
return kNoLifetime;
}
// Advance both intervals and find the first matching range start in
// this interval.
LiveRange* other_range = other->first_range_;
do {
if (my_range->IntersectsWith(*other_range)) {
return std::max(my_range->GetStart(), other_range->GetStart());
} else if (my_range->IsBefore(*other_range)) {
my_range = my_range->GetNext();
if (my_range == nullptr) {
return kNoLifetime;
}
} else {
DCHECK(other_range->IsBefore(*my_range));
other_range = other_range->GetNext();
if (other_range == nullptr) {
return kNoLifetime;
}
}
} while (true);
}
size_t GetStart() const {
return first_range_->GetStart();
}
size_t FirstRegisterUseAfter(size_t position) const {
UsePosition* use = first_use_;
while (use != nullptr) {
size_t use_position = use->GetPosition();
// TODO: Once we plug the Locations builder of the code generator
// to the register allocator, this method must be adjusted. We
// test if there is an environment, because these are currently the only
// instructions that could have more uses than the number of registers.
if (use_position >= position && !use->GetUser()->NeedsEnvironment()) {
return use_position;
}
use = use->GetNext();
}
return kNoLifetime;
}
size_t FirstRegisterUse() const {
return FirstRegisterUseAfter(GetStart());
}
Primitive::Type GetType() const {
return type_;
}
/**
* Split this interval at `position`. This interval is changed to:
* [start ... position).
*
* The new interval covers:
* [position ... end)
*/
LiveInterval* SplitAt(size_t position) {
DCHECK(next_sibling_ == nullptr);
DCHECK_GT(position, GetStart());
if (last_range_->GetEnd() <= position) {
// This range dies before `position`, no need to split.
return nullptr;
}
LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_);
next_sibling_ = new_interval;
new_interval->first_use_ = first_use_;
LiveRange* current = first_range_;
LiveRange* previous = nullptr;
// Iterate over the ranges, and either find a range that covers this position, or
// a two ranges in between this position (that is, the position is in a lifetime hole).
do {
if (position >= current->GetEnd()) {
// Move to next range.
previous = current;
current = current->next_;
} else if (position <= current->GetStart()) {
// If the previous range did not cover this position, we know position is in
// a lifetime hole. We can just break the first_range_ and last_range_ links
// and return the new interval.
DCHECK(previous != nullptr);
DCHECK(current != first_range_);
new_interval->last_range_ = last_range_;
last_range_ = previous;
previous->next_ = nullptr;
new_interval->first_range_ = current;
return new_interval;
} else {
// This range covers position. We create a new last_range_ for this interval
// that covers last_range_->Start() and position. We also shorten the current
// range and make it the first range of the new interval.
DCHECK(position < current->GetEnd() && position > current->GetStart());
new_interval->last_range_ = last_range_;
last_range_ = new (allocator_) LiveRange(current->start_, position, nullptr);
if (previous != nullptr) {
previous->next_ = last_range_;
} else {
first_range_ = last_range_;
}
new_interval->first_range_ = current;
current->start_ = position;
return new_interval;
}
} while (current != nullptr);
LOG(FATAL) << "Unreachable";
return nullptr;
}
bool StartsBefore(LiveInterval* other) const {
return GetStart() <= other->GetStart();
}
bool StartsAfter(LiveInterval* other) const {
return GetStart() >= other->GetStart();
}
void Dump(std::ostream& stream) const {
stream << "ranges: { ";
LiveRange* current = first_range_;
do {
current->Dump(stream);
stream << " ";
} while ((current = current->GetNext()) != nullptr);
stream << "}, uses: { ";
UsePosition* use = first_use_;
if (use != nullptr) {
do {
use->Dump(stream);
stream << " ";
} while ((use = use->GetNext()) != nullptr);
}
stream << "}";
}
LiveInterval* GetNextSibling() const { return next_sibling_; }
private:
ArenaAllocator* const allocator_;
// Ranges of this interval. We need a quick access to the last range to test
// for liveness (see `IsDeadAt`).
LiveRange* first_range_;
LiveRange* last_range_;
// Uses of this interval. Note that this linked list is shared amongst siblings.
UsePosition* first_use_;
// The instruction type this interval corresponds to.
const Primitive::Type type_;
// Live interval that is the result of a split.
LiveInterval* next_sibling_;
// The register allocated to this interval.
int register_;
static constexpr int kNoRegister = -1;
DISALLOW_COPY_AND_ASSIGN(LiveInterval);
};
class SsaLivenessAnalysis : public ValueObject {
public:
explicit SsaLivenessAnalysis(const HGraph& graph)
: graph_(graph),
linear_post_order_(graph.GetArena(), graph.GetBlocks().Size()),
block_infos_(graph.GetArena(), graph.GetBlocks().Size()),
instructions_from_ssa_index_(graph.GetArena(), 0),
number_of_ssa_values_(0) {
block_infos_.SetSize(graph.GetBlocks().Size());
}
void Analyze();
BitVector* GetLiveInSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->live_in_;
}
BitVector* GetLiveOutSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->live_out_;
}
BitVector* GetKillSet(const HBasicBlock& block) const {
return &block_infos_.Get(block.GetBlockId())->kill_;
}
const GrowableArray<HBasicBlock*>& GetLinearPostOrder() const {
return linear_post_order_;
}
HInstruction* GetInstructionFromSsaIndex(size_t index) const {
return instructions_from_ssa_index_.Get(index);
}
size_t GetNumberOfSsaValues() const {
return number_of_ssa_values_;
}
private:
// Linearize the graph so that:
// (1): a block is always after its dominator,
// (2): blocks of loops are contiguous.
// This creates a natural and efficient ordering when visualizing live ranges.
void LinearizeGraph();
// Give an SSA number to each instruction that defines a value used by another instruction,
// and setup the lifetime information of each instruction and block.
void NumberInstructions();
// Compute live ranges of instructions, as well as live_in, live_out and kill sets.
void ComputeLiveness();
// Compute the live ranges of instructions, as well as the initial live_in, live_out and
// kill sets, that do not take into account backward branches.
void ComputeLiveRanges();
// After computing the initial sets, this method does a fixed point
// calculation over the live_in and live_out set to take into account
// backwards branches.
void ComputeLiveInAndLiveOutSets();
// Update the live_in set of the block and returns whether it has changed.
bool UpdateLiveIn(const HBasicBlock& block);
// Update the live_out set of the block and returns whether it has changed.
bool UpdateLiveOut(const HBasicBlock& block);
const HGraph& graph_;
GrowableArray<HBasicBlock*> linear_post_order_;
GrowableArray<BlockInfo*> block_infos_;
GrowableArray<HInstruction*> instructions_from_ssa_index_;
size_t number_of_ssa_values_;
DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_