blob: f7f37db26a7543acb56d3fe87788b9d6879e2163 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_mips.h"
#include "arch/mips/asm_support_mips.h"
#include "arch/mips/entrypoints_direct_mips.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method.h"
#include "class_table.h"
#include "code_generator_utils.h"
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "gc/space/image_space.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "intrinsics_mips.h"
#include "linker/linker_patch.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "offsets.h"
#include "stack_map_stream.h"
#include "thread.h"
#include "utils/assembler.h"
#include "utils/mips/assembler_mips.h"
#include "utils/stack_checks.h"
namespace art {
namespace mips {
static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kMethodRegisterArgument = A0;
// Flags controlling the use of thunks for Baker read barriers.
constexpr bool kBakerReadBarrierThunksEnableForFields = true;
constexpr bool kBakerReadBarrierThunksEnableForArrays = true;
constexpr bool kBakerReadBarrierThunksEnableForGcRoots = true;
Location MipsReturnLocation(DataType::Type return_type) {
switch (return_type) {
case DataType::Type::kReference:
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kUint32:
case DataType::Type::kInt32:
return Location::RegisterLocation(V0);
case DataType::Type::kUint64:
case DataType::Type::kInt64:
return Location::RegisterPairLocation(V0, V1);
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
return Location::FpuRegisterLocation(F0);
case DataType::Type::kVoid:
return Location();
}
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(DataType::Type type) const {
return MipsReturnLocation(type);
}
Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
return Location::RegisterLocation(kMethodRegisterArgument);
}
Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(DataType::Type type) {
Location next_location;
switch (type) {
case DataType::Type::kReference:
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32: {
uint32_t gp_index = gp_index_++;
if (gp_index < calling_convention.GetNumberOfRegisters()) {
next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Location::StackSlot(stack_offset);
}
break;
}
case DataType::Type::kInt64: {
uint32_t gp_index = gp_index_;
gp_index_ += 2;
if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
Register reg = calling_convention.GetRegisterAt(gp_index);
if (reg == A1 || reg == A3) {
gp_index_++; // Skip A1(A3), and use A2_A3(T0_T1) instead.
gp_index++;
}
Register low_even = calling_convention.GetRegisterAt(gp_index);
Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
DCHECK_EQ(low_even + 1, high_odd);
next_location = Location::RegisterPairLocation(low_even, high_odd);
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Location::DoubleStackSlot(stack_offset);
}
break;
}
// Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
// will take up the even/odd pair, while floats are stored in even regs only.
// On 64 bit FPU, both double and float are stored in even registers only.
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
uint32_t float_index = float_index_++;
if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
next_location = Location::FpuRegisterLocation(
calling_convention.GetFpuRegisterAt(float_index));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
: Location::StackSlot(stack_offset);
}
break;
}
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
UNREACHABLE();
}
// Space on the stack is reserved for all arguments.
stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
return next_location;
}
Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type type) {
return MipsReturnLocation(type);
}
static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
InvokeRuntimeCallingConvention calling_convention;
RegisterSet caller_saves = RegisterSet::Empty();
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
// The reference is returned in the same register. This differs from the standard return location.
return caller_saves;
}
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
DataType::Type::kInt32,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
DataType::Type::kInt32);
QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
? kQuickThrowStringBounds
: kQuickThrowArrayBounds;
mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "BoundsCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
};
class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "DivZeroCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
};
class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
public:
LoadClassSlowPathMIPS(HLoadClass* cls, HInstruction* at)
: SlowPathCodeMIPS(at), cls_(cls) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
Location out = locations->Out();
const uint32_t dex_pc = instruction_->GetDexPc();
bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
if (must_resolve_type) {
DCHECK(IsSameDexFile(cls_->GetDexFile(), mips_codegen->GetGraph()->GetDexFile()));
dex::TypeIndex type_index = cls_->GetTypeIndex();
__ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_);
mips_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
// If we also must_do_clinit, the resolved type is now in the correct register.
} else {
DCHECK(must_do_clinit);
Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
source,
cls_->GetType());
}
if (must_do_clinit) {
mips_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
}
// Move the class to the desired location.
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
DataType::Type type = instruction_->GetType();
mips_codegen->MoveLocation(out,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
type);
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "LoadClassSlowPathMIPS"; }
private:
// The class this slow path will load.
HLoadClass* const cls_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
};
class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit LoadStringSlowPathMIPS(HLoadString* instruction)
: SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
DCHECK(instruction_->IsLoadString());
DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
InvokeRuntimeCallingConvention calling_convention;
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
__ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_);
mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
DataType::Type type = instruction_->GetType();
mips_codegen->MoveLocation(locations->Out(),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "LoadStringSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
};
class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
mips_codegen->InvokeRuntime(kQuickThrowNullPointer,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const override { return true; }
const char* GetDescription() const override { return "NullCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
};
class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
: SlowPathCodeMIPS(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD.
mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD.
if (successor_ == nullptr) {
__ B(GetReturnLabel());
} else {
__ B(mips_codegen->GetLabelOf(successor_));
}
}
MipsLabel* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
const char* GetDescription() const override { return "SuspendCheckSlowPathMIPS"; }
HBasicBlock* GetSuccessor() const {
return successor_;
}
private:
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
MipsLabel return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
};
class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit TypeCheckSlowPathMIPS(HInstruction* instruction, bool is_fatal)
: SlowPathCodeMIPS(instruction), is_fatal_(is_fatal) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
uint32_t dex_pc = instruction_->GetDexPc();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
SaveLiveRegisters(codegen, locations);
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
DataType::Type::kReference,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
DataType::Type::kReference);
if (instruction_->IsInstanceOf()) {
mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
DataType::Type ret_type = instruction_->GetType();
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
} else {
DCHECK(instruction_->IsCheckCast());
mips_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
}
if (!is_fatal_) {
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
}
const char* GetDescription() const override { return "TypeCheckSlowPathMIPS"; }
bool IsFatal() const override { return is_fatal_; }
private:
const bool is_fatal_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
};
class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction)
: SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
LocationSummary* locations = instruction_->GetLocations();
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ LoadConst32(calling_convention.GetRegisterAt(0),
static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
}
const char* GetDescription() const override { return "DeoptimizationSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
};
class ArraySetSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit ArraySetSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
parallel_move.AddMove(
locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
DataType::Type::kReference,
nullptr);
parallel_move.AddMove(
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
DataType::Type::kInt32,
nullptr);
parallel_move.AddMove(
locations->InAt(2),
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
DataType::Type::kReference,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
mips_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ArraySetSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS);
};
// Slow path marking an object reference `ref` during a read
// barrier. The field `obj.field` in the object `obj` holding this
// reference does not get updated by this slow path after marking (see
// ReadBarrierMarkAndUpdateFieldSlowPathMIPS below for that).
//
// This means that after the execution of this slow path, `ref` will
// always be up-to-date, but `obj.field` may not; i.e., after the
// flip, `ref` will be a to-space reference, but `obj.field` will
// probably still be a from-space reference (unless it gets updated by
// another thread, or if another thread installed another object
// reference (different from `ref`) in `obj.field`).
//
// If `entrypoint` is a valid location it is assumed to already be
// holding the entrypoint. The case where the entrypoint is passed in
// is for the GcRoot read barrier.
class ReadBarrierMarkSlowPathMIPS : public SlowPathCodeMIPS {
public:
ReadBarrierMarkSlowPathMIPS(HInstruction* instruction,
Location ref,
Location entrypoint = Location::NoLocation())
: SlowPathCodeMIPS(instruction), ref_(ref), entrypoint_(entrypoint) {
DCHECK(kEmitCompilerReadBarrier);
}
const char* GetDescription() const override { return "ReadBarrierMarkSlowPathMIPS"; }
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsArraySet() ||
instruction_->IsLoadClass() ||
instruction_->IsLoadString() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
(instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
(S2 <= ref_reg && ref_reg <= S7) ||
(ref_reg == FP)) << ref_reg;
// "Compact" slow path, saving two moves.
//
// Instead of using the standard runtime calling convention (input
// and output in A0 and V0 respectively):
//
// A0 <- ref
// V0 <- ReadBarrierMark(A0)
// ref <- V0
//
// we just use rX (the register containing `ref`) as input and output
// of a dedicated entrypoint:
//
// rX <- ReadBarrierMarkRegX(rX)
//
if (entrypoint_.IsValid()) {
mips_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
DCHECK_EQ(entrypoint_.AsRegister<Register>(), T9);
__ Jalr(entrypoint_.AsRegister<Register>());
__ NopIfNoReordering();
} else {
int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
// This runtime call does not require a stack map.
mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
instruction_,
this,
/* direct= */ false);
}
__ B(GetExitLabel());
}
private:
// The location (register) of the marked object reference.
const Location ref_;
// The location of the entrypoint if already loaded.
const Location entrypoint_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS);
};
// Slow path marking an object reference `ref` during a read barrier,
// and if needed, atomically updating the field `obj.field` in the
// object `obj` holding this reference after marking (contrary to
// ReadBarrierMarkSlowPathMIPS above, which never tries to update
// `obj.field`).
//
// This means that after the execution of this slow path, both `ref`
// and `obj.field` will be up-to-date; i.e., after the flip, both will
// hold the same to-space reference (unless another thread installed
// another object reference (different from `ref`) in `obj.field`).
class ReadBarrierMarkAndUpdateFieldSlowPathMIPS : public SlowPathCodeMIPS {
public:
ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction* instruction,
Location ref,
Register obj,
Location field_offset,
Register temp1)
: SlowPathCodeMIPS(instruction),
ref_(ref),
obj_(obj),
field_offset_(field_offset),
temp1_(temp1) {
DCHECK(kEmitCompilerReadBarrier);
}
const char* GetDescription() const override {
return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS";
}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
// This slow path is only used by the UnsafeCASObject intrinsic.
DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking and field updating slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
DCHECK(field_offset_.IsRegisterPair()) << field_offset_;
__ Bind(GetEntryLabel());
// Save the old reference.
// Note that we cannot use AT or TMP to save the old reference, as those
// are used by the code that follows, but we need the old reference after
// the call to the ReadBarrierMarkRegX entry point.
DCHECK_NE(temp1_, AT);
DCHECK_NE(temp1_, TMP);
__ Move(temp1_, ref_reg);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
(S2 <= ref_reg && ref_reg <= S7) ||
(ref_reg == FP)) << ref_reg;
// "Compact" slow path, saving two moves.
//
// Instead of using the standard runtime calling convention (input
// and output in A0 and V0 respectively):
//
// A0 <- ref
// V0 <- ReadBarrierMark(A0)
// ref <- V0
//
// we just use rX (the register containing `ref`) as input and output
// of a dedicated entrypoint:
//
// rX <- ReadBarrierMarkRegX(rX)
//
int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
// This runtime call does not require a stack map.
mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
instruction_,
this,
/* direct= */ false);
// If the new reference is different from the old reference,
// update the field in the holder (`*(obj_ + field_offset_)`).
//
// Note that this field could also hold a different object, if
// another thread had concurrently changed it. In that case, the
// the compare-and-set (CAS) loop below would abort, leaving the
// field as-is.
MipsLabel done;
__ Beq(temp1_, ref_reg, &done);
// Update the the holder's field atomically. This may fail if
// mutator updates before us, but it's OK. This is achieved
// using a strong compare-and-set (CAS) operation with relaxed
// memory synchronization ordering, where the expected value is
// the old reference and the desired value is the new reference.
// Convenience aliases.
Register base = obj_;
// The UnsafeCASObject intrinsic uses a register pair as field
// offset ("long offset"), of which only the low part contains
// data.
Register offset = field_offset_.AsRegisterPairLow<Register>();
Register expected = temp1_;
Register value = ref_reg;
Register tmp_ptr = TMP; // Pointer to actual memory.
Register tmp = AT; // Value in memory.
__ Addu(tmp_ptr, base, offset);
if (kPoisonHeapReferences) {
__ PoisonHeapReference(expected);
// Do not poison `value` if it is the same register as
// `expected`, which has just been poisoned.
if (value != expected) {
__ PoisonHeapReference(value);
}
}
// do {
// tmp = [r_ptr] - expected;
// } while (tmp == 0 && failure([r_ptr] <- r_new_value));
bool is_r6 = mips_codegen->GetInstructionSetFeatures().IsR6();
MipsLabel loop_head, exit_loop;
__ Bind(&loop_head);
if (is_r6) {
__ LlR6(tmp, tmp_ptr);
} else {
__ LlR2(tmp, tmp_ptr);
}
__ Bne(tmp, expected, &exit_loop);
__ Move(tmp, value);
if (is_r6) {
__ ScR6(tmp, tmp_ptr);
} else {
__ ScR2(tmp, tmp_ptr);
}
__ Beqz(tmp, &loop_head);
__ Bind(&exit_loop);
if (kPoisonHeapReferences) {
__ UnpoisonHeapReference(expected);
// Do not unpoison `value` if it is the same register as
// `expected`, which has just been unpoisoned.
if (value != expected) {
__ UnpoisonHeapReference(value);
}
}
__ Bind(&done);
__ B(GetExitLabel());
}
private:
// The location (register) of the marked object reference.
const Location ref_;
// The register containing the object holding the marked object reference field.
const Register obj_;
// The location of the offset of the marked reference field within `obj_`.
Location field_offset_;
const Register temp1_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS);
};
// Slow path generating a read barrier for a heap reference.
class ReadBarrierForHeapReferenceSlowPathMIPS : public SlowPathCodeMIPS {
public:
ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index)
: SlowPathCodeMIPS(instruction),
out_(out),
ref_(ref),
obj_(obj),
offset_(offset),
index_(index) {
DCHECK(kEmitCompilerReadBarrier);
// If `obj` is equal to `out` or `ref`, it means the initial object
// has been overwritten by (or after) the heap object reference load
// to be instrumented, e.g.:
//
// __ LoadFromOffset(kLoadWord, out, out, offset);
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
//
// In that case, we have lost the information about the original
// object, and the emitted read barrier cannot work properly.
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
Register reg_out = out_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier for heap reference slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We may have to change the index's value, but as `index_` is a
// constant member (like other "inputs" of this slow path),
// introduce a copy of it, `index`.
Location index = index_;
if (index_.IsValid()) {
// Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
if (instruction_->IsArrayGet()) {
// Compute the actual memory offset and store it in `index`.
Register index_reg = index_.AsRegister<Register>();
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
// We are about to change the value of `index_reg` (see the
// calls to art::mips::MipsAssembler::Sll and
// art::mips::MipsAssembler::Addiu32 below), but it has
// not been saved by the previous call to
// art::SlowPathCode::SaveLiveRegisters, as it is a
// callee-save register --
// art::SlowPathCode::SaveLiveRegisters does not consider
// callee-save registers, as it has been designed with the
// assumption that callee-save registers are supposed to be
// handled by the called function. So, as a callee-save
// register, `index_reg` _would_ eventually be saved onto
// the stack, but it would be too late: we would have
// changed its value earlier. Therefore, we manually save
// it here into another freely available register,
// `free_reg`, chosen of course among the caller-save
// registers (as a callee-save `free_reg` register would
// exhibit the same problem).
//
// Note we could have requested a temporary register from
// the register allocator instead; but we prefer not to, as
// this is a slow path, and we know we can find a
// caller-save register that is available.
Register free_reg = FindAvailableCallerSaveRegister(codegen);
__ Move(free_reg, index_reg);
index_reg = free_reg;
index = Location::RegisterLocation(index_reg);
} else {
// The initial register stored in `index_` has already been
// saved in the call to art::SlowPathCode::SaveLiveRegisters
// (as it is not a callee-save register), so we can freely
// use it.
}
// Shifting the index value contained in `index_reg` by the scale
// factor (2) cannot overflow in practice, as the runtime is
// unable to allocate object arrays with a size larger than
// 2^26 - 1 (that is, 2^28 - 4 bytes).
__ Sll(index_reg, index_reg, TIMES_4);
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
__ Addiu32(index_reg, index_reg, offset_);
} else {
// In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
// intrinsics, `index_` is not shifted by a scale factor of 2
// (as in the case of ArrayGet), as it is actually an offset
// to an object field within an object.
DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
(instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
<< instruction_->AsInvoke()->GetIntrinsic();
DCHECK_EQ(offset_, 0U);
DCHECK(index_.IsRegisterPair());
// UnsafeGet's offset location is a register pair, the low
// part contains the correct offset.
index = index_.ToLow();
}
}
// We're moving two or three locations to locations that could
// overlap, so we need a parallel move resolver.
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
parallel_move.AddMove(ref_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
DataType::Type::kReference,
nullptr);
parallel_move.AddMove(obj_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
DataType::Type::kReference,
nullptr);
if (index.IsValid()) {
parallel_move.AddMove(index,
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
DataType::Type::kInt32,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
} else {
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
__ LoadConst32(calling_convention.GetRegisterAt(2), offset_);
}
mips_codegen->InvokeRuntime(kQuickReadBarrierSlow,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
mips_codegen->MoveLocation(out_,
calling_convention.GetReturnLocation(DataType::Type::kReference),
DataType::Type::kReference);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathMIPS"; }
private:
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
size_t ref = static_cast<int>(ref_.AsRegister<Register>());
size_t obj = static_cast<int>(obj_.AsRegister<Register>());
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
if (i != ref &&
i != obj &&
!codegen->IsCoreCalleeSaveRegister(i) &&
!codegen->IsBlockedCoreRegister(i)) {
return static_cast<Register>(i);
}
}
// We shall never fail to find a free caller-save register, as
// there are more than two core caller-save registers on MIPS
// (meaning it is possible to find one which is different from
// `ref` and `obj`).
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
LOG(FATAL) << "Could not find a free caller-save register";
UNREACHABLE();
}
const Location out_;
const Location ref_;
const Location obj_;
const uint32_t offset_;
// An additional location containing an index to an array.
// Only used for HArrayGet and the UnsafeGetObject &
// UnsafeGetObjectVolatile intrinsics.
const Location index_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS);
};
// Slow path generating a read barrier for a GC root.
class ReadBarrierForRootSlowPathMIPS : public SlowPathCodeMIPS {
public:
ReadBarrierForRootSlowPathMIPS(HInstruction* instruction, Location out, Location root)
: SlowPathCodeMIPS(instruction), out_(out), root_(root) {
DCHECK(kEmitCompilerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) override {
LocationSummary* locations = instruction_->GetLocations();
Register reg_out = out_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
<< "Unexpected instruction in read barrier for GC root slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
root_,
DataType::Type::kReference);
mips_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
mips_codegen->MoveLocation(out_,
calling_convention.GetReturnLocation(DataType::Type::kReference),
DataType::Type::kReference);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierForRootSlowPathMIPS"; }
private:
const Location out_;
const Location root_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS);
};
CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfCoreRegisters,
kNumberOfFRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves)),
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
arraysize(kFpuCalleeSaves)),
compiler_options,
stats),
block_labels_(nullptr),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetAllocator(), this),
assembler_(graph->GetAllocator(),
compiler_options.GetInstructionSetFeatures()->AsMipsInstructionSetFeatures()),
uint32_literals_(std::less<uint32_t>(),
graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
boot_image_intrinsic_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
jit_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
jit_class_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
clobbered_ra_(false) {
// Save RA (containing the return address) to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(RA));
}
#undef __
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<MipsAssembler*>(GetAssembler())-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
// Ensure that we fix up branches.
__ FinalizeCode();
// Adjust native pc offsets in stack maps.
StackMapStream* stack_map_stream = GetStackMapStream();
for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) {
uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i);
uint32_t new_position = __ GetAdjustedPosition(old_position);
DCHECK_GE(new_position, old_position);
stack_map_stream->SetStackMapNativePcOffset(i, new_position);
}
// Adjust pc offsets for the disassembly information.
if (disasm_info_ != nullptr) {
GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
for (auto& it : *disasm_info_->GetInstructionIntervals()) {
it.second.start = __ GetAdjustedPosition(it.second.start);
it.second.end = __ GetAdjustedPosition(it.second.end);
}
for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
}
}
CodeGenerator::Finalize(allocator);
}
MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverMIPS::EmitMove(size_t index) {
DCHECK_LT(index, moves_.size());
MoveOperands* move = moves_[index];
codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
}
void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
DCHECK_LT(index, moves_.size());
MoveOperands* move = moves_[index];
DataType::Type type = move->GetType();
Location loc1 = move->GetDestination();
Location loc2 = move->GetSource();
DCHECK(!loc1.IsConstant());
DCHECK(!loc2.IsConstant());
if (loc1.Equals(loc2)) {
return;
}
if (loc1.IsRegister() && loc2.IsRegister()) {
// Swap 2 GPRs.
Register r1 = loc1.AsRegister<Register>();
Register r2 = loc2.AsRegister<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
} else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
if (codegen_->GetGraph()->HasSIMD()) {
__ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(loc1));
__ MoveV(VectorRegisterFrom(loc1), VectorRegisterFrom(loc2));
__ MoveV(VectorRegisterFrom(loc2), static_cast<VectorRegister>(FTMP));
} else {
FRegister f1 = loc1.AsFpuRegister<FRegister>();
FRegister f2 = loc2.AsFpuRegister<FRegister>();
if (type == DataType::Type::kFloat32) {
__ MovS(FTMP, f2);
__ MovS(f2, f1);
__ MovS(f1, FTMP);
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
__ MovD(FTMP, f2);
__ MovD(f2, f1);
__ MovD(f1, FTMP);
}
}
} else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
(loc1.IsFpuRegister() && loc2.IsRegister())) {
// Swap FPR and GPR.
DCHECK_EQ(type, DataType::Type::kFloat32); // Can only swap a float.
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
__ Move(TMP, r2);
__ Mfc1(r2, f1);
__ Mtc1(TMP, f1);
} else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
// Swap 2 GPR register pairs.
Register r1 = loc1.AsRegisterPairLow<Register>();
Register r2 = loc2.AsRegisterPairLow<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
r1 = loc1.AsRegisterPairHigh<Register>();
r2 = loc2.AsRegisterPairHigh<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
} else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
(loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
// Swap FPR and GPR register pair.
DCHECK_EQ(type, DataType::Type::kFloat64);
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
: loc2.AsRegisterPairLow<Register>();
Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
: loc2.AsRegisterPairHigh<Register>();
// Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
// then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
// unpredictable and the following mfch1 will fail.
__ Mfc1(TMP, f1);
__ MoveFromFpuHigh(AT, f1);
__ Mtc1(r2_l, f1);
__ MoveToFpuHigh(r2_h, f1);
__ Move(r2_l, TMP);
__ Move(r2_h, AT);
} else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot= */ false);
} else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot= */ true);
} else if (loc1.IsSIMDStackSlot() && loc2.IsSIMDStackSlot()) {
ExchangeQuadSlots(loc1.GetStackIndex(), loc2.GetStackIndex());
} else if ((loc1.IsRegister() && loc2.IsStackSlot()) ||
(loc1.IsStackSlot() && loc2.IsRegister())) {
Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
__ Move(TMP, reg);
__ LoadFromOffset(kLoadWord, reg, SP, offset);
__ StoreToOffset(kStoreWord, TMP, SP, offset);
} else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) ||
(loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) {
Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
: loc2.AsRegisterPairLow<Register>();
Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
: loc2.AsRegisterPairHigh<Register>();
intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize)
: loc2.GetHighStackIndex(kMipsWordSize);
__ Move(TMP, reg_l);
__ LoadFromOffset(kLoadWord, reg_l, SP, offset_l);
__ StoreToOffset(kStoreWord, TMP, SP, offset_l);
__ Move(TMP, reg_h);
__ LoadFromOffset(kLoadWord, reg_h, SP, offset_h);
__ StoreToOffset(kStoreWord, TMP, SP, offset_h);
} else if ((loc1.IsFpuRegister() && loc2.IsSIMDStackSlot()) ||
(loc1.IsSIMDStackSlot() && loc2.IsFpuRegister())) {
Location fp_loc = loc1.IsFpuRegister() ? loc1 : loc2;
intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex();
__ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(fp_loc));
__ LoadQFromOffset(fp_loc.AsFpuRegister<FRegister>(), SP, offset);
__ StoreQToOffset(FTMP, SP, offset);
} else if (loc1.IsFpuRegister() || loc2.IsFpuRegister()) {
FRegister reg = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex();
if (type == DataType::Type::kFloat32) {
__ MovS(FTMP, reg);
__ LoadSFromOffset(reg, SP, offset);
__ StoreSToOffset(FTMP, SP, offset);
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
__ MovD(FTMP, reg);
__ LoadDFromOffset(reg, SP, offset);
__ StoreDToOffset(FTMP, SP, offset);
}
} else {
LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
}
}
void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
__ Pop(static_cast<Register>(reg));
}
void ParallelMoveResolverMIPS::SpillScratch(int reg) {
__ Push(static_cast<Register>(reg));
}
void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
// Allocate a scratch register other than TMP, if available.
// Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
// automatically unspilled when the scratch scope object is destroyed).
ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
// If V0 spills onto the stack, SP-relative offsets need to be adjusted.
int stack_offset = ensure_scratch.IsSpilled() ? kStackAlignment : 0;
for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
__ LoadFromOffset(kLoadWord,
Register(ensure_scratch.GetRegister()),
SP,
index1 + stack_offset);
__ LoadFromOffset(kLoadWord,
TMP,
SP,
index2 + stack_offset);
__ StoreToOffset(kStoreWord,
Register(ensure_scratch.GetRegister()),
SP,
index2 + stack_offset);
__ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
}
}
void ParallelMoveResolverMIPS::ExchangeQuadSlots(int index1, int index2) {
__ LoadQFromOffset(FTMP, SP, index1);
__ LoadQFromOffset(FTMP2, SP, index2);
__ StoreQToOffset(FTMP, SP, index2);
__ StoreQToOffset(FTMP2, SP, index1);
}
void CodeGeneratorMIPS::ComputeSpillMask() {
core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
// If there're FPU callee-saved registers and there's an odd number of GPR callee-saved
// registers, include the ZERO register to force alignment of FPU callee-saved registers
// within the stack frame.
if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) {
core_spill_mask_ |= (1 << ZERO);
}
}
bool CodeGeneratorMIPS::HasAllocatedCalleeSaveRegisters() const {
// If RA is clobbered by PC-relative operations on R2 and it's the only spilled register
// (this can happen in leaf methods), force CodeGenerator::InitializeCodeGeneration()
// into the path that creates a stack frame so that RA can be explicitly saved and restored.
