blob: d8f58da21fcc01dd354fc01442acca0a9e9f69df [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debugger.h"
#include <sys/uio.h>
#include "ScopedLocalRef.h"
#include "ScopedPrimitiveArray.h"
#include "stack_indirect_reference_table.h"
#include "thread_list.h"
extern "C" void dlmalloc_walk_heap(void(*)(const void*, size_t, const void*, size_t, void*), void*);
#ifndef HAVE_ANDROID_OS
void dlmalloc_walk_heap(void(*)(const void*, size_t, const void*, size_t, void*), void*) {
// No-op for glibc.
}
#endif
namespace art {
class ObjectRegistry {
public:
ObjectRegistry() : lock_("ObjectRegistry lock") {
}
JDWP::ObjectId Add(Object* o) {
if (o == NULL) {
return 0;
}
JDWP::ObjectId id = static_cast<JDWP::ObjectId>(reinterpret_cast<uintptr_t>(o));
MutexLock mu(lock_);
map_[id] = o;
return id;
}
void Clear() {
MutexLock mu(lock_);
LOG(DEBUG) << "Debugger has detached; object registry had " << map_.size() << " entries";
map_.clear();
}
bool Contains(JDWP::ObjectId id) {
MutexLock mu(lock_);
return map_.find(id) != map_.end();
}
void VisitRoots(Heap::RootVisitor* visitor, void* arg) {
MutexLock mu(lock_);
typedef std::map<JDWP::ObjectId, Object*>::iterator It; // C++0x auto
for (It it = map_.begin(); it != map_.end(); ++it) {
visitor(it->second, arg);
}
}
private:
Mutex lock_;
std::map<JDWP::ObjectId, Object*> map_;
};
// JDWP is allowed unless the Zygote forbids it.
static bool gJdwpAllowed = true;
// Was there a -Xrunjdwp or -agent argument on the command-line?
static bool gJdwpConfigured = false;
// Broken-down JDWP options. (Only valid if gJdwpConfigured is true.)
static JDWP::JdwpOptions gJdwpOptions;
// Runtime JDWP state.
static JDWP::JdwpState* gJdwpState = NULL;
static bool gDebuggerConnected; // debugger or DDMS is connected.
static bool gDebuggerActive; // debugger is making requests.
static bool gDdmThreadNotification = false;
// DDMS GC-related settings.
static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER;
static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmHpsgWhat;
static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmNhsgWhat;
static ObjectRegistry* gRegistry = NULL;
/*
* Handle one of the JDWP name/value pairs.
*
* JDWP options are:
* help: if specified, show help message and bail
* transport: may be dt_socket or dt_shmem
* address: for dt_socket, "host:port", or just "port" when listening
* server: if "y", wait for debugger to attach; if "n", attach to debugger
* timeout: how long to wait for debugger to connect / listen
*
* Useful with server=n (these aren't supported yet):
* onthrow=<exception-name>: connect to debugger when exception thrown
* onuncaught=y|n: connect to debugger when uncaught exception thrown
* launch=<command-line>: launch the debugger itself
*
* The "transport" option is required, as is "address" if server=n.
*/
static bool ParseJdwpOption(const std::string& name, const std::string& value) {
if (name == "transport") {
if (value == "dt_socket") {
gJdwpOptions.transport = JDWP::kJdwpTransportSocket;
} else if (value == "dt_android_adb") {
gJdwpOptions.transport = JDWP::kJdwpTransportAndroidAdb;
} else {
LOG(ERROR) << "JDWP transport not supported: " << value;
return false;
}
} else if (name == "server") {
if (value == "n") {
gJdwpOptions.server = false;
} else if (value == "y") {
gJdwpOptions.server = true;
} else {
LOG(ERROR) << "JDWP option 'server' must be 'y' or 'n'";
return false;
}
} else if (name == "suspend") {
if (value == "n") {
gJdwpOptions.suspend = false;
} else if (value == "y") {
gJdwpOptions.suspend = true;
} else {
LOG(ERROR) << "JDWP option 'suspend' must be 'y' or 'n'";
return false;
}
} else if (name == "address") {
/* this is either <port> or <host>:<port> */
std::string port_string;
