blob: 2aa158f0d2ddd292a393e43ca2c58c3649ecfaec [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
#include "invoke_type.h"
#include "compiled_method.h"
#include "dex/compiler_enums.h"
#include "dex/compiler_ir.h"
#include "dex/reg_location.h"
#include "dex/reg_storage.h"
#include "dex/backend.h"
#include "dex/quick/resource_mask.h"
#include "driver/compiler_driver.h"
#include "instruction_set.h"
#include "leb128.h"
#include "safe_map.h"
#include "utils/array_ref.h"
#include "utils/arena_allocator.h"
#include "utils/growable_array.h"
namespace art {
/*
* TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
* add type safety (see runtime/offsets.h).
*/
typedef uint32_t DexOffset; // Dex offset in code units.
typedef uint16_t NarrowDexOffset; // For use in structs, Dex offsets range from 0 .. 0xffff.
typedef uint32_t CodeOffset; // Native code offset in bytes.
// Set to 1 to measure cost of suspend check.
#define NO_SUSPEND 0
#define IS_BINARY_OP (1ULL << kIsBinaryOp)
#define IS_BRANCH (1ULL << kIsBranch)
#define IS_IT (1ULL << kIsIT)
#define IS_LOAD (1ULL << kMemLoad)
#define IS_QUAD_OP (1ULL << kIsQuadOp)
#define IS_QUIN_OP (1ULL << kIsQuinOp)
#define IS_SEXTUPLE_OP (1ULL << kIsSextupleOp)
#define IS_STORE (1ULL << kMemStore)
#define IS_TERTIARY_OP (1ULL << kIsTertiaryOp)
#define IS_UNARY_OP (1ULL << kIsUnaryOp)
#define NEEDS_FIXUP (1ULL << kPCRelFixup)
#define NO_OPERAND (1ULL << kNoOperand)
#define REG_DEF0 (1ULL << kRegDef0)
#define REG_DEF1 (1ULL << kRegDef1)
#define REG_DEF2 (1ULL << kRegDef2)
#define REG_DEFA (1ULL << kRegDefA)
#define REG_DEFD (1ULL << kRegDefD)
#define REG_DEF_FPCS_LIST0 (1ULL << kRegDefFPCSList0)
#define REG_DEF_FPCS_LIST2 (1ULL << kRegDefFPCSList2)
#define REG_DEF_LIST0 (1ULL << kRegDefList0)
#define REG_DEF_LIST1 (1ULL << kRegDefList1)
#define REG_DEF_LR (1ULL << kRegDefLR)
#define REG_DEF_SP (1ULL << kRegDefSP)
#define REG_USE0 (1ULL << kRegUse0)
#define REG_USE1 (1ULL << kRegUse1)
#define REG_USE2 (1ULL << kRegUse2)
#define REG_USE3 (1ULL << kRegUse3)
#define REG_USE4 (1ULL << kRegUse4)
#define REG_USEA (1ULL << kRegUseA)
#define REG_USEC (1ULL << kRegUseC)
#define REG_USED (1ULL << kRegUseD)
#define REG_USEB (1ULL << kRegUseB)
#define REG_USE_FPCS_LIST0 (1ULL << kRegUseFPCSList0)
#define REG_USE_FPCS_LIST2 (1ULL << kRegUseFPCSList2)
#define REG_USE_LIST0 (1ULL << kRegUseList0)
#define REG_USE_LIST1 (1ULL << kRegUseList1)
#define REG_USE_LR (1ULL << kRegUseLR)
#define REG_USE_PC (1ULL << kRegUsePC)
#define REG_USE_SP (1ULL << kRegUseSP)
#define SETS_CCODES (1ULL << kSetsCCodes)
#define USES_CCODES (1ULL << kUsesCCodes)
#define USE_FP_STACK (1ULL << kUseFpStack)
#define REG_USE_LO (1ULL << kUseLo)
#define REG_USE_HI (1ULL << kUseHi)
#define REG_DEF_LO (1ULL << kDefLo)
#define REG_DEF_HI (1ULL << kDefHi)
// Common combo register usage patterns.
#define REG_DEF01 (REG_DEF0 | REG_DEF1)
#define REG_DEF012 (REG_DEF0 | REG_DEF1 | REG_DEF2)
#define REG_DEF01_USE2 (REG_DEF0 | REG_DEF1 | REG_USE2)
#define REG_DEF0_USE01 (REG_DEF0 | REG_USE01)
#define REG_DEF0_USE0 (REG_DEF0 | REG_USE0)
#define REG_DEF0_USE12 (REG_DEF0 | REG_USE12)
#define REG_DEF0_USE123 (REG_DEF0 | REG_USE123)
#define REG_DEF0_USE1 (REG_DEF0 | REG_USE1)
#define REG_DEF0_USE2 (REG_DEF0 | REG_USE2)
#define REG_DEFAD_USEAD (REG_DEFAD_USEA | REG_USED)
#define REG_DEFAD_USEA (REG_DEFA_USEA | REG_DEFD)
#define REG_DEFA_USEA (REG_DEFA | REG_USEA)
#define REG_USE012 (REG_USE01 | REG_USE2)
#define REG_USE014 (REG_USE01 | REG_USE4)
#define REG_USE01 (REG_USE0 | REG_USE1)
#define REG_USE02 (REG_USE0 | REG_USE2)
#define REG_USE12 (REG_USE1 | REG_USE2)
#define REG_USE23 (REG_USE2 | REG_USE3)
#define REG_USE123 (REG_USE1 | REG_USE2 | REG_USE3)
// TODO: #includes need a cleanup
#ifndef INVALID_SREG
#define INVALID_SREG (-1)
#endif
struct BasicBlock;
struct CallInfo;
struct CompilationUnit;
struct InlineMethod;
struct MIR;
struct LIR;
struct RegisterInfo;
class DexFileMethodInliner;
class MIRGraph;
class Mir2Lir;
typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type);
typedef std::vector<uint8_t> CodeBuffer;
struct UseDefMasks {
const ResourceMask* use_mask; // Resource mask for use.
const ResourceMask* def_mask; // Resource mask for def.
};
struct AssemblyInfo {
LIR* pcrel_next; // Chain of LIR nodes needing pc relative fixups.
};
struct LIR {
CodeOffset offset; // Offset of this instruction.