// RA can't otherwise be saved/restored when it's the only spilled register.
return CodeGenerator::HasAllocatedCalleeSaveRegisters() || clobbered_ra_;
}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::MipsCore(static_cast<int>(reg));
}
// TODO: mapping of floating-point registers to DWARF.
void CodeGeneratorMIPS::GenerateFrameEntry() {
__ Bind(&frame_entry_label_);
if (GetCompilerOptions().CountHotnessInCompiledCode()) {
__ Lhu(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value());
__ Addiu(TMP, TMP, 1);
__ Sh(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value());
}
bool do_overflow_check =
FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kMips) || !IsLeafMethod();
if (do_overflow_check) {
__ LoadFromOffset(kLoadWord,
ZERO,
SP,
-static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kMips)));
RecordPcInfo(nullptr, 0);
}
if (HasEmptyFrame()) {
CHECK_EQ(fpu_spill_mask_, 0u);
CHECK_EQ(core_spill_mask_, 1u << RA);
CHECK(!clobbered_ra_);
return;
}
// Make sure the frame size isn't unreasonably large.
if (GetFrameSize() > GetStackOverflowReservedBytes(InstructionSet::kMips)) {
LOG(FATAL) << "Stack frame larger than "
<< GetStackOverflowReservedBytes(InstructionSet::kMips) << " bytes";
}
// Spill callee-saved registers.
uint32_t ofs = GetFrameSize();
__ IncreaseFrameSize(ofs);
for (uint32_t mask = core_spill_mask_; mask != 0; ) {
Register reg = static_cast<Register>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsWordSize;
// The ZERO register is only included for alignment.
if (reg != ZERO) {
__ StoreToOffset(kStoreWord, reg, SP, ofs);
__ cfi().RelOffset(DWARFReg(reg), ofs);
}
}
for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsDoublewordSize;
__ StoreDToOffset(reg, SP, ofs);
// TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
}
// Save the current method if we need it. Note that we do not
// do this in HCurrentMethod, as the instruction might have been removed
// in the SSA graph.
if (RequiresCurrentMethod()) {
__ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
}
if (GetGraph()->HasShouldDeoptimizeFlag()) {
// Initialize should deoptimize flag to 0.
__ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag());
}
}
void CodeGeneratorMIPS::GenerateFrameExit() {
__ cfi().RememberState();
if (!HasEmptyFrame()) {
// Restore callee-saved registers.
// For better instruction scheduling restore RA before other registers.
uint32_t ofs = GetFrameSize();
for (uint32_t mask = core_spill_mask_; mask != 0; ) {
Register reg = static_cast<Register>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsWordSize;
// The ZERO register is only included for alignment.
if (reg != ZERO) {
__ LoadFromOffset(kLoadWord, reg, SP, ofs);
__ cfi().Restore(DWARFReg(reg));
}
}
for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsDoublewordSize;
__ LoadDFromOffset(reg, SP, ofs);
// TODO: __ cfi().Restore(DWARFReg(reg));
}
size_t frame_size = GetFrameSize();
// Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
bool reordering = __ SetReorder(false);
if (exchange) {
__ Jr(RA);
__ DecreaseFrameSize(frame_size); // Single instruction in delay slot.
} else {
__ DecreaseFrameSize(frame_size);
__ Jr(RA);
__ Nop(); // In delay slot.
}
__ SetReorder(reordering);
} else {
__ Jr(RA);
__ NopIfNoReordering();
}
__ cfi().RestoreState();
__ cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
VectorRegister VectorRegisterFrom(Location location) {
DCHECK(location.IsFpuRegister());
return static_cast<VectorRegister>(location.AsFpuRegister<FRegister>());
}
void CodeGeneratorMIPS::MoveLocation(Location destination,
Location source,
DataType::Type dst_type) {
if (source.Equals(destination)) {
return;
}
if (source.IsConstant()) {
MoveConstant(destination, source.GetConstant());
} else {
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
}
} else if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
__ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
__ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
} else if (source.IsFpuRegister()) {
Register dst_high = destination.AsRegisterPairHigh<Register>();
Register dst_low = destination.AsRegisterPairLow<Register>();
FRegister src = source.AsFpuRegister<FRegister>();
__ Mfc1(dst_low, src);
__ MoveFromFpuHigh(dst_high, src);
} else {
DCHECK(source.IsDoubleStackSlot())
<< "Cannot move from " << source << " to " << destination;
int32_t off = source.GetStackIndex();
Register r = destination.AsRegisterPairLow<Register>();
__ LoadFromOffset(kLoadDoubleword, r, SP, off);
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
DCHECK(!DataType::Is64BitType(dst_type));
__ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
} else if (source.IsRegisterPair()) {
DCHECK(DataType::Is64BitType(dst_type));
FRegister dst = destination.AsFpuRegister<FRegister>();
Register src_high = source.AsRegisterPairHigh<Register>();
Register src_low = source.AsRegisterPairLow<Register>();
__ Mtc1(src_low, dst);
__ MoveToFpuHigh(src_high, dst);
} else if (source.IsFpuRegister()) {
if (GetGraph()->HasSIMD()) {
__ MoveV(VectorRegisterFrom(destination),
VectorRegisterFrom(source));
} else {
if (DataType::Is64BitType(dst_type)) {
__ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK_EQ(dst_type, DataType::Type::kFloat32);
__ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
}
}
} else if (source.IsSIMDStackSlot()) {
__ LoadQFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
} else if (source.IsDoubleStackSlot()) {
DCHECK(DataType::Is64BitType(dst_type));
__ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
} else {
DCHECK(!DataType::Is64BitType(dst_type));
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
}
} else if (destination.IsSIMDStackSlot()) {
if (source.IsFpuRegister()) {
__ StoreQToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
} else {
DCHECK(source.IsSIMDStackSlot());
__ LoadQFromOffset(FTMP, SP, source.GetStackIndex());
__ StoreQToOffset(FTMP, SP, destination.GetStackIndex());
}
} else if (destination.IsDoubleStackSlot()) {
int32_t dst_offset = destination.GetStackIndex();
if (source.IsRegisterPair()) {
__ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, dst_offset);
} else if (source.IsFpuRegister()) {
__ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset);
} else {
DCHECK(source.IsDoubleStackSlot())
<< "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, TMP, SP, dst_offset);
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
__ StoreToOffset(kStoreWord, TMP, SP, dst_offset + 4);
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
int32_t dst_offset = destination.GetStackIndex();
if (source.IsRegister()) {
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, dst_offset);
} else if (source.IsFpuRegister()) {
__ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset);
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, TMP, SP, dst_offset);
}
}
}
}
void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
if (c->IsIntConstant() || c->IsNullConstant()) {
// Move 32 bit constant.
int32_t value = GetInt32ValueOf(c);
if (destination.IsRegister()) {
Register dst = destination.AsRegister<Register>();
__ LoadConst32(dst, value);
} else {
DCHECK(destination.IsStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
}
} else if (c->IsLongConstant()) {
// Move 64 bit constant.
int64_t value = GetInt64ValueOf(c);
if (destination.IsRegisterPair()) {
Register r_h = destination.AsRegisterPairHigh<Register>();
Register r_l = destination.AsRegisterPairLow<Register>();
__ LoadConst64(r_h, r_l, value);
} else {
DCHECK(destination.IsDoubleStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
}
} else if (c->IsFloatConstant()) {
// Move 32 bit float constant.
int32_t value = GetInt32ValueOf(c);
if (destination.IsFpuRegister()) {
__ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
} else {
DCHECK(destination.IsStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
}
} else {
// Move 64 bit double constant.
DCHECK(c->IsDoubleConstant()) << c->DebugName();
int64_t value = GetInt64ValueOf(c);
if (destination.IsFpuRegister()) {
FRegister fd = destination.AsFpuRegister<FRegister>();
__ LoadDConst64(fd, value, TMP);
} else {
DCHECK(destination.IsDoubleStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
}
}
}
void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
DCHECK(destination.IsRegister());
Register dst = destination.AsRegister<Register>();
__ LoadConst32(dst, value);
}
void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else if (location.IsRegisterPair()) {
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
inline void CodeGeneratorMIPS::EmitPcRelativeLinkerPatches(
const ArenaDeque<PcRelativePatchInfo>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches) {
for (const PcRelativePatchInfo& info : infos) {
const DexFile* dex_file = info.target_dex_file;
size_t offset_or_index = info.offset_or_index;
DCHECK(info.label.IsBound());
uint32_t literal_offset = __ GetLabelLocation(&info.label);
// On R2 we use HMipsComputeBaseMethodAddress and patch relative to
// the assembler's base label used for PC-relative addressing.
const PcRelativePatchInfo& info_high = info.patch_info_high ? *info.patch_info_high : info;
uint32_t pc_rel_offset = info_high.pc_rel_label.IsBound()
? __ GetLabelLocation(&info_high.pc_rel_label)
: __ GetPcRelBaseLabelLocation();
linker_patches->push_back(Factory(literal_offset, dex_file, pc_rel_offset, offset_or_index));
}
}
template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t boot_image_offset) {
DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
return Factory(literal_offset, pc_insn_offset, boot_image_offset);
}
void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
DCHECK(linker_patches->empty());
size_t size =
boot_image_method_patches_.size() +
method_bss_entry_patches_.size() +
boot_image_type_patches_.size() +
type_bss_entry_patches_.size() +
boot_image_string_patches_.size() +
string_bss_entry_patches_.size() +
boot_image_intrinsic_patches_.size();
linker_patches->reserve(size);
if (GetCompilerOptions().IsBootImage()) {
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
boot_image_method_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
boot_image_type_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
boot_image_string_patches_, linker_patches);
EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
boot_image_intrinsic_patches_, linker_patches);
} else {
EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
boot_image_method_patches_, linker_patches);
DCHECK(boot_image_type_patches_.empty());
DCHECK(boot_image_string_patches_.empty());
DCHECK(boot_image_intrinsic_patches_.empty());
}
EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
method_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
type_bss_entry_patches_, linker_patches);
EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
string_bss_entry_patches_, linker_patches);
DCHECK_EQ(size, linker_patches->size());
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageIntrinsicPatch(
uint32_t intrinsic_data,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(
/* dex_file= */ nullptr, intrinsic_data, info_high, &boot_image_intrinsic_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageRelRoPatch(
uint32_t boot_image_offset,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(
/* dex_file= */ nullptr, boot_image_offset, info_high, &boot_image_method_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageMethodPatch(
MethodReference target_method,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(
target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewMethodBssEntryPatch(
MethodReference target_method,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(
target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageTypePatch(
const DexFile& dex_file,
dex::TypeIndex type_index,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewTypeBssEntryPatch(
const DexFile& dex_file,
dex::TypeIndex type_index,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &type_bss_entry_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageStringPatch(
const DexFile& dex_file,
dex::StringIndex string_index,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(
&dex_file, string_index.index_, info_high, &boot_image_string_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewStringBssEntryPatch(
const DexFile& dex_file,
dex::StringIndex string_index,
const PcRelativePatchInfo* info_high) {
return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch(
const DexFile* dex_file,
uint32_t offset_or_index,
const PcRelativePatchInfo* info_high,
ArenaDeque<PcRelativePatchInfo>* patches) {
patches->emplace_back(dex_file, offset_or_index, info_high);
return &patches->back();
}
Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
return map->GetOrCreate(
value,
[this, value]() { return __ NewLiteral<uint32_t>(value); });
}
Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) {
return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
}
void CodeGeneratorMIPS::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high,
Register out,
Register base) {
DCHECK(!info_high->patch_info_high);
DCHECK_NE(out, base);
bool reordering = __ SetReorder(false);
if (GetInstructionSetFeatures().IsR6()) {
DCHECK_EQ(base, ZERO);
__ Bind(&info_high->label);
__ Bind(&info_high->pc_rel_label);
// Add the high half of a 32-bit offset to PC.
__ Auipc(out, /* imm16= */ 0x1234);
__ SetReorder(reordering);
} else {
// If base is ZERO, emit NAL to obtain the actual base.
if (base == ZERO) {
// Generate a dummy PC-relative call to obtain PC.
__ Nal();
}
__ Bind(&info_high->label);
__ Lui(out, /* imm16= */ 0x1234);
// If we emitted the NAL, bind the pc_rel_label, otherwise base is a register holding
// the HMipsComputeBaseMethodAddress which has its own label stored in MipsAssembler.
if (base == ZERO) {
__ Bind(&info_high->pc_rel_label);
}
__ SetReorder(reordering);
// Add the high half of a 32-bit offset to PC.
__ Addu(out, out, (base == ZERO) ? RA : base);
}
// A following instruction will add the sign-extended low half of the 32-bit
// offset to `out` (e.g. lw, jialc, addiu).
}
void CodeGeneratorMIPS::LoadBootImageAddress(Register reg, uint32_t boot_image_reference) {
if (GetCompilerOptions().IsBootImage()) {
PcRelativePatchInfo* info_high = NewBootImageIntrinsicPatch(boot_image_reference);
PcRelativePatchInfo* info_low = NewBootImageIntrinsicPatch(boot_image_reference, info_high);
EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, /* base= */ ZERO);
__ Addiu(reg, TMP, /* imm16= */ 0x5678, &info_low->label);
} else if (GetCompilerOptions().GetCompilePic()) {
PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_reference);
PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_reference, info_high);
EmitPcRelativeAddressPlaceholderHigh(info_high, reg, /* base= */ ZERO);
__ Lw(reg, reg, /* imm16= */ 0x5678, &info_low->label);
} else {
DCHECK(Runtime::Current()->UseJitCompilation());
gc::Heap* heap = Runtime::Current()->GetHeap();
DCHECK(!heap->GetBootImageSpaces().empty());
const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
__ LoadConst32(reg, dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(address)));
}
}
void CodeGeneratorMIPS::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke,
uint32_t boot_image_offset) {
DCHECK(invoke->IsStatic());
InvokeRuntimeCallingConvention calling_convention;
Register argument = calling_convention.GetRegisterAt(0);
if (GetCompilerOptions().IsBootImage()) {
DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference);
// Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
MethodReference target_method = invoke->GetTargetMethod();
dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
PcRelativePatchInfo* info_high = NewBootImageTypePatch(*target_method.dex_file, type_idx);
PcRelativePatchInfo* info_low =
NewBootImageTypePatch(*target_method.dex_file, type_idx, info_high);
EmitPcRelativeAddressPlaceholderHigh(info_high, argument, /* base= */ ZERO);
__ Addiu(argument, argument, /* imm16= */ 0x5678, &info_low->label);
} else {
LoadBootImageAddress(argument, boot_image_offset);
}
InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
}
CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootStringPatch(
const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle) {
ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
jit_string_patches_.emplace_back(dex_file, string_index.index_);
return &jit_string_patches_.back();
}
CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootClassPatch(
const DexFile& dex_file,
dex::TypeIndex type_index,
Handle<mirror::Class> handle) {
ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
jit_class_patches_.emplace_back(dex_file, type_index.index_);
return &jit_class_patches_.back();
}
void CodeGeneratorMIPS::PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
const CodeGeneratorMIPS::JitPatchInfo& info,
uint64_t index_in_table) const {
uint32_t high_literal_offset = GetAssembler().GetLabelLocation(&info.high_label);
uint32_t low_literal_offset = GetAssembler().GetLabelLocation(&info.low_label);
uintptr_t address =
reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
uint32_t addr32 = dchecked_integral_cast<uint32_t>(address);
// lui reg, addr32_high
DCHECK_EQ(code[high_literal_offset + 0], 0x34);
DCHECK_EQ(code[high_literal_offset + 1], 0x12);
DCHECK_EQ((code[high_literal_offset + 2] & 0xE0), 0x00);
DCHECK_EQ(code[high_literal_offset + 3], 0x3C);
// instr reg, reg, addr32_low
DCHECK_EQ(code[low_literal_offset + 0], 0x78);
DCHECK_EQ(code[low_literal_offset + 1], 0x56);
addr32 += (addr32 & 0x8000) << 1; // Account for sign extension in "instr reg, reg, addr32_low".
// lui reg, addr32_high
code[high_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 16);
code[high_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 24);
// instr reg, reg, addr32_low
code[low_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 0);
code[low_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 8);
}
void CodeGeneratorMIPS::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
for (const JitPatchInfo& info : jit_string_patches_) {
StringReference string_reference(&info.target_dex_file, dex::StringIndex(info.index));
uint64_t index_in_table = GetJitStringRootIndex(string_reference);
PatchJitRootUse(code, roots_data, info, index_in_table);
}
for (const JitPatchInfo& info : jit_class_patches_) {
TypeReference type_reference(&info.target_dex_file, dex::TypeIndex(info.index));
uint64_t index_in_table = GetJitClassRootIndex(type_reference);
PatchJitRootUse(code, roots_data, info, index_in_table);
}
}
void CodeGeneratorMIPS::MarkGCCard(Register object,
Register value,
bool value_can_be_null) {
MipsLabel done;
Register card = AT;
Register temp = TMP;
if (value_can_be_null) {
__ Beqz(value, &done);
}
// Load the address of the card table into `card`.
__ LoadFromOffset(kLoadWord,
card,
TR,
Thread::CardTableOffset<kMipsPointerSize>().Int32Value());
// Calculate the address of the card corresponding to `object`.
__ Srl(temp, object, gc::accounting::CardTable::kCardShift);
__ Addu(temp, card, temp);
// Write the `art::gc::accounting::CardTable::kCardDirty` value into the
// `object`'s card.
//
// Register `card` contains the address of the card table. Note that the card
// table's base is biased during its creation so that it always starts at an
// address whose least-significant byte is equal to `kCardDirty` (see
// art::gc::accounting::CardTable::Create). Therefore the SB instruction
// below writes the `kCardDirty` (byte) value into the `object`'s card
// (located at `card + object >> kCardShift`).
//
// This dual use of the value in register `card` (1. to calculate the location
// of the card to mark; and 2. to load the `kCardDirty` value) saves a load
// (no need to explicitly load `kCardDirty` as an immediate value).
__ Sb(card, temp, 0);
if (value_can_be_null) {
__ Bind(&done);
}
}
void CodeGeneratorMIPS::SetupBlockedRegisters() const {
// ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
blocked_core_registers_[ZERO] = true;
blocked_core_registers_[K0] = true;
blocked_core_registers_[K1] = true;
blocked_core_registers_[GP] = true;
blocked_core_registers_[SP] = true;
blocked_core_registers_[RA] = true;
// AT and TMP(T8) are used as temporary/scratch registers
// (similar to how AT is used by MIPS assemblers).
blocked_core_registers_[AT] = true;
blocked_core_registers_[TMP] = true;
blocked_fpu_registers_[FTMP] = true;
if (GetInstructionSetFeatures().HasMsa()) {
// To be used just for MSA instructions.
blocked_fpu_registers_[FTMP2] = true;
}
// Reserve suspend and thread registers.
blocked_core_registers_[S0] = true;
blocked_core_registers_[TR] = true;
// Reserve T9 for function calls
blocked_core_registers_[T9] = true;
// Reserve odd-numbered FPU registers.
for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
blocked_fpu_registers_[i] = true;
}
if (GetGraph()->IsDebuggable()) {
// Stubs do not save callee-save floating point registers. If the graph
// is debuggable, we need to deal with these registers differently. For
// now, just block them.
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
}
size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
return kMipsWordSize;
}
size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
return kMipsWordSize;
}
size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
if (GetGraph()->HasSIMD()) {
__ StoreQToOffset(FRegister(reg_id), SP, stack_index);
} else {
__ StoreDToOffset(FRegister(reg_id), SP, stack_index);
}
return GetFloatingPointSpillSlotSize();
}
size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
if (GetGraph()->HasSIMD()) {
__ LoadQFromOffset(FRegister(reg_id), SP, stack_index);
} else {
__ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
}
return GetFloatingPointSpillSlotSize();
}
void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << Register(reg);
}
void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << FRegister(reg);
}
const MipsInstructionSetFeatures& CodeGeneratorMIPS::GetInstructionSetFeatures() const {
return *GetCompilerOptions().GetInstructionSetFeatures()->AsMipsInstructionSetFeatures();
}
constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
GenerateInvokeRuntime(GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value(),
IsDirectEntrypoint(entrypoint));
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
void CodeGeneratorMIPS::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path,
bool direct) {
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
GenerateInvokeRuntime(entry_point_offset, direct);
}
void CodeGeneratorMIPS::GenerateInvokeRuntime(int32_t entry_point_offset, bool direct) {
bool reordering = __ SetReorder(false);
__ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
__ Jalr(T9);
if (direct) {
// Reserve argument space on stack (for $a0-$a3) for
// entrypoints that directly reference native implementations.
// Called function may use this space to store $a0-$a3 regs.
__ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); // Single instruction in delay slot.
__ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
} else {
__ Nop(); // In delay slot.
}
__ SetReorder(reordering);
}
void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
Register class_reg) {
constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
const size_t status_byte_offset =
mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
constexpr uint32_t shifted_initialized_value =
enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte);
__ LoadFromOffset(kLoadUnsignedByte, TMP, class_reg, status_byte_offset);
__ Sltiu(TMP, TMP, shifted_initialized_value);
__ Bnez(TMP, slow_path->GetEntryLabel());
// Even if the initialized flag is set, we need to ensure consistent memory ordering.
__ Sync(0);
__ Bind(slow_path->GetExitLabel());
}
void InstructionCodeGeneratorMIPS::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check,
Register temp) {
uint32_t path_to_root = check->GetBitstringPathToRoot();
uint32_t mask = check->GetBitstringMask();
DCHECK(IsPowerOfTwo(mask + 1));
size_t mask_bits = WhichPowerOf2(mask + 1);
if (mask_bits == 16u) {
// Load only the bitstring part of the status word.
__ LoadFromOffset(
kLoadUnsignedHalfword, temp, temp, mirror::Class::StatusOffset().Int32Value());
// Compare the bitstring bits using XOR.
__ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root));
} else {
// /* uint32_t */ temp = temp->status_
__ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::StatusOffset().Int32Value());
// Compare the bitstring bits using XOR.
if (IsUint<16>(path_to_root)) {
__ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root));
} else {
__ LoadConst32(TMP, path_to_root);
__ Xor(temp, temp, TMP);
}
// Shift out bits that do not contribute to the comparison.
__ Sll(temp, temp, 32 - mask_bits);
}
}
void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
__ Sync(0); // Only stype 0 is supported.
}
void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathMIPS* slow_path =
down_cast<SuspendCheckSlowPathMIPS*>(instruction->GetSlowPath());
if (slow_path == nullptr) {
slow_path =
new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathMIPS(instruction, successor);
instruction->SetSlowPath(slow_path);
codegen_->AddSlowPath(slow_path);
if (successor != nullptr) {
DCHECK(successor->IsLoopHeader());
}
} else {
DCHECK_EQ(slow_path->GetSuccessor(), successor);
}
__ LoadFromOffset(kLoadUnsignedHalfword,
TMP,
TR,
Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value());
if (successor == nullptr) {
__ Bnez(TMP, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ Beqz(TMP, codegen_->GetLabelOf(successor));
__ B(slow_path->GetEntryLabel());
// slow_path will return to GetLabelOf(successor).
}
}
InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
CodeGeneratorMIPS* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
DCHECK_EQ(instruction->InputCount(), 2U);
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DataType::Type type = instruction->GetResultType();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (type) {
case DataType::Type::kInt32: {
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* right = instruction->InputAt(1);
bool can_use_imm = false;
if (right->IsConstant()) {
int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
can_use_imm = IsUint<16>(imm);
} else {
DCHECK(instruction->IsSub() || instruction->IsAdd());
if (instruction->IsSub()) {
imm = -imm;
}
if (isR6) {
bool single_use = right->GetUses().HasExactlyOneElement();
int16_t imm_high = High16Bits(imm);
int16_t imm_low = Low16Bits(imm);
if (imm_low < 0) {
imm_high += 1;
}
can_use_imm = !((imm_high != 0) && (imm_low != 0)) || single_use;
} else {
can_use_imm = IsInt<16>(imm);
}
}
}
if (can_use_imm)
locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
else
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case DataType::Type::kInt64: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
DCHECK(instruction->IsAdd() || instruction->IsSub());
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
}
}
void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (type) {
case DataType::Type::kInt32: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int32_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
if (instruction->IsAnd()) {
if (use_imm)
__ Andi(dst, lhs, rhs_imm);
else
__ And(dst, lhs, rhs_reg);
} else if (instruction->IsOr()) {
if (use_imm)
__ Ori(dst, lhs, rhs_imm);
else
__ Or(dst, lhs, rhs_reg);
} else if (instruction->IsXor()) {
if (use_imm)
__ Xori(dst, lhs, rhs_imm);
else
__ Xor(dst, lhs, rhs_reg);
} else {
DCHECK(instruction->IsAdd() || instruction->IsSub());
if (use_imm) {
if (instruction->IsSub()) {
rhs_imm = -rhs_imm;
}
if (IsInt<16>(rhs_imm)) {
__ Addiu(dst, lhs, rhs_imm);
} else {
DCHECK(isR6);
int16_t rhs_imm_high = High16Bits(rhs_imm);
int16_t rhs_imm_low = Low16Bits(rhs_imm);
if (rhs_imm_low < 0) {
rhs_imm_high += 1;
}
__ Aui(dst, lhs, rhs_imm_high);
if (rhs_imm_low != 0) {
__ Addiu(dst, dst, rhs_imm_low);
}
}
} else if (instruction->IsAdd()) {
__ Addu(dst, lhs, rhs_reg);
} else {
DCHECK(instruction->IsSub());
__ Subu(dst, lhs, rhs_reg);
}
}
break;
}
case DataType::Type::kInt64: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Location rhs_location = locations->InAt(1);
bool use_imm = rhs_location.IsConstant();
if (!use_imm) {
Register rhs_high = rhs_location.AsRegisterPairHigh<Register>();
Register rhs_low = rhs_location.AsRegisterPairLow<Register>();
if (instruction->IsAnd()) {
__ And(dst_low, lhs_low, rhs_low);
__ And(dst_high, lhs_high, rhs_high);
} else if (instruction->IsOr()) {
__ Or(dst_low, lhs_low, rhs_low);
__ Or(dst_high, lhs_high, rhs_high);
} else if (instruction->IsXor()) {
__ Xor(dst_low, lhs_low, rhs_low);
__ Xor(dst_high, lhs_high, rhs_high);
} else if (instruction->IsAdd()) {
if (lhs_low == rhs_low) {
// Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs.
