blob: c5692bc10d2d3e810f1266f8c63f8d8e80d9a26f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "CompilerInternals.h"
#include "Dataflow.h"
#include "constants.h"
#include "leb128.h"
#include "object.h"
#include "runtime.h"
namespace art {
/* Default optimizer/debug setting for the compiler. */
uint32_t compilerOptimizerDisableFlags = 0 | // Disable specific optimizations
//(1 << kLoadStoreElimination) |
//(1 << kLoadHoisting) |
//(1 << kSuppressLoads) |
//(1 << kNullCheckElimination) |
//(1 << kPromoteRegs) |
//(1 << kTrackLiveTemps) |
//(1 << kSkipLargeMethodOptimization) |
0;
uint32_t compilerDebugFlags = 0 | // Enable debug/testing modes
//(1 << kDebugDisplayMissingTargets) |
//(1 << kDebugVerbose) |
//(1 << kDebugDumpCFG) |
//(1 << kDebugSlowFieldPath) |
//(1 << kDebugSlowInvokePath) |
//(1 << kDebugSlowStringPath) |
//(1 << kDebugSlowestFieldPath) |
//(1 << kDebugSlowestStringPath) |
//(1 << kDebugExerciseResolveMethod) |
//(1 << kDebugVerifyDataflow) |
0;
std::string compilerMethodMatch; // Method name match to apply above flags
bool compilerFlipMatch = false; // Reverses sense of method name match
STATIC inline bool contentIsInsn(const u2* codePtr) {
u2 instr = *codePtr;
Opcode opcode = (Opcode)(instr & 0xff);
/*
* Since the low 8-bit in metadata may look like OP_NOP, we need to check
* both the low and whole sub-word to determine whether it is code or data.
*/
return (opcode != OP_NOP || instr == 0);
}
/*
* Parse an instruction, return the length of the instruction
*/
STATIC inline int parseInsn(const u2* codePtr, DecodedInstruction* decInsn,
bool printMe)
{
// Don't parse instruction data
if (!contentIsInsn(codePtr)) {
return 0;
}
u2 instr = *codePtr;
Opcode opcode = dexOpcodeFromCodeUnit(instr);
dexDecodeInstruction(codePtr, decInsn);
if (printMe) {
char* decodedString = oatGetDalvikDisassembly(decInsn, NULL);
LOG(INFO) << codePtr << ": 0x" << std::hex << (int)opcode <<
" " << decodedString;
}
return dexGetWidthFromOpcode(opcode);
}
#define UNKNOWN_TARGET 0xffffffff
STATIC inline bool isGoto(MIR* insn)
{
switch (insn->dalvikInsn.opcode) {
case OP_GOTO:
case OP_GOTO_16:
case OP_GOTO_32:
return true;
default:
return false;
}
}
/*
* Identify unconditional branch instructions
*/
STATIC inline bool isUnconditionalBranch(MIR* insn)
{
switch (insn->dalvikInsn.opcode) {
case OP_RETURN_VOID:
case OP_RETURN:
case OP_RETURN_WIDE:
case OP_RETURN_OBJECT:
return true;
default:
return isGoto(insn);
}
}
/* Split an existing block from the specified code offset into two */
STATIC BasicBlock *splitBlock(CompilationUnit* cUnit,
unsigned int codeOffset,
BasicBlock* origBlock,
BasicBlock** immedPredBlockP)
{
MIR* insn = origBlock->firstMIRInsn;
while (insn) {
if (insn->offset == codeOffset) break;
insn = insn->next;
}
if (insn == NULL) {
LOG(FATAL) << "Break split failed";
}
BasicBlock *bottomBlock = oatNewBB(kDalvikByteCode,
cUnit->numBlocks++);
oatInsertGrowableList(&cUnit->blockList, (intptr_t) bottomBlock);
bottomBlock->startOffset = codeOffset;
bottomBlock->firstMIRInsn = insn;
bottomBlock->lastMIRInsn = origBlock->lastMIRInsn;
/* Add it to the quick lookup cache */
cUnit->blockMap.insert(std::make_pair(bottomBlock->startOffset,
bottomBlock));
/* Handle the taken path */
bottomBlock->taken = origBlock->taken;
if (bottomBlock->taken) {
origBlock->taken = NULL;
oatClearBit(bottomBlock->taken->predecessors, origBlock->id);
oatSetBit(bottomBlock->taken->predecessors, bottomBlock->id);