NarrowDexOffset dalvik_offset; // Offset of Dalvik opcode in code units (16-bit words).
int16_t opcode;
LIR* next;
LIR* prev;
LIR* target;
struct {
unsigned int alias_info:17; // For Dalvik register disambiguation.
bool is_nop:1; // LIR is optimized away.
unsigned int size:4; // Note: size of encoded instruction is in bytes.
bool use_def_invalid:1; // If true, masks should not be used.
unsigned int generation:1; // Used to track visitation state during fixup pass.
unsigned int fixup:8; // Fixup kind.
} flags;
union {
UseDefMasks m; // Use & Def masks used during optimization.
AssemblyInfo a; // Instruction info used during assembly phase.
} u;
int32_t operands[5]; // [0..4] = [dest, src1, src2, extra, extra2].
};
// Target-specific initialization.
Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena);
// Utility macros to traverse the LIR list.
#define NEXT_LIR(lir) (lir->next)
#define PREV_LIR(lir) (lir->prev)
// Defines for alias_info (tracks Dalvik register references).
#define DECODE_ALIAS_INFO_REG(X) (X & 0xffff)
#define DECODE_ALIAS_INFO_WIDE_FLAG (0x10000)
#define DECODE_ALIAS_INFO_WIDE(X) ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
#define ENCODE_ALIAS_INFO(REG, ISWIDE) (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
do { \
low_reg = both_regs & 0xff; \
high_reg = (both_regs >> 8) & 0xff; \
} while (false)
// Mask to denote sreg as the start of a 64-bit item. Must not interfere with low 16 bits.
#define STARTING_WIDE_SREG 0x10000
// TODO: replace these macros
#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
// Size of a frame that we definitely consider large. Anything larger than this should
// definitely get a stack overflow check.
static constexpr size_t kLargeFrameSize = 2 * KB;
// Size of a frame that should be small. Anything leaf method smaller than this should run
// without a stack overflow check.
// The constant is from experience with frameworks code.
static constexpr size_t kSmallFrameSize = 1 * KB;
// Determine whether a frame is small or large, used in the decision on whether to elide a
// stack overflow check on method entry.
//
// A frame is considered large when it's either above kLargeFrameSize, or a quarter of the
// overflow-usable stack space.
static constexpr bool IsLargeFrame(size_t size, InstructionSet isa) {
return size >= kLargeFrameSize || size >= GetStackOverflowReservedBytes(isa) / 4;
}
// We want to ensure that on all systems kSmallFrameSize will lead to false in IsLargeFrame.
COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kArm),
kSmallFrameSize_is_not_a_small_frame_arm);
COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kArm64),
kSmallFrameSize_is_not_a_small_frame_arm64);
COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kMips),
kSmallFrameSize_is_not_a_small_frame_mips);
COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kX86),
kSmallFrameSize_is_not_a_small_frame_x86);
COMPILE_ASSERT(!IsLargeFrame(kSmallFrameSize, kX86_64),
kSmallFrameSize_is_not_a_small_frame_x64_64);
class Mir2Lir : public Backend {
public:
static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
static constexpr bool kReportSizeError = true && kIsDebugBuild;
/*
* Auxiliary information describing the location of data embedded in the Dalvik
* byte code stream.
*/
struct EmbeddedData {
CodeOffset offset; // Code offset of data block.
const uint16_t* table; // Original dex data.
DexOffset vaddr; // Dalvik offset of parent opcode.
};
struct FillArrayData : EmbeddedData {
int32_t size;
};
struct SwitchTable : EmbeddedData {
LIR* anchor; // Reference instruction for relative offsets.
LIR** targets; // Array of case targets.
};
/* Static register use counts */
struct RefCounts {
int count;
int s_reg;
};
/*
* Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
* and native register storage. The primary purpose is to reuse previuosly
* loaded values, if possible, and otherwise to keep the value in register
* storage as long as possible.
*
* NOTE 1: wide_value refers to the width of the Dalvik value contained in
* this register (or pair). For example, a 64-bit register containing a 32-bit
* Dalvik value would have wide_value==false even though the storage container itself
* is wide. Similarly, a 32-bit register containing half of a 64-bit Dalvik value
* would have wide_value==true (and additionally would have its partner field set to the
* other half whose wide_value field would also be true.
*
* NOTE 2: In the case of a register pair, you can determine which of the partners
* is the low half by looking at the s_reg names. The high s_reg will equal low_sreg + 1.
*
* NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
* will be true and partner==self. s_reg refers to the low-order word of the Dalvik
* value, and the s_reg of the high word is implied (s_reg + 1).
*
* NOTE 4: The reg and is_temp fields should always be correct. If is_temp is false no
* other fields have meaning. [perhaps not true, wide should work for promoted regs?]
* If is_temp==true and live==false, no other fields have
* meaning. If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
* and def_end describe the relationship between the temp register/register pair and
* the Dalvik value[s] described by s_reg/s_reg+1.
*
* The fields used_storage, master_storage and storage_mask are used to track allocation
* in light of potential aliasing. For example, consider Arm's d2, which overlaps s4 & s5.
* d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
* storage use. For s4, it would be 0x0000001; for s5 0x00000002. These values should not
* change once initialized. The "used_storage" field tracks current allocation status.
* Although each record contains this field, only the field from the largest member of
* an aliased group is used. In our case, it would be d2's. The master_storage pointer
* of d2, s4 and s5 would all point to d2's used_storage field. Each bit in a used_storage
* represents 32 bits of storage. d2's used_storage would be initialized to 0xfffffffc.
* Then, if we wanted to determine whether s4 could be allocated, we would "and"
* s4's storage_mask with s4's *master_storage. If the result is zero, s4 is free and
* to allocate: *master_storage |= storage_mask. To free, *master_storage &= ~storage_mask.
*
* For an X86 vector register example, storage_mask would be:
* 0x00000001 for 32-bit view of xmm1
* 0x00000003 for 64-bit view of xmm1
* 0x0000000f for 128-bit view of xmm1
* 0x000000ff for 256-bit view of ymm1 // future expansion, if needed
* 0x0000ffff for 512-bit view of ymm1 // future expansion, if needed
* 0xffffffff for 1024-bit view of ymm1 // future expansion, if needed
*
* The "liveness" of a register is handled in a similar way. The liveness_ storage is
* held in the widest member of an aliased set. Note, though, that for a temp register to
* reused as live, it must both be marked live and the associated SReg() must match the
* desired s_reg. This gets a little complicated when dealing with aliased registers. All
* members of an aliased set will share the same liveness flags, but each will individually
* maintain s_reg_. In this way we can know that at least one member of an
* aliased set is live, but will only fully match on the appropriate alias view. For example,
* if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
* because it is wide), its aliases s2 and s3 will show as live, but will have
* s_reg_ == INVALID_SREG. An attempt to later AllocLiveReg() of v9 with a single-precision
* view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
* This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
* report that v9 is currently not live as a single (which is what we want).