__ Slt(TMP, lhs_low, ZERO);
__ Addu(dst_low, lhs_low, rhs_low);
} else {
__ Addu(dst_low, lhs_low, rhs_low);
// If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged.
__ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low);
}
__ Addu(dst_high, lhs_high, rhs_high);
__ Addu(dst_high, dst_high, TMP);
} else {
DCHECK(instruction->IsSub());
__ Sltu(TMP, lhs_low, rhs_low);
__ Subu(dst_low, lhs_low, rhs_low);
__ Subu(dst_high, lhs_high, rhs_high);
__ Subu(dst_high, dst_high, TMP);
}
} else {
int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant());
if (instruction->IsOr()) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (IsUint<16>(low)) {
if (dst_low != lhs_low || low != 0) {
__ Ori(dst_low, lhs_low, low);
}
} else {
__ LoadConst32(TMP, low);
__ Or(dst_low, lhs_low, TMP);
}
if (IsUint<16>(high)) {
if (dst_high != lhs_high || high != 0) {
__ Ori(dst_high, lhs_high, high);
}
} else {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ Or(dst_high, lhs_high, TMP);
}
} else if (instruction->IsXor()) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (IsUint<16>(low)) {
if (dst_low != lhs_low || low != 0) {
__ Xori(dst_low, lhs_low, low);
}
} else {
__ LoadConst32(TMP, low);
__ Xor(dst_low, lhs_low, TMP);
}
if (IsUint<16>(high)) {
if (dst_high != lhs_high || high != 0) {
__ Xori(dst_high, lhs_high, high);
}
} else {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ Xor(dst_high, lhs_high, TMP);
}
} else if (instruction->IsAnd()) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (IsUint<16>(low)) {
__ Andi(dst_low, lhs_low, low);
} else if (low != 0xFFFFFFFF) {
__ LoadConst32(TMP, low);
__ And(dst_low, lhs_low, TMP);
} else if (dst_low != lhs_low) {
__ Move(dst_low, lhs_low);
}
if (IsUint<16>(high)) {
__ Andi(dst_high, lhs_high, high);
} else if (high != 0xFFFFFFFF) {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ And(dst_high, lhs_high, TMP);
} else if (dst_high != lhs_high) {
__ Move(dst_high, lhs_high);
}
} else {
if (instruction->IsSub()) {
value = -value;
} else {
DCHECK(instruction->IsAdd());
}
int32_t low = Low32Bits(value);
int32_t high = High32Bits(value);
if (IsInt<16>(low)) {
if (dst_low != lhs_low || low != 0) {
__ Addiu(dst_low, lhs_low, low);
}
if (low != 0) {
__ Sltiu(AT, dst_low, low);
}
} else {
__ LoadConst32(TMP, low);
__ Addu(dst_low, lhs_low, TMP);
__ Sltu(AT, dst_low, TMP);
}
if (IsInt<16>(high)) {
if (dst_high != lhs_high || high != 0) {
__ Addiu(dst_high, lhs_high, high);
}
} else {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ Addu(dst_high, lhs_high, TMP);
}
if (low != 0) {
__ Addu(dst_high, dst_high, AT);
}
}
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (instruction->IsAdd()) {
if (type == DataType::Type::kFloat32) {
__ AddS(dst, lhs, rhs);
} else {
__ AddD(dst, lhs, rhs);
}
} else {
DCHECK(instruction->IsSub());
if (type == DataType::Type::kFloat32) {
__ SubS(dst, lhs, rhs);
} else {
__ SubD(dst, lhs, rhs);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected binary operation type " << type;
}
}
void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
DataType::Type type = instr->GetResultType();
switch (type) {
case DataType::Type::kInt32:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister());
break;
default:
LOG(FATAL) << "Unexpected shift type " << type;
}
}
static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
LocationSummary* locations = instr->GetLocations();
DataType::Type type = instr->GetType();
Location rhs_location = locations->InAt(1);
bool use_imm = rhs_location.IsConstant();
Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
const uint32_t shift_mask =
(type == DataType::Type::kInt32) ? kMaxIntShiftDistance : kMaxLongShiftDistance;
const uint32_t shift_value = rhs_imm & shift_mask;
// Are the INS (Insert Bit Field) and ROTR instructions supported?
bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
switch (type) {
case DataType::Type::kInt32: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
if (use_imm) {
if (shift_value == 0) {
if (dst != lhs) {
__ Move(dst, lhs);
}
} else if (instr->IsShl()) {
__ Sll(dst, lhs, shift_value);
} else if (instr->IsShr()) {
__ Sra(dst, lhs, shift_value);
} else if (instr->IsUShr()) {
__ Srl(dst, lhs, shift_value);
} else {
if (has_ins_rotr) {
__ Rotr(dst, lhs, shift_value);
} else {
__ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask);
__ Srl(dst, lhs, shift_value);
__ Or(dst, dst, TMP);
}
}
} else {
if (instr->IsShl()) {
__ Sllv(dst, lhs, rhs_reg);
} else if (instr->IsShr()) {
__ Srav(dst, lhs, rhs_reg);
} else if (instr->IsUShr()) {
__ Srlv(dst, lhs, rhs_reg);
} else {
if (has_ins_rotr) {
__ Rotrv(dst, lhs, rhs_reg);
} else {
__ Subu(TMP, ZERO, rhs_reg);
// 32-bit shift instructions use the 5 least significant bits of the shift count, so
// shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case
// when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out
// by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`,
// IOW, the OR'd values are equal.
__ Sllv(TMP, lhs, TMP);
__ Srlv(dst, lhs, rhs_reg);
__ Or(dst, dst, TMP);
}
}
}
break;
}
case DataType::Type::kInt64: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
if (use_imm) {
if (shift_value == 0) {
codegen_->MoveLocation(locations->Out(), locations->InAt(0), type);
} else if (shift_value < kMipsBitsPerWord) {
if (has_ins_rotr) {
if (instr->IsShl()) {
__ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
__ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value);
__ Sll(dst_low, lhs_low, shift_value);
} else if (instr->IsShr()) {
__ Srl(dst_low, lhs_low, shift_value);
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
__ Sra(dst_high, lhs_high, shift_value);
} else if (instr->IsUShr()) {
__ Srl(dst_low, lhs_low, shift_value);
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
__ Srl(dst_high, lhs_high, shift_value);
} else {
__ Srl(dst_low, lhs_low, shift_value);
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
__ Srl(dst_high, lhs_high, shift_value);
__ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value);
}
} else {
if (instr->IsShl()) {
__ Sll(dst_low, lhs_low, shift_value);
__ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
__ Sll(dst_high, lhs_high, shift_value);
__ Or(dst_high, dst_high, TMP);
} else if (instr->IsShr()) {
__ Sra(dst_high, lhs_high, shift_value);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
__ Srl(dst_low, lhs_low, shift_value);
__ Or(dst_low, dst_low, TMP);
} else if (instr->IsUShr()) {
__ Srl(dst_high, lhs_high, shift_value);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
__ Srl(dst_low, lhs_low, shift_value);
__ Or(dst_low, dst_low, TMP);
} else {
__ Srl(TMP, lhs_low, shift_value);
__ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value);
__ Or(dst_low, dst_low, TMP);
__ Srl(TMP, lhs_high, shift_value);
__ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
__ Or(dst_high, dst_high, TMP);
}
}
} else {
const uint32_t shift_value_high = shift_value - kMipsBitsPerWord;
if (instr->IsShl()) {
__ Sll(dst_high, lhs_low, shift_value_high);
__ Move(dst_low, ZERO);
} else if (instr->IsShr()) {
__ Sra(dst_low, lhs_high, shift_value_high);
__ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
} else if (instr->IsUShr()) {
__ Srl(dst_low, lhs_high, shift_value_high);
__ Move(dst_high, ZERO);
} else {
if (shift_value == kMipsBitsPerWord) {
// 64-bit rotation by 32 is just a swap.
__ Move(dst_low, lhs_high);
__ Move(dst_high, lhs_low);
} else {
if (has_ins_rotr) {
__ Srl(dst_low, lhs_high, shift_value_high);
__ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high);
__ Srl(dst_high, lhs_low, shift_value_high);
__ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high);
} else {
__ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high);
__ Srl(dst_low, lhs_high, shift_value_high);
__ Or(dst_low, dst_low, TMP);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high);
__ Srl(dst_high, lhs_low, shift_value_high);
__ Or(dst_high, dst_high, TMP);
}
}
}
}
} else {
const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
MipsLabel done;
if (instr->IsShl()) {
__ Sllv(dst_low, lhs_low, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Srl(TMP, lhs_low, 1);
__ Srlv(TMP, TMP, AT);
__ Sllv(dst_high, lhs_high, rhs_reg);
__ Or(dst_high, dst_high, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
if (isR6) {
__ Beqzc(TMP, &done, /* is_bare= */ true);
__ Move(dst_high, dst_low);
__ Move(dst_low, ZERO);
} else {
__ Movn(dst_high, dst_low, TMP);
__ Movn(dst_low, ZERO, TMP);
}
} else if (instr->IsShr()) {
__ Srav(dst_high, lhs_high, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Sll(TMP, lhs_high, 1);
__ Sllv(TMP, TMP, AT);
__ Srlv(dst_low, lhs_low, rhs_reg);
__ Or(dst_low, dst_low, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
if (isR6) {
__ Beqzc(TMP, &done, /* is_bare= */ true);
__ Move(dst_low, dst_high);
__ Sra(dst_high, dst_high, 31);
} else {
__ Sra(AT, dst_high, 31);
__ Movn(dst_low, dst_high, TMP);
__ Movn(dst_high, AT, TMP);
}
} else if (instr->IsUShr()) {
__ Srlv(dst_high, lhs_high, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Sll(TMP, lhs_high, 1);
__ Sllv(TMP, TMP, AT);
__ Srlv(dst_low, lhs_low, rhs_reg);
__ Or(dst_low, dst_low, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
if (isR6) {
__ Beqzc(TMP, &done, /* is_bare= */ true);
__ Move(dst_low, dst_high);
__ Move(dst_high, ZERO);
} else {
__ Movn(dst_low, dst_high, TMP);
__ Movn(dst_high, ZERO, TMP);
}
} else { // Rotate.
__ Nor(AT, ZERO, rhs_reg);
__ Srlv(TMP, lhs_low, rhs_reg);
__ Sll(dst_low, lhs_high, 1);
__ Sllv(dst_low, dst_low, AT);
__ Or(dst_low, dst_low, TMP);
__ Srlv(TMP, lhs_high, rhs_reg);
__ Sll(dst_high, lhs_low, 1);
__ Sllv(dst_high, dst_high, AT);
__ Or(dst_high, dst_high, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
if (isR6) {
__ Beqzc(TMP, &done, /* is_bare= */ true);
__ Move(TMP, dst_high);
__ Move(dst_high, dst_low);
__ Move(dst_low, TMP);
} else {
__ Movn(AT, dst_high, TMP);
__ Movn(dst_high, dst_low, TMP);
__ Movn(dst_low, AT, TMP);
}
}
__ Bind(&done);
}
break;
}
default:
LOG(FATAL) << "Unexpected shift operation type " << type;
}
}
void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
DataType::Type type = instruction->GetType();
bool object_array_get_with_read_barrier =
kEmitCompilerReadBarrier && (type == DataType::Type::kReference);
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction,
object_array_get_with_read_barrier
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (DataType::IsFloatingPointType(type)) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
// The output overlaps in the case of an object array get with
// read barriers enabled: we do not want the move to overwrite the
// array's location, as we need it to emit the read barrier.
locations->SetOut(Location::RequiresRegister(),
object_array_get_with_read_barrier
? Location::kOutputOverlap
: Location::kNoOutputOverlap);
}
// We need a temporary register for the read barrier marking slow
// path in CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier.
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
bool temp_needed = instruction->GetIndex()->IsConstant()
? !kBakerReadBarrierThunksEnableForFields
: !kBakerReadBarrierThunksEnableForArrays;
if (temp_needed) {
locations->AddTemp(Location::RequiresRegister());
}
}
}
static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS* codegen) {
auto null_checker = [codegen, instruction]() {
codegen->MaybeRecordImplicitNullCheck(instruction);
};
return null_checker;
}
void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location out_loc = locations->Out();
Location index = locations->InAt(1);
uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
DataType::Type type = instruction->GetType();
const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
instruction->IsStringCharAt();
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8: {
Register out = out_loc.AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kInt8: {
Register out = out_loc.AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kUint16: {
Register out = out_loc.AsRegister<Register>();
if (maybe_compressed_char_at) {
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
__ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker);
__ Sll(TMP, TMP, 31); // Extract compression flag into the most significant bit of TMP.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
}
if (index.IsConstant()) {
int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
if (maybe_compressed_char_at) {
MipsLabel uncompressed_load, done;
__ Bnez(TMP, &uncompressed_load);
__ LoadFromOffset(kLoadUnsignedByte,
out,
obj,
data_offset + (const_index << TIMES_1));
__ B(&done);
__ Bind(&uncompressed_load);
__ LoadFromOffset(kLoadUnsignedHalfword,
out,
obj,
data_offset + (const_index << TIMES_2));
__ Bind(&done);
} else {
__ LoadFromOffset(kLoadUnsignedHalfword,
out,
obj,
data_offset + (const_index << TIMES_2),
null_checker);
}
} else {
Register index_reg = index.AsRegister<Register>();
if (maybe_compressed_char_at) {
MipsLabel uncompressed_load, done;
__ Bnez(TMP, &uncompressed_load);
__ Addu(TMP, obj, index_reg);
__ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset);
__ B(&done);
__ Bind(&uncompressed_load);
__ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset);
__ Bind(&done);
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(TMP, index_reg, obj);
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
} else {
__ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
}
}
break;
}
case DataType::Type::kInt16: {
Register out = out_loc.AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker);
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(TMP, index.AsRegister<Register>(), obj);
__ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
} else {
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_2, TMP);
__ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kInt32: {
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
Register out = out_loc.AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(TMP, index.AsRegister<Register>(), obj);
__ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
} else {
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
__ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kReference: {
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
// /* HeapReference<Object> */ out =
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
bool temp_needed = index.IsConstant()
? !kBakerReadBarrierThunksEnableForFields
: !kBakerReadBarrierThunksEnableForArrays;
Location temp = temp_needed ? locations->GetTemp(0) : Location::NoLocation();
// Note that a potential implicit null check is handled in this
// CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier call.
DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
if (index.IsConstant()) {
// Array load with a constant index can be treated as a field load.
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out_loc,
obj,
offset,
temp,
/* needs_null_check= */ false);
} else {
codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction,
out_loc,
obj,
data_offset,
index,
temp,
/* needs_null_check= */ false);
}
} else {
Register out = out_loc.AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
} else {
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
__ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction,
out_loc,
out_loc,
obj_loc,
data_offset,
index);
}
}
break;
}
case DataType::Type::kInt64: {
Register out = out_loc.AsRegisterPairLow<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker);
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(TMP, index.AsRegister<Register>(), obj);
__ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
} else {
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
__ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kFloat32: {
FRegister out = out_loc.AsFpuRegister<FRegister>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadSFromOffset(out, obj, offset, null_checker);
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(TMP, index.AsRegister<Register>(), obj);
__ LoadSFromOffset(out, TMP, data_offset, null_checker);
} else {
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
__ LoadSFromOffset(out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kFloat64: {
FRegister out = out_loc.AsFpuRegister<FRegister>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadDFromOffset(out, obj, offset, null_checker);
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(TMP, index.AsRegister<Register>(), obj);
__ LoadDFromOffset(out, TMP, data_offset, null_checker);
} else {
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
__ LoadDFromOffset(out, TMP, data_offset, null_checker);
}
break;
}
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
// Mask out compression flag from String's array length.
if (mirror::kUseStringCompression && instruction->IsStringLength()) {
__ Srl(out, out, 1u);
}
}
Location LocationsBuilderMIPS::RegisterOrZeroConstant(HInstruction* instruction) {
return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern())
? Location::ConstantLocation(instruction->AsConstant())
: Location::RequiresRegister();
}
Location LocationsBuilderMIPS::FpuRegisterOrConstantForStore(HInstruction* instruction) {
// We can store 0.0 directly (from the ZERO register) without loading it into an FPU register.
// We can store a non-zero float or double constant without first loading it into the FPU,
// but we should only prefer this if the constant has a single use.
if (instruction->IsConstant() &&
(instruction->AsConstant()->IsZeroBitPattern() ||
instruction->GetUses().HasExactlyOneElement())) {
return Location::ConstantLocation(instruction->AsConstant());
// Otherwise fall through and require an FPU register for the constant.
}
return Location::RequiresFpuRegister();
}
void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
DataType::Type value_type = instruction->GetComponentType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction,
may_need_runtime_call_for_type_check ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (DataType::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2)));
} else {
locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2)));
}
if (needs_write_barrier) {
// Temporary register for the write barrier.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
}
}
void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Location value_location = locations->InAt(2);
DataType::Type value_type = instruction->GetComponentType();
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
Register base_reg = index.IsConstant() ? obj : TMP;
switch (value_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1;
} else {
__ Addu(base_reg, obj, index.AsRegister<Register>());
}
if (value_location.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
__ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker);
} else {
Register value = value_location.AsRegister<Register>();
__ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker);
}
break;
}
case DataType::Type::kUint16:
case DataType::Type::kInt16: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2;
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(base_reg, index.AsRegister<Register>(), obj);
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_2, base_reg);
}
if (value_location.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
__ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker);
} else {
Register value = value_location.AsRegister<Register>();
__ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker);
}
break;
}
case DataType::Type::kInt32: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(base_reg, index.AsRegister<Register>(), obj);
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
}
if (value_location.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
__ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
} else {
Register value = value_location.AsRegister<Register>();
__ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
}
break;
}
case DataType::Type::kReference: {
if (value_location.IsConstant()) {
// Just setting null.
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
}
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
DCHECK_EQ(value, 0);
__ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
DCHECK(!needs_write_barrier);
DCHECK(!may_need_runtime_call_for_type_check);
break;
}
DCHECK(needs_write_barrier);
Register value = value_location.AsRegister<Register>();
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
Register temp2 = TMP; // Doesn't need to survive slow path.
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
MipsLabel done;
SlowPathCodeMIPS* slow_path = nullptr;
if (may_need_runtime_call_for_type_check) {
slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
if (instruction->GetValueCanBeNull()) {
MipsLabel non_zero;
__ Bnez(value, &non_zero);
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(base_reg, index.AsRegister<Register>(), obj);
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
}
__ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
__ B(&done);
__ Bind(&non_zero);
}
// Note that when read barriers are enabled, the type checks
// are performed without read barriers. This is fine, even in
// the case where a class object is in the from-space after
// the flip, as a comparison involving such a type would not
// produce a false positive; it may of course produce a false
// negative, in which case we would take the ArraySet slow
// path.
// /* HeapReference<Class> */ temp1 = obj->klass_
__ LoadFromOffset(kLoadWord, temp1, obj, class_offset, null_checker);
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
// /* HeapReference<Class> */ temp2 = value->klass_
__ LoadFromOffset(kLoadWord, temp2, value, class_offset);
// If heap poisoning is enabled, no need to unpoison `temp1`
// nor `temp2`, as we are comparing two poisoned references.
if (instruction->StaticTypeOfArrayIsObjectArray()) {
MipsLabel do_put;
__ Beq(temp1, temp2, &do_put);
// If heap poisoning is enabled, the `temp1` reference has
// not been unpoisoned yet; unpoison it now.
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
__ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
// If heap poisoning is enabled, no need to unpoison
// `temp1`, as we are comparing against null below.
__ Bnez(temp1, slow_path->GetEntryLabel());
__ Bind(&do_put);
} else {
__ Bne(temp1, temp2, slow_path->GetEntryLabel());
}
}
Register source = value;
if (kPoisonHeapReferences) {
// Note that in the case where `value` is a null reference,
// we do not enter this block, as a null reference does not
// need poisoning.
__ Move(temp1, value);
__ PoisonHeapReference(temp1);
source = temp1;
}
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
}
__ StoreToOffset(kStoreWord, source, base_reg, data_offset);
if (!may_need_runtime_call_for_type_check) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull());
if (done.IsLinked()) {
__ Bind(&done);
}
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
break;
}
case DataType::Type::kInt64: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(base_reg, index.AsRegister<Register>(), obj);
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
}
if (value_location.IsConstant()) {
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
__ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
} else {
Register value = value_location.AsRegisterPairLow<Register>();
__ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker);
}
break;
}
case DataType::Type::kFloat32: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(base_reg, index.AsRegister<Register>(), obj);
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
}
if (value_location.IsConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
__ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
} else {
FRegister value = value_location.AsFpuRegister<FRegister>();
__ StoreSToOffset(value, base_reg, data_offset, null_checker);
}
break;
}
case DataType::Type::kFloat64: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
if (index.IsConstant()) {
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
} else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
__ Addu(base_reg, index.AsRegister<Register>(), obj);
} else {
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
}
if (value_location.IsConstant()) {
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
__ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
} else {
FRegister value = value_location.AsFpuRegister<FRegister>();
__ StoreDToOffset(value, base_reg, data_offset, null_checker);
}
break;
}
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderMIPS::VisitIntermediateArrayAddressIndex(
HIntermediateArrayAddressIndex* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
HIntConstant* shift = instruction->GetShift()->AsIntConstant();
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(shift));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitIntermediateArrayAddressIndex(
HIntermediateArrayAddressIndex* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register index_reg = locations->InAt(0).AsRegister<Register>();
uint32_t shift = instruction->GetShift()->AsIntConstant()->GetValue();
__ Sll(locations->Out().AsRegister<Register>(), index_reg, shift);
}
void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
HInstruction* index = instruction->InputAt(0);
HInstruction* length = instruction->InputAt(1);
bool const_index = false;
bool const_length = false;
if (index->IsConstant()) {
if (length->IsConstant()) {
const_index = true;
const_length = true;
} else {
int32_t index_value = index->AsIntConstant()->GetValue();
if (index_value < 0 || IsInt<16>(index_value + 1)) {
const_index = true;
}
}
} else if (length->IsConstant()) {
int32_t length_value = length->AsIntConstant()->GetValue();
if (IsUint<15>(length_value)) {
const_length = true;
}
}
locations->SetInAt(0, const_index
? Location::ConstantLocation(index->AsConstant())
: Location::RequiresRegister());
locations->SetInAt(1, const_length
? Location::ConstantLocation(length->AsConstant())
: Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location index_loc = locations->InAt(0);
Location length_loc = locations->InAt(1);
if (length_loc.IsConstant()) {
int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue();
if (index_loc.IsConstant()) {
int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue();
if (index < 0 || index >= length) {
BoundsCheckSlowPathMIPS* slow_path =
new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
} else {
// Nothing to be done.
}
return;
}
BoundsCheckSlowPathMIPS* slow_path =
new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Register index = index_loc.AsRegister<Register>();
if (length == 0) {
__ B(slow_path->GetEntryLabel());
} else if (length == 1) {
__ Bnez(index, slow_path->GetEntryLabel());
} else {
DCHECK(IsUint<15>(length)) << length;
__ Sltiu(TMP, index, length);
__ Beqz(TMP, slow_path->GetEntryLabel());
}
} else {
Register length = length_loc.AsRegister<Register>();
BoundsCheckSlowPathMIPS* slow_path =
new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
if (index_loc.IsConstant()) {
int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue();
if (index < 0) {
__ B(slow_path->GetEntryLabel());
} else if (index == 0) {
__ Blez(length, slow_path->GetEntryLabel());
} else {
DCHECK(IsInt<16>(index + 1)) << index;
__ Sltiu(TMP, length, index + 1);
__ Bnez(TMP, slow_path->GetEntryLabel());
}
} else {
Register index = index_loc.AsRegister<Register>();
__ Bgeu(index, length, slow_path->GetEntryLabel());
}
}
}
// Temp is used for read barrier.
static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
if (kEmitCompilerReadBarrier &&
!(kUseBakerReadBarrier && kBakerReadBarrierThunksEnableForFields) &&
(kUseBakerReadBarrier ||
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
return 1;
}
return 0;
}
// Extra temp is used for read barrier.
static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
return 1 + NumberOfInstanceOfTemps(type_check_kind);
}
void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
if (type_check_kind == TypeCheckKind::kBitstringCheck) {
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
}
void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location cls = locations->InAt(1);
Location temp_loc = locations->GetTemp(0);
Register temp = temp_loc.AsRegister<Register>();
const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
DCHECK_LE(num_temps, 2u);
Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
const uint32_t object_array_data_offset =
mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
MipsLabel done;
bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
SlowPathCodeMIPS* slow_path =
new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS(
instruction, is_type_check_slow_path_fatal);
codegen_->AddSlowPath(slow_path);
// Avoid this check if we know `obj` is not null.
if (instruction->MustDoNullCheck()) {
__ Beqz(obj, &done);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kArrayCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Jump to slow path for throwing the exception or doing a
// more involved array check.
__ Bne(temp, cls.AsRegister<Register>(), slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kAbstractClassCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
MipsLabel loop;
__ Bind(&loop);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is null, jump to the slow path to throw the
// exception.
__ Beqz(temp, slow_path->GetEntryLabel());
// Otherwise, compare the classes.
__ Bne(temp, cls.AsRegister<Register>(), &loop);
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Walk over the class hierarchy to find a match.
MipsLabel loop;
__ Bind(&loop);
__ Beq(temp, cls.AsRegister<Register>(), &done);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is null, jump to the slow path to throw the
// exception. Otherwise, jump to the beginning of the loop.
__ Bnez(temp, &loop);
__ B(slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kArrayObjectCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Do an exact check.
__ Beq(temp, cls.AsRegister<Register>(), &done);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ temp = temp->component_type_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
component_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the component type is null, jump to the slow path to throw the exception.
