blob: 2d8e24f58e954d727737b24dc92568ff8136537a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the Thumb2 ISA. */
#include "arm_lir.h"
#include "codegen_arm.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "entrypoints/quick/quick_entrypoints.h"
namespace art {
/* Return the position of an ssa name within the argument list */
int ArmMir2Lir::InPosition(int s_reg) {
int v_reg = mir_graph_->SRegToVReg(s_reg);
return v_reg - cu_->num_regs;
}
/*
* Describe an argument. If it's already in an arg register, just leave it
* there. NOTE: all live arg registers must be locked prior to this call
* to avoid having them allocated as a temp by downstream utilities.
*/
RegLocation ArmMir2Lir::ArgLoc(RegLocation loc) {
int arg_num = InPosition(loc.s_reg_low);
if (loc.wide) {
if (arg_num == 2) {
// Bad case - half in register, half in frame. Just punt
loc.location = kLocInvalid;
} else if (arg_num < 2) {
loc.low_reg = rARM_ARG1 + arg_num;
loc.high_reg = loc.low_reg + 1;
loc.location = kLocPhysReg;
} else {
loc.location = kLocDalvikFrame;
}
} else {
if (arg_num < 3) {
loc.low_reg = rARM_ARG1 + arg_num;
loc.location = kLocPhysReg;
} else {
loc.location = kLocDalvikFrame;
}
}
return loc;
}
/*
* Load an argument. If already in a register, just return. If in
* the frame, we can't use the normal LoadValue() because it assumed
* a proper frame - and we're frameless.
*/
RegLocation ArmMir2Lir::LoadArg(RegLocation loc) {
if (loc.location == kLocDalvikFrame) {
int start = (InPosition(loc.s_reg_low) + 1) * sizeof(uint32_t);
loc.low_reg = AllocTemp();
LoadWordDisp(rARM_SP, start, loc.low_reg);
if (loc.wide) {
loc.high_reg = AllocTemp();
LoadWordDisp(rARM_SP, start + sizeof(uint32_t), loc.high_reg);
}
loc.location = kLocPhysReg;
}
return loc;
}
/* Lock any referenced arguments that arrive in registers */
void ArmMir2Lir::LockLiveArgs(MIR* mir) {
int first_in = cu_->num_regs;
const int num_arg_regs = 3; // TODO: generalize & move to RegUtil.cc
for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
int v_reg = mir_graph_->SRegToVReg(mir->ssa_rep->uses[i]);
int InPosition = v_reg - first_in;
if (InPosition < num_arg_regs) {
LockTemp(rARM_ARG1 + InPosition);
}
}
}
/* Find the next MIR, which may be in a following basic block */
// TODO: should this be a utility in mir_graph?
MIR* ArmMir2Lir::GetNextMir(BasicBlock** p_bb, MIR* mir) {
BasicBlock* bb = *p_bb;
MIR* orig_mir = mir;
while (bb != NULL) {
if (mir != NULL) {
mir = mir->next;
}
if (mir != NULL) {
return mir;
} else {
bb = bb->fall_through;
*p_bb = bb;
if (bb) {
mir = bb->first_mir_insn;
if (mir != NULL) {
return mir;
}
}
}
}
return orig_mir;
}
/* Used for the "verbose" listing */
// TODO: move to common code
void ArmMir2Lir::GenPrintLabel(MIR* mir) {
/* Mark the beginning of a Dalvik instruction for line tracking */
char* inst_str = cu_->verbose ?