*
* NOTE: the x86 usage is still somewhat in flux. There are competing notions of how
* to treat xmm registers:
* 1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
* o This more closely matches reality, but means you'd need to be able to get
* to the associated RegisterInfo struct to figure out how it's being used.
* o This is how 64-bit core registers will be used - always 64 bits, but the
* "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
* 2. View the xmm registers based on contents.
* o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
* be a k64BitVector.
* o Note that the two uses above would be considered distinct registers (but with
* the aliasing mechanism, we could detect interference).
* o This is how aliased double and single float registers will be handled on
* Arm and MIPS.
* Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
* mechanism 2 for aliased float registers and x86 vector registers.
*/
class RegisterInfo {
public:
RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
~RegisterInfo() {}
static void* operator new(size_t size, ArenaAllocator* arena) {
return arena->Alloc(size, kArenaAllocRegAlloc);
}
static const uint32_t k32SoloStorageMask = 0x00000001;
static const uint32_t kLowSingleStorageMask = 0x00000001;
static const uint32_t kHighSingleStorageMask = 0x00000002;
static const uint32_t k64SoloStorageMask = 0x00000003;
static const uint32_t k128SoloStorageMask = 0x0000000f;
static const uint32_t k256SoloStorageMask = 0x000000ff;
static const uint32_t k512SoloStorageMask = 0x0000ffff;
static const uint32_t k1024SoloStorageMask = 0xffffffff;
bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
void MarkInUse() { master_->used_storage_ |= storage_mask_; }
void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
// No part of the containing storage is live in this view.
bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
// Liveness of this view matches. Note: not equivalent to !IsDead().
bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
void MarkLive(int s_reg) {
// TODO: Anything useful to assert here?
s_reg_ = s_reg;
master_->liveness_ |= storage_mask_;
}
void MarkDead() {
if (SReg() != INVALID_SREG) {
s_reg_ = INVALID_SREG;
master_->liveness_ &= ~storage_mask_;
ResetDefBody();
}
}
RegStorage GetReg() { return reg_; }
void SetReg(RegStorage reg) { reg_ = reg; }
bool IsTemp() { return is_temp_; }
void SetIsTemp(bool val) { is_temp_ = val; }
bool IsWide() { return wide_value_; }
void SetIsWide(bool val) {
wide_value_ = val;
if (!val) {
// If not wide, reset partner to self.
SetPartner(GetReg());
}
}
bool IsDirty() { return dirty_; }
void SetIsDirty(bool val) { dirty_ = val; }
RegStorage Partner() { return partner_; }
void SetPartner(RegStorage partner) { partner_ = partner; }
int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
const ResourceMask& DefUseMask() { return def_use_mask_; }
void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
RegisterInfo* Master() { return master_; }
void SetMaster(RegisterInfo* master) {
master_ = master;
if (master != this) {
master_->aliased_ = true;
DCHECK(alias_chain_ == nullptr);
alias_chain_ = master_->alias_chain_;
master_->alias_chain_ = this;
}
}
bool IsAliased() { return aliased_; }
RegisterInfo* GetAliasChain() { return alias_chain_; }
uint32_t StorageMask() { return storage_mask_; }
void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
LIR* DefStart() { return def_start_; }
void SetDefStart(LIR* def_start) { def_start_ = def_start; }
LIR* DefEnd() { return def_end_; }
void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
void ResetDefBody() { def_start_ = def_end_ = nullptr; }
// Find member of aliased set matching storage_used; return nullptr if none.
RegisterInfo* FindMatchingView(uint32_t storage_used) {
RegisterInfo* res = Master();
for (; res != nullptr; res = res->GetAliasChain()) {
if (res->StorageMask() == storage_used)
break;
}
return res;
}
private:
RegStorage reg_;
bool is_temp_; // Can allocate as temp?
bool wide_value_; // Holds a Dalvik wide value (either itself, or part of a pair).
bool dirty_; // If live, is it dirty?
bool aliased_; // Is this the master for other aliased RegisterInfo's?
RegStorage partner_; // If wide_value, other reg of pair or self if 64-bit register.
int s_reg_; // Name of live value.
ResourceMask def_use_mask_; // Resources for this element.
uint32_t used_storage_; // 1 bit per 4 bytes of storage. Unused by aliases.
uint32_t liveness_; // 1 bit per 4 bytes of storage. Unused by aliases.
RegisterInfo* master_; // Pointer to controlling storage mask.
uint32_t storage_mask_; // Track allocation of sub-units.
LIR *def_start_; // Starting inst in last def sequence.
LIR *def_end_; // Ending inst in last def sequence.
RegisterInfo* alias_chain_; // Chain of aliased registers.
};
class RegisterPool {
public:
RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
const ArrayRef<const RegStorage>& core_regs,
const ArrayRef<const RegStorage>& core64_regs,
const ArrayRef<const RegStorage>& sp_regs,
const ArrayRef<const RegStorage>& dp_regs,
const ArrayRef<const RegStorage>& reserved_regs,
const ArrayRef<const RegStorage>& reserved64_regs,
const ArrayRef<const RegStorage>& core_temps,
const ArrayRef<const RegStorage>& core64_temps,
const ArrayRef<const RegStorage>& sp_temps,
const ArrayRef<const RegStorage>& dp_temps);
~RegisterPool() {}
static void* operator new(size_t size, ArenaAllocator* arena) {
return arena->Alloc(size, kArenaAllocRegAlloc);
}
void ResetNextTemp() {
next_core_reg_ = 0;
next_sp_reg_ = 0;
next_dp_reg_ = 0;
}
GrowableArray<RegisterInfo*> core_regs_;
int next_core_reg_;
GrowableArray<RegisterInfo*> core64_regs_;
int next_core64_reg_;
GrowableArray<RegisterInfo*> sp_regs_; // Single precision float.
int next_sp_reg_;
GrowableArray<RegisterInfo*> dp_regs_; // Double precision float.
int next_dp_reg_;
GrowableArray<RegisterInfo*>* ref_regs_; // Points to core_regs_ or core64_regs_
int* next_ref_reg_;
private:
Mir2Lir* const m2l_;
};
struct PromotionMap {
RegLocationType core_location:3;
uint8_t core_reg;
RegLocationType fp_location:3;
uint8_t fp_reg;
bool first_in_pair;
};
//
// Slow paths. This object is used generate a sequence of code that is executed in the
// slow path. For example, resolving a string or class is slow as it will only be executed
// once (after that it is resolved and doesn't need to be done again). We want slow paths
// to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
// branch over them.