__ Beqz(temp, slow_path->GetEntryLabel());
// Otherwise, the object is indeed an array, further check that this component
// type is not a primitive type.
__ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Bnez(temp, slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kUnresolvedCheck:
// We always go into the type check slow path for the unresolved check case.
// We cannot directly call the CheckCast runtime entry point
// without resorting to a type checking slow path here (i.e. by
// calling InvokeRuntime directly), as it would require to
// assign fixed registers for the inputs of this HInstanceOf
// instruction (following the runtime calling convention), which
// might be cluttered by the potential first read barrier
// emission at the beginning of this method.
__ B(slow_path->GetEntryLabel());
break;
case TypeCheckKind::kInterfaceCheck: {
// Avoid read barriers to improve performance of the fast path. We can not get false
// positives by doing this.
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// /* HeapReference<Class> */ temp = temp->iftable_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
temp_loc,
iftable_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Iftable is never null.
__ Lw(TMP, temp, array_length_offset);
// Loop through the iftable and check if any class matches.
MipsLabel loop;
__ Bind(&loop);
__ Addiu(temp, temp, 2 * kHeapReferenceSize); // Possibly in delay slot on R2.
__ Beqz(TMP, slow_path->GetEntryLabel());
__ Lw(AT, temp, object_array_data_offset - 2 * kHeapReferenceSize);
__ MaybeUnpoisonHeapReference(AT);
// Go to next interface.
__ Addiu(TMP, TMP, -2);
// Compare the classes and continue the loop if they do not match.
__ Bne(AT, cls.AsRegister<Register>(), &loop);
break;
}
case TypeCheckKind::kBitstringCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
GenerateBitstringTypeCheckCompare(instruction, temp);
__ Bnez(temp, slow_path->GetEntryLabel());
break;
}
}
__ Bind(&done);
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
// Rely on the type initialization to save everything we need.
locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
}
void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeMIPS* slow_path =
new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS(check->GetLoadClass(), check);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
DataType::Type in_type = compare->InputAt(0)->GetType();
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
switch (in_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Output overlaps because it is written before doing the low comparison.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
}
}
void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register res = locations->Out().AsRegister<Register>();
DataType::Type in_type = instruction->InputAt(0)->GetType();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
// 0 if: left == right
// 1 if: left > right
// -1 if: left < right
switch (in_type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32: {
Register lhs = locations->InAt(0).AsRegister<Register>();
Register rhs = locations->InAt(1).AsRegister<Register>();
__ Slt(TMP, lhs, rhs);
__ Slt(res, rhs, lhs);
__ Subu(res, res, TMP);
break;
}
case DataType::Type::kInt64: {
MipsLabel done;
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
// TODO: more efficient (direct) comparison with a constant.
__ Slt(TMP, lhs_high, rhs_high);
__ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt.
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
__ Bnez(res, &done); // If we compared ==, check if lower bits are also equal.
__ Sltu(TMP, lhs_low, rhs_low);
__ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt.
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
__ Bind(&done);
break;
}
case DataType::Type::kFloat32: {
bool gt_bias = instruction->IsGtBias();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
MipsLabel done;
if (isR6) {
__ CmpEqS(FTMP, lhs, rhs);
__ LoadConst32(res, 0);
__ Bc1nez(FTMP, &done);
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, 1);
} else {
__ CmpLtS(FTMP, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, -1);
}
} else {
if (gt_bias) {
__ ColtS(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1t(0, &done);
__ CeqS(0, lhs, rhs);
__ LoadConst32(res, 1);
__ Movt(res, ZERO, 0);
} else {
__ ColtS(0, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1t(0, &done);
__ CeqS(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Movt(res, ZERO, 0);
}
}
__ Bind(&done);
break;
}
case DataType::Type::kFloat64: {
bool gt_bias = instruction->IsGtBias();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
MipsLabel done;
if (isR6) {
__ CmpEqD(FTMP, lhs, rhs);
__ LoadConst32(res, 0);
__ Bc1nez(FTMP, &done);
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, 1);
} else {
__ CmpLtD(FTMP, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, -1);
}
} else {
if (gt_bias) {
__ ColtD(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1t(0, &done);
__ CeqD(0, lhs, rhs);
__ LoadConst32(res, 1);
__ Movt(res, ZERO, 0);
} else {
__ ColtD(0, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1t(0, &done);
__ CeqD(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Movt(res, ZERO, 0);
}
}
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unimplemented compare type " << in_type;
}
}
void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
switch (instruction->InputAt(0)->GetType()) {
default:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
break;
}
if (!instruction->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
if (instruction->IsEmittedAtUseSite()) {
return;
}
DataType::Type type = instruction->InputAt(0)->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
default:
// Integer case.
GenerateIntCompare(instruction->GetCondition(), locations);
return;
case DataType::Type::kInt64:
GenerateLongCompare(instruction->GetCondition(), locations);
return;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations);
return;
}
}
void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
int64_t imm = Int64FromConstant(second.GetConstant());
DCHECK(imm == 1 || imm == -1);
if (instruction->GetResultType() == DataType::Type::kInt32) {
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
if (instruction->IsRem()) {
__ Move(out, ZERO);
} else {
if (imm == -1) {
__ Subu(out, ZERO, dividend);
} else if (out != dividend) {
__ Move(out, dividend);
}
}
} else {
DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
Register out_high = locations->Out().AsRegisterPairHigh<Register>();
Register out_low = locations->Out().AsRegisterPairLow<Register>();
Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register in_low = locations->InAt(0).AsRegisterPairLow<Register>();
if (instruction->IsRem()) {
__ Move(out_high, ZERO);
__ Move(out_low, ZERO);
} else {
if (imm == -1) {
__ Subu(out_low, ZERO, in_low);
__ Sltu(AT, ZERO, out_low);
__ Subu(out_high, ZERO, in_high);
__ Subu(out_high, out_high, AT);
} else {
__ Move(out_low, in_low);
__ Move(out_high, in_high);
}
}
}
}
void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
const bool is_r2_or_newer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
const bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
DCHECK(second.IsConstant());
if (instruction->GetResultType() == DataType::Type::kInt32) {
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
int ctz_imm = CTZ(abs_imm);
if (instruction->IsDiv()) {
if (ctz_imm == 1) {
// Fast path for division by +/-2, which is very common.
__ Srl(TMP, dividend, 31);
} else {
__ Sra(TMP, dividend, 31);
__ Srl(TMP, TMP, 32 - ctz_imm);
}
__ Addu(out, dividend, TMP);
__ Sra(out, out, ctz_imm);
if (imm < 0) {
__ Subu(out, ZERO, out);
}
} else {
if (ctz_imm == 1) {
// Fast path for modulo +/-2, which is very common.
__ Sra(TMP, dividend, 31);
__ Subu(out, dividend, TMP);
__ Andi(out, out, 1);
__ Addu(out, out, TMP);
} else {
__ Sra(TMP, dividend, 31);
__ Srl(TMP, TMP, 32 - ctz_imm);
__ Addu(out, dividend, TMP);
if (IsUint<16>(abs_imm - 1)) {
__ Andi(out, out, abs_imm - 1);
} else {
if (is_r2_or_newer) {
__ Ins(out, ZERO, ctz_imm, 32 - ctz_imm);
} else {
__ Sll(out, out, 32 - ctz_imm);
__ Srl(out, out, 32 - ctz_imm);
}
}
__ Subu(out, out, TMP);
}
}
} else {
DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
Register out_high = locations->Out().AsRegisterPairHigh<Register>();
Register out_low = locations->Out().AsRegisterPairLow<Register>();
Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register in_low = locations->InAt(0).AsRegisterPairLow<Register>();
int64_t imm = Int64FromConstant(second.GetConstant());
uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
int ctz_imm = CTZ(abs_imm);
if (instruction->IsDiv()) {
if (ctz_imm < 32) {
if (ctz_imm == 1) {
__ Srl(AT, in_high, 31);
} else {
__ Sra(AT, in_high, 31);
__ Srl(AT, AT, 32 - ctz_imm);
}
__ Addu(AT, AT, in_low);
__ Sltu(TMP, AT, in_low);
__ Addu(out_high, in_high, TMP);
__ Srl(out_low, AT, ctz_imm);
if (is_r2_or_newer) {
__ Ins(out_low, out_high, 32 - ctz_imm, ctz_imm);
__ Sra(out_high, out_high, ctz_imm);
} else {
__ Sll(AT, out_high, 32 - ctz_imm);
__ Sra(out_high, out_high, ctz_imm);
__ Or(out_low, out_low, AT);
}
if (imm < 0) {
__ Subu(out_low, ZERO, out_low);
__ Sltu(AT, ZERO, out_low);
__ Subu(out_high, ZERO, out_high);
__ Subu(out_high, out_high, AT);
}
} else if (ctz_imm == 32) {
__ Sra(AT, in_high, 31);
__ Addu(AT, AT, in_low);
__ Sltu(AT, AT, in_low);
__ Addu(out_low, in_high, AT);
if (imm < 0) {
__ Srl(TMP, out_low, 31);
__ Subu(out_low, ZERO, out_low);
__ Sltu(AT, ZERO, out_low);
__ Subu(out_high, TMP, AT);
} else {
__ Sra(out_high, out_low, 31);
}
} else if (ctz_imm < 63) {
__ Sra(AT, in_high, 31);
__ Srl(TMP, AT, 64 - ctz_imm);
__ Addu(AT, AT, in_low);
__ Sltu(AT, AT, in_low);
__ Addu(out_low, in_high, AT);
__ Addu(out_low, out_low, TMP);
__ Sra(out_low, out_low, ctz_imm - 32);
if (imm < 0) {
__ Subu(out_low, ZERO, out_low);
}
__ Sra(out_high, out_low, 31);
} else {
DCHECK_LT(imm, 0);
if (is_r6) {
__ Aui(AT, in_high, 0x8000);
} else {
__ Lui(AT, 0x8000);
__ Xor(AT, AT, in_high);
}
__ Or(AT, AT, in_low);
__ Sltiu(out_low, AT, 1);
__ Move(out_high, ZERO);
}
} else {
if ((ctz_imm == 1) && !is_r6) {
__ Andi(AT, in_low, 1);
__ Sll(TMP, in_low, 31);
__ And(TMP, in_high, TMP);
__ Sra(out_high, TMP, 31);
__ Or(out_low, out_high, AT);
} else if (ctz_imm < 32) {
__ Sra(AT, in_high, 31);
if (ctz_imm <= 16) {
__ Andi(out_low, in_low, abs_imm - 1);
} else if (is_r2_or_newer) {
__ Ext(out_low, in_low, 0, ctz_imm);
} else {
__ Sll(out_low, in_low, 32 - ctz_imm);
__ Srl(out_low, out_low, 32 - ctz_imm);
}
if (is_r6) {
__ Selnez(out_high, AT, out_low);
} else {
__ Movz(AT, ZERO, out_low);
__ Move(out_high, AT);
}
if (is_r2_or_newer) {
__ Ins(out_low, out_high, ctz_imm, 32 - ctz_imm);
} else {
__ Sll(AT, out_high, ctz_imm);
__ Or(out_low, out_low, AT);
}
} else if (ctz_imm == 32) {
__ Sra(AT, in_high, 31);
__ Move(out_low, in_low);
if (is_r6) {
__ Selnez(out_high, AT, out_low);
} else {
__ Movz(AT, ZERO, out_low);
__ Move(out_high, AT);
}
} else if (ctz_imm < 63) {
__ Sra(AT, in_high, 31);
__ Move(TMP, in_low);
if (ctz_imm - 32 <= 16) {
__ Andi(out_high, in_high, (1 << (ctz_imm - 32)) - 1);
} else if (is_r2_or_newer) {
__ Ext(out_high, in_high, 0, ctz_imm - 32);
} else {
__ Sll(out_high, in_high, 64 - ctz_imm);
__ Srl(out_high, out_high, 64 - ctz_imm);
}
__ Move(out_low, TMP);
__ Or(TMP, TMP, out_high);
if (is_r6) {
__ Selnez(AT, AT, TMP);
} else {
__ Movz(AT, ZERO, TMP);
}
if (is_r2_or_newer) {
__ Ins(out_high, AT, ctz_imm - 32, 64 - ctz_imm);
} else {
__ Sll(AT, AT, ctz_imm - 32);
__ Or(out_high, out_high, AT);
}
} else {
if (is_r6) {
__ Aui(AT, in_high, 0x8000);
} else {
__ Lui(AT, 0x8000);
__ Xor(AT, AT, in_high);
}
__ Or(AT, AT, in_low);
__ Sltiu(AT, AT, 1);
__ Sll(AT, AT, 31);
__ Move(out_low, in_low);
__ Xor(out_high, in_high, AT);
}
}
}
}
void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, false /* is_long= */, &magic, &shift);
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
__ LoadConst32(TMP, magic);
if (isR6) {
__ MuhR6(TMP, dividend, TMP);
} else {
__ MultR2(dividend, TMP);
__ Mfhi(TMP);
}
if (imm > 0 && magic < 0) {
__ Addu(TMP, TMP, dividend);
} else if (imm < 0 && magic > 0) {
__ Subu(TMP, TMP, dividend);
}
if (shift != 0) {
__ Sra(TMP, TMP, shift);
}
if (instruction->IsDiv()) {
__ Sra(out, TMP, 31);
__ Subu(out, TMP, out);
} else {
__ Sra(AT, TMP, 31);
__ Subu(AT, TMP, AT);
__ LoadConst32(TMP, imm);
if (isR6) {
__ MulR6(TMP, AT, TMP);
} else {
__ MulR2(TMP, AT, TMP);
}
__ Subu(out, dividend, TMP);
}
}
void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32);
LocationSummary* locations = instruction->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location second = locations->InAt(1);
if (second.IsConstant()) {
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
DivRemByPowerOfTwo(instruction);
} else {
DCHECK(imm <= -2 || imm >= 2);
GenerateDivRemWithAnyConstant(instruction);
}
} else {
Register dividend = locations->InAt(0).AsRegister<Register>();
Register divisor = second.AsRegister<Register>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (instruction->IsDiv()) {
if (isR6) {
__ DivR6(out, dividend, divisor);
} else {
__ DivR2(out, dividend, divisor);
}
} else {
if (isR6) {
__ ModR6(out, dividend, divisor);
} else {
__ ModR2(out, dividend, divisor);
}
}
}
}
void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
DataType::Type type = div->GetResultType();
bool call_long_div = false;
if (type == DataType::Type::kInt64) {
if (div->InputAt(1)->IsConstant()) {
int64_t imm = CodeGenerator::GetInt64ValueOf(div->InputAt(1)->AsConstant());
call_long_div = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)));
} else {
call_long_div = true;
}
}
LocationSummary::CallKind call_kind = call_long_div
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
switch (type) {
case DataType::Type::kInt32:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kInt64: {
if (call_long_div) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(type));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresRegister());
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case DataType::Type::kInt32:
GenerateDivRemIntegral(instruction);
break;
case DataType::Type::kInt64: {
if (locations->InAt(1).IsConstant()) {
int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else {
DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))));
DivRemByPowerOfTwo(instruction);
}
} else {
codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == DataType::Type::kFloat32) {
__ DivS(dst, lhs, rhs);
} else {
__ DivD(dst, lhs, rhs);
}
break;
}
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeMIPS* slow_path =
new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Location value = instruction->GetLocations()->InAt(0);
DataType::Type type = instruction->GetType();
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32: {
if (value.IsConstant()) {
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
DCHECK(value.IsRegister()) << value;
__ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
}
break;
}
case DataType::Type::kInt64: {
if (value.IsConstant()) {
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
DCHECK(value.IsRegisterPair()) << value;
__ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
__ Beqz(TMP, slow_path->GetEntryLabel());
}
break;
}
default:
LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
}
}
void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}
void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
if (successor->IsExitBlock()) {
DCHECK(got->GetPrevious()->AlwaysThrows());
return; // no code needed
}
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) {
__ Lw(AT, SP, kCurrentMethodStackOffset);
__ Lhu(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value());
__ Addiu(TMP, TMP, 1);
__ Sh(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value());
}
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ B(codegen_->GetLabelOf(successor));
}
}
void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
try_boundary->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
if (!successor->IsExitBlock()) {
HandleGoto(try_boundary, successor);
}
}
void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
LocationSummary* locations) {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int64_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
switch (cond) {
case kCondEQ:
case kCondNE:
if (use_imm && IsInt<16>(-rhs_imm)) {
if (rhs_imm == 0) {
if (cond == kCondEQ) {
__ Sltiu(dst, lhs, 1);
} else {
__ Sltu(dst, ZERO, lhs);
}
} else {
__ Addiu(dst, lhs, -rhs_imm);
if (cond == kCondEQ) {
__ Sltiu(dst, dst, 1);
} else {
__ Sltu(dst, ZERO, dst);
}
}
} else {
if (use_imm && IsUint<16>(rhs_imm)) {
__ Xori(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Xor(dst, lhs, rhs_reg);
}
if (cond == kCondEQ) {
__ Sltiu(dst, dst, 1);
} else {
__ Sltu(dst, ZERO, dst);
}
}
break;
case kCondLT:
case kCondGE:
if (use_imm && IsInt<16>(rhs_imm)) {
__ Slti(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, lhs, rhs_reg);
}
if (cond == kCondGE) {
// Simulate lhs >= rhs via !(lhs < rhs) since there's
// only the slt instruction but no sge.
__ Xori(dst, dst, 1);
}
break;
case kCondLE:
case kCondGT:
if (use_imm && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
__ Slti(dst, lhs, rhs_imm + 1);
if (cond == kCondGT) {
// Simulate lhs > rhs via !(lhs <= rhs) since there's
// only the slti instruction but no sgti.
__ Xori(dst, dst, 1);
}
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, rhs_reg, lhs);
if (cond == kCondLE) {
// Simulate lhs <= rhs via !(rhs < lhs) since there's
// only the slt instruction but no sle.
__ Xori(dst, dst, 1);
}
}
break;
case kCondB:
case kCondAE:
if (use_imm && IsInt<16>(rhs_imm)) {
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, lhs, rhs_reg);
}
if (cond == kCondAE) {
// Simulate lhs >= rhs via !(lhs < rhs) since there's
// only the sltu instruction but no sgeu.
__ Xori(dst, dst, 1);
}
break;
case kCondBE:
case kCondA:
if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
// Note that this only works if rhs + 1 does not overflow
// to 0, hence the check above.
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm + 1);
if (cond == kCondA) {
// Simulate lhs > rhs via !(lhs <= rhs) since there's
// only the sltiu instruction but no sgtiu.
__ Xori(dst, dst, 1);
}
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, rhs_reg, lhs);
if (cond == kCondBE) {
// Simulate lhs <= rhs via !(rhs < lhs) since there's
// only the sltu instruction but no sleu.
__ Xori(dst, dst, 1);
}
}
break;
}
}
bool InstructionCodeGeneratorMIPS::MaterializeIntCompare(IfCondition cond,
LocationSummary* input_locations,
Register dst) {
Register lhs = input_locations->InAt(0).AsRegister<Register>();
Location rhs_location = input_locations->InAt(1);
Register rhs_reg = ZERO;
int64_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
switch (cond) {
case kCondEQ:
case kCondNE:
if (use_imm && IsInt<16>(-rhs_imm)) {
__ Addiu(dst, lhs, -rhs_imm);
} else if (use_imm && IsUint<16>(rhs_imm)) {
__ Xori(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Xor(dst, lhs, rhs_reg);
}
return (cond == kCondEQ);
case kCondLT:
case kCondGE:
if (use_imm && IsInt<16>(rhs_imm)) {
__ Slti(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, lhs, rhs_reg);
}
return (cond == kCondGE);
case kCondLE:
case kCondGT:
if (use_imm && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
__ Slti(dst, lhs, rhs_imm + 1);
return (cond == kCondGT);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, rhs_reg, lhs);
return (cond == kCondLE);
}
case kCondB:
case kCondAE:
if (use_imm && IsInt<16>(rhs_imm)) {
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, lhs, rhs_reg);
}
return (cond == kCondAE);
case kCondBE:
case kCondA:
if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
// Note that this only works if rhs + 1 does not overflow
// to 0, hence the check above.
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm + 1);
return (cond == kCondA);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, rhs_reg, lhs);
return (cond == kCondBE);
}
}
}
void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label) {
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int64_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
if (use_imm && rhs_imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Beqz(lhs, label);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Bnez(lhs, label);
break;
case kCondLT:
__ Bltz(lhs, label);
break;
case kCondGE:
__ Bgez(lhs, label);
break;
case kCondLE:
__ Blez(lhs, label);
break;
case kCondGT:
__ Bgtz(lhs, label);
break;
case kCondB: // always false
break;
case kCondAE: // always true
__ B(label);
break;
}
} else {
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (isR6 || !use_imm) {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
switch (cond) {
case kCondEQ:
__ Beq(lhs, rhs_reg, label);
break;
case kCondNE:
__ Bne(lhs, rhs_reg, label);
break;
case kCondLT:
__ Blt(lhs, rhs_reg, label);
break;
case kCondGE:
__ Bge(lhs, rhs_reg, label);
break;
case kCondLE:
__ Bge(rhs_reg, lhs, label);
break;
case kCondGT:
__ Blt(rhs_reg, lhs, label);
break;
case kCondB:
__ Bltu(lhs, rhs_reg, label);
break;
case kCondAE:
__ Bgeu(lhs, rhs_reg, label);
break;
case kCondBE:
__ Bgeu(rhs_reg, lhs, label);
break;
case kCondA:
__ Bltu(rhs_reg, lhs, label);
break;
}
} else {
// Special cases for more efficient comparison with constants on R2.
switch (cond) {
case kCondEQ:
__ LoadConst32(TMP, rhs_imm);
__ Beq(lhs, TMP, label);
break;
case kCondNE:
__ LoadConst32(TMP, rhs_imm);
__ Bne(lhs, TMP, label);
break;
case kCondLT:
if (IsInt<16>(rhs_imm)) {
__ Slti(TMP, lhs, rhs_imm);
__ Bnez(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Blt(lhs, TMP, label);
}
break;
case kCondGE:
if (IsInt<16>(rhs_imm)) {
__ Slti(TMP, lhs, rhs_imm);
__ Beqz(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Bge(lhs, TMP, label);
}
break;
case kCondLE:
if (IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
__ Slti(TMP, lhs, rhs_imm + 1);
__ Bnez(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Bge(TMP, lhs, label);
}
break;
case kCondGT:
if (IsInt<16>(rhs_imm + 1)) {
// Simulate lhs > rhs via !(lhs < rhs + 1).
__ Slti(TMP, lhs, rhs_imm + 1);
__ Beqz(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Blt(TMP, lhs, label);
}
break;
case kCondB:
if (IsInt<16>(rhs_imm)) {
__ Sltiu(TMP, lhs, rhs_imm);
__ Bnez(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Bltu(lhs, TMP, label);
}
break;
case kCondAE:
if (IsInt<16>(rhs_imm)) {
__ Sltiu(TMP, lhs, rhs_imm);
__ Beqz(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Bgeu(lhs, TMP, label);
}
break;
case kCondBE:
if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
// Note that this only works if rhs + 1 does not overflow
// to 0, hence the check above.
__ Sltiu(TMP, lhs, rhs_imm + 1);
__ Bnez(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Bgeu(TMP, lhs, label);
}
break;
case kCondA:
if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs > rhs via !(lhs < rhs + 1).
// Note that this only works if rhs + 1 does not overflow
// to 0, hence the check above.