gJdwpOptions.host.clear();
std::string::size_type colon = value.find(':');
if (colon != std::string::npos) {
gJdwpOptions.host = value.substr(0, colon);
port_string = value.substr(colon + 1);
} else {
port_string = value;
}
if (port_string.empty()) {
LOG(ERROR) << "JDWP address missing port: " << value;
return false;
}
char* end;
long port = strtol(port_string.c_str(), &end, 10);
if (*end != '\0') {
LOG(ERROR) << "JDWP address has junk in port field: " << value;
return false;
}
gJdwpOptions.port = port;
} else if (name == "launch" || name == "onthrow" || name == "oncaught" || name == "timeout") {
/* valid but unsupported */
LOG(INFO) << "Ignoring JDWP option '" << name << "'='" << value << "'";
} else {
LOG(INFO) << "Ignoring unrecognized JDWP option '" << name << "'='" << value << "'";
}
return true;
}
/*
* Parse the latter half of a -Xrunjdwp/-agentlib:jdwp= string, e.g.:
* "transport=dt_socket,address=8000,server=y,suspend=n"
*/
bool Dbg::ParseJdwpOptions(const std::string& options) {
LOG(VERBOSE) << "ParseJdwpOptions: " << options;
std::vector<std::string> pairs;
Split(options, ',', pairs);
for (size_t i = 0; i < pairs.size(); ++i) {
std::string::size_type equals = pairs[i].find('=');
if (equals == std::string::npos) {
LOG(ERROR) << "Can't parse JDWP option '" << pairs[i] << "' in '" << options << "'";
return false;
}
ParseJdwpOption(pairs[i].substr(0, equals), pairs[i].substr(equals + 1));
}
if (gJdwpOptions.transport == JDWP::kJdwpTransportUnknown) {
LOG(ERROR) << "Must specify JDWP transport: " << options;
}
if (!gJdwpOptions.server && (gJdwpOptions.host.empty() || gJdwpOptions.port == 0)) {
LOG(ERROR) << "Must specify JDWP host and port when server=n: " << options;
return false;
}
gJdwpConfigured = true;
return true;
}
void Dbg::StartJdwp() {
if (!gJdwpAllowed || !gJdwpConfigured) {
// No JDWP for you!
return;
}
CHECK(gRegistry == NULL);
gRegistry = new ObjectRegistry;
// Init JDWP if the debugger is enabled. This may connect out to a
// debugger, passively listen for a debugger, or block waiting for a
// debugger.
gJdwpState = JDWP::JdwpState::Create(&gJdwpOptions);
if (gJdwpState == NULL) {
LOG(WARNING) << "debugger thread failed to initialize";
return;
}
// If a debugger has already attached, send the "welcome" message.
// This may cause us to suspend all threads.
if (gJdwpState->IsActive()) {
//ScopedThreadStateChange(Thread::Current(), Thread::kRunnable);
if (!gJdwpState->PostVMStart()) {
LOG(WARNING) << "failed to post 'start' message to debugger";
}
}
}
void Dbg::StopJdwp() {
delete gJdwpState;
delete gRegistry;
gRegistry = NULL;
}
void Dbg::GcDidFinish() {
if (gDdmHpifWhen != HPIF_WHEN_NEVER) {
LOG(DEBUG) << "Sending VM heap info to DDM";
DdmSendHeapInfo(gDdmHpifWhen);
}
if (gDdmHpsgWhen != HPSG_WHEN_NEVER) {
LOG(DEBUG) << "Dumping VM heap to DDM";
DdmSendHeapSegments(false);
}
if (gDdmNhsgWhen != HPSG_WHEN_NEVER) {
LOG(DEBUG) << "Dumping native heap to DDM";
DdmSendHeapSegments(true);
}
}
void Dbg::SetJdwpAllowed(bool allowed) {
gJdwpAllowed = allowed;
}
DebugInvokeReq* Dbg::GetInvokeReq() {
return Thread::Current()->GetInvokeReq();
}
Thread* Dbg::GetDebugThread() {
return (gJdwpState != NULL) ? gJdwpState->GetDebugThread() : NULL;
}
void Dbg::ClearWaitForEventThread() {
gJdwpState->ClearWaitForEventThread();
}
void Dbg::Connected() {
CHECK(!gDebuggerConnected);
LOG(VERBOSE) << "JDWP has attached";
gDebuggerConnected = true;
}
void Dbg::Active() {
UNIMPLEMENTED(FATAL);
}
void Dbg::Disconnected() {
CHECK(gDebuggerConnected);
gDebuggerActive = false;
//dvmDisableAllSubMode(kSubModeDebuggerActive);
gRegistry->Clear();
gDebuggerConnected = false;
}
bool Dbg::IsDebuggerConnected() {
return gDebuggerActive;
}
bool Dbg::IsDebuggingEnabled() {