}
/* Handle the fallthrough path */
bottomBlock->needFallThroughBranch = origBlock->needFallThroughBranch;
bottomBlock->fallThrough = origBlock->fallThrough;
origBlock->fallThrough = bottomBlock;
origBlock->needFallThroughBranch = true;
oatSetBit(bottomBlock->predecessors, origBlock->id);
if (bottomBlock->fallThrough) {
oatClearBit(bottomBlock->fallThrough->predecessors,
origBlock->id);
oatSetBit(bottomBlock->fallThrough->predecessors,
bottomBlock->id);
}
/* Handle the successor list */
if (origBlock->successorBlockList.blockListType != kNotUsed) {
bottomBlock->successorBlockList = origBlock->successorBlockList;
origBlock->successorBlockList.blockListType = kNotUsed;
GrowableListIterator iterator;
oatGrowableListIteratorInit(&bottomBlock->successorBlockList.blocks,
&iterator);
while (true) {
SuccessorBlockInfo *successorBlockInfo =
(SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator);
if (successorBlockInfo == NULL) break;
BasicBlock *bb = successorBlockInfo->block;
oatClearBit(bb->predecessors, origBlock->id);
oatSetBit(bb->predecessors, bottomBlock->id);
}
}
origBlock->lastMIRInsn = insn->prev;
insn->prev->next = NULL;
insn->prev = NULL;
/*
* Update the immediate predecessor block pointer so that outgoing edges
* can be applied to the proper block.
*/
if (immedPredBlockP) {
DCHECK_EQ(*immedPredBlockP, origBlock);
*immedPredBlockP = bottomBlock;
}
return bottomBlock;
}
/*
* Given a code offset, find out the block that starts with it. If the offset
* is in the middle of an existing block, split it into two. If immedPredBlockP
* is not non-null and is the block being split, update *immedPredBlockP to
* point to the bottom block so that outgoing edges can be set up properly
* (by the caller)
* Utilizes a map for fast lookup of the typical cases.
*/
STATIC BasicBlock *findBlock(CompilationUnit* cUnit,
unsigned int codeOffset,
bool split, bool create,
BasicBlock** immedPredBlockP)
{
GrowableList* blockList = &cUnit->blockList;
BasicBlock* bb;
unsigned int i;
std::map<unsigned int, BasicBlock*>::iterator it;
it = cUnit->blockMap.find(codeOffset);
if (it != cUnit->blockMap.end()) {
return it->second;
} else if (!create) {
return NULL;
}
if (split) {
for (i = 0; i < blockList->numUsed; i++) {
bb = (BasicBlock *) blockList->elemList[i];
if (bb->blockType != kDalvikByteCode) continue;
/* Check if a branch jumps into the middle of an existing block */
if ((codeOffset > bb->startOffset) && (bb->lastMIRInsn != NULL) &&
(codeOffset <= bb->lastMIRInsn->offset)) {
BasicBlock *newBB = splitBlock(cUnit, codeOffset, bb,
bb == *immedPredBlockP ?
immedPredBlockP : NULL);
return newBB;
}
}
}
/* Create a new one */
bb = oatNewBB(kDalvikByteCode, cUnit->numBlocks++);
oatInsertGrowableList(&cUnit->blockList, (intptr_t) bb);
bb->startOffset = codeOffset;
cUnit->blockMap.insert(std::make_pair(bb->startOffset, bb));
return bb;
}
/* Dump the CFG into a DOT graph */
void oatDumpCFG(CompilationUnit* cUnit, const char* dirPrefix)
{
FILE* file;
std::string name(PrettyMethod(cUnit->method_idx, *cUnit->dex_file));
char startOffset[80];
sprintf(startOffset, "_%x", cUnit->entryBlock->fallThrough->startOffset);
char* fileName = (char*) oatNew(
strlen(dirPrefix) +
name.length() +
strlen(".dot") + 1, true);
sprintf(fileName, "%s%s%s.dot", dirPrefix, name.c_str(), startOffset);
/*
* Convert the special characters into a filesystem- and shell-friendly
* format.
