blob: 2838681f4f7bff9b067ecd2e31526417e10708b5 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "register_line.h"
#include "base/stringprintf.h"
#include "dex_instruction-inl.h"
#include "method_verifier.h"
#include "register_line-inl.h"
#include "reg_type-inl.h"
namespace art {
namespace verifier {
bool RegisterLine::WasUninitializedThisOverwritten(MethodVerifier* verifier,
size_t this_loc,
bool was_invoke_direct) const {
DCHECK(verifier->IsConstructor());
// Is the UnintializedThis type still there?
if (GetRegisterType(verifier, this_loc).IsUninitializedThisReference() ||
GetRegisterType(verifier, this_loc).IsUnresolvedAndUninitializedThisReference()) {
return false;
}
// If there is an initialized reference here now, did we just perform an invoke-direct? Note that
// this is the correct approach for dex bytecode: results of invoke-direct are stored in the
// result register. Overwriting "this_loc" can only be done by a constructor call.
if (GetRegisterType(verifier, this_loc).IsReferenceTypes() && was_invoke_direct) {
return false;
// Otherwise we could have just copied a different initialized reference to this location.
}
// The UnintializedThis in the register is gone, so check to see if it's somewhere else now.
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).IsUninitializedThisReference() ||
GetRegisterType(verifier, i).IsUnresolvedAndUninitializedThisReference()) {
// We found it somewhere else...
return false;
}
}
// The UninitializedThis is gone from the original register, and now we can't find it.
return true;
}
bool RegisterLine::GetUninitializedThisLoc(MethodVerifier* verifier, size_t* vreg) const {
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).IsUninitializedThisReference() ||
GetRegisterType(verifier, i).IsUnresolvedAndUninitializedThisReference()) {
*vreg = i;
return true;
}
}
return false;
}
bool RegisterLine::CheckConstructorReturn(MethodVerifier* verifier) const {
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).IsUninitializedThisReference() ||
GetRegisterType(verifier, i).IsUnresolvedAndUninitializedThisReference()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_SOFT)
<< "Constructor returning without calling superclass constructor";
return false;
}
}
return true;
}
const RegType& RegisterLine::GetInvocationThis(MethodVerifier* verifier, const Instruction* inst,
bool is_range, bool allow_failure) {
const size_t args_count = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
if (args_count < 1) {
if (!allow_failure) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'";
}
return verifier->GetRegTypeCache()->Conflict();
}
/* Get the element type of the array held in vsrc */
const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
const RegType& this_type = GetRegisterType(verifier, this_reg);
if (!this_type.IsReferenceTypes()) {
if (!allow_failure) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "tried to get class from non-reference register v" << this_reg
<< " (type=" << this_type << ")";
}
return verifier->GetRegTypeCache()->Conflict();
}
return this_type;
}
bool RegisterLine::VerifyRegisterTypeWide(MethodVerifier* verifier, uint32_t vsrc,
const RegType& check_type1,
const RegType& check_type2) {
DCHECK(check_type1.CheckWidePair(check_type2));
// Verify the src register type against the check type refining the type of the register
const RegType& src_type = GetRegisterType(verifier, vsrc);
if (!check_type1.IsAssignableFrom(src_type)) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << vsrc << " has type " << src_type
<< " but expected " << check_type1;
return false;
}
const RegType& src_type_h = GetRegisterType(verifier, vsrc + 1);
if (!src_type.CheckWidePair(src_type_h)) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type "
<< src_type << "/" << src_type_h;
return false;
}
// The register at vsrc has a defined type, we know the lower-upper-bound, but this is less
// precise than the subtype in vsrc so leave it for reference types. For primitive types
// if they are a defined type then they are as precise as we can get, however, for constant
// types we may wish to refine them. Unfortunately constant propagation has rendered this useless.