return gJdwpConfigured;
}
int64_t Dbg::LastDebuggerActivity() {
UNIMPLEMENTED(WARNING);
return -1;
}
int Dbg::ThreadRunning() {
return static_cast<int>(Thread::Current()->SetState(Thread::kRunnable));
}
int Dbg::ThreadWaiting() {
return static_cast<int>(Thread::Current()->SetState(Thread::kVmWait));
}
int Dbg::ThreadContinuing(int new_state) {
return static_cast<int>(Thread::Current()->SetState(static_cast<Thread::State>(new_state)));
}
void Dbg::UndoDebuggerSuspensions() {
Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions();
}
void Dbg::Exit(int status) {
UNIMPLEMENTED(FATAL);
}
void Dbg::VisitRoots(Heap::RootVisitor* visitor, void* arg) {
if (gRegistry != NULL) {
gRegistry->VisitRoots(visitor, arg);
}
}
const char* Dbg::GetClassDescriptor(JDWP::RefTypeId id) {
UNIMPLEMENTED(FATAL);
return NULL;
}
JDWP::ObjectId Dbg::GetClassObject(JDWP::RefTypeId id) {
UNIMPLEMENTED(FATAL);
return 0;
}
JDWP::RefTypeId Dbg::GetSuperclass(JDWP::RefTypeId id) {
UNIMPLEMENTED(FATAL);
return 0;
}
JDWP::ObjectId Dbg::GetClassLoader(JDWP::RefTypeId id) {
UNIMPLEMENTED(FATAL);
return 0;
}
uint32_t Dbg::GetAccessFlags(JDWP::RefTypeId id) {
UNIMPLEMENTED(FATAL);
return 0;
}
bool Dbg::IsInterface(JDWP::RefTypeId id) {
UNIMPLEMENTED(FATAL);
return false;
}
void Dbg::GetClassList(uint32_t* pNumClasses, JDWP::RefTypeId** pClassRefBuf) {
UNIMPLEMENTED(FATAL);
}
void Dbg::GetVisibleClassList(JDWP::ObjectId classLoaderId, uint32_t* pNumClasses, JDWP::RefTypeId** pClassRefBuf) {
UNIMPLEMENTED(FATAL);
}
void Dbg::GetClassInfo(JDWP::RefTypeId classId, uint8_t* pTypeTag, uint32_t* pStatus, const char** pSignature) {
UNIMPLEMENTED(FATAL);
}
bool Dbg::FindLoadedClassBySignature(const char* classDescriptor, JDWP::RefTypeId* pRefTypeId) {
UNIMPLEMENTED(FATAL);
return false;
}
void Dbg::GetObjectType(JDWP::ObjectId objectId, uint8_t* pRefTypeTag, JDWP::RefTypeId* pRefTypeId) {
UNIMPLEMENTED(FATAL);
}
uint8_t Dbg::GetClassObjectType(JDWP::RefTypeId refTypeId) {
UNIMPLEMENTED(FATAL);
return 0;
}
const char* Dbg::GetSignature(JDWP::RefTypeId refTypeId) {
UNIMPLEMENTED(FATAL);
return NULL;
}
const char* Dbg::GetSourceFile(JDWP::RefTypeId refTypeId) {
UNIMPLEMENTED(FATAL);
return NULL;
}
const char* Dbg::GetObjectTypeName(JDWP::ObjectId objectId) {
UNIMPLEMENTED(FATAL);
return NULL;
}
uint8_t Dbg::GetObjectTag(JDWP::ObjectId objectId) {
UNIMPLEMENTED(FATAL);
return 0;
}
int Dbg::GetTagWidth(int tag) {
UNIMPLEMENTED(FATAL);
return 0;
}
int Dbg::GetArrayLength(JDWP::ObjectId arrayId) {
UNIMPLEMENTED(FATAL);
return 0;
}
uint8_t Dbg::GetArrayElementTag(JDWP::ObjectId arrayId) {
UNIMPLEMENTED(FATAL);
return 0;
}
bool Dbg::OutputArray(JDWP::ObjectId arrayId, int firstIndex, int count, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
return false;
}
bool Dbg::SetArrayElements(JDWP::ObjectId arrayId, int firstIndex, int count, const uint8_t* buf) {
UNIMPLEMENTED(FATAL);
return false;
}
JDWP::ObjectId Dbg::CreateString(const char* str) {
UNIMPLEMENTED(FATAL);
return 0;
}
JDWP::ObjectId Dbg::CreateObject(JDWP::RefTypeId classId) {
UNIMPLEMENTED(FATAL);
return 0;
}
JDWP::ObjectId Dbg::CreateArrayObject(JDWP::RefTypeId arrayTypeId, uint32_t length) {
UNIMPLEMENTED(FATAL);
return 0;
}
bool Dbg::MatchType(JDWP::RefTypeId instClassId, JDWP::RefTypeId classId) {
UNIMPLEMENTED(FATAL);
return false;
}
const char* Dbg::GetMethodName(JDWP::RefTypeId refTypeId, JDWP::MethodId id) {
UNIMPLEMENTED(FATAL);
return NULL;
}
void Dbg::OutputAllFields(JDWP::RefTypeId refTypeId, bool withGeneric, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
void Dbg::OutputAllMethods(JDWP::RefTypeId refTypeId, bool withGeneric, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