*/
int i;
for (i = strlen(dirPrefix); fileName[i]; i++) {
if (fileName[i] == '/') {
fileName[i] = '_';
} else if (fileName[i] == ';') {
fileName[i] = '#';
} else if (fileName[i] == '$') {
fileName[i] = '+';
} else if (fileName[i] == '(' || fileName[i] == ')') {
fileName[i] = '@';
} else if (fileName[i] == '<' || fileName[i] == '>') {
fileName[i] = '=';
}
}
file = fopen(fileName, "w");
if (file == NULL) {
return;
}
fprintf(file, "digraph G {\n");
fprintf(file, " rankdir=TB\n");
int numReachableBlocks = cUnit->numReachableBlocks;
int idx;
const GrowableList *blockList = &cUnit->blockList;
for (idx = 0; idx < numReachableBlocks; idx++) {
int blockIdx = cUnit->dfsOrder.elemList[idx];
BasicBlock *bb = (BasicBlock *) oatGrowableListGetElement(blockList,
blockIdx);
if (bb == NULL) break;
if (bb->blockType == kEntryBlock) {
fprintf(file, " entry [shape=Mdiamond];\n");
} else if (bb->blockType == kExitBlock) {
fprintf(file, " exit [shape=Mdiamond];\n");
} else if (bb->blockType == kDalvikByteCode) {
fprintf(file, " block%04x [shape=record,label = \"{ \\\n",
bb->startOffset);
const MIR *mir;
fprintf(file, " {block id %d\\l}%s\\\n", bb->id,
bb->firstMIRInsn ? " | " : " ");
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
fprintf(file, " {%04x %s\\l}%s\\\n", mir->offset,
mir->ssaRep ?
oatFullDisassembler(cUnit, mir) :
dexGetOpcodeName(mir->dalvikInsn.opcode),
mir->next ? " | " : " ");
}
fprintf(file, " }\"];\n\n");
} else if (bb->blockType == kExceptionHandling) {
char blockName[BLOCK_NAME_LEN];
oatGetBlockName(bb, blockName);
fprintf(file, " %s [shape=invhouse];\n", blockName);
}
char blockName1[BLOCK_NAME_LEN], blockName2[BLOCK_NAME_LEN];
if (bb->taken) {
oatGetBlockName(bb, blockName1);
oatGetBlockName(bb->taken, blockName2);
fprintf(file, " %s:s -> %s:n [style=dotted]\n",
blockName1, blockName2);
}
if (bb->fallThrough) {
oatGetBlockName(bb, blockName1);
oatGetBlockName(bb->fallThrough, blockName2);
fprintf(file, " %s:s -> %s:n\n", blockName1, blockName2);
}
if (bb->successorBlockList.blockListType != kNotUsed) {
fprintf(file, " succ%04x [shape=%s,label = \"{ \\\n",
bb->startOffset,
(bb->successorBlockList.blockListType == kCatch) ?
"Mrecord" : "record");
GrowableListIterator iterator;
oatGrowableListIteratorInit(&bb->successorBlockList.blocks,
&iterator);
SuccessorBlockInfo *successorBlockInfo =
(SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator);
int succId = 0;
while (true) {
if (successorBlockInfo == NULL) break;
BasicBlock *destBlock = successorBlockInfo->block;
SuccessorBlockInfo *nextSuccessorBlockInfo =
(SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator);
fprintf(file, " {<f%d> %04x: %04x\\l}%s\\\n",
succId++,
successorBlockInfo->key,
destBlock->startOffset,
(nextSuccessorBlockInfo != NULL) ? " | " : " ");
successorBlockInfo = nextSuccessorBlockInfo;
}
fprintf(file, " }\"];\n\n");
oatGetBlockName(bb, blockName1);
fprintf(file, " %s:s -> succ%04x:n [style=dashed]\n",
blockName1, bb->startOffset);
if (bb->successorBlockList.blockListType == kPackedSwitch ||
bb->successorBlockList.blockListType == kSparseSwitch) {
oatGrowableListIteratorInit(&bb->successorBlockList.blocks,
&iterator);
succId = 0;
while (true) {
SuccessorBlockInfo *successorBlockInfo =
(SuccessorBlockInfo *)
oatGrowableListIteratorNext(&iterator);
if (successorBlockInfo == NULL) break;
BasicBlock *destBlock = successorBlockInfo->block;
oatGetBlockName(destBlock, blockName2);
fprintf(file, " succ%04x:f%d:e -> %s:n\n",
bb->startOffset, succId++,
blockName2);
}
}
}
fprintf(file, "\n");
/* Display the dominator tree */
oatGetBlockName(bb, blockName1);
fprintf(file, " cfg%s [label=\"%s\", shape=none];\n",
blockName1, blockName1);
if (bb->iDom) {
oatGetBlockName(bb->iDom, blockName2);
fprintf(file, " cfg%s:s -> cfg%s:n\n\n",
blockName2, blockName1);
}