__ Sltiu(TMP, lhs, rhs_imm + 1);
__ Beqz(TMP, label);
} else {
__ LoadConst32(TMP, rhs_imm);
__ Bltu(TMP, lhs, label);
}
break;
}
}
}
}
void InstructionCodeGeneratorMIPS::GenerateLongCompare(IfCondition cond,
LocationSummary* locations) {
Register dst = locations->Out().AsRegister<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_high = ZERO;
Register rhs_low = ZERO;
int64_t imm = 0;
uint32_t imm_high = 0;
uint32_t imm_low = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
imm_high = High32Bits(imm);
imm_low = Low32Bits(imm);
} else {
rhs_high = rhs_location.AsRegisterPairHigh<Register>();
rhs_low = rhs_location.AsRegisterPairLow<Register>();
}
if (use_imm && imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Or(dst, lhs_high, lhs_low);
__ Sltiu(dst, dst, 1);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Or(dst, lhs_high, lhs_low);
__ Sltu(dst, ZERO, dst);
break;
case kCondLT:
__ Slt(dst, lhs_high, ZERO);
break;
case kCondGE:
__ Slt(dst, lhs_high, ZERO);
__ Xori(dst, dst, 1);
break;
case kCondLE:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Sltu(dst, AT, TMP);
__ Xori(dst, dst, 1);
break;
case kCondGT:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Sltu(dst, AT, TMP);
break;
case kCondB: // always false
__ Andi(dst, dst, 0);
break;
case kCondAE: // always true
__ Ori(dst, ZERO, 1);
break;
}
} else if (use_imm) {
// TODO: more efficient comparison with constants without loading them into TMP/AT.
switch (cond) {
case kCondEQ:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(dst, TMP, AT);
__ Sltiu(dst, dst, 1);
break;
case kCondNE:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(dst, TMP, AT);
__ Sltu(dst, ZERO, dst);
break;
case kCondLT:
case kCondGE:
if (dst == lhs_low) {
__ LoadConst32(TMP, imm_low);
__ Sltu(dst, lhs_low, TMP);
}
__ LoadConst32(TMP, imm_high);
__ Slt(AT, lhs_high, TMP);
__ Slt(TMP, TMP, lhs_high);
if (dst != lhs_low) {
__ LoadConst32(dst, imm_low);
__ Sltu(dst, lhs_low, dst);
}
__ Slt(dst, TMP, dst);
__ Or(dst, dst, AT);
if (cond == kCondGE) {
__ Xori(dst, dst, 1);
}
break;
case kCondGT:
case kCondLE:
if (dst == lhs_low) {
__ LoadConst32(TMP, imm_low);
__ Sltu(dst, TMP, lhs_low);
}
__ LoadConst32(TMP, imm_high);
__ Slt(AT, TMP, lhs_high);
__ Slt(TMP, lhs_high, TMP);
if (dst != lhs_low) {
__ LoadConst32(dst, imm_low);
__ Sltu(dst, dst, lhs_low);
}
__ Slt(dst, TMP, dst);
__ Or(dst, dst, AT);
if (cond == kCondLE) {
__ Xori(dst, dst, 1);
}
break;
case kCondB:
case kCondAE:
if (dst == lhs_low) {
__ LoadConst32(TMP, imm_low);
__ Sltu(dst, lhs_low, TMP);
}
__ LoadConst32(TMP, imm_high);
__ Sltu(AT, lhs_high, TMP);
__ Sltu(TMP, TMP, lhs_high);
if (dst != lhs_low) {
__ LoadConst32(dst, imm_low);
__ Sltu(dst, lhs_low, dst);
}
__ Slt(dst, TMP, dst);
__ Or(dst, dst, AT);
if (cond == kCondAE) {
__ Xori(dst, dst, 1);
}
break;
case kCondA:
case kCondBE:
if (dst == lhs_low) {
__ LoadConst32(TMP, imm_low);
__ Sltu(dst, TMP, lhs_low);
}
__ LoadConst32(TMP, imm_high);
__ Sltu(AT, TMP, lhs_high);
__ Sltu(TMP, lhs_high, TMP);
if (dst != lhs_low) {
__ LoadConst32(dst, imm_low);
__ Sltu(dst, dst, lhs_low);
}
__ Slt(dst, TMP, dst);
__ Or(dst, dst, AT);
if (cond == kCondBE) {
__ Xori(dst, dst, 1);
}
break;
}
} else {
switch (cond) {
case kCondEQ:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(dst, TMP, AT);
__ Sltiu(dst, dst, 1);
break;
case kCondNE:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(dst, TMP, AT);
__ Sltu(dst, ZERO, dst);
break;
case kCondLT:
case kCondGE:
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Slt(TMP, TMP, AT);
__ Slt(AT, lhs_high, rhs_high);
__ Or(dst, AT, TMP);
if (cond == kCondGE) {
__ Xori(dst, dst, 1);
}
break;
case kCondGT:
case kCondLE:
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Slt(TMP, TMP, AT);
__ Slt(AT, rhs_high, lhs_high);
__ Or(dst, AT, TMP);
if (cond == kCondLE) {
__ Xori(dst, dst, 1);
}
break;
case kCondB:
case kCondAE:
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Slt(TMP, TMP, AT);
__ Sltu(AT, lhs_high, rhs_high);
__ Or(dst, AT, TMP);
if (cond == kCondAE) {
__ Xori(dst, dst, 1);
}
break;
case kCondA:
case kCondBE:
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Slt(TMP, TMP, AT);
__ Sltu(AT, rhs_high, lhs_high);
__ Or(dst, AT, TMP);
if (cond == kCondBE) {
__ Xori(dst, dst, 1);
}
break;
}
}
}
void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label) {
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_high = ZERO;
Register rhs_low = ZERO;
int64_t imm = 0;
uint32_t imm_high = 0;
uint32_t imm_low = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
imm_high = High32Bits(imm);
imm_low = Low32Bits(imm);
} else {
rhs_high = rhs_location.AsRegisterPairHigh<Register>();
rhs_low = rhs_location.AsRegisterPairLow<Register>();
}
if (use_imm && imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Or(TMP, lhs_high, lhs_low);
__ Beqz(TMP, label);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Or(TMP, lhs_high, lhs_low);
__ Bnez(TMP, label);
break;
case kCondLT:
__ Bltz(lhs_high, label);
break;
case kCondGE:
__ Bgez(lhs_high, label);
break;
case kCondLE:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Bgeu(AT, TMP, label);
break;
case kCondGT:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Bltu(AT, TMP, label);
break;
case kCondB: // always false
break;
case kCondAE: // always true
__ B(label);
break;
}
} else if (use_imm) {
// TODO: more efficient comparison with constants without loading them into TMP/AT.
switch (cond) {
case kCondEQ:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondNE:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Bnez(TMP, label);
break;
case kCondLT:
__ LoadConst32(TMP, imm_high);
__ Blt(lhs_high, TMP, label);
__ Slt(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Blt(TMP, AT, label);
break;
case kCondGE:
__ LoadConst32(TMP, imm_high);
__ Blt(TMP, lhs_high, label);
__ Slt(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondLE:
__ LoadConst32(TMP, imm_high);
__ Blt(lhs_high, TMP, label);
__ Slt(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondGT:
__ LoadConst32(TMP, imm_high);
__ Blt(TMP, lhs_high, label);
__ Slt(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Blt(TMP, AT, label);
break;
case kCondB:
__ LoadConst32(TMP, imm_high);
__ Bltu(lhs_high, TMP, label);
__ Sltu(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Blt(TMP, AT, label);
break;
case kCondAE:
__ LoadConst32(TMP, imm_high);
__ Bltu(TMP, lhs_high, label);
__ Sltu(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondBE:
__ LoadConst32(TMP, imm_high);
__ Bltu(lhs_high, TMP, label);
__ Sltu(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondA:
__ LoadConst32(TMP, imm_high);
__ Bltu(TMP, lhs_high, label);
__ Sltu(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Blt(TMP, AT, label);
break;
}
} else {
switch (cond) {
case kCondEQ:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondNE:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Bnez(TMP, label);
break;
case kCondLT:
__ Blt(lhs_high, rhs_high, label);
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Blt(TMP, AT, label);
break;
case kCondGE:
__ Blt(rhs_high, lhs_high, label);
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondLE:
__ Blt(lhs_high, rhs_high, label);
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondGT:
__ Blt(rhs_high, lhs_high, label);
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Blt(TMP, AT, label);
break;
case kCondB:
__ Bltu(lhs_high, rhs_high, label);
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Blt(TMP, AT, label);
break;
case kCondAE:
__ Bltu(rhs_high, lhs_high, label);
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondBE:
__ Bltu(lhs_high, rhs_high, label);
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondA:
__ Bltu(rhs_high, lhs_high, label);
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Blt(TMP, AT, label);
break;
}
}
}
void InstructionCodeGeneratorMIPS::GenerateFpCompare(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations) {
Register dst = locations->Out().AsRegister<Register>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (type == DataType::Type::kFloat32) {
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqS(FTMP, lhs, rhs);
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondNE:
__ CmpEqS(FTMP, lhs, rhs);
__ Mfc1(dst, FTMP);
__ Addiu(dst, dst, 1);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
} else {
__ CmpUltS(FTMP, lhs, rhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeS(FTMP, lhs, rhs);
} else {
__ CmpUleS(FTMP, lhs, rhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltS(FTMP, rhs, lhs);
} else {
__ CmpLtS(FTMP, rhs, lhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleS(FTMP, rhs, lhs);
} else {
__ CmpLeS(FTMP, rhs, lhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
UNREACHABLE();
}
} else {
switch (cond) {
case kCondEQ:
__ CeqS(0, lhs, rhs);
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondNE:
__ CeqS(0, lhs, rhs);
__ LoadConst32(dst, 1);
__ Movt(dst, ZERO, 0);
break;
case kCondLT:
if (gt_bias) {
__ ColtS(0, lhs, rhs);
} else {
__ CultS(0, lhs, rhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondLE:
if (gt_bias) {
__ ColeS(0, lhs, rhs);
} else {
__ CuleS(0, lhs, rhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondGT:
if (gt_bias) {
__ CultS(0, rhs, lhs);
} else {
__ ColtS(0, rhs, lhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondGE:
if (gt_bias) {
__ CuleS(0, rhs, lhs);
} else {
__ ColeS(0, rhs, lhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
UNREACHABLE();
}
}
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqD(FTMP, lhs, rhs);
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondNE:
__ CmpEqD(FTMP, lhs, rhs);
__ Mfc1(dst, FTMP);
__ Addiu(dst, dst, 1);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
} else {
__ CmpUltD(FTMP, lhs, rhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeD(FTMP, lhs, rhs);
} else {
__ CmpUleD(FTMP, lhs, rhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltD(FTMP, rhs, lhs);
} else {
__ CmpLtD(FTMP, rhs, lhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleD(FTMP, rhs, lhs);
} else {
__ CmpLeD(FTMP, rhs, lhs);
}
__ Mfc1(dst, FTMP);
__ Andi(dst, dst, 1);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
UNREACHABLE();
}
} else {
switch (cond) {
case kCondEQ:
__ CeqD(0, lhs, rhs);
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondNE:
__ CeqD(0, lhs, rhs);
__ LoadConst32(dst, 1);
__ Movt(dst, ZERO, 0);
break;
case kCondLT:
if (gt_bias) {
__ ColtD(0, lhs, rhs);
} else {
__ CultD(0, lhs, rhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondLE:
if (gt_bias) {
__ ColeD(0, lhs, rhs);
} else {
__ CuleD(0, lhs, rhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondGT:
if (gt_bias) {
__ CultD(0, rhs, lhs);
} else {
__ ColtD(0, rhs, lhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
case kCondGE:
if (gt_bias) {
__ CuleD(0, rhs, lhs);
} else {
__ ColeD(0, rhs, lhs);
}
__ LoadConst32(dst, 1);
__ Movf(dst, ZERO, 0);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
UNREACHABLE();
}
}
}
}
bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR2(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* input_locations,
int cc) {
FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
if (type == DataType::Type::kFloat32) {
switch (cond) {
case kCondEQ:
__ CeqS(cc, lhs, rhs);
return false;
case kCondNE:
__ CeqS(cc, lhs, rhs);
return true;
case kCondLT:
if (gt_bias) {
__ ColtS(cc, lhs, rhs);
} else {
__ CultS(cc, lhs, rhs);
}
return false;
case kCondLE:
if (gt_bias) {
__ ColeS(cc, lhs, rhs);
} else {
__ CuleS(cc, lhs, rhs);
}
return false;
case kCondGT:
if (gt_bias) {
__ CultS(cc, rhs, lhs);
} else {
__ ColtS(cc, rhs, lhs);
}
return false;
case kCondGE:
if (gt_bias) {
__ CuleS(cc, rhs, lhs);
} else {
__ ColeS(cc, rhs, lhs);
}
return false;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
switch (cond) {
case kCondEQ:
__ CeqD(cc, lhs, rhs);
return false;
case kCondNE:
__ CeqD(cc, lhs, rhs);
return true;
case kCondLT:
if (gt_bias) {
__ ColtD(cc, lhs, rhs);
} else {
__ CultD(cc, lhs, rhs);
}
return false;
case kCondLE:
if (gt_bias) {
__ ColeD(cc, lhs, rhs);
} else {
__ CuleD(cc, lhs, rhs);
}
return false;
case kCondGT:
if (gt_bias) {
__ CultD(cc, rhs, lhs);
} else {
__ ColtD(cc, rhs, lhs);
}
return false;
case kCondGE:
if (gt_bias) {
__ CuleD(cc, rhs, lhs);
} else {
__ ColeD(cc, rhs, lhs);
}
return false;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
}
}
bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR6(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* input_locations,
FRegister dst) {
FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
CHECK(codegen_->GetInstructionSetFeatures().IsR6());
if (type == DataType::Type::kFloat32) {
switch (cond) {
case kCondEQ:
__ CmpEqS(dst, lhs, rhs);
return false;
case kCondNE:
__ CmpEqS(dst, lhs, rhs);
return true;
case kCondLT:
if (gt_bias) {
__ CmpLtS(dst, lhs, rhs);
} else {
__ CmpUltS(dst, lhs, rhs);
}
return false;
case kCondLE:
if (gt_bias) {
__ CmpLeS(dst, lhs, rhs);
} else {
__ CmpUleS(dst, lhs, rhs);
}
return false;
case kCondGT:
if (gt_bias) {
__ CmpUltS(dst, rhs, lhs);
} else {
__ CmpLtS(dst, rhs, lhs);
}
return false;
case kCondGE:
if (gt_bias) {
__ CmpUleS(dst, rhs, lhs);
} else {
__ CmpLeS(dst, rhs, lhs);
}
return false;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
switch (cond) {
case kCondEQ:
__ CmpEqD(dst, lhs, rhs);
return false;
case kCondNE:
__ CmpEqD(dst, lhs, rhs);
return true;
case kCondLT:
if (gt_bias) {
__ CmpLtD(dst, lhs, rhs);
} else {
__ CmpUltD(dst, lhs, rhs);
}
return false;
case kCondLE:
if (gt_bias) {
__ CmpLeD(dst, lhs, rhs);
} else {
__ CmpUleD(dst, lhs, rhs);
}
return false;
case kCondGT:
if (gt_bias) {
__ CmpUltD(dst, rhs, lhs);
} else {
__ CmpLtD(dst, rhs, lhs);
}
return false;
case kCondGE:
if (gt_bias) {
__ CmpUleD(dst, rhs, lhs);
} else {
__ CmpLeD(dst, rhs, lhs);
}
return false;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
}
}
void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
bool gt_bias,
DataType::Type type,
LocationSummary* locations,
MipsLabel* label) {
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (type == DataType::Type::kFloat32) {
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqS(FTMP, lhs, rhs);
__ Bc1nez(FTMP, label);
break;
case kCondNE:
__ CmpEqS(FTMP, lhs, rhs);
__ Bc1eqz(FTMP, label);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
} else {
__ CmpUltS(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeS(FTMP, lhs, rhs);
} else {
__ CmpUleS(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltS(FTMP, rhs, lhs);
} else {
__ CmpLtS(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleS(FTMP, rhs, lhs);
} else {
__ CmpLeS(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
} else {
switch (cond) {
case kCondEQ:
__ CeqS(0, lhs, rhs);
__ Bc1t(0, label);
break;
case kCondNE:
__ CeqS(0, lhs, rhs);
__ Bc1f(0, label);
break;
case kCondLT:
if (gt_bias) {
__ ColtS(0, lhs, rhs);
} else {
__ CultS(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondLE:
if (gt_bias) {
__ ColeS(0, lhs, rhs);
} else {
__ CuleS(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondGT:
if (gt_bias) {
__ CultS(0, rhs, lhs);
} else {
__ ColtS(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
case kCondGE:
if (gt_bias) {
__ CuleS(0, rhs, lhs);
} else {
__ ColeS(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
}
} else {
DCHECK_EQ(type, DataType::Type::kFloat64);
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqD(FTMP, lhs, rhs);
__ Bc1nez(FTMP, label);
break;
case kCondNE:
__ CmpEqD(FTMP, lhs, rhs);
__ Bc1eqz(FTMP, label);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
} else {
__ CmpUltD(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeD(FTMP, lhs, rhs);
} else {
__ CmpUleD(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltD(FTMP, rhs, lhs);
} else {
__ CmpLtD(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleD(FTMP, rhs, lhs);
} else {
__ CmpLeD(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
} else {
switch (cond) {
case kCondEQ:
__ CeqD(0, lhs, rhs);
__ Bc1t(0, label);
break;
case kCondNE:
__ CeqD(0, lhs, rhs);
__ Bc1f(0, label);
break;
case kCondLT:
if (gt_bias) {
__ ColtD(0, lhs, rhs);
} else {
__ CultD(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondLE:
if (gt_bias) {
__ ColeD(0, lhs, rhs);
} else {
__ CuleD(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondGT:
if (gt_bias) {
__ CultD(0, rhs, lhs);
} else {
__ ColtD(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
case kCondGE:
if (gt_bias) {
__ CuleD(0, rhs, lhs);
} else {
__ ColeD(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
UNREACHABLE();
}
}
}
}
void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
MipsLabel* true_target,
MipsLabel* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against "true" (integer value 1).
if (cond->AsIntConstant()->IsTrue()) {
if (true_target != nullptr) {
__ B(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
if (false_target != nullptr) {
__ B(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
// The condition instruction has been materialized, compare the output to 0.
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
DCHECK(cond_val.IsRegister());
if (true_target == nullptr) {
__ Beqz(cond_val.AsRegister<Register>(), false_target);
} else {
__ Bnez(cond_val.AsRegister<Register>(), true_target);
}
} else {
// The condition instruction has not been materialized, use its inputs as
// the comparison and its condition as the branch condition.
HCondition* condition = cond->AsCondition();
DataType::Type type = condition->InputAt(0)->GetType();
LocationSummary* locations = cond->GetLocations();
IfCondition if_cond = condition->GetCondition();
MipsLabel* branch_target = true_target;
if (true_target == nullptr) {
if_cond = condition->GetOppositeCondition();
branch_target = false_target;
}
switch (type) {
default:
GenerateIntCompareAndBranch(if_cond, locations, branch_target);
break;
case DataType::Type::kInt64:
GenerateLongCompareAndBranch(if_cond, locations, branch_target);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
break;
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ B(false_target);
}
}
void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
nullptr : codegen_->GetLabelOf(true_successor);
MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
nullptr : codegen_->GetLabelOf(false_successor);
GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
}
void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetAllocator())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
InvokeRuntimeCallingConvention calling_convention;
RegisterSet caller_saves = RegisterSet::Empty();
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetCustomSlowPathCallerSaves(caller_saves);
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeMIPS* slow_path =
deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize);
GenerateTestAndBranch(deoptimize,
/* condition_input_index= */ 0,
slow_path->GetEntryLabel(),
/* false_target= */ nullptr);
}
// This function returns true if a conditional move can be generated for HSelect.
// Otherwise it returns false and HSelect must be implemented in terms of conditonal
// branches and regular moves.
//
// If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect.
//
// While determining feasibility of a conditional move and setting inputs/outputs
// are two distinct tasks, this function does both because they share quite a bit
// of common logic.
static bool CanMoveConditionally(HSelect* select, bool is_r6, LocationSummary* locations_to_set) {
bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition());
HInstruction* cond = select->InputAt(/* i= */ 2);
HCondition* condition = cond->AsCondition();
DataType::Type cond_type =
materialized ? DataType::Type::kInt32 : condition->InputAt(0)->GetType();
DataType::Type dst_type = select->GetType();
HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
bool is_true_value_zero_constant =
(cst_true_value != nullptr && cst_true_value->IsZeroBitPattern());
bool is_false_value_zero_constant =
(cst_false_value != nullptr && cst_false_value->IsZeroBitPattern());
bool can_move_conditionally = false;
bool use_const_for_false_in = false;
bool use_const_for_true_in = false;
if (!cond->IsConstant()) {
switch (cond_type) {
default:
switch (dst_type) {
default:
// Moving int on int condition.
if (is_r6) {
if (is_true_value_zero_constant) {
// seleqz out_reg, false_reg, cond_reg
can_move_conditionally = true;
use_const_for_true_in = true;
} else if (is_false_value_zero_constant) {
// selnez out_reg, true_reg, cond_reg
can_move_conditionally = true;
use_const_for_false_in = true;
} else if (materialized) {
// Not materializing unmaterialized int conditions
// to keep the instruction count low.
// selnez AT, true_reg, cond_reg
// seleqz TMP, false_reg, cond_reg
// or out_reg, AT, TMP
can_move_conditionally = true;
}
} else {
// movn out_reg, true_reg/ZERO, cond_reg
can_move_conditionally = true;
use_const_for_true_in = is_true_value_zero_constant;
}
break;
case DataType::Type::kInt64:
// Moving long on int condition.
if (is_r6) {
if (is_true_value_zero_constant) {
// seleqz out_reg_lo, false_reg_lo, cond_reg
// seleqz out_reg_hi, false_reg_hi, cond_reg
can_move_conditionally = true;
use_const_for_true_in = true;
} else if (is_false_value_zero_constant) {
// selnez out_reg_lo, true_reg_lo, cond_reg
// selnez out_reg_hi, true_reg_hi, cond_reg
can_move_conditionally = true;
use_const_for_false_in = true;
}
// Other long conditional moves would generate 6+ instructions,
// which is too many.
} else {
// movn out_reg_lo, true_reg_lo/ZERO, cond_reg
// movn out_reg_hi, true_reg_hi/ZERO, cond_reg
can_move_conditionally = true;
use_const_for_true_in = is_true_value_zero_constant;
}
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
// Moving float/double on int condition.
if (is_r6) {
if (materialized) {
// Not materializing unmaterialized int conditions
// to keep the instruction count low.
can_move_conditionally = true;
if (is_true_value_zero_constant) {
// sltu TMP, ZERO, cond_reg
// mtc1 TMP, temp_cond_reg
// seleqz.fmt out_reg, false_reg, temp_cond_reg
use_const_for_true_in = true;
} else if (is_false_value_zero_constant) {
// sltu TMP, ZERO, cond_reg
// mtc1 TMP, temp_cond_reg
// selnez.fmt out_reg, true_reg, temp_cond_reg
use_const_for_false_in = true;
} else {
// sltu TMP, ZERO, cond_reg
// mtc1 TMP, temp_cond_reg
// sel.fmt temp_cond_reg, false_reg, true_reg
// mov.fmt out_reg, temp_cond_reg
}
}
} else {
// movn.fmt out_reg, true_reg, cond_reg
can_move_conditionally = true;
}
break;
}
break;
case DataType::Type::kInt64:
// We don't materialize long comparison now
// and use conditional branches instead.
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
switch (dst_type) {
default:
// Moving int on float/double condition.
if (is_r6) {
if (is_true_value_zero_constant) {
// mfc1 TMP, temp_cond_reg
// seleqz out_reg, false_reg, TMP
can_move_conditionally = true;
use_const_for_true_in = true;
} else if (is_false_value_zero_constant) {
// mfc1 TMP, temp_cond_reg
// selnez out_reg, true_reg, TMP
can_move_conditionally = true;
use_const_for_false_in = true;
} else {
// mfc1 TMP, temp_cond_reg
// selnez AT, true_reg, TMP
// seleqz TMP, false_reg, TMP
// or out_reg, AT, TMP
can_move_conditionally = true;
}
} else {
// movt out_reg, true_reg/ZERO, cc
can_move_conditionally = true;
use_const_for_true_in = is_true_value_zero_constant;
}
break;
case DataType::Type::kInt64:
// Moving long on float/double condition.
if (is_r6) {
if (is_true_value_zero_constant) {
// mfc1 TMP, temp_cond_reg
// seleqz out_reg_lo, false_reg_lo, TMP
// seleqz out_reg_hi, false_reg_hi, TMP
can_move_conditionally = true;
use_const_for_true_in = true;
} else if (is_false_value_zero_constant) {
// mfc1 TMP, temp_cond_reg
// selnez out_reg_lo, true_reg_lo, TMP
// selnez out_reg_hi, true_reg_hi, TMP
can_move_conditionally = true;
use_const_for_false_in = true;
}
// Other long conditional moves would generate 6+ instructions,
// which is too many.