mir_graph_->GetDalvikDisassembly(mir) : NULL;
MarkBoundary(mir->offset, inst_str);
}
MIR* ArmMir2Lir::SpecialIGet(BasicBlock** bb, MIR* mir,
OpSize size, bool long_or_double, bool is_object) {
int field_offset;
bool is_volatile;
uint32_t field_idx = mir->dalvikInsn.vC;
bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false);
if (!fast_path || !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
return NULL;
}
RegLocation rl_obj = mir_graph_->GetSrc(mir, 0);
LockLiveArgs(mir);
rl_obj = ArmMir2Lir::ArgLoc(rl_obj);
RegLocation rl_dest;
if (long_or_double) {
rl_dest = GetReturnWide(false);
} else {
rl_dest = GetReturn(false);
}
// Point of no return - no aborts after this
ArmMir2Lir::GenPrintLabel(mir);
rl_obj = LoadArg(rl_obj);
GenIGet(field_idx, mir->optimization_flags, size, rl_dest, rl_obj, long_or_double, is_object);
return GetNextMir(bb, mir);
}
MIR* ArmMir2Lir::SpecialIPut(BasicBlock** bb, MIR* mir,
OpSize size, bool long_or_double, bool is_object) {
int field_offset;
bool is_volatile;
uint32_t field_idx = mir->dalvikInsn.vC;
bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false);
if (!fast_path || !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) {
return NULL;
}
RegLocation rl_src;
RegLocation rl_obj;
LockLiveArgs(mir);
if (long_or_double) {
rl_src = mir_graph_->GetSrcWide(mir, 0);
rl_obj = mir_graph_->GetSrc(mir, 2);
} else {
rl_src = mir_graph_->GetSrc(mir, 0);
rl_obj = mir_graph_->GetSrc(mir, 1);
}
rl_src = ArmMir2Lir::ArgLoc(rl_src);
rl_obj = ArmMir2Lir::ArgLoc(rl_obj);
// Reject if source is split across registers & frame
if (rl_obj.location == kLocInvalid) {
ResetRegPool();
return NULL;
}
// Point of no return - no aborts after this
ArmMir2Lir::GenPrintLabel(mir);
rl_obj = LoadArg(rl_obj);
rl_src = LoadArg(rl_src);
GenIPut(field_idx, mir->optimization_flags, size, rl_src, rl_obj, long_or_double, is_object);
return GetNextMir(bb, mir);
}
MIR* ArmMir2Lir::SpecialIdentity(MIR* mir) {
RegLocation rl_src;
RegLocation rl_dest;
bool wide = (mir->ssa_rep->num_uses == 2);
if (wide) {
rl_src = mir_graph_->GetSrcWide(mir, 0);
rl_dest = GetReturnWide(false);
} else {
rl_src = mir_graph_->GetSrc(mir, 0);
rl_dest = GetReturn(false);
}
LockLiveArgs(mir);
rl_src = ArmMir2Lir::ArgLoc(rl_src);
if (rl_src.location == kLocInvalid) {
ResetRegPool();
return NULL;
}
// Point of no return - no aborts after this
ArmMir2Lir::GenPrintLabel(mir);
rl_src = LoadArg(rl_src);
if (wide) {
StoreValueWide(rl_dest, rl_src);
} else {
StoreValue(rl_dest, rl_src);
}
return mir;
}
/*
* Special-case code genration for simple non-throwing leaf methods.
*/
void ArmMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
SpecialCaseHandler special_case) {
current_dalvik_offset_ = mir->offset;
MIR* next_mir = NULL;
switch (special_case) {
case kNullMethod:
DCHECK(mir->dalvikInsn.opcode == Instruction::RETURN_VOID);
next_mir = mir;
break;
case kConstFunction:
ArmMir2Lir::GenPrintLabel(mir);
LoadConstant(rARM_RET0, mir->dalvikInsn.vB);
next_mir = GetNextMir(&bb, mir);
break;
case kIGet:
next_mir = SpecialIGet(&bb, mir, kWord, false, false);
break;
case kIGetBoolean:
case kIGetByte:
next_mir = SpecialIGet(&bb, mir, kUnsignedByte, false, false);
break;
case kIGetObject:
next_mir = SpecialIGet(&bb, mir, kWord, false, true);
break;
case kIGetChar:
next_mir = SpecialIGet(&bb, mir, kUnsignedHalf, false, false);
break;
case kIGetShort:
next_mir = SpecialIGet(&bb, mir, kSignedHalf, false, false);
break;
case kIGetWide:
next_mir = SpecialIGet(&bb, mir, kLong, true, false);
break;
case kIPut:
next_mir = SpecialIPut(&bb, mir, kWord, false, false);
break;
case kIPutBoolean:
case kIPutByte:
next_mir = SpecialIPut(&bb, mir, kUnsignedByte, false, false);
break;
case kIPutObject:
next_mir = SpecialIPut(&bb, mir, kWord, false, true);
break;
case kIPutChar:
next_mir = SpecialIPut(&bb, mir, kUnsignedHalf, false, false);
break;
case kIPutShort:
next_mir = SpecialIPut(&bb, mir, kSignedHalf, false, false);
break;
case kIPutWide:
next_mir = SpecialIPut(&bb, mir, kLong, true, false);
break;
case kIdentity:
next_mir = SpecialIdentity(mir);
break;
default:
return;
}
if (next_mir != NULL) {
current_dalvik_offset_ = next_mir->offset;
if (special_case != kIdentity) {
ArmMir2Lir::GenPrintLabel(next_mir);
}
NewLIR1(kThumbBx, rARM_LR);
core_spill_mask_ = 0;
num_core_spills_ = 0;
fp_spill_mask_ = 0;
num_fp_spills_ = 0;
frame_size_ = 0;
core_vmap_table_.clear();
fp_vmap_table_.clear();
}
}
/*
* The sparse table in the literal pool is an array of <key,displacement>
* pairs. For each set, we'll load them as a pair using ldmia.