}
fprintf(file, "}\n");
fclose(file);
}
/* Verify if all the successor is connected with all the claimed predecessors */
STATIC bool verifyPredInfo(CompilationUnit* cUnit, BasicBlock* bb)
{
ArenaBitVectorIterator bvIterator;
oatBitVectorIteratorInit(bb->predecessors, &bvIterator);
while (true) {
int blockIdx = oatBitVectorIteratorNext(&bvIterator);
if (blockIdx == -1) break;
BasicBlock *predBB = (BasicBlock *)
oatGrowableListGetElement(&cUnit->blockList, blockIdx);
bool found = false;
if (predBB->taken == bb) {
found = true;
} else if (predBB->fallThrough == bb) {
found = true;
} else if (predBB->successorBlockList.blockListType != kNotUsed) {
GrowableListIterator iterator;
oatGrowableListIteratorInit(&predBB->successorBlockList.blocks,
&iterator);
while (true) {
SuccessorBlockInfo *successorBlockInfo =
(SuccessorBlockInfo *)
oatGrowableListIteratorNext(&iterator);
if (successorBlockInfo == NULL) break;
BasicBlock *succBB = successorBlockInfo->block;
if (succBB == bb) {
found = true;
break;
}
}
}
if (found == false) {
char blockName1[BLOCK_NAME_LEN], blockName2[BLOCK_NAME_LEN];
oatGetBlockName(bb, blockName1);
oatGetBlockName(predBB, blockName2);
oatDumpCFG(cUnit, "/sdcard/cfg/");
LOG(FATAL) << "Successor " << blockName1 << "not found from "
<< blockName2;
}
}
return true;
}
/* Identify code range in try blocks and set up the empty catch blocks */
STATIC void processTryCatchBlocks(CompilationUnit* cUnit)
{
const DexFile::CodeItem* code_item = cUnit->code_item;
int triesSize = code_item->tries_size_;
int offset;
if (triesSize == 0) {
return;
}
ArenaBitVector* tryBlockAddr = cUnit->tryBlockAddr;
for (int i = 0; i < triesSize; i++) {
const DexFile::TryItem* pTry =
DexFile::GetTryItems(*code_item, i);
int startOffset = pTry->start_addr_;
int endOffset = startOffset + pTry->insn_count_;
for (offset = startOffset; offset < endOffset; offset++) {
oatSetBit(tryBlockAddr, offset);
}
}
// Iterate over each of the handlers to enqueue the empty Catch blocks
const byte* handlers_ptr =
DexFile::GetCatchHandlerData(*code_item, 0);
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
for (uint32_t idx = 0; idx < handlers_size; idx++) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
uint32_t address = iterator.GetHandlerAddress();
findBlock(cUnit, address, false /* split */, true /*create*/,
/* immedPredBlockP */ NULL);
}
handlers_ptr = iterator.EndDataPointer();
}
}
/* Process instructions with the kInstrCanBranch flag */
STATIC BasicBlock* processCanBranch(CompilationUnit* cUnit,
BasicBlock* curBlock, MIR* insn,
int curOffset, int width, int flags,
const u2* codePtr, const u2* codeEnd)
{
int target = curOffset;
switch (insn->dalvikInsn.opcode) {
case OP_GOTO:
case OP_GOTO_16:
case OP_GOTO_32:
target += (int) insn->dalvikInsn.vA;
break;
case OP_IF_EQ:
case OP_IF_NE:
case OP_IF_LT:
case OP_IF_GE:
case OP_IF_GT:
case OP_IF_LE:
target += (int) insn->dalvikInsn.vC;
break;
case OP_IF_EQZ:
case OP_IF_NEZ:
case OP_IF_LTZ:
case OP_IF_GEZ:
case OP_IF_GTZ:
case OP_IF_LEZ:
target += (int) insn->dalvikInsn.vB;
break;
default:
LOG(FATAL) << "Unexpected opcode(" << (int)insn->dalvikInsn.opcode
<< ") with kInstrCanBranch set";
}
BasicBlock *takenBlock = findBlock(cUnit, target,
/* split */
true,
/* create */
true,
/* immedPredBlockP */
&curBlock);
curBlock->taken = takenBlock;
oatSetBit(takenBlock->predecessors, curBlock->id);
/* Always terminate the current block for conditional branches */
if (flags & kInstrCanContinue) {
BasicBlock *fallthroughBlock = findBlock(cUnit,
curOffset + width,
/*
* If the method is processed
* in sequential order from the
* beginning, we don't need to
* specify split for continue
* blocks. However, this
* routine can be called by
* compileLoop, which starts
* parsing the method from an
* arbitrary address in the
* method body.