} else {
// movt out_reg_lo, true_reg_lo/ZERO, cc
// movt out_reg_hi, true_reg_hi/ZERO, cc
can_move_conditionally = true;
use_const_for_true_in = is_true_value_zero_constant;
}
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
// Moving float/double on float/double condition.
if (is_r6) {
can_move_conditionally = true;
if (is_true_value_zero_constant) {
// seleqz.fmt out_reg, false_reg, temp_cond_reg
use_const_for_true_in = true;
} else if (is_false_value_zero_constant) {
// selnez.fmt out_reg, true_reg, temp_cond_reg
use_const_for_false_in = true;
} else {
// sel.fmt temp_cond_reg, false_reg, true_reg
// mov.fmt out_reg, temp_cond_reg
}
} else {
// movt.fmt out_reg, true_reg, cc
can_move_conditionally = true;
}
break;
}
break;
}
}
if (can_move_conditionally) {
DCHECK(!use_const_for_false_in || !use_const_for_true_in);
} else {
DCHECK(!use_const_for_false_in);
DCHECK(!use_const_for_true_in);
}
if (locations_to_set != nullptr) {
if (use_const_for_false_in) {
locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value));
} else {
locations_to_set->SetInAt(0,
DataType::IsFloatingPointType(dst_type)
? Location::RequiresFpuRegister()
: Location::RequiresRegister());
}
if (use_const_for_true_in) {
locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value));
} else {
locations_to_set->SetInAt(1,
DataType::IsFloatingPointType(dst_type)
? Location::RequiresFpuRegister()
: Location::RequiresRegister());
}
if (materialized) {
locations_to_set->SetInAt(2, Location::RequiresRegister());
}
// On R6 we don't require the output to be the same as the
// first input for conditional moves unlike on R2.
bool is_out_same_as_first_in = !can_move_conditionally || !is_r6;
if (is_out_same_as_first_in) {
locations_to_set->SetOut(Location::SameAsFirstInput());
} else {
locations_to_set->SetOut(DataType::IsFloatingPointType(dst_type)
? Location::RequiresFpuRegister()
: Location::RequiresRegister());
}
}
return can_move_conditionally;
}
void InstructionCodeGeneratorMIPS::GenConditionalMoveR2(HSelect* select) {
LocationSummary* locations = select->GetLocations();
Location dst = locations->Out();
Location src = locations->InAt(1);
Register src_reg = ZERO;
Register src_reg_high = ZERO;
HInstruction* cond = select->InputAt(/* i= */ 2);
Register cond_reg = TMP;
int cond_cc = 0;
DataType::Type cond_type = DataType::Type::kInt32;
bool cond_inverted = false;
DataType::Type dst_type = select->GetType();
if (IsBooleanValueOrMaterializedCondition(cond)) {
cond_reg = locations->InAt(/* at= */ 2).AsRegister<Register>();
} else {
HCondition* condition = cond->AsCondition();
LocationSummary* cond_locations = cond->GetLocations();
IfCondition if_cond = condition->GetCondition();
cond_type = condition->InputAt(0)->GetType();
switch (cond_type) {
default:
DCHECK_NE(cond_type, DataType::Type::kInt64);
cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
cond_inverted = MaterializeFpCompareR2(if_cond,
condition->IsGtBias(),
cond_type,
cond_locations,
cond_cc);
break;
}
}
DCHECK(dst.Equals(locations->InAt(0)));
if (src.IsRegister()) {
src_reg = src.AsRegister<Register>();
} else if (src.IsRegisterPair()) {
src_reg = src.AsRegisterPairLow<Register>();
src_reg_high = src.AsRegisterPairHigh<Register>();
} else if (src.IsConstant()) {
DCHECK(src.GetConstant()->IsZeroBitPattern());
}
switch (cond_type) {
default:
switch (dst_type) {
default:
if (cond_inverted) {
__ Movz(dst.AsRegister<Register>(), src_reg, cond_reg);
} else {
__ Movn(dst.AsRegister<Register>(), src_reg, cond_reg);
}
break;
case DataType::Type::kInt64:
if (cond_inverted) {
__ Movz(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
__ Movz(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
} else {
__ Movn(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
__ Movn(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
}
break;
case DataType::Type::kFloat32:
if (cond_inverted) {
__ MovzS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
} else {
__ MovnS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
}
break;
case DataType::Type::kFloat64:
if (cond_inverted) {
__ MovzD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
} else {
__ MovnD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
}
break;
}
break;
case DataType::Type::kInt64:
LOG(FATAL) << "Unreachable";
UNREACHABLE();
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
switch (dst_type) {
default:
if (cond_inverted) {
__ Movf(dst.AsRegister<Register>(), src_reg, cond_cc);
} else {
__ Movt(dst.AsRegister<Register>(), src_reg, cond_cc);
}
break;
case DataType::Type::kInt64:
if (cond_inverted) {
__ Movf(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
__ Movf(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
} else {
__ Movt(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
__ Movt(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
}
break;
case DataType::Type::kFloat32:
if (cond_inverted) {
__ MovfS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
} else {
__ MovtS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
}
break;
case DataType::Type::kFloat64:
if (cond_inverted) {
__ MovfD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
} else {
__ MovtD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
}
break;
}
break;
}
}
void InstructionCodeGeneratorMIPS::GenConditionalMoveR6(HSelect* select) {
LocationSummary* locations = select->GetLocations();
Location dst = locations->Out();
Location false_src = locations->InAt(0);
Location true_src = locations->InAt(1);
HInstruction* cond = select->InputAt(/* i= */ 2);
Register cond_reg = TMP;
FRegister fcond_reg = FTMP;
DataType::Type cond_type = DataType::Type::kInt32;
bool cond_inverted = false;
DataType::Type dst_type = select->GetType();
if (IsBooleanValueOrMaterializedCondition(cond)) {
cond_reg = locations->InAt(/* at= */ 2).AsRegister<Register>();
} else {
HCondition* condition = cond->AsCondition();
LocationSummary* cond_locations = cond->GetLocations();
IfCondition if_cond = condition->GetCondition();
cond_type = condition->InputAt(0)->GetType();
switch (cond_type) {
default:
DCHECK_NE(cond_type, DataType::Type::kInt64);
cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
cond_inverted = MaterializeFpCompareR6(if_cond,
condition->IsGtBias(),
cond_type,
cond_locations,
fcond_reg);
break;
}
}
if (true_src.IsConstant()) {
DCHECK(true_src.GetConstant()->IsZeroBitPattern());
}
if (false_src.IsConstant()) {
DCHECK(false_src.GetConstant()->IsZeroBitPattern());
}
switch (dst_type) {
default:
if (DataType::IsFloatingPointType(cond_type)) {
__ Mfc1(cond_reg, fcond_reg);
}
if (true_src.IsConstant()) {
if (cond_inverted) {
__ Selnez(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
} else {
__ Seleqz(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
}
} else if (false_src.IsConstant()) {
if (cond_inverted) {
__ Seleqz(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
} else {
__ Selnez(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
}
} else {
DCHECK_NE(cond_reg, AT);
if (cond_inverted) {
__ Seleqz(AT, true_src.AsRegister<Register>(), cond_reg);
__ Selnez(TMP, false_src.AsRegister<Register>(), cond_reg);
} else {
__ Selnez(AT, true_src.AsRegister<Register>(), cond_reg);
__ Seleqz(TMP, false_src.AsRegister<Register>(), cond_reg);
}
__ Or(dst.AsRegister<Register>(), AT, TMP);
}
break;
case DataType::Type::kInt64: {
if (DataType::IsFloatingPointType(cond_type)) {
__ Mfc1(cond_reg, fcond_reg);
}
Register dst_lo = dst.AsRegisterPairLow<Register>();
Register dst_hi = dst.AsRegisterPairHigh<Register>();
if (true_src.IsConstant()) {
Register src_lo = false_src.AsRegisterPairLow<Register>();
Register src_hi = false_src.AsRegisterPairHigh<Register>();
if (cond_inverted) {
__ Selnez(dst_lo, src_lo, cond_reg);
__ Selnez(dst_hi, src_hi, cond_reg);
} else {
__ Seleqz(dst_lo, src_lo, cond_reg);
__ Seleqz(dst_hi, src_hi, cond_reg);
}
} else {
DCHECK(false_src.IsConstant());
Register src_lo = true_src.AsRegisterPairLow<Register>();
Register src_hi = true_src.AsRegisterPairHigh<Register>();
if (cond_inverted) {
__ Seleqz(dst_lo, src_lo, cond_reg);
__ Seleqz(dst_hi, src_hi, cond_reg);
} else {
__ Selnez(dst_lo, src_lo, cond_reg);
__ Selnez(dst_hi, src_hi, cond_reg);
}
}
break;
}
case DataType::Type::kFloat32: {
if (!DataType::IsFloatingPointType(cond_type)) {
// sel*.fmt tests bit 0 of the condition register, account for that.
__ Sltu(TMP, ZERO, cond_reg);
__ Mtc1(TMP, fcond_reg);
}
FRegister dst_reg = dst.AsFpuRegister<FRegister>();
if (true_src.IsConstant()) {
FRegister src_reg = false_src.AsFpuRegister<FRegister>();
if (cond_inverted) {
__ SelnezS(dst_reg, src_reg, fcond_reg);
} else {
__ SeleqzS(dst_reg, src_reg, fcond_reg);
}
} else if (false_src.IsConstant()) {
FRegister src_reg = true_src.AsFpuRegister<FRegister>();
if (cond_inverted) {
__ SeleqzS(dst_reg, src_reg, fcond_reg);
} else {
__ SelnezS(dst_reg, src_reg, fcond_reg);
}
} else {
if (cond_inverted) {
__ SelS(fcond_reg,
true_src.AsFpuRegister<FRegister>(),
false_src.AsFpuRegister<FRegister>());
} else {
__ SelS(fcond_reg,
false_src.AsFpuRegister<FRegister>(),
true_src.AsFpuRegister<FRegister>());
}
__ MovS(dst_reg, fcond_reg);
}
break;
}
case DataType::Type::kFloat64: {
if (!DataType::IsFloatingPointType(cond_type)) {
// sel*.fmt tests bit 0 of the condition register, account for that.
__ Sltu(TMP, ZERO, cond_reg);
__ Mtc1(TMP, fcond_reg);
}
FRegister dst_reg = dst.AsFpuRegister<FRegister>();
if (true_src.IsConstant()) {
FRegister src_reg = false_src.AsFpuRegister<FRegister>();
if (cond_inverted) {
__ SelnezD(dst_reg, src_reg, fcond_reg);
} else {
__ SeleqzD(dst_reg, src_reg, fcond_reg);
}
} else if (false_src.IsConstant()) {
FRegister src_reg = true_src.AsFpuRegister<FRegister>();
if (cond_inverted) {
__ SeleqzD(dst_reg, src_reg, fcond_reg);
} else {
__ SelnezD(dst_reg, src_reg, fcond_reg);
}
} else {
if (cond_inverted) {
__ SelD(fcond_reg,
true_src.AsFpuRegister<FRegister>(),
false_src.AsFpuRegister<FRegister>());
} else {
__ SelD(fcond_reg,
false_src.AsFpuRegister<FRegister>(),
true_src.AsFpuRegister<FRegister>());
}
__ MovD(dst_reg, fcond_reg);
}
break;
}
}
}
void LocationsBuilderMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
LocationSummary* locations = new (GetGraph()->GetAllocator())
LocationSummary(flag, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
__ LoadFromOffset(kLoadWord,
flag->GetLocations()->Out().AsRegister<Register>(),
SP,
codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
}
void LocationsBuilderMIPS::VisitSelect(HSelect* select) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
CanMoveConditionally(select, codegen_->GetInstructionSetFeatures().IsR6(), locations);
}
void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) {
bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
if (CanMoveConditionally(select, is_r6, /* locations_to_set= */ nullptr)) {
if (is_r6) {
GenConditionalMoveR6(select);
} else {
GenConditionalMoveR2(select);
}
} else {
LocationSummary* locations = select->GetLocations();
MipsLabel false_target;
GenerateTestAndBranch(select,
/* condition_input_index= */ 2,
/* true_target= */ nullptr,
&false_target);
codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
__ Bind(&false_target);
}
}
void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) {
new (GetGraph()->GetAllocator()) LocationSummary(info);
}
void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) {
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
}
void CodeGeneratorMIPS::GenerateNop() {
__ Nop();
}
void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
DataType::Type field_type = field_info.GetFieldType();
bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64);
bool generate_volatile = field_info.IsVolatile() && is_wide;
bool object_field_get_with_read_barrier =
kEmitCompilerReadBarrier && (field_type == DataType::Type::kReference);
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction,
generate_volatile
? LocationSummary::kCallOnMainOnly
: (object_field_get_with_read_barrier
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall));
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
if (generate_volatile) {
InvokeRuntimeCallingConvention calling_convention;
// need A0 to hold base + offset
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
if (field_type == DataType::Type::kInt64) {
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt64));
} else {
// Use Location::Any() to prevent situations when running out of available fp registers.
locations->SetOut(Location::Any());
// Need some temp core regs since FP results are returned in core registers
Location reg = calling_convention.GetReturnLocation(DataType::Type::kInt64);
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
}
} else {
if (DataType::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
// The output overlaps in the case of an object field get with
// read barriers enabled: we do not want the move to overwrite the
// object's location, as we need it to emit the read barrier.
locations->SetOut(Location::RequiresRegister(),
object_field_get_with_read_barrier
? Location::kOutputOverlap
: Location::kNoOutputOverlap);
}
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier.
if (!kBakerReadBarrierThunksEnableForFields) {
locations->AddTemp(Location::RequiresRegister());
}
}
}
}
void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc) {
DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location dst_loc = locations->Out();
LoadOperandType load_type = kLoadUnsignedByte;
bool is_volatile = field_info.IsVolatile();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
load_type = kLoadUnsignedByte;
break;
case DataType::Type::kInt8:
load_type = kLoadSignedByte;
break;
case DataType::Type::kUint16:
load_type = kLoadUnsignedHalfword;
break;
case DataType::Type::kInt16:
load_type = kLoadSignedHalfword;
break;
case DataType::Type::kInt32:
case DataType::Type::kFloat32:
case DataType::Type::kReference:
load_type = kLoadWord;
break;
case DataType::Type::kInt64:
case DataType::Type::kFloat64:
load_type = kLoadDoubleword;
break;
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (is_volatile && load_type == kLoadDoubleword) {
InvokeRuntimeCallingConvention calling_convention;
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
// Do implicit Null check
__ LoadFromOffset(kLoadWord,
ZERO,
locations->GetTemp(0).AsRegister<Register>(),
0,
null_checker);
codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc);
CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
if (type == DataType::Type::kFloat64) {
// FP results are returned in core registers. Need to move them.
if (dst_loc.IsFpuRegister()) {
__ Mtc1(locations->GetTemp(1).AsRegister<Register>(), dst_loc.AsFpuRegister<FRegister>());
__ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
dst_loc.AsFpuRegister<FRegister>());
} else {
DCHECK(dst_loc.IsDoubleStackSlot());
__ StoreToOffset(kStoreWord,
locations->GetTemp(1).AsRegister<Register>(),
SP,
dst_loc.GetStackIndex());
__ StoreToOffset(kStoreWord,
locations->GetTemp(2).AsRegister<Register>(),
SP,
dst_loc.GetStackIndex() + 4);
}
}
} else {
if (type == DataType::Type::kReference) {
// /* HeapReference<Object> */ dst = *(obj + offset)
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
Location temp_loc =
kBakerReadBarrierThunksEnableForFields ? Location::NoLocation() : locations->GetTemp(0);
// Note that a potential implicit null check is handled in this
// CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier call.
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
dst_loc,
obj,
offset,
temp_loc,
/* needs_null_check= */ true);
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
} else {
__ LoadFromOffset(kLoadWord, dst_loc.AsRegister<Register>(), obj, offset, null_checker);
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset);
}
} else if (!DataType::IsFloatingPointType(type)) {
Register dst;
if (type == DataType::Type::kInt64) {
DCHECK(dst_loc.IsRegisterPair());
dst = dst_loc.AsRegisterPairLow<Register>();
} else {
DCHECK(dst_loc.IsRegister());
dst = dst_loc.AsRegister<Register>();
}
__ LoadFromOffset(load_type, dst, obj, offset, null_checker);
} else {
DCHECK(dst_loc.IsFpuRegister());
FRegister dst = dst_loc.AsFpuRegister<FRegister>();
if (type == DataType::Type::kFloat32) {
__ LoadSFromOffset(dst, obj, offset, null_checker);
} else {
__ LoadDFromOffset(dst, obj, offset, null_checker);
}
}
}
// Memory barriers, in the case of references, are handled in the
// previous switch statement.
if (is_volatile && (type != DataType::Type::kReference)) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
DataType::Type field_type = field_info.GetFieldType();
bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64);
bool generate_volatile = field_info.IsVolatile() && is_wide;
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (generate_volatile) {
InvokeRuntimeCallingConvention calling_convention;
// need A0 to hold base + offset
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
if (field_type == DataType::Type::kInt64) {
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
} else {
// Use Location::Any() to prevent situations when running out of available fp registers.
locations->SetInAt(1, Location::Any());
// Pass FP parameters in core registers.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
}
} else {
if (DataType::IsFloatingPointType(field_type)) {
locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1)));
} else {
locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1)));
}
}
}
void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc,
bool value_can_be_null) {
DataType::Type type = field_info.GetFieldType();
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location value_location = locations->InAt(1);
StoreOperandType store_type = kStoreByte;
bool is_volatile = field_info.IsVolatile();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1));
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
store_type = kStoreByte;
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
store_type = kStoreHalfword;
break;
case DataType::Type::kInt32:
case DataType::Type::kFloat32:
case DataType::Type::kReference:
store_type = kStoreWord;
break;
case DataType::Type::kInt64:
case DataType::Type::kFloat64:
store_type = kStoreDoubleword;
break;
case DataType::Type::kUint32:
case DataType::Type::kUint64:
case DataType::Type::kVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
if (is_volatile && store_type == kStoreDoubleword) {
InvokeRuntimeCallingConvention calling_convention;
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
// Do implicit Null check.
__ LoadFromOffset(kLoadWord,
ZERO,
locations->GetTemp(0).AsRegister<Register>(),
0,
null_checker);
if (type == DataType::Type::kFloat64) {
// Pass FP parameters in core registers.
if (value_location.IsFpuRegister()) {
__ Mfc1(locations->GetTemp(1).AsRegister<Register>(),
value_location.AsFpuRegister<FRegister>());
__ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
value_location.AsFpuRegister<FRegister>());
} else if (value_location.IsDoubleStackSlot()) {
__ LoadFromOffset(kLoadWord,
locations->GetTemp(1).AsRegister<Register>(),
SP,
value_location.GetStackIndex());
__ LoadFromOffset(kLoadWord,
locations->GetTemp(2).AsRegister<Register>(),
SP,
value_location.GetStackIndex() + 4);
} else {
DCHECK(value_location.IsConstant());
DCHECK(value_location.GetConstant()->IsDoubleConstant());
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
__ LoadConst64(locations->GetTemp(2).AsRegister<Register>(),
locations->GetTemp(1).AsRegister<Register>(),
value);
}
}
codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc);
CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
} else {
if (value_location.IsConstant()) {
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
__ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker);
} else if (!DataType::IsFloatingPointType(type)) {
Register src;
if (type == DataType::Type::kInt64) {
src = value_location.AsRegisterPairLow<Register>();
} else {
src = value_location.AsRegister<Register>();
}
if (kPoisonHeapReferences && needs_write_barrier) {
// Note that in the case where `value` is a null reference,
// we do not enter this block, as a null reference does not
// need poisoning.
DCHECK_EQ(type, DataType::Type::kReference);
__ PoisonHeapReference(TMP, src);
__ StoreToOffset(store_type, TMP, obj, offset, null_checker);
} else {
__ StoreToOffset(store_type, src, obj, offset, null_checker);
}
} else {
FRegister src = value_location.AsFpuRegister<FRegister>();
if (type == DataType::Type::kFloat32) {
__ StoreSToOffset(src, obj, offset, null_checker);
} else {
__ StoreDToOffset(src, obj, offset, null_checker);
}
}
}
if (needs_write_barrier) {
Register src = value_location.AsRegister<Register>();
codegen_->MarkGCCard(obj, src, value_can_be_null);
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction,
instruction->GetFieldInfo(),
instruction->GetDexPc(),
instruction->GetValueCanBeNull());
}
void InstructionCodeGeneratorMIPS::GenerateReferenceLoadOneRegister(
HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
Register out_reg = out.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
CHECK(kEmitCompilerReadBarrier);
if (!kUseBakerReadBarrier || !kBakerReadBarrierThunksEnableForFields) {
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
}
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out,
out_reg,
offset,
maybe_temp,
/* needs_null_check= */ false);
} else {
// Load with slow path based read barrier.
// Save the value of `out` into `maybe_temp` before overwriting it
// in the following move operation, as we will need it for the
// read barrier below.
__ Move(maybe_temp.AsRegister<Register>(), out_reg);
// /* HeapReference<Object> */ out = *(out + offset)
__ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
__ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
__ MaybeUnpoisonHeapReference(out_reg);
}
}
void InstructionCodeGeneratorMIPS::GenerateReferenceLoadTwoRegisters(
HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
Register out_reg = out.AsRegister<Register>();
Register obj_reg = obj.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
CHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
if (!kBakerReadBarrierThunksEnableForFields) {
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
}
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out,
obj_reg,
offset,
maybe_temp,
/* needs_null_check= */ false);
} else {
// Load with slow path based read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
__ MaybeUnpoisonHeapReference(out_reg);
}
}
static inline int GetBakerMarkThunkNumber(Register reg) {
static_assert(BAKER_MARK_INTROSPECTION_REGISTER_COUNT == 21, "Expecting equal");
if (reg >= V0 && reg <= T7) { // 14 consequtive regs.
return reg - V0;
} else if (reg >= S2 && reg <= S7) { // 6 consequtive regs.
return 14 + (reg - S2);
} else if (reg == FP) { // One more.
return 20;
}
LOG(FATAL) << "Unexpected register " << reg;
UNREACHABLE();
}
static inline int GetBakerMarkFieldArrayThunkDisplacement(Register reg, bool short_offset) {
int num = GetBakerMarkThunkNumber(reg) +
(short_offset ? BAKER_MARK_INTROSPECTION_REGISTER_COUNT : 0);
return num * BAKER_MARK_INTROSPECTION_FIELD_ARRAY_ENTRY_SIZE;
}
static inline int GetBakerMarkGcRootThunkDisplacement(Register reg) {
return GetBakerMarkThunkNumber(reg) * BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRY_SIZE +
BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRIES_OFFSET;
}
void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
Register obj,
uint32_t offset,
ReadBarrierOption read_barrier_option,
MipsLabel* label_low) {
bool reordering;
if (label_low != nullptr) {
DCHECK_EQ(offset, 0x5678u);
}
Register root_reg = root.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
DCHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
// Baker's read barrier are used:
if (kBakerReadBarrierThunksEnableForGcRoots) {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded GC root or not. Instead, we
// load into `temp` (T9) the read barrier mark introspection entrypoint.
// If `temp` is null, it means that `GetIsGcMarking()` is false, and
// vice versa.
//
// We use thunks for the slow path. That thunk checks the reference
// and jumps to the entrypoint if needed.
//
// temp = Thread::Current()->pReadBarrierMarkReg00
// // AKA &art_quick_read_barrier_mark_introspection.
// GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
// if (temp != nullptr) {
// temp = &gc_root_thunk<root_reg>
// root = temp(root)
// }
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
const int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0);
const int thunk_disp = GetBakerMarkGcRootThunkDisplacement(root_reg);
int16_t offset_low = Low16Bits(offset);
int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign
// extension in lw.
bool short_offset = IsInt<16>(static_cast<int32_t>(offset));
Register base = short_offset ? obj : TMP;
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
reordering = __ SetReorder(false);
if (!short_offset) {
DCHECK(!label_low);
__ AddUpper(base, obj, offset_high);
}
MipsLabel skip_call;
__ Beqz(T9, &skip_call, /* is_bare= */ true);
if (label_low != nullptr) {
DCHECK(short_offset);
__ Bind(label_low);
}
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
__ LoadFromOffset(kLoadWord, root_reg, base, offset_low); // Single instruction
// in delay slot.
if (isR6) {
__ Jialc(T9, thunk_disp);
} else {
__ Addiu(T9, T9, thunk_disp);
__ Jalr(T9);
__ Nop();
}
__ Bind(&skip_call);
__ SetReorder(reordering);
} else {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded GC root or not. Instead, we
// load into `temp` (T9) the read barrier mark entry point corresponding
// to register `root`. If `temp` is null, it means that `GetIsGcMarking()`
// is false, and vice versa.
//
// GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
// temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
// if (temp != null) {
// root = temp(root)
// }
if (label_low != nullptr) {
reordering = __ SetReorder(false);
__ Bind(label_low);
}
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
if (label_low != nullptr) {
__ SetReorder(reordering);
}
static_assert(
sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
"art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
"have different sizes.");
static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::CompressedReference<mirror::Object> and int32_t "
"have different sizes.");
// Slow path marking the GC root `root`.
Location temp = Location::RegisterLocation(T9);
SlowPathCodeMIPS* slow_path =
new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS(
instruction,
root,
/*entrypoint*/ temp);
codegen_->AddSlowPath(slow_path);
const int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(root.reg() - 1);
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
__ Bnez(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
} else {
if (label_low != nullptr) {
reordering = __ SetReorder(false);
__ Bind(label_low);
}
// GC root loaded through a slow path for read barriers other
// than Baker's.
// /* GcRoot<mirror::Object>* */ root = obj + offset
__ Addiu32(root_reg, obj, offset);
if (label_low != nullptr) {
__ SetReorder(reordering);
}
// /* mirror::Object* */ root = root->Read()
codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
}
} else {
if (label_low != nullptr) {
reordering = __ SetReorder(false);
__ Bind(label_low);
}
// Plain GC root load with no read barrier.
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
// Note that GC roots are not affected by heap poisoning, thus we
// do not have to unpoison `root_reg` here.
if (label_low != nullptr) {
__ SetReorder(reordering);
}
}
}
void CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location temp,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
if (kBakerReadBarrierThunksEnableForFields) {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded reference or not. Instead, we
// load into `temp` (T9) the read barrier mark introspection entrypoint.
// If `temp` is null, it means that `GetIsGcMarking()` is false, and
// vice versa.
//
// We use thunks for the slow path. That thunk checks the reference
// and jumps to the entrypoint if needed. If the holder is not gray,
// it issues a load-load memory barrier and returns to the original
// reference load.
//
// temp = Thread::Current()->pReadBarrierMarkReg00
// // AKA &art_quick_read_barrier_mark_introspection.
// if (temp != nullptr) {
// temp = &field_array_thunk<holder_reg>
// temp()
// }
// not_gray_return_address:
// // If the offset is too large to fit into the lw instruction, we
// // use an adjusted base register (TMP) here. This register
// // receives bits 16 ... 31 of the offset before the thunk invocation
// // and the thunk benefits from it.
// HeapReference<mirror::Object> reference = *(obj+offset); // Original reference load.
// gray_return_address:
DCHECK(temp.IsInvalid());
bool isR6 = GetInstructionSetFeatures().IsR6();
int16_t offset_low = Low16Bits(offset);
int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign extension in lw.
bool short_offset = IsInt<16>(static_cast<int32_t>(offset));
bool reordering = __ SetReorder(false);
const int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0);
// There may have or may have not been a null check if the field offset is smaller than
// the page size.
// There must've been a null check in case it's actually a load from an array.
// We will, however, perform an explicit null check in the thunk as it's easier to
// do it than not.
if (instruction->IsArrayGet()) {
DCHECK(!needs_null_check);
}
const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, short_offset);
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
Register ref_reg = ref.AsRegister<Register>();
Register base = short_offset ? obj : TMP;
MipsLabel skip_call;
if (short_offset) {
if (isR6) {
__ Beqzc(T9, &skip_call, /* is_bare= */ true);
__ Nop(); // In forbidden slot.
__ Jialc(T9, thunk_disp);
} else {
__ Beqz(T9, &skip_call, /* is_bare= */ true);
__ Addiu(T9, T9, thunk_disp); // In delay slot.
__ Jalr(T9);
__ Nop(); // In delay slot.
}
__ Bind(&skip_call);
} else {
if (isR6) {
__ Beqz(T9, &skip_call, /* is_bare= */ true);
__ Aui(base, obj, offset_high); // In delay slot.
__ Jialc(T9, thunk_disp);
__ Bind(&skip_call);
} else {
__ Lui(base, offset_high);
__ Beqz(T9, &skip_call, /* is_bare= */ true);
__ Addiu(T9, T9, thunk_disp); // In delay slot.
__ Jalr(T9);
__ Bind(&skip_call);
__ Addu(base, base, obj); // In delay slot.
}
}
// /* HeapReference<Object> */ ref = *(obj + offset)
__ LoadFromOffset(kLoadWord, ref_reg, base, offset_low); // Single instruction.
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
__ MaybeUnpoisonHeapReference(ref_reg);
__ SetReorder(reordering);
return;
}
// /* HeapReference<Object> */ ref = *(obj + offset)
Location no_index = Location::NoLocation();
ScaleFactor no_scale_factor = TIMES_1;
GenerateReferenceLoadWithBakerReadBarrier(instruction,
ref,
obj,
offset,
no_index,
no_scale_factor,
temp,
needs_null_check);
}
void CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
Location temp,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
ScaleFactor scale_factor = TIMES_4;
if (kBakerReadBarrierThunksEnableForArrays) {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded reference or not. Instead, we
// load into `temp` (T9) the read barrier mark introspection entrypoint.