* This means that the register number of the temp we use for the key
* must be lower than the reg for the displacement.
*
* The test loop will look something like:
*
* adr rBase, <table>
* ldr r_val, [rARM_SP, v_reg_off]
* mov r_idx, #table_size
* lp:
* ldmia rBase!, {r_key, r_disp}
* sub r_idx, #1
* cmp r_val, r_key
* ifeq
* add rARM_PC, r_disp ; This is the branch from which we compute displacement
* cbnz r_idx, lp
*/
void ArmMir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
if (cu_->verbose) {
DumpSparseSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tab_rec =
static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
ArenaAllocator::kAllocData));
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
int size = table[1];
tab_rec->targets = static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true,
ArenaAllocator::kAllocLIR));
switch_tables_.Insert(tab_rec);
// Get the switch value
rl_src = LoadValue(rl_src, kCoreReg);
int rBase = AllocTemp();
/* Allocate key and disp temps */
int r_key = AllocTemp();
int r_disp = AllocTemp();
// Make sure r_key's register number is less than r_disp's number for ldmia
if (r_key > r_disp) {
int tmp = r_disp;
r_disp = r_key;
r_key = tmp;
}
// Materialize a pointer to the switch table
NewLIR3(kThumb2Adr, rBase, 0, reinterpret_cast<uintptr_t>(tab_rec));
// Set up r_idx
int r_idx = AllocTemp();
LoadConstant(r_idx, size);
// Establish loop branch target
LIR* target = NewLIR0(kPseudoTargetLabel);
// Load next key/disp
NewLIR2(kThumb2LdmiaWB, rBase, (1 << r_key) | (1 << r_disp));
OpRegReg(kOpCmp, r_key, rl_src.low_reg);
// Go if match. NOTE: No instruction set switch here - must stay Thumb2
OpIT(kCondEq, "");
LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp);
tab_rec->anchor = switch_branch;
// Needs to use setflags encoding here
NewLIR3(kThumb2SubsRRI12, r_idx, r_idx, 1);
OpCondBranch(kCondNe, target);
}
void ArmMir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
if (cu_->verbose) {
DumpPackedSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tab_rec =
static_cast<SwitchTable*>(arena_->NewMem(sizeof(SwitchTable), true,
ArenaAllocator::kAllocData));
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
int size = table[1];
tab_rec->targets =
static_cast<LIR**>(arena_->NewMem(size * sizeof(LIR*), true, ArenaAllocator::kAllocLIR));
switch_tables_.Insert(tab_rec);
// Get the switch value
rl_src = LoadValue(rl_src, kCoreReg);
int table_base = AllocTemp();
// Materialize a pointer to the switch table
NewLIR3(kThumb2Adr, table_base, 0, reinterpret_cast<uintptr_t>(tab_rec));
int low_key = s4FromSwitchData(&table[2]);
int keyReg;
// Remove the bias, if necessary
if (low_key == 0) {
keyReg = rl_src.low_reg;
} else {
keyReg = AllocTemp();
OpRegRegImm(kOpSub, keyReg, rl_src.low_reg, low_key);
}
// Bounds check - if < 0 or >= size continue following switch
OpRegImm(kOpCmp, keyReg, size-1);
LIR* branch_over = OpCondBranch(kCondHi, NULL);
// Load the displacement from the switch table
int disp_reg = AllocTemp();
LoadBaseIndexed(table_base, keyReg, disp_reg, 2, kWord);
// ..and go! NOTE: No instruction set switch here - must stay Thumb2
LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg);
tab_rec->anchor = switch_branch;
/* branch_over target here */
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void ArmMir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
// Add the table to the list - we'll process it later
FillArrayData *tab_rec =
static_cast<FillArrayData*>(arena_->NewMem(sizeof(FillArrayData), true,