*/
true,
/* create */
true,
/* immedPredBlockP */
&curBlock);
curBlock->fallThrough = fallthroughBlock;
oatSetBit(fallthroughBlock->predecessors, curBlock->id);
} else if (codePtr < codeEnd) {
/* Create a fallthrough block for real instructions (incl. OP_NOP) */
if (contentIsInsn(codePtr)) {
findBlock(cUnit, curOffset + width,
/* split */
false,
/* create */
true,
/* immedPredBlockP */
NULL);
}
}
return curBlock;
}
/* Process instructions with the kInstrCanSwitch flag */
STATIC void processCanSwitch(CompilationUnit* cUnit, BasicBlock* curBlock,
MIR* insn, int curOffset, int width, int flags)
{
u2* switchData= (u2 *) (cUnit->insns + curOffset +
insn->dalvikInsn.vB);
int size;
int* keyTable;
int* targetTable;
int i;
int firstKey;
/*
* Packed switch data format:
* ushort ident = 0x0100 magic value
* ushort size number of entries in the table
* int first_key first (and lowest) switch case value
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (4+size*2) 16-bit code units.
*/
if (insn->dalvikInsn.opcode == OP_PACKED_SWITCH) {
DCHECK_EQ(switchData[0], kPackedSwitchSignature);
size = switchData[1];
firstKey = switchData[2] | (switchData[3] << 16);
targetTable = (int *) &switchData[4];
keyTable = NULL; // Make the compiler happy
/*
* Sparse switch data format:
* ushort ident = 0x0200 magic value
* ushort size number of entries in the table; > 0
* int keys[size] keys, sorted low-to-high; 32-bit aligned
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (2+size*4) 16-bit code units.
*/
} else {
DCHECK_EQ(switchData[0], kSparseSwitchSignature);
size = switchData[1];
keyTable = (int *) &switchData[2];
targetTable = (int *) &switchData[2 + size*2];
firstKey = 0; // To make the compiler happy
}
if (curBlock->successorBlockList.blockListType != kNotUsed) {
LOG(FATAL) << "Successor block list already in use: " <<
(int)curBlock->successorBlockList.blockListType;
}
curBlock->successorBlockList.blockListType =
(insn->dalvikInsn.opcode == OP_PACKED_SWITCH) ?
kPackedSwitch : kSparseSwitch;
oatInitGrowableList(&curBlock->successorBlockList.blocks, size);
for (i = 0; i < size; i++) {
BasicBlock *caseBlock = findBlock(cUnit, curOffset + targetTable[i],
/* split */
true,
/* create */
true,
/* immedPredBlockP */
&curBlock);
SuccessorBlockInfo *successorBlockInfo =
(SuccessorBlockInfo *) oatNew(sizeof(SuccessorBlockInfo),
false);
successorBlockInfo->block = caseBlock;
successorBlockInfo->key = (insn->dalvikInsn.opcode == OP_PACKED_SWITCH)?