//
// If you want to create a slow path, declare a class derived from LIRSlowPath and provide
// the Compile() function that will be called near the end of the code generated by the
// method.
//
// The basic flow for a slow path is:
//
// CMP reg, #value
// BEQ fromfast
// cont:
// ...
// fast path code
// ...
// more code
// ...
// RETURN
///
// fromfast:
// ...
// slow path code
// ...
// B cont
//
// So you see we need two labels and two branches. The first branch (called fromfast) is
// the conditional branch to the slow path code. The second label (called cont) is used
// as an unconditional branch target for getting back to the code after the slow path
// has completed.
//
class LIRSlowPath {
public:
LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
LIR* cont = nullptr) :
m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
m2l->StartSlowPath(this);
}
virtual ~LIRSlowPath() {}
virtual void Compile() = 0;
static void* operator new(size_t size, ArenaAllocator* arena) {
return arena->Alloc(size, kArenaAllocData);
}
LIR *GetContinuationLabel() {
return cont_;
}
LIR *GetFromFast() {
return fromfast_;
}
protected:
LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
Mir2Lir* const m2l_;
CompilationUnit* const cu_;
const DexOffset current_dex_pc_;
LIR* const fromfast_;
LIR* const cont_;
};
// Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
class ScopedMemRefType {
public:
ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
: m2l_(m2l),
old_mem_ref_type_(m2l->mem_ref_type_) {
m2l_->mem_ref_type_ = new_mem_ref_type;
}
~ScopedMemRefType() {
m2l_->mem_ref_type_ = old_mem_ref_type_;
}
private:
Mir2Lir* const m2l_;
ResourceMask::ResourceBit old_mem_ref_type_;
DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
};
virtual ~Mir2Lir() {}
int32_t s4FromSwitchData(const void* switch_data) {
return *reinterpret_cast<const int32_t*>(switch_data);
}
/*
* TODO: this is a trace JIT vestige, and its use should be reconsidered. At the time
* it was introduced, it was intended to be a quick best guess of type without having to
* take the time to do type analysis. Currently, though, we have a much better idea of
* the types of Dalvik virtual registers. Instead of using this for a best guess, why not
* just use our knowledge of type to select the most appropriate register class?
*/
RegisterClass RegClassBySize(OpSize size) {
if (size == kReference) {
return kRefReg;
} else {
return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
size == kSignedByte) ? kCoreReg : kAnyReg;
}
}
size_t CodeBufferSizeInBytes() {
return code_buffer_.size() / sizeof(code_buffer_[0]);
}
static bool IsPseudoLirOp(int opcode) {
return (opcode < 0);
}
/*
* LIR operands are 32-bit integers. Sometimes, (especially for managing
* instructions which require PC-relative fixups), we need the operands to carry
* pointers. To do this, we assign these pointers an index in pointer_storage_, and
* hold that index in the operand array.
* TUNING: If use of these utilities becomes more common on 32-bit builds, it
* may be worth conditionally-compiling a set of identity functions here.
*/
uint32_t WrapPointer(void* pointer) {
uint32_t res = pointer_storage_.Size();
pointer_storage_.Insert(pointer);
return res;
}
void* UnwrapPointer(size_t index) {
return pointer_storage_.Get(index);
}
// strdup(), but allocates from the arena.
char* ArenaStrdup(const char* str) {
size_t len = strlen(str) + 1;
char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
if (res != NULL) {
strncpy(res, str, len);
}
return res;
}
// Shared by all targets - implemented in codegen_util.cc
void AppendLIR(LIR* lir);
void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
/**
* @brief Provides the maximum number of compiler temporaries that the backend can/wants
* to place in a frame.
* @return Returns the maximum number of compiler temporaries.
*/
size_t GetMaxPossibleCompilerTemps() const;
/**
* @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
* @return Returns the size in bytes for space needed for compiler temporary spill region.
*/
size_t GetNumBytesForCompilerTempSpillRegion();
DexOffset GetCurrentDexPc() const {
return current_dalvik_offset_;
}
RegisterClass ShortyToRegClass(char shorty_type);
RegisterClass LocToRegClass(RegLocation loc);
int ComputeFrameSize();
virtual void Materialize();
virtual CompiledMethod* GetCompiledMethod();
void MarkSafepointPC(LIR* inst);
void MarkSafepointPCAfter(LIR* after);
void SetupResourceMasks(LIR* lir);
void SetMemRefType(LIR* lir, bool is_load, int mem_type);
void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
void SetupRegMask(ResourceMask* mask, int reg);
void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
void DumpPromotionMap();
void CodegenDump();
LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
LIR* NewLIR0(int opcode);
LIR* NewLIR1(int opcode, int dest);
LIR* NewLIR2(int opcode, int dest, int src1);
LIR* NewLIR2NoDest(int opcode, int src, int info);
LIR* NewLIR3(int opcode, int dest, int src1, int src2);
LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
LIR* AddWordData(LIR* *constant_list_p, int value);
LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
void ProcessSwitchTables();
void DumpSparseSwitchTable(const uint16_t* table);
void DumpPackedSwitchTable(const uint16_t* table);
void MarkBoundary(DexOffset offset, const char* inst_str);
void NopLIR(LIR* lir);
void UnlinkLIR(LIR* lir);
bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
bool IsInexpensiveConstant(RegLocation rl_src);
ConditionCode FlipComparisonOrder(ConditionCode before);
ConditionCode NegateComparison(ConditionCode before);
virtual void InstallLiteralPools();
void InstallSwitchTables();
void InstallFillArrayData();
bool VerifyCatchEntries();
void CreateMappingTables();
void CreateNativeGcMap();
int AssignLiteralOffset(CodeOffset offset);
int AssignSwitchTablesOffset(CodeOffset offset);
int AssignFillArrayDataOffset(CodeOffset offset);
virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
virtual void StartSlowPath(LIRSlowPath* slowpath) {}
virtual void BeginInvoke(CallInfo* info) {}
virtual void EndInvoke(CallInfo* info) {}
// Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation. No code generated.