ArenaAllocator::kAllocData));
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
uint16_t width = tab_rec->table[1];
uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
tab_rec->size = (size * width) + 8;
fill_array_data_.Insert(tab_rec);
// Making a call - use explicit registers
FlushAllRegs(); /* Everything to home location */
LoadValueDirectFixed(rl_src, r0);
LoadWordDisp(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData).Int32Value(),
rARM_LR);
// Materialize a pointer to the fill data image
NewLIR3(kThumb2Adr, r1, 0, reinterpret_cast<uintptr_t>(tab_rec));
ClobberCalleeSave();
LIR* call_inst = OpReg(kOpBlx, rARM_LR);
MarkSafepointPC(call_inst);
}
/*
* Handle simple case (thin lock) inline. If it's complicated, bail
* out to the heavyweight lock/unlock routines. We'll use dedicated
* registers here in order to be in the right position in case we
* to bail to oat[Lock/Unlock]Object(self, object)
*
* r0 -> self pointer [arg0 for oat[Lock/Unlock]Object
* r1 -> object [arg1 for oat[Lock/Unlock]Object
* r2 -> intial contents of object->lock, later result of strex
* r3 -> self->thread_id
* r12 -> allow to be used by utilities as general temp
*
* The result of the strex is 0 if we acquire the lock.
*
* See comments in monitor.cc for the layout of the lock word.
* Of particular interest to this code is the test for the
* simple case - which we handle inline. For monitor enter, the
* simple case is thin lock, held by no-one. For monitor exit,
* the simple case is thin lock, held by the unlocking thread with
* a recurse count of 0.
*
* A minor complication is that there is a field in the lock word
* unrelated to locking: the hash state. This field must be ignored, but
* preserved.
*
*/
void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
FlushAllRegs();
DCHECK_EQ(LW_SHAPE_THIN, 0);
LoadValueDirectFixed(rl_src, r0); // Get obj
LockCallTemps(); // Prepare for explicit register usage
GenNullCheck(rl_src.s_reg_low, r0, opt_flags);
LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2);
NewLIR3(kThumb2Ldrex, r1, r0,
mirror::Object::MonitorOffset().Int32Value() >> 2); // Get object->lock
// Align owner
OpRegImm(kOpLsl, r2, LW_LOCK_OWNER_SHIFT);
// Is lock unheld on lock or held by us (==thread_id) on unlock?
NewLIR4(kThumb2Bfi, r2, r1, 0, LW_LOCK_OWNER_SHIFT - 1);
NewLIR3(kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1);
OpRegImm(kOpCmp, r1, 0);
OpIT(kCondEq, "");
NewLIR4(kThumb2Strex, r1, r2, r0,
mirror::Object::MonitorOffset().Int32Value() >> 2);
OpRegImm(kOpCmp, r1, 0);
OpIT(kCondNe, "T");
// Go expensive route - artLockObjectFromCode(self, obj);
LoadWordDisp(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pLockObject).Int32Value(), rARM_LR);
ClobberCalleeSave();
LIR* call_inst = OpReg(kOpBlx, rARM_LR);
MarkSafepointPC(call_inst);
GenMemBarrier(kLoadLoad);
}
/*
* For monitor unlock, we don't have to use ldrex/strex. Once
* we've determined that the lock is thin and that we own it with
* a zero recursion count, it's safe to punch it back to the
* initial, unlock thin state with a store word.
*/
void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
DCHECK_EQ(LW_SHAPE_THIN, 0);
FlushAllRegs();
LoadValueDirectFixed(rl_src, r0); // Get obj
LockCallTemps(); // Prepare for explicit register usage
GenNullCheck(rl_src.s_reg_low, r0, opt_flags);
LoadWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r1); // Get lock
LoadWordDisp(rARM_SELF, Thread::ThinLockIdOffset().Int32Value(), r2);
// Is lock unheld on lock or held by us (==thread_id) on unlock?