void Dbg::OutputAllInterfaces(JDWP::RefTypeId refTypeId, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
void Dbg::OutputLineTable(JDWP::RefTypeId refTypeId, JDWP::MethodId methodId, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
void Dbg::OutputVariableTable(JDWP::RefTypeId refTypeId, JDWP::MethodId id, bool withGeneric, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
uint8_t Dbg::GetFieldBasicTag(JDWP::ObjectId objId, JDWP::FieldId fieldId) {
UNIMPLEMENTED(FATAL);
return 0;
}
uint8_t Dbg::GetStaticFieldBasicTag(JDWP::RefTypeId refTypeId, JDWP::FieldId fieldId) {
UNIMPLEMENTED(FATAL);
return 0;
}
void Dbg::GetFieldValue(JDWP::ObjectId objectId, JDWP::FieldId fieldId, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
void Dbg::SetFieldValue(JDWP::ObjectId objectId, JDWP::FieldId fieldId, uint64_t value, int width) {
UNIMPLEMENTED(FATAL);
}
void Dbg::GetStaticFieldValue(JDWP::RefTypeId refTypeId, JDWP::FieldId fieldId, JDWP::ExpandBuf* pReply) {
UNIMPLEMENTED(FATAL);
}
void Dbg::SetStaticFieldValue(JDWP::RefTypeId refTypeId, JDWP::FieldId fieldId, uint64_t rawValue, int width) {
UNIMPLEMENTED(FATAL);
}
char* Dbg::StringToUtf8(JDWP::ObjectId strId) {
UNIMPLEMENTED(FATAL);
return NULL;
}
char* Dbg::GetThreadName(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
return NULL;
}
JDWP::ObjectId Dbg::GetThreadGroup(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
return 0;
}
char* Dbg::GetThreadGroupName(JDWP::ObjectId threadGroupId) {
UNIMPLEMENTED(FATAL);
return NULL;
}
JDWP::ObjectId Dbg::GetThreadGroupParent(JDWP::ObjectId threadGroupId) {
UNIMPLEMENTED(FATAL);
return 0;
}
JDWP::ObjectId Dbg::GetSystemThreadGroupId() {
UNIMPLEMENTED(FATAL);
return 0;
}
JDWP::ObjectId Dbg::GetMainThreadGroupId() {
UNIMPLEMENTED(FATAL);
return 0;
}
bool Dbg::GetThreadStatus(JDWP::ObjectId threadId, uint32_t* threadStatus, uint32_t* suspendStatus) {
UNIMPLEMENTED(FATAL);
return false;
}
uint32_t Dbg::GetThreadSuspendCount(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
return 0;
}
bool Dbg::ThreadExists(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
return false;
}
bool Dbg::IsSuspended(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
return false;
}
//void Dbg::WaitForSuspend(JDWP::ObjectId threadId);
void Dbg::GetThreadGroupThreads(JDWP::ObjectId threadGroupId, JDWP::ObjectId** ppThreadIds, uint32_t* pThreadCount) {
UNIMPLEMENTED(FATAL);
}
void Dbg::GetAllThreads(JDWP::ObjectId** ppThreadIds, uint32_t* pThreadCount) {
UNIMPLEMENTED(FATAL);
}
int Dbg::GetThreadFrameCount(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
return 0;
}
bool Dbg::GetThreadFrame(JDWP::ObjectId threadId, int num, JDWP::FrameId* pFrameId, JDWP::JdwpLocation* pLoc) {
UNIMPLEMENTED(FATAL);
return false;
}
JDWP::ObjectId Dbg::GetThreadSelfId() {
return gRegistry->Add(Thread::Current()->GetPeer());
}
void Dbg::SuspendVM() {
Runtime::Current()->GetThreadList()->SuspendAll(true);
}
void Dbg::ResumeVM() {
Runtime::Current()->GetThreadList()->ResumeAll(true);
}
void Dbg::SuspendThread(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
}
void Dbg::ResumeThread(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
}
void Dbg::SuspendSelf() {
Runtime::Current()->GetThreadList()->SuspendSelfForDebugger();
}
bool Dbg::GetThisObject(JDWP::ObjectId threadId, JDWP::FrameId frameId, JDWP::ObjectId* pThisId) {
UNIMPLEMENTED(FATAL);
return false;
}
void Dbg::GetLocalValue(JDWP::ObjectId threadId, JDWP::FrameId frameId, int slot, uint8_t tag, uint8_t* buf, int expectedLen) {
UNIMPLEMENTED(FATAL);
}
void Dbg::SetLocalValue(JDWP::ObjectId threadId, JDWP::FrameId frameId, int slot, uint8_t tag, uint64_t value, int width) {
UNIMPLEMENTED(FATAL);
}