virtual RegLocation NarrowRegLoc(RegLocation loc);
// Shared by all targets - implemented in local_optimizations.cc
void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
// Shared by all targets - implemented in ralloc_util.cc
int GetSRegHi(int lowSreg);
bool LiveOut(int s_reg);
void SimpleRegAlloc();
void ResetRegPool();
void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
void DumpCoreRegPool();
void DumpFpRegPool();
void DumpRegPools();
/* Mark a temp register as dead. Does not affect allocation state. */
void Clobber(RegStorage reg);
void ClobberSReg(int s_reg);
void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
int SRegToPMap(int s_reg);
void RecordCorePromotion(RegStorage reg, int s_reg);
RegStorage AllocPreservedCoreReg(int s_reg);
void RecordFpPromotion(RegStorage reg, int s_reg);
RegStorage AllocPreservedFpReg(int s_reg);
virtual RegStorage AllocPreservedSingle(int s_reg);
virtual RegStorage AllocPreservedDouble(int s_reg);
RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
virtual RegStorage AllocFreeTemp();
virtual RegStorage AllocTemp();
virtual RegStorage AllocTempWide();
virtual RegStorage AllocTempRef();
virtual RegStorage AllocTempSingle();
virtual RegStorage AllocTempDouble();
virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
void FlushReg(RegStorage reg);
void FlushRegWide(RegStorage reg);
RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
virtual void FreeTemp(RegStorage reg);
virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
virtual bool IsLive(RegStorage reg);
virtual bool IsTemp(RegStorage reg);
bool IsPromoted(RegStorage reg);
bool IsDirty(RegStorage reg);
virtual void LockTemp(RegStorage reg);
void ResetDef(RegStorage reg);
void NullifyRange(RegStorage reg, int s_reg);
void MarkDef(RegLocation rl, LIR *start, LIR *finish);
void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
void ResetDefLoc(RegLocation rl);
void ResetDefLocWide(RegLocation rl);
void ResetDefTracking();
void ClobberAllTemps();
void FlushSpecificReg(RegisterInfo* info);
void FlushAllRegs();
bool RegClassMatches(int reg_class, RegStorage reg);
void MarkLive(RegLocation loc);
void MarkTemp(RegStorage reg);
void UnmarkTemp(RegStorage reg);
void MarkWide(RegStorage reg);
void MarkNarrow(RegStorage reg);
void MarkClean(RegLocation loc);
void MarkDirty(RegLocation loc);
void MarkInUse(RegStorage reg);
bool CheckCorePoolSanity();
virtual RegLocation UpdateLoc(RegLocation loc);
virtual RegLocation UpdateLocWide(RegLocation loc);
RegLocation UpdateRawLoc(RegLocation loc);
/**
* @brief Used to prepare a register location to receive a wide value.
* @see EvalLoc
* @param loc the location where the value will be stored.
* @param reg_class Type of register needed.
* @param update Whether the liveness information should be updated.
* @return Returns the properly typed temporary in physical register pairs.
*/
virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
/**
* @brief Used to prepare a register location to receive a value.
* @param loc the location where the value will be stored.
* @param reg_class Type of register needed.
* @param update Whether the liveness information should be updated.
* @return Returns the properly typed temporary in physical register.
*/
virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
void DumpCounts(const RefCounts* arr, int size, const char* msg);
void DoPromotion();
int VRegOffset(int v_reg);
int SRegOffset(int s_reg);
RegLocation GetReturnWide(RegisterClass reg_class);
RegLocation GetReturn(RegisterClass reg_class);
RegisterInfo* GetRegInfo(RegStorage reg);
// Shared by all targets - implemented in gen_common.cc.
void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit);
bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
virtual void HandleSlowPaths();
void GenBarrier();
void GenDivZeroException();
// c_code holds condition code that's generated from testing divisor against 0.
void GenDivZeroCheck(ConditionCode c_code);
// reg holds divisor.
void GenDivZeroCheck(RegStorage reg);
void GenArrayBoundsCheck(RegStorage index, RegStorage length);
void GenArrayBoundsCheck(int32_t index, RegStorage length);
LIR* GenNullCheck(RegStorage reg);
void MarkPossibleNullPointerException(int opt_flags);
void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
void MarkPossibleStackOverflowException();
void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
RegLocation rl_src2, LIR* taken, LIR* fall_through);
void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
LIR* taken, LIR* fall_through);
virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src);
void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
void GenFilledNewArray(CallInfo* info);
void GenSput(MIR* mir, RegLocation rl_src,
bool is_long_or_double, bool is_object);
void GenSget(MIR* mir, RegLocation rl_dest,
bool is_long_or_double, bool is_object);
void GenIGet(MIR* mir, int opt_flags, OpSize size,
RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
void GenIPut(MIR* mir, int opt_flags, OpSize size,
RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_src);
void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
void GenConstString(uint32_t string_idx, RegLocation rl_dest);
void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
void GenThrow(RegLocation rl_src);
void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2);
virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift);
void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, int lit);
void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2);
template <size_t pointer_size>
void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
RegLocation rl_src);
virtual void GenSuspendTest(int opt_flags);
virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
// This will be overridden by x86 implementation.
virtual void GenConstWide(RegLocation rl_dest, int64_t value);
virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2);
// Shared by all targets - implemented in gen_invoke.cc.
template <size_t pointer_size>
LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
bool use_link = true);
RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
template <size_t pointer_size>
void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
RegLocation arg1, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
int arg1, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
RegStorage arg0, RegLocation arg2, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
RegLocation arg0, RegLocation arg1,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
RegStorage arg1, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
RegStorage arg1, int arg2, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
RegLocation arg2, bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
int arg0, RegLocation arg1, RegLocation arg2,
bool safepoint_pc);
template <size_t pointer_size>
void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
RegLocation arg0, RegLocation arg1,
RegLocation arg2,
bool safepoint_pc);
void GenInvoke(CallInfo* info);
void GenInvokeNoInline(CallInfo* info);
virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
/**
* @brief Used to determine the register location of destination.
* @details This is needed during generation of inline intrinsics because it finds destination
* of return,
* either the physical register or the target of move-result.
* @param info Information about the invoke.
* @return Returns the destination location.
*/
RegLocation InlineTarget(CallInfo* info);
/**
* @brief Used to determine the wide register location of destination.
* @see InlineTarget
* @param info Information about the invoke.
* @return Returns the destination location.
*/
RegLocation InlineTargetWide(CallInfo* info);
bool GenInlinedGet(CallInfo* info);
bool GenInlinedCharAt(CallInfo* info);
bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
bool GenInlinedAbsInt(CallInfo* info);
virtual bool GenInlinedAbsLong(CallInfo* info);
virtual bool GenInlinedAbsFloat(CallInfo* info);
virtual bool GenInlinedAbsDouble(CallInfo* info);
bool GenInlinedFloatCvt(CallInfo* info);
bool GenInlinedDoubleCvt(CallInfo* info);
virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
bool GenInlinedStringCompareTo(CallInfo* info);
bool GenInlinedCurrentThread(CallInfo* info);
bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
bool is_volatile, bool is_ordered);
virtual int LoadArgRegs(CallInfo* info, int call_state,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
// Shared by all targets - implemented in gen_loadstore.cc.