firstKey + i : keyTable[i];
oatInsertGrowableList(&curBlock->successorBlockList.blocks,
(intptr_t) successorBlockInfo);
oatSetBit(caseBlock->predecessors, curBlock->id);
}
/* Fall-through case */
BasicBlock* fallthroughBlock = findBlock(cUnit,
curOffset + width,
/* split */
false,
/* create */
true,
/* immedPredBlockP */
NULL);
curBlock->fallThrough = fallthroughBlock;
oatSetBit(fallthroughBlock->predecessors, curBlock->id);
}
/* Process instructions with the kInstrCanThrow flag */
STATIC void processCanThrow(CompilationUnit* cUnit, BasicBlock* curBlock,
MIR* insn, int curOffset, int width, int flags,
ArenaBitVector* tryBlockAddr, const u2* codePtr,
const u2* codeEnd)
{
const DexFile::CodeItem* code_item = cUnit->code_item;
/* In try block */
if (oatIsBitSet(tryBlockAddr, curOffset)) {
CatchHandlerIterator iterator(*code_item, curOffset);
if (curBlock->successorBlockList.blockListType != kNotUsed) {
LOG(FATAL) << "Successor block list already in use: " <<
(int)curBlock->successorBlockList.blockListType;
}
curBlock->successorBlockList.blockListType = kCatch;
oatInitGrowableList(&curBlock->successorBlockList.blocks, 2);
for (;iterator.HasNext(); iterator.Next()) {
BasicBlock *catchBlock = findBlock(cUnit, iterator.GetHandlerAddress(),
false /* split*/,
false /* creat */,
NULL /* immedPredBlockP */);
catchBlock->catchEntry = true;
SuccessorBlockInfo *successorBlockInfo =
(SuccessorBlockInfo *) oatNew(sizeof(SuccessorBlockInfo),
false);
successorBlockInfo->block = catchBlock;
successorBlockInfo->key = iterator.GetHandlerTypeIndex();
oatInsertGrowableList(&curBlock->successorBlockList.blocks,
(intptr_t) successorBlockInfo);
oatSetBit(catchBlock->predecessors, curBlock->id);
}
} else {
BasicBlock *ehBlock = oatNewBB(kExceptionHandling,
cUnit->numBlocks++);
curBlock->taken = ehBlock;
oatInsertGrowableList(&cUnit->blockList, (intptr_t) ehBlock);
ehBlock->startOffset = curOffset;
oatSetBit(ehBlock->predecessors, curBlock->id);
}
/*
* Force the current block to terminate.
*
* Data may be present before codeEnd, so we need to parse it to know
* whether it is code or data.
*/
if (codePtr < codeEnd) {
/* Create a fallthrough block for real instructions (incl. OP_NOP) */
if (contentIsInsn(codePtr)) {
BasicBlock *fallthroughBlock = findBlock(cUnit,
curOffset + width,
/* split */
false,
/* create */
true,
/* immedPredBlockP */
NULL);
/*
* OP_THROW is an unconditional branch. NOTE:
* OP_THROW_VERIFICATION_ERROR is also an unconditional
* branch, but we shouldn't treat it as such until we have
* a dead code elimination pass (which won't be important
* until inlining w/ constant propogation is implemented.
*/
if (insn->dalvikInsn.opcode != OP_THROW) {
curBlock->fallThrough = fallthroughBlock;
oatSetBit(fallthroughBlock->predecessors, curBlock->id);
}
}
}
}
/*
* Compile a method.
*/
CompiledMethod* oatCompileMethod(const Compiler& compiler, const DexFile::CodeItem* code_item,
uint32_t access_flags, uint32_t method_idx,
const ClassLoader* class_loader,
const DexFile& dex_file, InstructionSet insnSet)
{
VLOG(compiler) << "Compiling " << PrettyMethod(method_idx, dex_file) << "...";
oatArenaReset();
const u2* codePtr = code_item->insns_;
const u2* codeEnd = code_item->insns_ + code_item->insns_size_in_code_units_;
int numBlocks = 0;
unsigned int curOffset = 0;
oatInit(compiler);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
UniquePtr<CompilationUnit> cUnit(new CompilationUnit);
memset(cUnit.get(), 0, sizeof(*cUnit));
cUnit->compiler = &compiler;
cUnit->class_linker = class_linker;
cUnit->dex_file = &dex_file;
cUnit->dex_cache = class_linker->FindDexCache(dex_file);
cUnit->method_idx = method_idx;
cUnit->code_item = code_item;
cUnit->access_flags = access_flags;
cUnit->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
cUnit->instructionSet = (OatInstructionSetType)insnSet;
cUnit->insns = code_item->insns_;
cUnit->insnsSize = code_item->insns_size_in_code_units_;
cUnit->numIns = code_item->ins_size_;
cUnit->numRegs = code_item->registers_size_ - cUnit->numIns;
cUnit->numOuts = code_item->outs_size_;