// If `temp` is null, it means that `GetIsGcMarking()` is false, and
// vice versa.
//
// We use thunks for the slow path. That thunk checks the reference
// and jumps to the entrypoint if needed. If the holder is not gray,
// it issues a load-load memory barrier and returns to the original
// reference load.
//
// temp = Thread::Current()->pReadBarrierMarkReg00
// // AKA &art_quick_read_barrier_mark_introspection.
// if (temp != nullptr) {
// temp = &field_array_thunk<holder_reg>
// temp()
// }
// not_gray_return_address:
// // The element address is pre-calculated in the TMP register before the
// // thunk invocation and the thunk benefits from it.
// HeapReference<mirror::Object> reference = data[index]; // Original reference load.
// gray_return_address:
DCHECK(temp.IsInvalid());
DCHECK(index.IsValid());
bool reordering = __ SetReorder(false);
const int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0);
// We will not do the explicit null check in the thunk as some form of a null check
// must've been done earlier.
DCHECK(!needs_null_check);
const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, /* short_offset= */ false);
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
Register ref_reg = ref.AsRegister<Register>();
Register index_reg = index.IsRegisterPair()
? index.AsRegisterPairLow<Register>()
: index.AsRegister<Register>();
MipsLabel skip_call;
if (GetInstructionSetFeatures().IsR6()) {
__ Beqz(T9, &skip_call, /* is_bare= */ true);
__ Lsa(TMP, index_reg, obj, scale_factor); // In delay slot.
__ Jialc(T9, thunk_disp);
__ Bind(&skip_call);
} else {
__ Sll(TMP, index_reg, scale_factor);
__ Beqz(T9, &skip_call, /* is_bare= */ true);
__ Addiu(T9, T9, thunk_disp); // In delay slot.
__ Jalr(T9);
__ Bind(&skip_call);
__ Addu(TMP, TMP, obj); // In delay slot.
}
// /* HeapReference<Object> */ ref = *(obj + data_offset + (index << scale_factor))
DCHECK(IsInt<16>(static_cast<int32_t>(data_offset))) << data_offset;
__ LoadFromOffset(kLoadWord, ref_reg, TMP, data_offset); // Single instruction.
__ MaybeUnpoisonHeapReference(ref_reg);
__ SetReorder(reordering);
return;
}
// /* HeapReference<Object> */ ref =
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
GenerateReferenceLoadWithBakerReadBarrier(instruction,
ref,
obj,
data_offset,
index,
scale_factor,
temp,
needs_null_check);
}
void CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location index,
ScaleFactor scale_factor,
Location temp,
bool needs_null_check,
bool always_update_field) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
// In slow path based read barriers, the read barrier call is
// inserted after the original load. However, in fast path based
// Baker's read barriers, we need to perform the load of
// mirror::Object::monitor_ *before* the original reference load.
// This load-load ordering is required by the read barrier.
// The fast path/slow path (for Baker's algorithm) should look like:
//
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<Object> ref = *src; // Original reference load.
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
// }
//
// Note: the original implementation in ReadBarrier::Barrier is
// slightly more complex as it performs additional checks that we do
// not do here for performance reasons.
Register ref_reg = ref.AsRegister<Register>();
Register temp_reg = temp.AsRegister<Register>();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
// /* int32_t */ monitor = obj->monitor_
__ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
// /* LockWord */ lock_word = LockWord(monitor)
static_assert(sizeof(LockWord) == sizeof(int32_t),
"art::LockWord and int32_t have different sizes.");
__ Sync(0); // Barrier to prevent load-load reordering.
// The actual reference load.
if (index.IsValid()) {
// Load types involving an "index": ArrayGet,
// UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
// intrinsics.
// /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
if (index.IsConstant()) {
size_t computed_offset =
(index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
__ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
} else {
// Handle the special case of the
// UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
// intrinsics, which use a register pair as index ("long
// offset"), of which only the low part contains data.
Register index_reg = index.IsRegisterPair()
? index.AsRegisterPairLow<Register>()
: index.AsRegister<Register>();
__ ShiftAndAdd(TMP, index_reg, obj, scale_factor, TMP);
__ LoadFromOffset(kLoadWord, ref_reg, TMP, offset);
}
} else {
// /* HeapReference<Object> */ ref = *(obj + offset)
__ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
}
// Object* ref = ref_addr->AsMirrorPtr()
__ MaybeUnpoisonHeapReference(ref_reg);
// Slow path marking the object `ref` when it is gray.
SlowPathCodeMIPS* slow_path;
if (always_update_field) {
// ReadBarrierMarkAndUpdateFieldSlowPathMIPS only supports address
// of the form `obj + field_offset`, where `obj` is a register and
// `field_offset` is a register pair (of which only the lower half
// is used). Thus `offset` and `scale_factor` above are expected
// to be null in this code path.
DCHECK_EQ(offset, 0u);
DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
slow_path = new (GetScopedAllocator())
ReadBarrierMarkAndUpdateFieldSlowPathMIPS(instruction,
ref,
obj,
/* field_offset= */ index,
temp_reg);
} else {
slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS(instruction, ref);
}
AddSlowPath(slow_path);
// if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
// Given the numeric representation, it's enough to check the low bit of the
// rb_state. We do that by shifting the bit into the sign bit (31) and
// performing a branch on less than zero.
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size");
__ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift);
__ Bltz(temp_reg, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorMIPS::GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
DCHECK(kEmitCompilerReadBarrier);
// Insert a slow path based read barrier *after* the reference load.
//
// If heap poisoning is enabled, the unpoisoning of the loaded
// reference will be carried out by the runtime within the slow
// path.
//
// Note that `ref` currently does not get unpoisoned (when heap
// poisoning is enabled), which is alright as the `ref` argument is
// not used by the artReadBarrierSlow entry point.
//
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
SlowPathCodeMIPS* slow_path = new (GetScopedAllocator())
ReadBarrierForHeapReferenceSlowPathMIPS(instruction, out, ref, obj, offset, index);
AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorMIPS::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
if (kEmitCompilerReadBarrier) {
// Baker's read barriers shall be handled by the fast path
// (CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier).
DCHECK(!kUseBakerReadBarrier);
// If heap poisoning is enabled, unpoisoning will be taken care of
// by the runtime within the slow path.
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
} else if (kPoisonHeapReferences) {
__ UnpoisonHeapReference(out.AsRegister<Register>());
}
}
void CodeGeneratorMIPS::GenerateReadBarrierForRootSlow(HInstruction* instruction,
Location out,
Location root) {
DCHECK(kEmitCompilerReadBarrier);
// Insert a slow path based read barrier *after* the GC root load.
//
// Note that GC roots are not affected by heap poisoning, so we do
// not need to do anything special for this here.
SlowPathCodeMIPS* slow_path =
new (GetScopedAllocator()) ReadBarrierForRootSlowPathMIPS(instruction, out, root);
AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
bool baker_read_barrier_slow_path = false;
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck: {
bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
break;
}
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck:
call_kind = LocationSummary::kCallOnSlowPath;
break;
case TypeCheckKind::kBitstringCheck:
break;
}
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
if (baker_read_barrier_slow_path) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
if (type_check_kind == TypeCheckKind::kBitstringCheck) {
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
// The output does overlap inputs.
// Note that TypeCheckSlowPathMIPS uses this register too.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
}
void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location cls = locations->InAt(1);
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
DCHECK_LE(num_temps, 1u);
Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
MipsLabel done;
SlowPathCodeMIPS* slow_path = nullptr;
// Return 0 if `obj` is null.
// Avoid this check if we know `obj` is not null.
if (instruction->MustDoNullCheck()) {
__ Move(out, ZERO);
__ Beqz(obj, &done);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck: {
ReadBarrierOption read_barrier_option =
CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// Classes must be equal for the instanceof to succeed.
__ Xor(out, out, cls.AsRegister<Register>());
__ Sltiu(out, out, 1);
break;
}
case TypeCheckKind::kAbstractClassCheck: {
ReadBarrierOption read_barrier_option =
CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
MipsLabel loop;
__ Bind(&loop);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
read_barrier_option);
// If `out` is null, we use it for the result, and jump to `done`.
__ Beqz(out, &done);
__ Bne(out, cls.AsRegister<Register>(), &loop);
__ LoadConst32(out, 1);
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
ReadBarrierOption read_barrier_option =
CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// Walk over the class hierarchy to find a match.
MipsLabel loop, success;
__ Bind(&loop);
__ Beq(out, cls.AsRegister<Register>(), &success);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
read_barrier_option);
__ Bnez(out, &loop);
// If `out` is null, we use it for the result, and jump to `done`.
__ B(&done);
__ Bind(&success);
__ LoadConst32(out, 1);
break;
}
case TypeCheckKind::kArrayObjectCheck: {
ReadBarrierOption read_barrier_option =
CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
read_barrier_option);
// Do an exact check.
MipsLabel success;
__ Beq(out, cls.AsRegister<Register>(), &success);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ out = out->component_type_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
component_offset,
maybe_temp_loc,
read_barrier_option);
// If `out` is null, we use it for the result, and jump to `done`.
__ Beqz(out, &done);
__ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ Sltiu(out, out, 1);
__ B(&done);
__ Bind(&success);
__ LoadConst32(out, 1);
break;
}
case TypeCheckKind::kArrayCheck: {
// No read barrier since the slow path will retry upon failure.
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kWithoutReadBarrier);
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS(
instruction, /* is_fatal= */ false);
codegen_->AddSlowPath(slow_path);
__ Bne(out, cls.AsRegister<Register>(), slow_path->GetEntryLabel());
__ LoadConst32(out, 1);
break;
}
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck: {
// Note that we indeed only call on slow path, but we always go
// into the slow path for the unresolved and interface check
// cases.
//
// We cannot directly call the InstanceofNonTrivial runtime
// entry point without resorting to a type checking slow path
// here (i.e. by calling InvokeRuntime directly), as it would
// require to assign fixed registers for the inputs of this
// HInstanceOf instruction (following the runtime calling
// convention), which might be cluttered by the potential first
// read barrier emission at the beginning of this method.
//
// TODO: Introduce a new runtime entry point taking the object
// to test (instead of its class) as argument, and let it deal
// with the read barrier issues. This will let us refactor this
// case of the `switch` code as it was previously (with a direct
// call to the runtime not using a type checking slow path).
// This should also be beneficial for the other cases above.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS(
instruction, /* is_fatal= */ false);
codegen_->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kBitstringCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kWithoutReadBarrier);
GenerateBitstringTypeCheckCompare(instruction, out);
__ Sltiu(out, out, 1);
break;
}
}
__ Bind(&done);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}
void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// The register T7 is required to be used for the hidden argument in
// art_quick_imt_conflict_trampoline, so add the hidden argument.
invoke->GetLocations()->AddTemp(Location::RegisterLocation(T7));
}
void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
Location receiver = invoke->GetLocations()->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
__ MaybeUnpoisonHeapReference(temp);
__ LoadFromOffset(kLoadWord, temp, temp,
mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
invoke->GetImtIndex(), kMipsPointerSize));
// temp = temp->GetImtEntryAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// T9 = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
// Set the hidden argument.
__ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
invoke->GetDexMethodIndex());
// T9();
__ Jalr(T9);
__ NopIfNoReordering();
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops();
bool has_extra_input = invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops;
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
if (invoke->GetLocations()->CanCall() && has_extra_input) {
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
}
return;
}
HandleInvoke(invoke);
// Add the extra input register if either the dex cache array base register
// or the PC-relative base register for accessing literals is needed.
if (has_extra_input) {
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
}
}
void LocationsBuilderMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
codegen_->GenerateInvokePolymorphicCall(invoke);
}
void LocationsBuilderMIPS::VisitInvokeCustom(HInvokeCustom* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorMIPS::VisitInvokeCustom(HInvokeCustom* invoke) {
codegen_->GenerateInvokeCustomCall(invoke);
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorMIPS intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
switch (desired_string_load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
case HLoadString::LoadKind::kBootImageRelRo:
case HLoadString::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kJitBootImageAddress:
case HLoadString::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kRuntimeCall:
break;
}
return desired_string_load_kind;
}
HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
switch (desired_class_load_kind) {
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
case HLoadClass::LoadKind::kReferrersClass:
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
case HLoadClass::LoadKind::kBootImageRelRo:
case HLoadClass::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kJitBootImageAddress:
case HLoadClass::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kRuntimeCall:
break;
}
return desired_class_load_kind;
}
Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
Register temp) {
CHECK(!GetInstructionSetFeatures().IsR6());
CHECK(!GetGraph()->HasIrreducibleLoops());
CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
if (!invoke->GetLocations()->Intrinsified()) {
return location.AsRegister<Register>();
}
// For intrinsics we allow any location, so it may be on the stack.
if (!location.IsRegister()) {
__ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
return temp;
}
// For register locations, check if the register was saved. If so, get it from the stack.
// Note: There is a chance that the register was saved but not overwritten, so we could
// save one load. However, since this is just an intrinsic slow path we prefer this
// simple and more robust approach rather that trying to determine if that's the case.
SlowPathCode* slow_path = GetCurrentSlowPath();
DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
__ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
return temp;
}
return location.AsRegister<Register>();
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
ArtMethod* method ATTRIBUTE_UNUSED) {
return desired_dispatch_info;
}
void CodeGeneratorMIPS::GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
// All registers are assumed to be correctly set up per the calling convention.
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind();
HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation();
bool is_r6 = GetInstructionSetFeatures().IsR6();
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
Register base_reg = (invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops)
? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>())
: ZERO;
switch (method_load_kind) {
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
// temp = thread->string_init_entrypoint
uint32_t offset =
GetThreadOffset<kMipsPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
__ LoadFromOffset(kLoadWord,
temp.AsRegister<Register>(),
TR,
offset);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
DCHECK(GetCompilerOptions().IsBootImage());
PcRelativePatchInfo* info_high = NewBootImageMethodPatch(invoke->GetTargetMethod());
PcRelativePatchInfo* info_low =
NewBootImageMethodPatch(invoke->GetTargetMethod(), info_high);
Register temp_reg = temp.AsRegister<Register>();
EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg);
__ Addiu(temp_reg, TMP, /* imm16= */ 0x5678, &info_low->label);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: {
uint32_t boot_image_offset = GetBootImageOffset(invoke);
PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset);
PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high);
Register temp_reg = temp.AsRegister<Register>();
EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg);
__ Lw(temp_reg, TMP, /* imm16= */ 0x5678, &info_low->label);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
PcRelativePatchInfo* info_high = NewMethodBssEntryPatch(
MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()));
PcRelativePatchInfo* info_low = NewMethodBssEntryPatch(
MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()), info_high);
Register temp_reg = temp.AsRegister<Register>();
EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg);
__ Lw(temp_reg, TMP, /* imm16= */ 0x5678, &info_low->label);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress:
__ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
return; // No code pointer retrieval; the runtime performs the call directly.
}
}
switch (code_ptr_location) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
__ Bal(&frame_entry_label_);
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// T9 = callee_method->entry_point_from_quick_compiled_code_;
__ LoadFromOffset(kLoadWord,
T9,
callee_method.AsRegister<Register>(),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kMipsPointerSize).Int32Value());
// T9()
__ Jalr(T9);
__ NopIfNoReordering();
break;
}
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
DCHECK(!IsLeafMethod());
}
void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
codegen_->GenerateStaticOrDirectCall(invoke,
locations->HasTemps()
? locations->GetTemp(0)
: Location::NoLocation());
}
void CodeGeneratorMIPS::GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
// Use the calling convention instead of the location of the receiver, as
// intrinsics may have put the receiver in a different register. In the intrinsics
// slow path, the arguments have been moved to the right place, so here we are
// guaranteed that the receiver is the first register of the calling convention.
InvokeDexCallingConvention calling_convention;
Register receiver = calling_convention.GetRegisterAt(0);
Register temp = temp_location.AsRegister<Register>();
size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
// temp = object->GetClass();
__ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
__ MaybeUnpoisonHeapReference(temp);
// temp = temp->GetMethodAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// T9 = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
// T9();
__ Jalr(T9);
__ NopIfNoReordering();
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
InvokeRuntimeCallingConvention calling_convention;
Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(cls, loc, loc);
return;
}
DCHECK(!cls->NeedsAccessCheck());
const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops();
const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
case HLoadClass::LoadKind::kBootImageRelRo:
case HLoadClass::LoadKind::kBssEntry:
case HLoadClass::LoadKind::kJitBootImageAddress:
if (isR6) {
break;
}
if (has_irreducible_loops) {
if (load_kind != HLoadClass::LoadKind::kJitBootImageAddress) {
codegen_->ClobberRA();
}
break;
}
FALLTHROUGH_INTENDED;
case HLoadClass::LoadKind::kReferrersClass:
locations->SetInAt(0, Location::RequiresRegister());
break;
default:
break;
}
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadClass::LoadKind::kBssEntry) {
if (!kUseReadBarrier || kUseBakerReadBarrier) {
// Rely on the type resolution or initialization and marking to save everything we need.
locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
} else {
// For non-Baker read barriers we have a temp-clobbering call.
}
}
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
codegen_->GenerateLoadClassRuntimeCall(cls);
return;
}
DCHECK(!cls->NeedsAccessCheck());
LocationSummary* locations = cls->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
Register base_or_current_method_reg;
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
case HLoadClass::LoadKind::kBootImageRelRo:
case HLoadClass::LoadKind::kBssEntry:
case HLoadClass::LoadKind::kJitBootImageAddress:
base_or_current_method_reg =
(isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>();
break;
case HLoadClass::LoadKind::kReferrersClass:
case HLoadClass::LoadKind::kRuntimeCall:
base_or_current_method_reg = locations->InAt(0).AsRegister<Register>();
break;
default:
base_or_current_method_reg = ZERO;
break;
}
const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
? kWithoutReadBarrier
: kCompilerReadBarrierOption;
bool generate_null_check = false;
switch (load_kind) {
case HLoadClass::LoadKind::kReferrersClass: {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
GenerateGcRootFieldLoad(cls,
out_loc,
base_or_current_method_reg,
ArtMethod::DeclaringClassOffset().Int32Value(),
read_barrier_option);
break;
}
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex(), info_high);
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
out,
base_or_current_method_reg);
__ Addiu(out, out, /* imm16= */ 0x5678, &info_low->label);
break;
}
case HLoadClass::LoadKind::kBootImageRelRo: {
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls);
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
codegen_->NewBootImageRelRoPatch(boot_image_offset);
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high);
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
out,
base_or_current_method_reg);
__ Lw(out, out, /* imm16= */ 0x5678, &info_low->label);
break;
}
case HLoadClass::LoadKind::kBssEntry: {
CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high =
codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex(), bss_info_high);
codegen_->EmitPcRelativeAddressPlaceholderHigh(bss_info_high,
out,
base_or_current_method_reg);
GenerateGcRootFieldLoad(cls,
out_loc,
out,
/* offset= */ 0x5678,
read_barrier_option,
&info_low->label);
generate_null_check = true;
break;
}
case HLoadClass::LoadKind::kJitBootImageAddress: {
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
DCHECK_NE(address, 0u);
if (isR6 || !has_irreducible_loops) {
__ LoadLiteral(out,
base_or_current_method_reg,
codegen_->DeduplicateBootImageAddressLiteral(address));
} else {
__ LoadConst32(out, address);
}
break;
}
case HLoadClass::LoadKind::kJitTableAddress: {
CodeGeneratorMIPS::JitPatchInfo* info = codegen_->NewJitRootClassPatch(cls->GetDexFile(),
cls->GetTypeIndex(),
cls->GetClass());
bool reordering = __ SetReorder(false);
__ Bind(&info->high_label);
__ Lui(out, /* imm16= */ 0x1234);
__ SetReorder(reordering);
GenerateGcRootFieldLoad(cls,
out_loc,
out,
/* offset= */ 0x5678,
read_barrier_option,
&info->low_label);
break;
}
case HLoadClass::LoadKind::kRuntimeCall:
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
if (generate_null_check || cls->MustGenerateClinitCheck()) {
DCHECK(cls->CanCallRuntime());
SlowPathCodeMIPS* slow_path =
new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS(cls, cls);
codegen_->AddSlowPath(slow_path);
if (generate_null_check) {
__ Beqz(out, slow_path->GetEntryLabel());
}
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) {
InvokeRuntimeCallingConvention calling_convention;
Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, loc, loc);
}
void InstructionCodeGeneratorMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) {
codegen_->GenerateLoadMethodHandleRuntimeCall(load);
}
void LocationsBuilderMIPS::VisitLoadMethodType(HLoadMethodType* load) {
InvokeRuntimeCallingConvention calling_convention;
Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, loc, loc);
}
void InstructionCodeGeneratorMIPS::VisitLoadMethodType(HLoadMethodType* load) {
codegen_->GenerateLoadMethodTypeRuntimeCall(load);
}
static int32_t GetExceptionTlsOffset() {
return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value();
}
void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
Register out = load->GetLocations()->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
}
void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
__ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
}
void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
HLoadString::LoadKind load_kind = load->GetLoadKind();
const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
case HLoadString::LoadKind::kBootImageRelRo:
case HLoadString::LoadKind::kBssEntry:
case HLoadString::LoadKind::kJitBootImageAddress:
if (isR6) {
break;
}
if (has_irreducible_loops) {
if (load_kind != HLoadString::LoadKind::kJitBootImageAddress) {
codegen_->ClobberRA();
}
break;
}
FALLTHROUGH_INTENDED;
// We need an extra register for PC-relative dex cache accesses.
case HLoadString::LoadKind::kRuntimeCall:
locations->SetInAt(0, Location::RequiresRegister());
break;
default:
break;
}
if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetOut(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
} else {
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadString::LoadKind::kBssEntry) {
if (!kUseReadBarrier || kUseBakerReadBarrier) {
// Rely on the pResolveString and marking to save everything we need.
locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
} else {
// For non-Baker read barriers we have a temp-clobbering call.
}
}
}
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
HLoadString::LoadKind load_kind = load->GetLoadKind();
LocationSummary* locations = load->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
Register base_or_current_method_reg;
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
case HLoadString::LoadKind::kBootImageRelRo:
case HLoadString::LoadKind::kBssEntry:
case HLoadString::LoadKind::kJitBootImageAddress:
base_or_current_method_reg =
(isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>();
break;
default:
base_or_current_method_reg = ZERO;
break;
}
switch (load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex());
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high);
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
out,
base_or_current_method_reg);
__ Addiu(out, out, /* imm16= */ 0x5678, &info_low->label);
return;
}
case HLoadString::LoadKind::kBootImageRelRo: {
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
uint32_t boot_image_offset = codegen_->GetBootImageOffset(load);
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
codegen_->NewBootImageRelRoPatch(boot_image_offset);
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high);
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
out,
base_or_current_method_reg);
__ Lw(out, out, /* imm16= */ 0x5678, &info_low->label);
return;
}
case HLoadString::LoadKind::kBssEntry: {
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex());
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex(), info_high);
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
out,
base_or_current_method_reg);
GenerateGcRootFieldLoad(load,
out_loc,
out,
/* offset= */ 0x5678,
kCompilerReadBarrierOption,
&info_low->label);
SlowPathCodeMIPS* slow_path =
new (codegen_->GetScopedAllocator()) LoadStringSlowPathMIPS(load);
codegen_->AddSlowPath(slow_path);
__ Beqz(out, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
case HLoadString::LoadKind::kJitBootImageAddress: {
uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
DCHECK_NE(address, 0u);
if (isR6 || !has_irreducible_loops) {
__ LoadLiteral(out,
base_or_current_method_reg,
codegen_->DeduplicateBootImageAddressLiteral(address));
} else {
__ LoadConst32(out, address);
}
return;
}
case HLoadString::LoadKind::kJitTableAddress: {
CodeGeneratorMIPS::JitPatchInfo* info =
codegen_->NewJitRootStringPatch(load->GetDexFile(),
load->GetStringIndex(),
load->GetString());
bool reordering = __ SetReorder(false);
__ Bind(&info->high_label);
__ Lui(out, /* imm16= */ 0x1234);
__ SetReorder(reordering);
GenerateGcRootFieldLoad(load,
out_loc,
out,
/* offset= */ 0x5678,
kCompilerReadBarrierOption,
&info->low_label);
return;
}
default:
break;
}
// TODO: Re-add the compiler code to do string dex cache lookup again.
DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall);
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
__ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
}
void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
if (instruction->IsEnter()) {
codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
} else {
codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc());
}
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
}
void LocationsBuilderMIPS::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (type) {
case DataType::Type::kInt32: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Register rhs = locations->InAt(1).AsRegister<Register>();
if (isR6) {
__ MulR6(dst, lhs, rhs);
} else {
__ MulR2(dst, lhs, rhs);
}
break;
}
case DataType::Type::kInt64: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
// Extra checks to protect caused by the existance of A1_A2.