RegLocation LoadCurrMethod();
void LoadCurrMethodDirect(RegStorage r_tgt);
virtual LIR* LoadConstant(RegStorage r_dest, int value);
// Natural word size.
virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
}
// Load 32 bits, regardless of target.
virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest) {
return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
}
// Load a reference at base + displacement and decompress into register.
virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
VolatileKind is_volatile) {
return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
}
// Load a reference at base + index and decompress into register.
virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
int scale) {
return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
}
// Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress.
virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
// Same as above, but derive the target register class from the location record.
virtual RegLocation LoadValue(RegLocation rl_src);
// Load Dalvik value with 64-bit memory storage.
virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
// Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress.
virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
// Load Dalvik value with 32-bit memory storage. If compressed object reference, decompress.
virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
// Load Dalvik value with 64-bit memory storage.
virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
// Load Dalvik value with 64-bit memory storage.
virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
// Store an item of natural word size.
virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
}
// Store an uncompressed reference into a compressed 32-bit container.
virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
VolatileKind is_volatile) {
return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
}
// Store an uncompressed reference into a compressed 32-bit container by index.
virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
int scale) {
return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
}
// Store 32 bits, regardless of target.
virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
}
/**
* @brief Used to do the final store in the destination as per bytecode semantics.
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. Can be either physical register or dalvik register.
*/
virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
/**
* @brief Used to do the final store in a wide destination as per bytecode semantics.
* @see StoreValue
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. Can be either physical register or dalvik
* register.
*/
virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
/**
* @brief Used to do the final store to a destination as per bytecode semantics.
* @see StoreValue
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. It must be kLocPhysReg
*
* This is used for x86 two operand computations, where we have computed the correct
* register value that now needs to be properly registered. This is used to avoid an
* extra register copy that would result if StoreValue was called.
*/
virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
/**
* @brief Used to do the final store in a wide destination as per bytecode semantics.
* @see StoreValueWide
* @param rl_dest The destination dalvik register location.
* @param rl_src The source register location. It must be kLocPhysReg
*
* This is used for x86 two operand computations, where we have computed the correct
* register values that now need to be properly registered. This is used to avoid an
* extra pair of register copies that would result if StoreValueWide was called.
*/
virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
// Shared by all targets - implemented in mir_to_lir.cc.
void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
bool MethodBlockCodeGen(BasicBlock* bb);
bool SpecialMIR2LIR(const InlineMethod& special);
virtual void MethodMIR2LIR();
// Update LIR for verbose listings.
void UpdateLIROffsets();
/*
* @brief Load the address of the dex method into the register.
* @param target_method The MethodReference of the method to be invoked.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg);
/*
* @brief Load the Method* of a dex method into the register.
* @param target_method The MethodReference of the method to be invoked.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg);
/*
* @brief Load the Class* of a Dex Class type into the register.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
// Routines that work for the generic case, but may be overriden by target.
/*
* @brief Compare memory to immediate, and branch if condition true.
* @param cond The condition code that when true will branch to the target.
* @param temp_reg A temporary register that can be used if compare to memory is not
* supported by the architecture.
* @param base_reg The register holding the base address.
* @param offset The offset from the base.
* @param check_value The immediate to compare to.
* @returns The branch instruction that was generated.
*/
virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
int offset, int check_value, LIR* target);
// Required for target - codegen helpers.
virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
virtual LIR* CheckSuspendUsingLoad() = 0;
virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size, VolatileKind is_volatile) = 0;
virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
int scale, OpSize size) = 0;
virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
int displacement, RegStorage r_dest, OpSize size) = 0;
virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
OpSize size, VolatileKind is_volatile) = 0;
virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
int scale, OpSize size) = 0;
virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
int displacement, RegStorage r_src, OpSize size) = 0;
virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
// Required for target - register utilities.
bool IsSameReg(RegStorage reg1, RegStorage reg2) {
RegisterInfo* info1 = GetRegInfo(reg1);
RegisterInfo* info2 = GetRegInfo(reg2);
return (info1->Master() == info2->Master() &&
(info1->StorageMask() & info2->StorageMask()) != 0);
}
/**
* @brief Portable way of getting special registers from the backend.
* @param reg Enumeration describing the purpose of the register.
* @return Return the #RegStorage corresponding to the given purpose @p reg.
* @note This function is currently allowed to return any suitable view of the registers
* (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
*/
virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
/**
* @brief Portable way of getting special registers from the backend.
* @param reg Enumeration describing the purpose of the register.
* @param wide_kind What kind of view of the special register is required.
* @return Return the #RegStorage corresponding to the given purpose @p reg.
*
* @note For 32b system, wide (kWide) views only make sense for the argument registers and the
* return. In that case, this function should return a pair where the first component of
* the result will be the indicated special register.
*/
virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
if (wide_kind == kWide) {
DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg7) || (kRet0 == reg));
COMPILE_ASSERT((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
(kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
(kArg7 == kArg6 + 1), kargs_range_unexpected);
COMPILE_ASSERT((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
(kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
(kFArg7 == kFArg6 + 1), kfargs_range_unexpected);
COMPILE_ASSERT(kRet1 == kRet0 + 1, kret_range_unexpected);
return RegStorage::MakeRegPair(TargetReg(reg),
TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
} else {
return TargetReg(reg);
}
}
/**
* @brief Portable way of getting a special register for storing a pointer.