/* Adjust this value accordingly once inlining is performed */
cUnit->numDalvikRegisters = code_item->registers_size_;
cUnit->blockMap = std::map<unsigned int, BasicBlock*>();
cUnit->blockMap.clear();
bool useMatch = compilerMethodMatch.length() != 0;
bool match = useMatch && (compilerFlipMatch ^
(PrettyMethod(method_idx, dex_file).find(compilerMethodMatch) != std::string::npos));
if (!useMatch || match) {
cUnit->disableOpt = compilerOptimizerDisableFlags;
cUnit->enableDebug = compilerDebugFlags;
cUnit->printMe = VLOG_IS_ON(compiler) || (cUnit->enableDebug & (1 << kDebugVerbose));
}
/* Assume non-throwing leaf */
cUnit->attrs = (METHOD_IS_LEAF | METHOD_IS_THROW_FREE);
/* Initialize the block list */
oatInitGrowableList(&cUnit->blockList, 40);
/* Initialize the switchTables list */
oatInitGrowableList(&cUnit->switchTables, 4);
/* Intialize the fillArrayData list */
oatInitGrowableList(&cUnit->fillArrayData, 4);
/* Intialize the throwLaunchpads list */
oatInitGrowableList(&cUnit->throwLaunchpads, 4);
/* Intialize the suspendLaunchpads list */
oatInitGrowableList(&cUnit->suspendLaunchpads, 4);
/* Allocate the bit-vector to track the beginning of basic blocks */
ArenaBitVector *tryBlockAddr = oatAllocBitVector(cUnit->insnsSize,
true /* expandable */);
cUnit->tryBlockAddr = tryBlockAddr;
/* Create the default entry and exit blocks and enter them to the list */
BasicBlock *entryBlock = oatNewBB(kEntryBlock, numBlocks++);
BasicBlock *exitBlock = oatNewBB(kExitBlock, numBlocks++);
cUnit->entryBlock = entryBlock;
cUnit->exitBlock = exitBlock;
oatInsertGrowableList(&cUnit->blockList, (intptr_t) entryBlock);
oatInsertGrowableList(&cUnit->blockList, (intptr_t) exitBlock);
/* Current block to record parsed instructions */
BasicBlock *curBlock = oatNewBB(kDalvikByteCode, numBlocks++);
curBlock->startOffset = 0;
oatInsertGrowableList(&cUnit->blockList, (intptr_t) curBlock);
/* Add first block to the fast lookup cache */
cUnit->blockMap.insert(std::make_pair(curBlock->startOffset, curBlock));
entryBlock->fallThrough = curBlock;
oatSetBit(curBlock->predecessors, entryBlock->id);
/*
* Store back the number of blocks since new blocks may be created of
* accessing cUnit.
*/
cUnit->numBlocks = numBlocks;
/* Identify code range in try blocks and set up the empty catch blocks */
processTryCatchBlocks(cUnit.get());
/* Parse all instructions and put them into containing basic blocks */
while (codePtr < codeEnd) {
MIR *insn = (MIR *) oatNew(sizeof(MIR), true);
insn->offset = curOffset;
int width = parseInsn(codePtr, &insn->dalvikInsn, false);
insn->width = width;
/* Terminate when the data section is seen */
if (width == 0)
break;
oatAppendMIR(curBlock, insn);
codePtr += width;
int flags = dexGetFlagsFromOpcode(insn->dalvikInsn.opcode);
cUnit->usesFP |= (oatDataFlowAttributes[insn->dalvikInsn.opcode] &
DF_USES_FP);
if (flags & kInstrCanBranch) {
curBlock = processCanBranch(cUnit.get(), curBlock, insn, curOffset,
width, flags, codePtr, codeEnd);
} else if (flags & kInstrCanReturn) {
curBlock->fallThrough = exitBlock;
oatSetBit(exitBlock->predecessors, curBlock->id);
/*
* Terminate the current block if there are instructions
* afterwards.
*/
if (codePtr < codeEnd) {
/*
* Create a fallthrough block for real instructions
* (incl. OP_NOP).
*/
if (contentIsInsn(codePtr)) {
findBlock(cUnit.get(), curOffset + width,
/* split */
false,
/* create */
true,
/* immedPredBlockP */
NULL);
}
}
} else if (flags & kInstrCanThrow) {
processCanThrow(cUnit.get(), curBlock, insn, curOffset, width, flags,
tryBlockAddr, codePtr, codeEnd);
} else if (flags & kInstrCanSwitch) {
processCanSwitch(cUnit.get(), curBlock, insn, curOffset, width, flags);
}
curOffset += width;
BasicBlock *nextBlock = findBlock(cUnit.get(), curOffset,
/* split */
false,
/* create */
false,
/* immedPredBlockP */
NULL);
if (nextBlock) {
/*
* The next instruction could be the target of a previously parsed
* forward branch so a block is already created. If the current
* instruction is not an unconditional branch, connect them through
* the fall-through link.