void Dbg::PostLocationEvent(const Method* method, int pcOffset, Object* thisPtr, int eventFlags) {
UNIMPLEMENTED(FATAL);
}
void Dbg::PostException(void* throwFp, int throwRelPc, void* catchFp, int catchRelPc, Object* exception) {
UNIMPLEMENTED(FATAL);
}
void Dbg::PostClassPrepare(Class* c) {
UNIMPLEMENTED(FATAL);
}
bool Dbg::WatchLocation(const JDWP::JdwpLocation* pLoc) {
UNIMPLEMENTED(FATAL);
return false;
}
void Dbg::UnwatchLocation(const JDWP::JdwpLocation* pLoc) {
UNIMPLEMENTED(FATAL);
}
bool Dbg::ConfigureStep(JDWP::ObjectId threadId, JDWP::JdwpStepSize size, JDWP::JdwpStepDepth depth) {
UNIMPLEMENTED(FATAL);
return false;
}
void Dbg::UnconfigureStep(JDWP::ObjectId threadId) {
UNIMPLEMENTED(FATAL);
}
JDWP::JdwpError Dbg::InvokeMethod(JDWP::ObjectId threadId, JDWP::ObjectId objectId, JDWP::RefTypeId classId, JDWP::MethodId methodId, uint32_t numArgs, uint64_t* argArray, uint32_t options, uint8_t* pResultTag, uint64_t* pResultValue, JDWP::ObjectId* pExceptObj) {
UNIMPLEMENTED(FATAL);
return JDWP::ERR_NONE;
}
void Dbg::ExecuteMethod(DebugInvokeReq* pReq) {
UNIMPLEMENTED(FATAL);
}
void Dbg::RegisterObjectId(JDWP::ObjectId id) {
UNIMPLEMENTED(FATAL);
}
/*
* "buf" contains a full JDWP packet, possibly with multiple chunks. We
* need to process each, accumulate the replies, and ship the whole thing
* back.
*
* Returns "true" if we have a reply. The reply buffer is newly allocated,
* and includes the chunk type/length, followed by the data.
*
* TODO: we currently assume that the request and reply include a single
* chunk. If this becomes inconvenient we will need to adapt.
*/
bool Dbg::DdmHandlePacket(const uint8_t* buf, int dataLen, uint8_t** pReplyBuf, int* pReplyLen) {
CHECK_GE(dataLen, 0);
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
static jclass Chunk_class = env->FindClass("org/apache/harmony/dalvik/ddmc/Chunk");
static jclass DdmServer_class = env->FindClass("org/apache/harmony/dalvik/ddmc/DdmServer");
static jmethodID dispatch_mid = env->GetStaticMethodID(DdmServer_class, "dispatch",
"(I[BII)Lorg/apache/harmony/dalvik/ddmc/Chunk;");
static jfieldID data_fid = env->GetFieldID(Chunk_class, "data", "[B");
static jfieldID length_fid = env->GetFieldID(Chunk_class, "length", "I");
static jfieldID offset_fid = env->GetFieldID(Chunk_class, "offset", "I");
static jfieldID type_fid = env->GetFieldID(Chunk_class, "type", "I");
// Create a byte[] corresponding to 'buf'.
ScopedLocalRef<jbyteArray> dataArray(env, env->NewByteArray(dataLen));
if (dataArray.get() == NULL) {
LOG(WARNING) << "byte[] allocation failed: " << dataLen;
env->ExceptionClear();
return false;
}
env->SetByteArrayRegion(dataArray.get(), 0, dataLen, reinterpret_cast<const jbyte*>(buf));
const int kChunkHdrLen = 8;
// Run through and find all chunks. [Currently just find the first.]
ScopedByteArrayRO contents(env, dataArray.get());
jint type = JDWP::Get4BE(reinterpret_cast<const uint8_t*>(&contents[0]));
jint length = JDWP::Get4BE(reinterpret_cast<const uint8_t*>(&contents[4]));
jint offset = kChunkHdrLen;
if (offset + length > dataLen) {
LOG(WARNING) << StringPrintf("bad chunk found (len=%u pktLen=%d)", length, dataLen);
return false;
}
// Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)".
ScopedLocalRef<jobject> chunk(env, env->CallStaticObjectMethod(DdmServer_class, dispatch_mid, type, dataArray.get(), offset, length));
if (env->ExceptionCheck()) {
LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type);
env->ExceptionDescribe();
env->ExceptionClear();
return false;
}
if (chunk.get() == NULL) {
return false;
}
/*
* Pull the pieces out of the chunk. We copy the results into a
* newly-allocated buffer that the caller can free. We don't want to
* continue using the Chunk object because nothing has a reference to it.