// The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
// (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
DCHECK_NE(dst_high, lhs_low);
DCHECK_NE(dst_high, rhs_low);
// A_B * C_D
// dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ]
// dst_lo: [ low(B*D) ]
// Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
if (isR6) {
__ MulR6(TMP, lhs_high, rhs_low);
__ MulR6(dst_high, lhs_low, rhs_high);
__ Addu(dst_high, dst_high, TMP);
__ MuhuR6(TMP, lhs_low, rhs_low);
__ Addu(dst_high, dst_high, TMP);
__ MulR6(dst_low, lhs_low, rhs_low);
} else {
__ MulR2(TMP, lhs_high, rhs_low);
__ MulR2(dst_high, lhs_low, rhs_high);
__ Addu(dst_high, dst_high, TMP);
__ MultuR2(lhs_low, rhs_low);
__ Mfhi(TMP);
__ Addu(dst_high, dst_high, TMP);
__ Mflo(dst_low);
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == DataType::Type::kFloat32) {
__ MulS(dst, lhs, rhs);
} else {
__ MulD(dst, lhs, rhs);
}
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << type;
}
}
void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case DataType::Type::kInt32: {
Register dst = locations->Out().AsRegister<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Subu(dst, ZERO, src);
break;
}
case DataType::Type::kInt64: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
__ Subu(dst_low, ZERO, src_low);
__ Sltu(TMP, ZERO, dst_low);
__ Subu(dst_high, ZERO, src_high);
__ Subu(dst_high, dst_high, TMP);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
if (type == DataType::Type::kFloat32) {
__ NegS(dst, src);
} else {
__ NegD(dst, src);
}
break;
}
default:
LOG(FATAL) << "Unexpected neg type " << type;
}
}
void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
// Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
}
void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
}
void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case DataType::Type::kInt32: {
Register dst = locations->Out().AsRegister<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Nor(dst, src, ZERO);
break;
}
case DataType::Type::kInt64: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
__ Nor(dst_high, src_high, ZERO);
__ Nor(dst_low, src_low, ZERO);
break;
}
default:
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
}
}
void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
__ Xori(locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
1);
}
void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
locations->SetInAt(0, Location::RequiresRegister());
}
void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (CanMoveNullCheckToUser(instruction)) {
return;
}
Location obj = instruction->GetLocations()->InAt(0);
__ Lw(ZERO, obj.AsRegister<Register>(), 0);
RecordPcInfo(instruction, instruction->GetDexPc());
}
void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeMIPS* slow_path = new (GetScopedAllocator()) NullCheckSlowPathMIPS(instruction);
AddSlowPath(slow_path);
Location obj = instruction->GetLocations()->InAt(0);
__ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
codegen_->GenerateNullCheck(instruction);
}
void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
if (instruction->GetNext()->IsSuspendCheck() &&
instruction->GetBlock()->GetLoopInformation() != nullptr) {
HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
// The back edge will generate the suspend check.
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
}
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
ATTRIBUTE_UNUSED) {
// Nothing to do, the parameter is already at its location.
}
void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
}
void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
ATTRIBUTE_UNUSED) {
// Nothing to do, the method is already at its location.
}
void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderMIPS::VisitRem(HRem* rem) {
DataType::Type type = rem->GetResultType();
bool call_rem;
if ((type == DataType::Type::kInt64) && rem->InputAt(1)->IsConstant()) {
int64_t imm = CodeGenerator::GetInt64ValueOf(rem->InputAt(1)->AsConstant());
call_rem = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)));
} else {
call_rem = (type != DataType::Type::kInt32);
}
LocationSummary::CallKind call_kind = call_rem
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
switch (type) {
case DataType::Type::kInt32:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kInt64: {
if (call_rem) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(type));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresRegister());
}
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
DataType::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case DataType::Type::kInt32:
GenerateDivRemIntegral(instruction);
break;
case DataType::Type::kInt64: {
if (locations->InAt(1).IsConstant()) {
int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else {
DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))));
DivRemByPowerOfTwo(instruction);
}
} else {
codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
}
break;
}
case DataType::Type::kFloat32: {
codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
break;
}
case DataType::Type::kFloat64: {
codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickFmod, double, double, double>();
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
LocationSummary* locations = new (allocator) LocationSummary(minmax);
switch (minmax->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::GenerateMinMaxInt(LocationSummary* locations,
bool is_min,
bool isR6,
DataType::Type type) {
if (isR6) {
// Some architectures, such as ARM and MIPS (prior to r6), have a
// conditional move instruction which only changes the target
// (output) register if the condition is true (MIPS prior to r6 had
// MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions
// always change the target (output) register. If the condition is
// true the output register gets the contents of the "rs" register;
// otherwise, the output register is set to zero. One consequence
// of this is that to implement something like "rd = c==0 ? rs : rt"
// MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions.
// After executing this pair of instructions one of the output
// registers from the pair will necessarily contain zero. Then the
// code ORs the output registers from the SELEQZ/SELNEZ instructions
// to get the final result.
//
// The initial test to see if the output register is same as the
// first input register is needed to make sure that value in the
// first input register isn't clobbered before we've finished
// computing the output value. The logic in the corresponding else
// clause performs the same task but makes sure the second input
// register isn't clobbered in the event that it's the same register
// as the output register; the else clause also handles the case
// where the output register is distinct from both the first, and the
// second input registers.
if (type == DataType::Type::kInt64) {
Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
MipsLabel compare_done;
if (a_lo == b_lo) {
if (out_lo != a_lo) {
__ Move(out_lo, a_lo);
__ Move(out_hi, a_hi);
}
} else {
__ Slt(TMP, b_hi, a_hi);
__ Bne(b_hi, a_hi, &compare_done);
__ Sltu(TMP, b_lo, a_lo);
__ Bind(&compare_done);
if (is_min) {
__ Seleqz(AT, a_lo, TMP);
__ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo
// because at this point we're
// done using a_lo/b_lo.
} else {
__ Selnez(AT, a_lo, TMP);
__ Seleqz(out_lo, b_lo, TMP); // ditto
}
__ Or(out_lo, out_lo, AT);
if (is_min) {
__ Seleqz(AT, a_hi, TMP);
__ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
} else {
__ Selnez(AT, a_hi, TMP);
__ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
}
__ Or(out_hi, out_hi, AT);
}
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
Register a = locations->InAt(0).AsRegister<Register>();
Register b = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (a == b) {
if (out != a) {
__ Move(out, a);
}
} else {
__ Slt(AT, b, a);
if (is_min) {
__ Seleqz(TMP, a, AT);
__ Selnez(AT, b, AT);
} else {
__ Selnez(TMP, a, AT);
__ Seleqz(AT, b, AT);
}
__ Or(out, TMP, AT);
}
}
} else { // !isR6
if (type == DataType::Type::kInt64) {
Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
MipsLabel compare_done;
if (a_lo == b_lo) {
if (out_lo != a_lo) {
__ Move(out_lo, a_lo);
__ Move(out_hi, a_hi);
}
} else {
__ Slt(TMP, a_hi, b_hi);
__ Bne(a_hi, b_hi, &compare_done);
__ Sltu(TMP, a_lo, b_lo);
__ Bind(&compare_done);
if (is_min) {
if (out_lo != a_lo) {
__ Movn(out_hi, a_hi, TMP);
__ Movn(out_lo, a_lo, TMP);
}
if (out_lo != b_lo) {
__ Movz(out_hi, b_hi, TMP);
__ Movz(out_lo, b_lo, TMP);
}
} else {
if (out_lo != a_lo) {
__ Movz(out_hi, a_hi, TMP);
__ Movz(out_lo, a_lo, TMP);
}
if (out_lo != b_lo) {
__ Movn(out_hi, b_hi, TMP);
__ Movn(out_lo, b_lo, TMP);
}
}
}
} else {
DCHECK_EQ(type, DataType::Type::kInt32);
Register a = locations->InAt(0).AsRegister<Register>();
Register b = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (a == b) {
if (out != a) {
__ Move(out, a);
}
} else {
__ Slt(AT, a, b);
if (is_min) {
if (out != a) {
__ Movn(out, a, AT);
}
if (out != b) {
__ Movz(out, b, AT);
}
} else {
if (out != a) {
__ Movz(out, a, AT);
}
if (out != b) {
__ Movn(out, b, AT);
}
}
}
}
}
}
void InstructionCodeGeneratorMIPS::GenerateMinMaxFP(LocationSummary* locations,
bool is_min,
bool isR6,
DataType::Type type) {
FRegister out = locations->Out().AsFpuRegister<FRegister>();
FRegister a = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister b = locations->InAt(1).AsFpuRegister<FRegister>();
if (isR6) {
MipsLabel noNaNs;
MipsLabel done;
FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP;
// When Java computes min/max it prefers a NaN to a number; the
// behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of
// the inputs is a NaN and the other is a valid number, the MIPS
// instruction will return the number; Java wants the NaN value
// returned. This is why there is extra logic preceding the use of
// the MIPS min.fmt/max.fmt instructions. If either a, or b holds a
// NaN, return the NaN, otherwise return the min/max.
if (type == DataType::Type::kFloat64) {
__ CmpUnD(FTMP, a, b);
__ Bc1eqz(FTMP, &noNaNs);
// One of the inputs is a NaN
__ CmpEqD(ftmp, a, a);
// If a == a then b is the NaN, otherwise a is the NaN.
__ SelD(ftmp, a, b);
if (ftmp != out) {
__ MovD(out, ftmp);
}
__ B(&done);
__ Bind(&noNaNs);
if (is_min) {
__ MinD(out, a, b);
} else {
__ MaxD(out, a, b);
}
} else {
DCHECK_EQ(type, DataType::Type::kFloat32);
__ CmpUnS(FTMP, a, b);
__ Bc1eqz(FTMP, &noNaNs);
// One of the inputs is a NaN
__ CmpEqS(ftmp, a, a);
// If a == a then b is the NaN, otherwise a is the NaN.
__ SelS(ftmp, a, b);
if (ftmp != out) {
__ MovS(out, ftmp);
}
__ B(&done);
__ Bind(&noNaNs);
if (is_min) {
__ MinS(out, a, b);
} else {
__ MaxS(out, a, b);
}
}
__ Bind(&done);
} else { // !isR6
MipsLabel ordered;
MipsLabel compare;
MipsLabel select;
MipsLabel done;
if (type == DataType::Type::kFloat64) {
__ CunD(a, b);
} else {
DCHECK_EQ(type, DataType::Type::kFloat32);
__ CunS(a, b);
}
__ Bc1f(&ordered);
// a or b (or both) is a NaN. Return one, which is a NaN.
if (type == DataType::Type::kFloat64) {
__ CeqD(b, b);
} else {
__ CeqS(b, b);
}
__ B(&select);
__ Bind(&ordered);
// Neither is a NaN.
// a == b? (-0.0 compares equal with +0.0)
// If equal, handle zeroes, else compare further.
if (type == DataType::Type::kFloat64) {
__ CeqD(a, b);
} else {
__ CeqS(a, b);
}
__ Bc1f(&compare);
// a == b either bit for bit or one is -0.0 and the other is +0.0.
if (type == DataType::Type::kFloat64) {
__ MoveFromFpuHigh(TMP, a);
__ MoveFromFpuHigh(AT, b);
} else {
__ Mfc1(TMP, a);
__ Mfc1(AT, b);
}
if (is_min) {
// -0.0 prevails over +0.0.
__ Or(TMP, TMP, AT);
} else {
// +0.0 prevails over -0.0.
__ And(TMP, TMP, AT);
}
if (type == DataType::Type::kFloat64) {
__ Mfc1(AT, a);
__ Mtc1(AT, out);
__ MoveToFpuHigh(TMP, out);
} else {
__ Mtc1(TMP, out);
}
__ B(&done);
__ Bind(&compare);
if (type == DataType::Type::kFloat64) {
if (is_min) {
// return (a <= b) ? a : b;
__ ColeD(a, b);
} else {
// return (a >= b) ? a : b;
__ ColeD(b, a); // b <= a
}
} else {
if (is_min) {
// return (a <= b) ? a : b;
__ ColeS(a, b);
} else {
// return (a >= b) ? a : b;
__ ColeS(b, a); // b <= a
}
}
__ Bind(&select);
if (type == DataType::Type::kFloat64) {
__ MovtD(out, a);
__ MovfD(out, b);
} else {
__ MovtS(out, a);
__ MovfS(out, b);
}
__ Bind(&done);
}
}
void InstructionCodeGeneratorMIPS::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
DataType::Type type = minmax->GetResultType();
switch (type) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
GenerateMinMaxInt(minmax->GetLocations(), is_min, isR6, type);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
GenerateMinMaxFP(minmax->GetLocations(), is_min, isR6, type);
break;
default:
LOG(FATAL) << "Unexpected type for HMinMax " << type;
}
}
void LocationsBuilderMIPS::VisitMin(HMin* min) {
CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
}
void InstructionCodeGeneratorMIPS::VisitMin(HMin* min) {
GenerateMinMax(min, /*is_min*/ true);
}
void LocationsBuilderMIPS::VisitMax(HMax* max) {
CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
}
void InstructionCodeGeneratorMIPS::VisitMax(HMax* max) {
GenerateMinMax(max, /*is_min*/ false);
}
void LocationsBuilderMIPS::VisitAbs(HAbs* abs) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
switch (abs->GetResultType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::GenerateAbsFP(LocationSummary* locations,
DataType::Type type,
bool isR2OrNewer,
bool isR6) {
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister out = locations->Out().AsFpuRegister<FRegister>();
// Note, as a "quality of implementation", rather than pure "spec compliance", we require that
// Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN
// (signaling NaN may become quiet though).
//
// The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case,
// both regular floating point numbers and NAN values are treated alike, only the sign bit is
// affected by this instruction.
// But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any
// NaN operand signals invalid operation. This means that other bits (not just sign bit) might be
// changed when doing abs(NaN). Because of that, we clear sign bit in a different way.
if (isR6) {
if (type == DataType::Type::kFloat64) {
__ AbsD(out, in);
} else {
DCHECK_EQ(type, DataType::Type::kFloat32);
__ AbsS(out, in);
}
} else {
if (type == DataType::Type::kFloat64) {
if (in != out) {
__ MovD(out, in);
}
__ MoveFromFpuHigh(TMP, in);
// ins instruction is not available for R1.
if (isR2OrNewer) {
__ Ins(TMP, ZERO, 31, 1);
} else {
__ Sll(TMP, TMP, 1);
__ Srl(TMP, TMP, 1);
}
__ MoveToFpuHigh(TMP, out);
} else {
DCHECK_EQ(type, DataType::Type::kFloat32);
__ Mfc1(TMP, in);
// ins instruction is not available for R1.
if (isR2OrNewer) {
__ Ins(TMP, ZERO, 31, 1);
} else {
__ Sll(TMP, TMP, 1);
__ Srl(TMP, TMP, 1);
}
__ Mtc1(TMP, out);
}
}
}
void InstructionCodeGeneratorMIPS::VisitAbs(HAbs* abs) {
LocationSummary* locations = abs->GetLocations();
bool isR2OrNewer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (abs->GetResultType()) {
case DataType::Type::kInt32: {
Register in = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ Sra(AT, in, 31);
__ Xor(out, in, AT);
__ Subu(out, out, AT);
break;
}
case DataType::Type::kInt64: {
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
// The comments in this section show the analogous operations which would
// be performed if we had 64-bit registers "in", and "out".
// __ Dsra32(AT, in, 31);
__ Sra(AT, in_hi, 31);
// __ Xor(out, in, AT);
__ Xor(TMP, in_lo, AT);
__ Xor(out_hi, in_hi, AT);
// __ Dsubu(out, out, AT);
__ Subu(out_lo, TMP, AT);
__ Sltu(TMP, out_lo, TMP);
__ Addu(out_hi, out_hi, TMP);
break;
}
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
GenerateAbsFP(locations, abs->GetResultType(), isR2OrNewer, isR6);
break;
default:
LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
}
}
void LocationsBuilderMIPS::VisitConstructorFence(HConstructorFence* constructor_fence) {
constructor_fence->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitConstructorFence(
HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ret);
DataType::Type return_type = ret->InputAt(0)->GetType();
locations->SetInAt(0, MipsReturnLocation(return_type));
}
void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderMIPS::VisitRor(HRor* ror) {
HandleShift(ror);
}
void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) {
HandleShift(ror);
}
void LocationsBuilderMIPS::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderMIPS::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction,
instruction->GetFieldInfo(),
instruction->GetDexPc(),
instruction->GetValueCanBeNull());
}
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnSlowPath);
// In suspend check slow path, usually there are no caller-save registers at all.
// If SIMD instructions are present, however, we force spilling all live SIMD
// registers in full width (since the runtime only saves/restores lower part).
locations->SetCustomSlowPathCallerSaves(
GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
}
void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
DataType::Type input_type = conversion->GetInputType();
DataType::Type result_type = conversion->GetResultType();
DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
<< input_type << " -> " << result_type;
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
(result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
}
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
if (!isR6 &&
((DataType::IsFloatingPointType(result_type) && input_type == DataType::Type::kInt64) ||
(result_type == DataType::Type::kInt64 && DataType::IsFloatingPointType(input_type)))) {
call_kind = LocationSummary::kCallOnMainOnly;
}
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
if (call_kind == LocationSummary::kNoCall) {
if (DataType::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresRegister());
}
if (DataType::IsFloatingPointType(result_type)) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
} else {
InvokeRuntimeCallingConvention calling_convention;
if (DataType::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
} else {
DCHECK_EQ(input_type, DataType::Type::kInt64);
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
}
locations->SetOut(calling_convention.GetReturnLocation(result_type));
}
}
void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
DataType::Type result_type = conversion->GetResultType();
DataType::Type input_type = conversion->GetInputType();
bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
<< input_type << " -> " << result_type;
if (result_type == DataType::Type::kInt64 && DataType::IsIntegralType(input_type)) {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
if (dst_low != src) {
__ Move(dst_low, src);
}
__ Sra(dst_high, src, 31);
} else if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
Register dst = locations->Out().AsRegister<Register>();
Register src = (input_type == DataType::Type::kInt64)
? locations->InAt(0).AsRegisterPairLow<Register>()
: locations->InAt(0).AsRegister<Register>();
switch (result_type) {
case DataType::Type::kUint8:
__ Andi(dst, src, 0xFF);
break;
case DataType::Type::kInt8:
if (has_sign_extension) {
__ Seb(dst, src);
} else {
__ Sll(dst, src, 24);
__ Sra(dst, dst, 24);
}
break;
case DataType::Type::kUint16:
__ Andi(dst, src, 0xFFFF);
break;
case DataType::Type::kInt16:
if (has_sign_extension) {
__ Seh(dst, src);
} else {
__ Sll(dst, src, 16);
__ Sra(dst, dst, 16);
}
break;
case DataType::Type::kInt32:
if (dst != src) {
__ Move(dst, src);
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
} else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
if (input_type == DataType::Type::kInt64) {
if (isR6) {
// cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
// architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
__ Mtc1(src_low, FTMP);
__ Mthc1(src_high, FTMP);
if (result_type == DataType::Type::kFloat32) {
__ Cvtsl(dst, FTMP);
} else {
__ Cvtdl(dst, FTMP);
}
} else {
QuickEntrypointEnum entrypoint =
(result_type == DataType::Type::kFloat32) ? kQuickL2f : kQuickL2d;
codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
if (result_type == DataType::Type::kFloat32) {
CheckEntrypointTypes<kQuickL2f, float, int64_t>();
} else {
CheckEntrypointTypes<kQuickL2d, double, int64_t>();
}
}
} else {
Register src = locations->InAt(0).AsRegister<Register>();
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
__ Mtc1(src, FTMP);
if (result_type == DataType::Type::kFloat32) {
__ Cvtsw(dst, FTMP);
} else {
__ Cvtdw(dst, FTMP);
}
}
} else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
// When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum
// value of the output type if the input is outside of the range after the truncation or
// produces 0 when the input is a NaN. IOW, the three special cases produce three distinct
// results. This matches the desired float/double-to-int/long conversion exactly.
//
// When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive
// value when the input is either a NaN or is outside of the range of the output type
// after the truncation. IOW, the three special cases (NaN, too small, too big) produce
// the same result.
//
// The code takes care of the different behaviors by first comparing the input to the
// minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int).
// If the input is greater than or equal to the minimum, it procedes to the truncate
// instruction, which will handle such an input the same way irrespective of NAN2008.
// Otherwise the input is compared to itself to determine whether it is a NaN or not
// in order to return either zero or the minimum value.
if (result_type == DataType::Type::kInt64) {
if (isR6) {
// trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
// architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
if (input_type == DataType::Type::kFloat32) {
__ TruncLS(FTMP, src);
} else {
__ TruncLD(FTMP, src);
}
__ Mfc1(dst_low, FTMP);
__ Mfhc1(dst_high, FTMP);
} else {
QuickEntrypointEnum entrypoint =
(input_type == DataType::Type::kFloat32) ? kQuickF2l : kQuickD2l;
codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
if (input_type == DataType::Type::kFloat32) {
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
} else {
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
}
}
} else {
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
Register dst = locations->Out().AsRegister<Register>();
MipsLabel truncate;
MipsLabel done;
if (!isR6) {
if (input_type == DataType::Type::kFloat32) {
uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min());
__ LoadConst32(TMP, min_val);
__ Mtc1(TMP, FTMP);
} else {
uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min());
__ LoadConst32(TMP, High32Bits(min_val));
__ Mtc1(ZERO, FTMP);
__ MoveToFpuHigh(TMP, FTMP);
}
if (input_type == DataType::Type::kFloat32) {
__ ColeS(0, FTMP, src);
} else {
__ ColeD(0, FTMP, src);
}
__ Bc1t(0, &truncate);
if (input_type == DataType::Type::kFloat32) {
__ CeqS(0, src, src);
} else {
__ CeqD(0, src, src);
}
__ LoadConst32(dst, std::numeric_limits<int32_t>::min());
__ Movf(dst, ZERO, 0);
__ B(&done);
__ Bind(&truncate);
}
if (input_type == DataType::Type::kFloat32) {
__ TruncWS(FTMP, src);
} else {
__ TruncWD(FTMP, src);
}
__ Mfc1(dst, FTMP);
if (!isR6) {
__ Bind(&done);
}
}
} else if (DataType::IsFloatingPointType(result_type) &&
DataType::IsFloatingPointType(input_type)) {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
if (result_type == DataType::Type::kFloat32) {
__ Cvtsd(dst, src);
} else {
__ Cvtds(dst, src);
}
} else {
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (!codegen_->GetInstructionSetFeatures().IsR6()) {
uint32_t num_entries = switch_instr->GetNumEntries();
if (num_entries > InstructionCodeGeneratorMIPS::kPackedSwitchJumpTableThreshold) {
// When there's no HMipsComputeBaseMethodAddress input, R2 uses the NAL
// instruction to simulate PC-relative addressing when accessing the jump table.
// NAL clobbers RA. Make sure RA is preserved.
codegen_->ClobberRA();
}
}
}
void InstructionCodeGeneratorMIPS::GenPackedSwitchWithCompares(Register value_reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block) {
// Create a set of compare/jumps.
Register temp_reg = TMP;
__ Addiu32(temp_reg, value_reg, -lower_bound);
// Jump to default if index is negative
// Note: We don't check the case that index is positive while value < lower_bound, because in
// this case, index >= num_entries must be true. So that we can save one branch instruction.
__ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
// Jump to successors[0] if value == lower_bound.
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
int32_t last_index = 0;
for (; num_entries - last_index > 2; last_index += 2) {
__ Addiu(temp_reg, temp_reg, -2);
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
__ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
}
if (num_entries - last_index == 2) {
// The last missing case_value.
__ Addiu(temp_reg, temp_reg, -1);
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
}
// And the default for any other value.
if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
__ B(codegen_->GetLabelOf(default_block));
}
}
void InstructionCodeGeneratorMIPS::GenTableBasedPackedSwitch(Register value_reg,
Register constant_area,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block) {
// Create a jump table.
std::vector<MipsLabel*> labels(num_entries);
const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
for (uint32_t i = 0; i < num_entries; i++) {
labels[i] = codegen_->GetLabelOf(successors[i]);
}
JumpTable* table = __ CreateJumpTable(std::move(labels));
// Is the value in range?
__ Addiu32(TMP, value_reg, -lower_bound);
if (IsInt<16>(static_cast<int32_t>(num_entries))) {
__ Sltiu(AT, TMP, num_entries);
__ Beqz(AT, codegen_->GetLabelOf(default_block));
} else {
__ LoadConst32(AT, num_entries);
__ Bgeu(TMP, AT, codegen_->GetLabelOf(default_block));
}
// We are in the range of the table.
// Load the target address from the jump table, indexing by the value.
__ LoadLabelAddress(AT, constant_area, table->GetLabel());
__ ShiftAndAdd(TMP, TMP, AT, 2, TMP);
__ Lw(TMP, TMP, 0);
// Compute the absolute target address by adding the table start address
// (the table contains offsets to targets relative to its start).
__ Addu(TMP, TMP, AT);
// And jump.
__ Jr(TMP);
__ NopIfNoReordering();
}
void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
uint32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
HBasicBlock* switch_block = switch_instr->GetBlock();
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
if (num_entries > kPackedSwitchJumpTableThreshold) {
// R6 uses PC-relative addressing to access the jump table.
//
// R2, OTOH, uses an HMipsComputeBaseMethodAddress input (when available)
// to access the jump table and it is implemented by changing HPackedSwitch to
// HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress (see
// VisitMipsPackedSwitch()).
//
// When there's no HMipsComputeBaseMethodAddress input (e.g. in presence of
// irreducible loops), R2 uses the NAL instruction to simulate PC-relative
// addressing.
GenTableBasedPackedSwitch(value_reg,
ZERO,
lower_bound,
num_entries,
switch_block,
default_block);
} else {
GenPackedSwitchWithCompares(value_reg,
lower_bound,
num_entries,
switch_block,
default_block);
}
}
void LocationsBuilderMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
// Constant area pointer (HMipsComputeBaseMethodAddress).
locations->SetInAt(1, Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
uint32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
Register constant_area = locations->InAt(1).AsRegister<Register>();
HBasicBlock* switch_block = switch_instr->GetBlock();
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
// This is an R2-only path. HPackedSwitch has been changed to
// HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress
// required to address the jump table relative to PC.
GenTableBasedPackedSwitch(value_reg,
constant_area,
lower_bound,
num_entries,
switch_block,
default_block);
}
void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress(
HMipsComputeBaseMethodAddress* insn) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress(
HMipsComputeBaseMethodAddress* insn) {
LocationSummary* locations = insn->GetLocations();
Register reg = locations->Out().AsRegister<Register>();
CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
// Generate a dummy PC-relative call to obtain PC.
__ Nal();
// Grab the return address off RA.
__ Move(reg, RA);
// Remember this offset (the obtained PC value) for later use with constant area.
__ BindPcRelBaseLabel();
}
void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
// The trampoline uses the same calling convention as dex calling conventions,
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
// the method_idx.
HandleInvoke(invoke);
}
void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
}
void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
instruction->GetIndex(), kMipsPointerSize).SizeValue();
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
method_offset);
} else {
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
instruction->GetIndex(), kMipsPointerSize));
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->Out().AsRegister<Register>(),
method_offset);
}
}
void LocationsBuilderMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction
ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction
ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
#undef __
#undef QUICK_ENTRY_POINT
} // namespace mips
} // namespace art