* @see TargetReg()
*/
virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
return TargetReg(reg);
}
// Get a reg storage corresponding to the wide & ref flags of the reg location.
virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
if (loc.ref) {
return TargetReg(reg, kRef);
} else {
return TargetReg(reg, loc.wide ? kWide : kNotWide);
}
}
virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
virtual RegLocation GetReturnAlt() = 0;
virtual RegLocation GetReturnWideAlt() = 0;
virtual RegLocation LocCReturn() = 0;
virtual RegLocation LocCReturnRef() = 0;
virtual RegLocation LocCReturnDouble() = 0;
virtual RegLocation LocCReturnFloat() = 0;
virtual RegLocation LocCReturnWide() = 0;
virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
virtual void AdjustSpillMask() = 0;
virtual void ClobberCallerSave() = 0;
virtual void FreeCallTemps() = 0;
virtual void LockCallTemps() = 0;
virtual void CompilerInitializeRegAlloc() = 0;
// Required for target - miscellaneous.
virtual void AssembleLIR() = 0;
virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
ResourceMask* use_mask, ResourceMask* def_mask) = 0;
virtual const char* GetTargetInstFmt(int opcode) = 0;
virtual const char* GetTargetInstName(int opcode) = 0;
virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
// Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
// take care of this.
virtual ResourceMask GetPCUseDefEncoding() const = 0;
virtual uint64_t GetTargetInstFlags(int opcode) = 0;
virtual size_t GetInsnSize(LIR* lir) = 0;
virtual bool IsUnconditionalBranch(LIR* lir) = 0;
// Check support for volatile load/store of a given size.
virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
// Get the register class for load/store of a field.
virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
// Required for target - Dalvik-level generators.
virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) = 0;
virtual void GenMulLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenAddLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenAndLong(Instruction::Code,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenArithOpDouble(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) = 0;
virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) = 0;
virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) = 0;
virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
/**
* @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
* @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
* that applies on integers. The generated code will write the smallest or largest value
* directly into the destination register as specified by the invoke information.
* @param info Information about the invoke.
* @param is_min If true generates code that computes minimum. Otherwise computes maximum.
* @param is_long If true the value value is Long. Otherwise the value is Int.
* @return Returns true if successfully generated
*/
virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
virtual bool GenInlinedSqrt(CallInfo* info) = 0;
virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) = 0;
virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div) = 0;
virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
bool is_div) = 0;
virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
bool is_div) = 0;
/*
* @brief Generate an integer div or rem operation by a literal.
* @param rl_dest Destination Location.
* @param rl_src1 Numerator Location.
* @param rl_src2 Divisor Location.
* @param is_div 'true' if this is a division, 'false' for a remainder.
* @param check_zero 'true' if an exception should be generated if the divisor is 0.
*/
virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div, bool check_zero) = 0;
/*
* @brief Generate an integer div or rem operation by a literal.
* @param rl_dest Destination Location.
* @param rl_src Numerator Location.
* @param lit Divisor.
* @param is_div 'true' if this is a division, 'false' for a remainder.
*/
virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
bool is_div) = 0;
virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
/**
* @brief Used for generating code that throws ArithmeticException if both registers are zero.
* @details This is used for generating DivideByZero checks when divisor is held in two
* separate registers.
* @param reg The register holding the pair of 32-bit values.
*/
virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
virtual void GenExitSequence() = 0;
virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
/*
* @brief Handle Machine Specific MIR Extended opcodes.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is not standard extended MIR.
* @note Base class implementation will abort for unknown opcodes.
*/
virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
/**
* @brief Lowers the kMirOpSelect MIR into LIR.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirOpSelect.
*/
virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
/**
* @brief Generates code to select one of the given constants depending on the given opcode.
* @note Will neither call EvalLoc nor StoreValue for rl_dest.
*/
virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
int32_t true_val, int32_t false_val, RegStorage rs_dest,
int dest_reg_class) = 0;
/**
* @brief Used to generate a memory barrier in an architecture specific way.
* @details The last generated LIR will be considered for use as barrier. Namely,
* if the last LIR can be updated in a way where it will serve the semantics of
* barrier, then it will be used as such. Otherwise, a new LIR will be generated
* that can keep the semantics.
* @param barrier_kind The kind of memory barrier to generate.
* @return whether a new instruction was generated.
*/
virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
virtual void GenMoveException(RegLocation rl_dest) = 0;
virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
int first_bit, int second_bit) = 0;
virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale,
bool card_mark) = 0;
virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift) = 0;
// Required for target - single operation generators.
virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
LIR* target) = 0;
virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
virtual void OpEndIT(LIR* it) = 0;
virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
/**
* @brief Used to generate an LIR that does a load from mem to reg.
* @param r_dest The destination physical register.
* @param r_base The base physical register for memory operand.
* @param offset The displacement for memory operand.
* @param move_type Specification on the move desired (size, alignment, register kind).
* @return Returns the generate move LIR.
*/
virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
MoveType move_type) = 0;
/**
* @brief Used to generate an LIR that does a store from reg to mem.
* @param r_base The base physical register for memory operand.
* @param offset The displacement for memory operand.
* @param r_src The destination physical register.
* @param bytes_to_move The number of bytes to move.
* @param is_aligned Whether the memory location is known to be aligned.
* @return Returns the generate move LIR.
*/
virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
MoveType move_type) = 0;
/**
* @brief Used for generating a conditional register to register operation.
* @param op The opcode kind.
* @param cc The condition code that when true will perform the opcode.
* @param r_dest The destination physical register.
* @param r_src The source physical register.
* @return Returns the newly created LIR or null in case of creation failure.
*/
virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
RegStorage r_src2) = 0;
virtual LIR* OpTestSuspend(LIR* target) = 0;
virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
int offset) = 0;
virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
virtual bool InexpensiveConstantInt(int32_t value) = 0;
virtual bool InexpensiveConstantFloat(int32_t value) = 0;
virtual bool InexpensiveConstantLong(int64_t value) = 0;
virtual bool InexpensiveConstantDouble(int64_t value) = 0;
// May be optimized by targets.
virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
// Temp workaround
void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
protected:
Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
CompilationUnit* GetCompilationUnit() {
return cu_;
}
/*
* @brief Returns the index of the lowest set bit in 'x'.
* @param x Value to be examined.
* @returns The bit number of the lowest bit set in the value.
*/
int32_t LowestSetBit(uint64_t x);
/*
* @brief Is this value a power of two?
* @param x Value to be examined.
* @returns 'true' if only 1 bit is set in the value.
*/
bool IsPowerOfTwo(uint64_t x);
/*
* @brief Do these SRs overlap?
* @param rl_op1 One RegLocation
* @param rl_op2 The other RegLocation
* @return 'true' if the VR pairs overlap
*
* Check to see if a result pair has a misaligned overlap with an operand pair. This
* is not usual for dx to generate, but it is legal (for now). In a future rev of
* dex, we'll want to make this case illegal.