return true;
}
void RegisterLine::MarkRefsAsInitialized(MethodVerifier* verifier, const RegType& uninit_type,
uint32_t this_reg, uint32_t dex_pc) {
DCHECK(uninit_type.IsUninitializedTypes());
bool is_string = !uninit_type.IsUnresolvedTypes() && uninit_type.GetClass()->IsStringClass();
const RegType& init_type = verifier->GetRegTypeCache()->FromUninitialized(uninit_type);
size_t changed = 0;
for (uint32_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).Equals(uninit_type)) {
line_[i] = init_type.GetId();
changed++;
if (is_string && i != this_reg) {
auto it = verifier->GetStringInitPcRegMap().find(dex_pc);
if (it != verifier->GetStringInitPcRegMap().end()) {
it->second.insert(i);
} else {
std::set<uint32_t> reg_set = { i };
verifier->GetStringInitPcRegMap().Put(dex_pc, reg_set);
}
}
}
}
DCHECK_GT(changed, 0u);
}
void RegisterLine::MarkAllRegistersAsConflicts(MethodVerifier* verifier) {
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
for (uint32_t i = 0; i < num_regs_; i++) {
line_[i] = conflict_type_id;
}
}
void RegisterLine::MarkAllRegistersAsConflictsExcept(MethodVerifier* verifier, uint32_t vsrc) {
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
for (uint32_t i = 0; i < num_regs_; i++) {
if (i != vsrc) {
line_[i] = conflict_type_id;
}
}
}
void RegisterLine::MarkAllRegistersAsConflictsExceptWide(MethodVerifier* verifier, uint32_t vsrc) {
uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId();
for (uint32_t i = 0; i < num_regs_; i++) {
if ((i != vsrc) && (i != (vsrc + 1))) {
line_[i] = conflict_type_id;
}
}
}
std::string RegisterLine::Dump(MethodVerifier* verifier) const {
std::string result;
for (size_t i = 0; i < num_regs_; i++) {
result += StringPrintf("%zd:[", i);
result += GetRegisterType(verifier, i).Dump();
result += "],";
}
for (const auto& monitor : monitors_) {
result += StringPrintf("{%d},", monitor);
}
return result;
}
void RegisterLine::MarkUninitRefsAsInvalid(MethodVerifier* verifier, const RegType& uninit_type) {
for (size_t i = 0; i < num_regs_; i++) {
if (GetRegisterType(verifier, i).Equals(uninit_type)) {
line_[i] = verifier->GetRegTypeCache()->Conflict().GetId();
ClearAllRegToLockDepths(i);
}
}
}
void RegisterLine::CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference) {
const RegType& type = verifier->GetRegTypeCache()->GetFromId(result_[0]);
if ((!is_reference && !type.IsCategory1Types()) ||
(is_reference && !type.IsReferenceTypes())) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "copyRes1 v" << vdst << "<- result0" << " type=" << type;
} else {
DCHECK(verifier->GetRegTypeCache()->GetFromId(result_[1]).IsUndefined());
SetRegisterType(verifier, vdst, type);
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
}
}
/*
* Implement "move-result-wide". Copy the category-2 value from the result
* register to another register, and reset the result register.