*/
DCHECK(curBlock->fallThrough == NULL ||
curBlock->fallThrough == nextBlock ||
curBlock->fallThrough == exitBlock);
if ((curBlock->fallThrough == NULL) &&
(flags & kInstrCanContinue)) {
curBlock->fallThrough = nextBlock;
oatSetBit(nextBlock->predecessors, curBlock->id);
}
curBlock = nextBlock;
}
}
if (!cUnit->usesFP &&
!(cUnit->disableOpt & (1 << kSkipLargeMethodOptimization))) {
if ((cUnit->numBlocks > MANY_BLOCKS) ||
((cUnit->numBlocks > MANY_BLOCKS_INITIALIZER) &&
PrettyMethod(method_idx, dex_file).find("init>") !=
std::string::npos)) {
cUnit->disableDataflow = true;
// Disable optimization which require dataflow/ssa
cUnit->disableOpt |=
(1 << kNullCheckElimination) |
(1 << kPromoteRegs);
if (cUnit->printMe) {
LOG(INFO) << "Compiler: " << PrettyMethod(method_idx, dex_file)
<< " too big: " << cUnit->numBlocks;
}
}
}
if (cUnit->printMe) {
oatDumpCompilationUnit(cUnit.get());
}
if (cUnit->enableDebug & (1 << kDebugVerifyDataflow)) {
/* Verify if all blocks are connected as claimed */
oatDataFlowAnalysisDispatcher(cUnit.get(), verifyPredInfo, kAllNodes, false /* isIterative */);
}
/* Perform SSA transformation for the whole method */
oatMethodSSATransformation(cUnit.get());
/* Perform null check elimination */
oatMethodNullCheckElimination(cUnit.get());
oatInitializeRegAlloc(cUnit.get()); // Needs to happen after SSA naming
/* Allocate Registers using simple local allocation scheme */
oatSimpleRegAlloc(cUnit.get());
/* Convert MIR to LIR, etc. */
oatMethodMIR2LIR(cUnit.get());
// Debugging only
if (cUnit->enableDebug & (1 << kDebugDumpCFG)) {
oatDumpCFG(cUnit.get(), "/sdcard/cfg/");
}
/* Method is not empty */
if (cUnit->firstLIRInsn) {
// mark the targets of switch statement case labels
oatProcessSwitchTables(cUnit.get());
/* Convert LIR into machine code. */
oatAssembleLIR(cUnit.get());
if (cUnit->printMe) {
oatCodegenDump(cUnit.get());
}
}
// Combine vmap tables - core regs, then fp regs - into vmapTable
std::vector<uint16_t> vmapTable;
for (size_t i = 0 ; i < cUnit->coreVmapTable.size(); i++) {
vmapTable.push_back(cUnit->coreVmapTable[i]);
}
// Add a marker to take place of lr
vmapTable.push_back(INVALID_VREG);
// Combine vmap tables - core regs, then fp regs
for (uint32_t i = 0; i < cUnit->fpVmapTable.size(); i++) {
vmapTable.push_back(cUnit->fpVmapTable[i]);
}
DCHECK_EQ(vmapTable.size(),
static_cast<uint32_t>(__builtin_popcount(cUnit->coreSpillMask)
+ __builtin_popcount(cUnit->fpSpillMask)));
DCHECK_GE(vmapTable.size(), 1U); // should always at least one INVALID_VREG for lr
CompiledMethod* result = new CompiledMethod(kThumb2, cUnit->codeBuffer,
cUnit->frameSize, cUnit->coreSpillMask,
cUnit->fpSpillMask, cUnit->mappingTable,
vmapTable);
VLOG(compiler) << "Compiled " << PrettyMethod(method_idx, dex_file)
<< " (" << (cUnit->codeBuffer.size() * sizeof(cUnit->codeBuffer[0])) << " bytes)";
return result;
}
void oatInit(const Compiler& compiler)
{
static bool initialized = false;
if (initialized)
return;
initialized = true;
VLOG(compiler) << "Initializing compiler";
if (!oatArchInit()) {
LOG(FATAL) << "Failed to initialize oat";
}
if (!oatHeapInit()) {
LOG(FATAL) << "Failed to initialize oat heap";
}
}
} // namespace art