*/
bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
/*
* @brief Force a location (in a register) into a temporary register
* @param loc location of result
* @returns update location
*/
virtual RegLocation ForceTemp(RegLocation loc);
/*
* @brief Force a wide location (in registers) into temporary registers
* @param loc location of result
* @returns update location
*/
virtual RegLocation ForceTempWide(RegLocation loc);
static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
return wide ? k64 : ref ? kReference : k32;
}
virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
RegLocation rl_dest, RegLocation rl_src);
void AddSlowPath(LIRSlowPath* slowpath);
virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
/*
* @brief Generate the debug_frame FDE information if possible.
* @returns pointer to vector containg CFE information, or NULL.
*/
virtual std::vector<uint8_t>* ReturnCallFrameInformation();
/**
* @brief Used to insert marker that can be used to associate MIR with LIR.
* @details Only inserts marker if verbosity is enabled.
* @param mir The mir that is currently being generated.
*/
void GenPrintLabel(MIR* mir);
/**
* @brief Used to generate return sequence when there is no frame.
* @details Assumes that the return registers have already been populated.
*/
virtual void GenSpecialExitSequence() = 0;
/**
* @brief Used to generate code for special methods that are known to be
* small enough to work in frameless mode.
* @param bb The basic block of the first MIR.
* @param mir The first MIR of the special method.
* @param special Information about the special method.
* @return Returns whether or not this was handled successfully. Returns false
* if caller should punt to normal MIR2LIR conversion.
*/
virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
protected:
void ClobberBody(RegisterInfo* p);
void SetCurrentDexPc(DexOffset dexpc) {
current_dalvik_offset_ = dexpc;
}
/**
* @brief Used to lock register if argument at in_position was passed that way.
* @details Does nothing if the argument is passed via stack.
* @param in_position The argument number whose register to lock.
* @param wide Whether the argument is wide.
*/
void LockArg(int in_position, bool wide = false);
/**
* @brief Used to load VR argument to a physical register.
* @details The load is only done if the argument is not already in physical register.
* LockArg must have been previously called.
* @param in_position The argument number to load.
* @param wide Whether the argument is 64-bit or not.
* @return Returns the register (or register pair) for the loaded argument.
*/
RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
/**
* @brief Used to load a VR argument directly to a specified register location.
* @param in_position The argument number to place in register.
* @param rl_dest The register location where to place argument.
*/
void LoadArgDirect(int in_position, RegLocation rl_dest);
/**
* @brief Used to generate LIR for special getter method.
* @param mir The mir that represents the iget.
* @param special Information about the special getter method.
* @return Returns whether LIR was successfully generated.
*/
bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
/**
* @brief Used to generate LIR for special setter method.
* @param mir The mir that represents the iput.
* @param special Information about the special setter method.
* @return Returns whether LIR was successfully generated.
*/
bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
/**
* @brief Used to generate LIR for special return-args method.
* @param mir The mir that represents the return of argument.
* @param special Information about the special return-args method.
* @return Returns whether LIR was successfully generated.
*/
bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
void AddDivZeroCheckSlowPath(LIR* branch);
// Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
// kArg2 as temp.
virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
/**
* @brief Load Constant into RegLocation
* @param rl_dest Destination RegLocation
* @param value Constant value
*/
virtual void GenConst(RegLocation rl_dest, int value);
/**
* Returns true iff wide GPRs are just different views on the same physical register.
*/
virtual bool WideGPRsAreAliases() = 0;
/**
* Returns true iff wide FPRs are just different views on the same physical register.
*/
virtual bool WideFPRsAreAliases() = 0;
enum class WidenessCheck { // private
kIgnoreWide,
kCheckWide,
kCheckNotWide
};
enum class RefCheck { // private
kIgnoreRef,
kCheckRef,
kCheckNotRef
};
enum class FPCheck { // private
kIgnoreFP,
kCheckFP,
kCheckNotFP
};
/**
* Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
* that it has the expected form for the flags.
* A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
*/
void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
bool report)
const;
/**
* Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
* that it has the expected size.
*/
void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
// See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
// kReportSizeError.
void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
// See CheckRegLocationImpl.
void CheckRegLocation(RegLocation rl) const;
public:
// TODO: add accessors for these.
LIR* literal_list_; // Constants.
LIR* method_literal_list_; // Method literals requiring patching.
LIR* class_literal_list_; // Class literals requiring patching.
LIR* code_literal_list_; // Code literals requiring patching.
LIR* first_fixup_; // Doubly-linked list of LIR nodes requiring fixups.
protected:
CompilationUnit* const cu_;
MIRGraph* const mir_graph_;
GrowableArray<SwitchTable*> switch_tables_;
GrowableArray<FillArrayData*> fill_array_data_;
GrowableArray<RegisterInfo*> tempreg_info_;
GrowableArray<RegisterInfo*> reginfo_map_;
GrowableArray<void*> pointer_storage_;
CodeOffset current_code_offset_; // Working byte offset of machine instructons.
CodeOffset data_offset_; // starting offset of literal pool.
size_t total_size_; // header + code size.
LIR* block_label_list_;
PromotionMap* promotion_map_;
/*
* TODO: The code generation utilities don't have a built-in
* mechanism to propagate the original Dalvik opcode address to the
* associated generated instructions. For the trace compiler, this wasn't
* necessary because the interpreter handled all throws and debugging
* requests. For now we'll handle this by placing the Dalvik offset
* in the CompilationUnit struct before codegen for each instruction.
* The low-level LIR creation utilites will pull it from here. Rework this.
*/
DexOffset current_dalvik_offset_;
size_t estimated_native_code_size_; // Just an estimate; used to reserve code_buffer_ size.
RegisterPool* reg_pool_;
/*
* Sanity checking for the register temp tracking. The same ssa
* name should never be associated with one temp register per
* instruction compilation.
*/
int live_sreg_;
CodeBuffer code_buffer_;
// The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
std::vector<uint8_t> encoded_mapping_table_;
std::vector<uint32_t> core_vmap_table_;
std::vector<uint32_t> fp_vmap_table_;
std::vector<uint8_t> native_gc_map_;
int num_core_spills_;
int num_fp_spills_;
int frame_size_;
unsigned int core_spill_mask_;
unsigned int fp_spill_mask_;
LIR* first_lir_insn_;
LIR* last_lir_insn_;
GrowableArray<LIRSlowPath*> slow_paths_;
// The memory reference type for new LIRs.
// NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
// invoke RawLIR() would clutter the code and reduce the readability.
ResourceMask::ResourceBit mem_ref_type_;
// Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
// would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
// (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
// to deduplicate the masks.
ResourceMaskCache mask_cache_;
}; // Class Mir2Lir
} // namespace art
#endif // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_