*
* We could avoid this by returning type/data/offset/length and having
* the caller be aware of the object lifetime issues, but that
* integrates the JDWP code more tightly into the VM, and doesn't work
* if we have responses for multiple chunks.
*
* So we're pretty much stuck with copying data around multiple times.
*/
ScopedLocalRef<jbyteArray> replyData(env, reinterpret_cast<jbyteArray>(env->GetObjectField(chunk.get(), data_fid)));
length = env->GetIntField(chunk.get(), length_fid);
offset = env->GetIntField(chunk.get(), offset_fid);
type = env->GetIntField(chunk.get(), type_fid);
LOG(VERBOSE) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length);
if (length == 0 || replyData.get() == NULL) {
return false;
}
jsize replyLength = env->GetArrayLength(replyData.get());
if (offset + length > replyLength) {
LOG(WARNING) << StringPrintf("chunk off=%d len=%d exceeds reply array len %d", offset, length, replyLength);
return false;
}
uint8_t* reply = new uint8_t[length + kChunkHdrLen];
if (reply == NULL) {
LOG(WARNING) << "malloc failed: " << (length + kChunkHdrLen);
return false;
}
JDWP::Set4BE(reply + 0, type);
JDWP::Set4BE(reply + 4, length);
env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast<jbyte*>(reply + kChunkHdrLen));
*pReplyBuf = reply;
*pReplyLen = length + kChunkHdrLen;
LOG(VERBOSE) << StringPrintf("dvmHandleDdm returning type=%.4s buf=%p len=%d", (char*) reply, reply, length);
return true;
}
void DdmBroadcast(bool connect) {
LOG(VERBOSE) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "...";
Thread* self = Thread::Current();
if (self->GetState() != Thread::kRunnable) {
LOG(ERROR) << "DDM broadcast in thread state " << self->GetState();
/* try anyway? */
}
JNIEnv* env = self->GetJniEnv();
static jclass DdmServer_class = env->FindClass("org/apache/harmony/dalvik/ddmc/DdmServer");
static jmethodID broadcast_mid = env->GetStaticMethodID(DdmServer_class, "broadcast", "(I)V");
jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/;
env->CallStaticVoidMethod(DdmServer_class, broadcast_mid, event);
if (env->ExceptionCheck()) {
LOG(ERROR) << "DdmServer.broadcast " << event << " failed";
env->ExceptionDescribe();
env->ExceptionClear();
}
}
void Dbg::DdmConnected() {
DdmBroadcast(true);
}
void Dbg::DdmDisconnected() {
DdmBroadcast(false);
gDdmThreadNotification = false;
}
/*
* Send a notification when a thread starts, stops, or changes its name.
*
* Because we broadcast the full set of threads when the notifications are
* first enabled, it's possible for "thread" to be actively executing.
*/
void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) {
if (!gDdmThreadNotification) {
return;
}
if (type == CHUNK_TYPE("THDE")) {
uint8_t buf[4];
JDWP::Set4BE(&buf[0], t->GetThinLockId());
Dbg::DdmSendChunk(CHUNK_TYPE("THDE"), 4, buf);
} else {
CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type;
SirtRef<String> name(t->GetName());
size_t char_count = (name.get() != NULL) ? name->GetLength() : 0;
const jchar* chars = name->GetCharArray()->GetData();
size_t byte_count = char_count*2 + sizeof(uint32_t)*2;
std::vector<uint8_t> bytes(byte_count);
uint8_t* dst = &bytes[0];
JDWP::Write4BE(&dst, t->GetThinLockId());
JDWP::Write4BE(&dst, char_count);
if (char_count > 0) {
// Copy the UTF-16 string, transforming to big-endian.
while (char_count--) {
JDWP::Write2BE(&dst, *chars++);
}
}
Dbg::DdmSendChunk(type, bytes.size(), &bytes[0]);
}
}
void DdmSendThreadStartCallback(Thread* t, void*) {
Dbg::DdmSendThreadNotification(t, CHUNK_TYPE("THCR"));
}
void Dbg::DdmSetThreadNotification(bool enable) {
// We lock the thread list to avoid sending duplicate events or missing
// a thread change. We should be okay holding this lock while sending
// the messages out. (We have to hold it while accessing a live thread.)