OpRegRegImm(kOpAnd, r3, r1,
(LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
// Align owner
OpRegImm(kOpLsl, r2, LW_LOCK_OWNER_SHIFT);
NewLIR3(kThumb2Bfc, r1, LW_HASH_STATE_SHIFT, LW_LOCK_OWNER_SHIFT - 1);
OpRegReg(kOpSub, r1, r2);
OpIT(kCondEq, "EE");
StoreWordDisp(r0, mirror::Object::MonitorOffset().Int32Value(), r3);
// Go expensive route - UnlockObjectFromCode(obj);
LoadWordDisp(rARM_SELF, QUICK_ENTRYPOINT_OFFSET(pUnlockObject).Int32Value(), rARM_LR);
ClobberCalleeSave();
LIR* call_inst = OpReg(kOpBlx, rARM_LR);
MarkSafepointPC(call_inst);
GenMemBarrier(kStoreLoad);
}
void ArmMir2Lir::GenMoveException(RegLocation rl_dest) {
int ex_offset = Thread::ExceptionOffset().Int32Value();
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int reset_reg = AllocTemp();
LoadWordDisp(rARM_SELF, ex_offset, rl_result.low_reg);
LoadConstant(reset_reg, 0);
StoreWordDisp(rARM_SELF, ex_offset, reset_reg);
FreeTemp(reset_reg);
StoreValue(rl_dest, rl_result);
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
void ArmMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) {
int reg_card_base = AllocTemp();
int reg_card_no = AllocTemp();
LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
LoadWordDisp(rARM_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
kUnsignedByte);
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
FreeTemp(reg_card_base);
FreeTemp(reg_card_no);
}
void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
int spill_count = num_core_spills_ + num_fp_spills_;
/*
* On entry, r0, r1, r2 & r3 are live. Let the register allocation
* mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with a single temp: r12. This should be enough.
*/
LockTemp(r0);
LockTemp(r1);
LockTemp(r2);
LockTemp(r3);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
(static_cast<size_t>(frame_size_) <
Thread::kStackOverflowReservedBytes));
NewLIR0(kPseudoMethodEntry);
if (!skip_overflow_check) {
/* Load stack limit */
LoadWordDisp(rARM_SELF, Thread::StackEndOffset().Int32Value(), r12);
}
/* Spill core callee saves */
NewLIR1(kThumb2Push, core_spill_mask_);
/* Need to spill any FP regs? */
if (num_fp_spills_) {
/*
* NOTE: fp spills are a little different from core spills in that
* they are pushed as a contiguous block. When promoting from
* the fp set, we must allocate all singles from s16..highest-promoted
*/
NewLIR1(kThumb2VPushCS, num_fp_spills_);
}
if (!skip_overflow_check) {
OpRegRegImm(kOpSub, rARM_LR, rARM_SP, frame_size_ - (spill_count * 4));
GenRegRegCheck(kCondCc, rARM_LR, r12, kThrowStackOverflow);
OpRegCopy(rARM_SP, rARM_LR); // Establish stack
} else {
OpRegImm(kOpSub, rARM_SP, frame_size_ - (spill_count * 4));
}
FlushIns(ArgLocs, rl_method);
FreeTemp(r0);
FreeTemp(r1);
FreeTemp(r2);
FreeTemp(r3);
}
void ArmMir2Lir::GenExitSequence() {
int spill_count = num_core_spills_ + num_fp_spills_;
/*
* In the exit path, r0/r1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(r0);
LockTemp(r1);
NewLIR0(kPseudoMethodExit);
OpRegImm(kOpAdd, rARM_SP, frame_size_ - (spill_count * 4));
/* Need to restore any FP callee saves? */
if (num_fp_spills_) {
NewLIR1(kThumb2VPopCS, num_fp_spills_);
}
if (core_spill_mask_ & (1 << rARM_LR)) {
/* Unspill rARM_LR to rARM_PC */
core_spill_mask_ &= ~(1 << rARM_LR);
core_spill_mask_ |= (1 << rARM_PC);
}
NewLIR1(kThumb2Pop, core_spill_mask_);
if (!(core_spill_mask_ & (1 << rARM_PC))) {
/* We didn't pop to rARM_PC, so must do a bv rARM_LR */
NewLIR1(kThumbBx, rARM_LR);
}
}
} // namespace art