*/
void RegisterLine::CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst) {
const RegType& type_l = verifier->GetRegTypeCache()->GetFromId(result_[0]);
const RegType& type_h = verifier->GetRegTypeCache()->GetFromId(result_[1]);
if (!type_l.IsCategory2Types()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD)
<< "copyRes2 v" << vdst << "<- result0" << " type=" << type_l;
} else {
DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case
SetRegisterTypeWide(verifier, vdst, type_l, type_h); // also sets the high
result_[0] = verifier->GetRegTypeCache()->Undefined().GetId();
result_[1] = verifier->GetRegTypeCache()->Undefined().GetId();
}
}
void RegisterLine::CheckUnaryOp(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type, const RegType& src_type) {
if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) {
SetRegisterType(verifier, inst->VRegA_12x(), dst_type);
}
}
void RegisterLine::CheckUnaryOpWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1, const RegType& src_type2) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) {
SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2);
}
}
void RegisterLine::CheckUnaryOpToWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type) {
if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) {
SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2);
}
}
void RegisterLine::CheckUnaryOpFromWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type,
const RegType& src_type1, const RegType& src_type2) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) {
SetRegisterType(verifier, inst->VRegA_12x(), dst_type);
}
}
void RegisterLine::CheckBinaryOp(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type,
const RegType& src_type1, const RegType& src_type2,
bool check_boolean_op) {
const uint32_t vregB = inst->VRegB_23x();
const uint32_t vregC = inst->VRegC_23x();
if (VerifyRegisterType(verifier, vregB, src_type1) &&
VerifyRegisterType(verifier, vregC, src_type2)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
if (GetRegisterType(verifier, vregB).IsBooleanTypes() &&
GetRegisterType(verifier, vregC).IsBooleanTypes()) {
SetRegisterType(verifier, inst->VRegA_23x(), verifier->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType(verifier, inst->VRegA_23x(), dst_type);
}
}
void RegisterLine::CheckBinaryOpWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1_1, const RegType& src_type1_2,
const RegType& src_type2_1, const RegType& src_type2_2) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), src_type1_1, src_type1_2) &&
VerifyRegisterTypeWide(verifier, inst->VRegC_23x(), src_type2_1, src_type2_2)) {
SetRegisterTypeWide(verifier, inst->VRegA_23x(), dst_type1, dst_type2);
}
}
void RegisterLine::CheckBinaryOpWideShift(MethodVerifier* verifier, const Instruction* inst,
const RegType& long_lo_type, const RegType& long_hi_type,
const RegType& int_type) {
if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), long_lo_type, long_hi_type) &&
VerifyRegisterType(verifier, inst->VRegC_23x(), int_type)) {
SetRegisterTypeWide(verifier, inst->VRegA_23x(), long_lo_type, long_hi_type);
}
}
void RegisterLine::CheckBinaryOp2addr(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type, const RegType& src_type1,
const RegType& src_type2, bool check_boolean_op) {
const uint32_t vregA = inst->VRegA_12x();
const uint32_t vregB = inst->VRegB_12x();
if (VerifyRegisterType(verifier, vregA, src_type1) &&
VerifyRegisterType(verifier, vregB, src_type2)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
if (GetRegisterType(verifier, vregA).IsBooleanTypes() &&
GetRegisterType(verifier, vregB).IsBooleanTypes()) {
SetRegisterType(verifier, vregA, verifier->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType(verifier, vregA, dst_type);
}
}
void RegisterLine::CheckBinaryOp2addrWide(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type1, const RegType& dst_type2,
const RegType& src_type1_1, const RegType& src_type1_2,
const RegType& src_type2_1, const RegType& src_type2_2) {
const uint32_t vregA = inst->VRegA_12x();
const uint32_t vregB = inst->VRegB_12x();
if (VerifyRegisterTypeWide(verifier, vregA, src_type1_1, src_type1_2) &&
VerifyRegisterTypeWide(verifier, vregB, src_type2_1, src_type2_2)) {
SetRegisterTypeWide(verifier, vregA, dst_type1, dst_type2);
}
}
void RegisterLine::CheckBinaryOp2addrWideShift(MethodVerifier* verifier, const Instruction* inst,
const RegType& long_lo_type, const RegType& long_hi_type,