ScopedThreadListLock thread_list_lock;
gDdmThreadNotification = enable;
if (enable) {
Runtime::Current()->GetThreadList()->ForEach(DdmSendThreadStartCallback, NULL);
}
}
void PostThreadStartOrStop(Thread* t, uint32_t type) {
if (gDebuggerActive) {
JDWP::ObjectId id = gRegistry->Add(t->GetPeer());
gJdwpState->PostThreadChange(id, type == CHUNK_TYPE("THCR"));
}
Dbg::DdmSendThreadNotification(t, type);
}
void Dbg::PostThreadStart(Thread* t) {
PostThreadStartOrStop(t, CHUNK_TYPE("THCR"));
}
void Dbg::PostThreadDeath(Thread* t) {
PostThreadStartOrStop(t, CHUNK_TYPE("THDE"));
}
void Dbg::DdmSendChunk(uint32_t type, size_t byte_count, const uint8_t* buf) {
CHECK(buf != NULL);
iovec vec[1];
vec[0].iov_base = reinterpret_cast<void*>(const_cast<uint8_t*>(buf));
vec[0].iov_len = byte_count;
Dbg::DdmSendChunkV(type, vec, 1);
}
void Dbg::DdmSendChunkV(uint32_t type, const struct iovec* iov, int iovcnt) {
if (gJdwpState == NULL) {
LOG(VERBOSE) << "Debugger thread not active, ignoring DDM send: " << type;
} else {
gJdwpState->DdmSendChunkV(type, iov, iovcnt);
}
}
int Dbg::DdmHandleHpifChunk(HpifWhen when) {
if (when == HPIF_WHEN_NOW) {
DdmSendHeapInfo(when);
return true;
}
if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when);
return false;
}
gDdmHpifWhen = when;
return true;
}
bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) {
if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when);
return false;
}
if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) {
LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what);
return false;
}
if (native) {
gDdmNhsgWhen = when;
gDdmNhsgWhat = what;
} else {
gDdmHpsgWhen = when;
gDdmHpsgWhat = what;
}
return true;
}
void Dbg::DdmSendHeapInfo(HpifWhen reason) {
// If there's a one-shot 'when', reset it.
if (reason == gDdmHpifWhen) {
if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) {
gDdmHpifWhen = HPIF_WHEN_NEVER;
}
}
/*
* Chunk HPIF (client --> server)
*
* Heap Info. General information about the heap,
* suitable for a summary display.
*
* [u4]: number of heaps
*
* For each heap:
* [u4]: heap ID
* [u8]: timestamp in ms since Unix epoch
* [u1]: capture reason (same as 'when' value from server)
* [u4]: max heap size in bytes (-Xmx)
* [u4]: current heap size in bytes
* [u4]: current number of bytes allocated
* [u4]: current number of objects allocated
*/
uint8_t heap_count = 1;
std::vector<uint8_t> bytes(4 + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4)));
uint8_t* dst = &bytes[0];
JDWP::Write4BE(&dst, heap_count);
JDWP::Write4BE(&dst, 1); // Heap id (bogus; we only have one heap).
JDWP::Write8BE(&dst, MilliTime());
JDWP::Write1BE(&dst, reason);
JDWP::Write4BE(&dst, Heap::GetMaxMemory()); // Max allowed heap size in bytes.
JDWP::Write4BE(&dst, Heap::GetTotalMemory()); // Current heap size in bytes.
JDWP::Write4BE(&dst, Heap::GetBytesAllocated());
JDWP::Write4BE(&dst, Heap::GetObjectsAllocated());
Dbg::DdmSendChunk(CHUNK_TYPE("HPIF"), bytes.size(), &bytes[0]);
}
enum HpsgSolidity {
SOLIDITY_FREE = 0,
SOLIDITY_HARD = 1,
SOLIDITY_SOFT = 2,
SOLIDITY_WEAK = 3,
SOLIDITY_PHANTOM = 4,
SOLIDITY_FINALIZABLE = 5,
SOLIDITY_SWEEP = 6,
};
enum HpsgKind {
KIND_OBJECT = 0,
KIND_CLASS_OBJECT = 1,
KIND_ARRAY_1 = 2,
KIND_ARRAY_2 = 3,
KIND_ARRAY_4 = 4,
KIND_ARRAY_8 = 5,
KIND_UNKNOWN = 6,
KIND_NATIVE = 7,
};
#define HPSG_PARTIAL (1<<7)
#define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))
struct HeapChunkContext {
std::vector<uint8_t> buf;
uint8_t* p;
uint8_t* pieceLenField;
size_t totalAllocationUnits;
uint32_t type;
bool merge;
bool needHeader;
// Maximum chunk size. Obtain this from the formula:
// (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2
HeapChunkContext(bool merge, bool native)
: buf(16384 - 16),
type(0),
merge(merge) {
Reset();
if (native) {
type = CHUNK_TYPE("NHSG");
} else {
type = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO");
}
}
~HeapChunkContext() {
if (p > &buf[0]) {
Flush();
}
}
void EnsureHeader(const void* chunk_ptr) {
if (!needHeader) {
return;
}
// Start a new HPSx chunk.
JDWP::Write4BE(&p, 1); // Heap id (bogus; we only have one heap).
JDWP::Write1BE(&p, 8); // Size of allocation unit, in bytes.
JDWP::Write4BE(&p, reinterpret_cast<uintptr_t>(chunk_ptr)); // virtual address of segment start.
JDWP::Write4BE(&p, 0); // offset of this piece (relative to the virtual address).
// [u4]: length of piece, in allocation units
// We won't know this until we're done, so save the offset and stuff in a dummy value.
pieceLenField = p;
JDWP::Write4BE(&p, 0x55555555);
needHeader = false;
}
void Flush() {
// Patch the "length of piece" field.
CHECK_LE(&buf[0], pieceLenField);
CHECK_LE(pieceLenField, p);
JDWP::Set4BE(pieceLenField, totalAllocationUnits);
Dbg::DdmSendChunk(type, p - &buf[0], &buf[0]);
Reset();
}
private:
void Reset() {
p = &buf[0];
totalAllocationUnits = 0;
needHeader = true;
pieceLenField = NULL;
}
DISALLOW_COPY_AND_ASSIGN(HeapChunkContext);
};
#define ALLOCATION_UNIT_SIZE 8
uint8_t ExamineObject(const Object* o, bool is_native_heap) {
if (o == NULL) {
return HPSG_STATE(SOLIDITY_FREE, 0);
}
// It's an allocated chunk. Figure out what it is.
// If we're looking at the native heap, we'll just return
// (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks.
if (is_native_heap || !Heap::IsLiveObjectLocked(o)) {
return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
}
Class* c = o->GetClass();
if (c == NULL) {
// The object was probably just created but hasn't been initialized yet.
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
if (!Heap::IsHeapAddress(c)) {
LOG(WARNING) << "invalid class for managed heap object: " << o << " " << c;
return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
}
if (c->IsClassClass()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
}
if (c->IsArrayClass()) {
if (o->IsObjectArray()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
}
switch (c->GetComponentSize()) {
case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
}
}
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
static void HeapChunkCallback(const void* chunk_ptr, size_t chunk_len, const void* user_ptr, size_t user_len, void* arg) {
HeapChunkContext* context = reinterpret_cast<HeapChunkContext*>(arg);
CHECK_EQ((chunk_len & (ALLOCATION_UNIT_SIZE-1)), 0U);
/* Make sure there's enough room left in the buffer.
* We need to use two bytes for every fractional 256
* allocation units used by the chunk.
*/
{
size_t needed = (((chunk_len/ALLOCATION_UNIT_SIZE + 255) / 256) * 2);
size_t bytesLeft = context->buf.size() - (size_t)(context->p - &context->buf[0]);
if (bytesLeft < needed) {
context->Flush();
}
bytesLeft = context->buf.size() - (size_t)(context->p - &context->buf[0]);
if (bytesLeft < needed) {
LOG(WARNING) << "chunk is too big to transmit (chunk_len=" << chunk_len << ", " << needed << " bytes)";
return;
}
}
// OLD-TODO: notice when there's a gap and start a new heap, or at least a new range.
context->EnsureHeader(chunk_ptr);
// Determine the type of this chunk.
// OLD-TODO: if context.merge, see if this chunk is different from the last chunk.
// If it's the same, we should combine them.
uint8_t state = ExamineObject(reinterpret_cast<const Object*>(user_ptr), (context->type == CHUNK_TYPE("NHSG")));
// Write out the chunk description.
chunk_len /= ALLOCATION_UNIT_SIZE; // convert to allocation units
context->totalAllocationUnits += chunk_len;
while (chunk_len > 256) {
*context->p++ = state | HPSG_PARTIAL;
*context->p++ = 255; // length - 1
chunk_len -= 256;
}
*context->p++ = state;
*context->p++ = chunk_len - 1;
}
static void WalkHeap(bool merge, bool native) {
HeapChunkContext context(merge, native);
if (native) {
dlmalloc_walk_heap(HeapChunkCallback, &context);
} else {
Heap::WalkHeap(HeapChunkCallback, &context);
}
}
void Dbg::DdmSendHeapSegments(bool native) {
Dbg::HpsgWhen when;
Dbg::HpsgWhat what;
if (!native) {
when = gDdmHpsgWhen;
what = gDdmHpsgWhat;
} else {
when = gDdmNhsgWhen;
what = gDdmNhsgWhat;
}
if (when == HPSG_WHEN_NEVER) {
return;
}
// Figure out what kind of chunks we'll be sending.
CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS) << static_cast<int>(what);
// First, send a heap start chunk.
uint8_t heap_id[4];
JDWP::Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap).
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), sizeof(heap_id), heap_id);
// Send a series of heap segment chunks.
WalkHeap((what == HPSG_WHAT_MERGED_OBJECTS), native);
// Finally, send a heap end chunk.
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), sizeof(heap_id), heap_id);
}
} // namespace art