const RegType& int_type) {
const uint32_t vregA = inst->VRegA_12x();
const uint32_t vregB = inst->VRegB_12x();
if (VerifyRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type) &&
VerifyRegisterType(verifier, vregB, int_type)) {
SetRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type);
}
}
void RegisterLine::CheckLiteralOp(MethodVerifier* verifier, const Instruction* inst,
const RegType& dst_type, const RegType& src_type,
bool check_boolean_op, bool is_lit16) {
const uint32_t vregA = is_lit16 ? inst->VRegA_22s() : inst->VRegA_22b();
const uint32_t vregB = is_lit16 ? inst->VRegB_22s() : inst->VRegB_22b();
if (VerifyRegisterType(verifier, vregB, src_type)) {
if (check_boolean_op) {
DCHECK(dst_type.IsInteger());
/* check vB with the call, then check the constant manually */
const uint32_t val = is_lit16 ? inst->VRegC_22s() : inst->VRegC_22b();
if (GetRegisterType(verifier, vregB).IsBooleanTypes() && (val == 0 || val == 1)) {
SetRegisterType(verifier, vregA, verifier->GetRegTypeCache()->Boolean());
return;
}
}
SetRegisterType(verifier, vregA, dst_type);
}
}
void RegisterLine::PushMonitor(MethodVerifier* verifier, uint32_t reg_idx, int32_t insn_idx) {
const RegType& reg_type = GetRegisterType(verifier, reg_idx);
if (!reg_type.IsReferenceTypes()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object ("
<< reg_type << ")";
} else if (monitors_.size() >= 32) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter stack overflow: "
<< monitors_.size();
} else {
if (SetRegToLockDepth(reg_idx, monitors_.size())) {
monitors_.push_back(insn_idx);
} else {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected monitor-enter on register v" <<
reg_idx;
}
}
}
void RegisterLine::PopMonitor(MethodVerifier* verifier, uint32_t reg_idx) {
const RegType& reg_type = GetRegisterType(verifier, reg_idx);
if (!reg_type.IsReferenceTypes()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")";
} else if (monitors_.empty()) {
verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit stack underflow";
} else {
monitors_.pop_back();
if (!IsSetLockDepth(reg_idx, monitors_.size())) {
// Bug 3215458: Locks and unlocks are on objects, if that object is a literal then before
// format "036" the constant collector may create unlocks on the same object but referenced
// via different registers.
((verifier->DexFileVersion() >= 36) ? verifier->Fail(VERIFY_ERROR_BAD_CLASS_SOFT)
: verifier->LogVerifyInfo())
<< "monitor-exit not unlocking the top of the monitor stack";
} else {
// Record the register was unlocked
ClearRegToLockDepth(reg_idx, monitors_.size());
}
}
}
bool RegisterLine::MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line) {
bool changed = false;
DCHECK(incoming_line != nullptr);
for (size_t idx = 0; idx < num_regs_; idx++) {
if (line_[idx] != incoming_line->line_[idx]) {
const RegType& incoming_reg_type = incoming_line->GetRegisterType(verifier, idx);
const RegType& cur_type = GetRegisterType(verifier, idx);
const RegType& new_type = cur_type.Merge(incoming_reg_type, verifier->GetRegTypeCache());
changed = changed || !cur_type.Equals(new_type);
line_[idx] = new_type.GetId();
}
}
if (monitors_.size() > 0 || incoming_line->monitors_.size() > 0) {
if (monitors_.size() != incoming_line->monitors_.size()) {
LOG(WARNING) << "mismatched stack depths (depth=" << MonitorStackDepth()
<< ", incoming depth=" << incoming_line->MonitorStackDepth() << ")";
} else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) {
for (uint32_t idx = 0; idx < num_regs_; idx++) {
size_t depths = reg_to_lock_depths_.count(idx);
size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx);
if (depths != incoming_depths) {
if (depths == 0 || incoming_depths == 0) {
reg_to_lock_depths_.erase(idx);
} else {
LOG(WARNING) << "mismatched stack depths for register v" << idx
<< ": " << depths << " != " << incoming_depths;
break;
}
}
}
}
}
return changed;
}
void RegisterLine::WriteReferenceBitMap(MethodVerifier* verifier,
std::vector<uint8_t>* data, size_t max_bytes) {
for (size_t i = 0; i < num_regs_; i += 8) {
uint8_t val = 0;
for (size_t j = 0; j < 8 && (i + j) < num_regs_; j++) {
// Note: we write 1 for a Reference but not for Null
if (GetRegisterType(verifier, i + j).IsNonZeroReferenceTypes()) {
val |= 1 << j;
}
}
if ((i / 8) >= max_bytes) {
DCHECK_EQ(0, val);
continue;
}
DCHECK_LT(i / 8, max_bytes) << "val=" << static_cast<uint32_t>(val);
data->push_back(val);
}
}
} // namespace verifier
} // namespace art