blob: e743d8eca860e06b29dd51d9371387eec2e58205 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "graph_checker.h"
#include <map>
#include <string>
#include <sstream>
#include "base/bit_vector-inl.h"
#include "base/stringprintf.h"
namespace art {
void GraphChecker::VisitBasicBlock(HBasicBlock* block) {
current_block_ = block;
// Check consistency with respect to predecessors of `block`.
const GrowableArray<HBasicBlock*>& predecessors = block->GetPredecessors();
std::map<HBasicBlock*, size_t> predecessors_count;
for (size_t i = 0, e = predecessors.Size(); i < e; ++i) {
HBasicBlock* p = predecessors.Get(i);
++predecessors_count[p];
}
for (auto& pc : predecessors_count) {
HBasicBlock* p = pc.first;
size_t p_count_in_block_predecessors = pc.second;
const GrowableArray<HBasicBlock*>& p_successors = p->GetSuccessors();
size_t block_count_in_p_successors = 0;
for (size_t j = 0, f = p_successors.Size(); j < f; ++j) {
if (p_successors.Get(j) == block) {
++block_count_in_p_successors;
}
}
if (p_count_in_block_predecessors != block_count_in_p_successors) {
AddError(StringPrintf(
"Block %d lists %zu occurrences of block %d in its predecessors, whereas "
"block %d lists %zu occurrences of block %d in its successors.",
block->GetBlockId(), p_count_in_block_predecessors, p->GetBlockId(),
p->GetBlockId(), block_count_in_p_successors, block->GetBlockId()));
}
}
// Check consistency with respect to successors of `block`.
const GrowableArray<HBasicBlock*>& successors = block->GetSuccessors();
std::map<HBasicBlock*, size_t> successors_count;
for (size_t i = 0, e = successors.Size(); i < e; ++i) {
HBasicBlock* s = successors.Get(i);
++successors_count[s];
}
for (auto& sc : successors_count) {
HBasicBlock* s = sc.first;
size_t s_count_in_block_successors = sc.second;
const GrowableArray<HBasicBlock*>& s_predecessors = s->GetPredecessors();
size_t block_count_in_s_predecessors = 0;
for (size_t j = 0, f = s_predecessors.Size(); j < f; ++j) {
if (s_predecessors.Get(j) == block) {
++block_count_in_s_predecessors;
}
}
if (s_count_in_block_successors != block_count_in_s_predecessors) {
AddError(StringPrintf(
"Block %d lists %zu occurrences of block %d in its successors, whereas "
"block %d lists %zu occurrences of block %d in its predecessors.",
block->GetBlockId(), s_count_in_block_successors, s->GetBlockId(),
s->GetBlockId(), block_count_in_s_predecessors, block->GetBlockId()));
}
}
// Ensure `block` ends with a branch instruction.
if (!block->EndsWithControlFlowInstruction()) {
AddError(StringPrintf("Block %d does not end with a branch instruction.",
block->GetBlockId()));
}
// Visit this block's list of phis.
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
// Ensure this block's list of phis contains only phis.
if (!it.Current()->IsPhi()) {
AddError(StringPrintf("Block %d has a non-phi in its phi list.",
current_block_->GetBlockId()));
}
it.Current()->Accept(this);
}
// Visit this block's list of instructions.
for (HInstructionIterator it(block->GetInstructions()); !it.Done();
it.Advance()) {
// Ensure this block's list of instructions does not contains phis.
if (it.Current()->IsPhi()) {
AddError(StringPrintf("Block %d has a phi in its non-phi list.",
current_block_->GetBlockId()));
}
it.Current()->Accept(this);
}
}
void GraphChecker::VisitInstruction(HInstruction* instruction) {
if (seen_ids_.IsBitSet(instruction->GetId())) {
AddError(StringPrintf("Instruction id %d is duplicate in graph.",
instruction->GetId()));
} else {
seen_ids_.SetBit(instruction->GetId());
}
// Ensure `instruction` is associated with `current_block_`.
if (instruction->GetBlock() == nullptr) {
AddError(StringPrintf("%s %d in block %d not associated with any block.",
instruction->IsPhi() ? "Phi" : "Instruction",
instruction->GetId(),
current_block_->GetBlockId()));
} else if (instruction->GetBlock() != current_block_) {
AddError(StringPrintf("%s %d in block %d associated with block %d.",
instruction->IsPhi() ? "Phi" : "Instruction",
instruction->GetId(),
current_block_->GetBlockId(),
instruction->GetBlock()->GetBlockId()));
}
// Ensure the inputs of `instruction` are defined in a block of the graph.
for (HInputIterator input_it(instruction); !input_it.Done();
input_it.Advance()) {
HInstruction* input = input_it.Current();
const HInstructionList& list = input->IsPhi()
? input->GetBlock()->GetPhis()
: input->GetBlock()->GetInstructions();
if (!list.Contains(input)) {
AddError(StringPrintf("Input %d of instruction %d is not defined "
"in a basic block of the control-flow graph.",
input->GetId(),
instruction->GetId()));
}
}
// Ensure the uses of `instruction` are defined in a block of the graph.
for (HUseIterator<HInstruction*> use_it(instruction->GetUses());
!use_it.Done(); use_it.Advance()) {
HInstruction* use = use_it.Current()->GetUser();
const HInstructionList& list = use->IsPhi()
? use->GetBlock()->GetPhis()
: use->GetBlock()->GetInstructions();
if (!list.Contains(use)) {
AddError(StringPrintf("User %s:%d of instruction %d is not defined "
"in a basic block of the control-flow graph.",
use->DebugName(),
use->GetId(),
instruction->GetId()));
}
}
// Ensure 'instruction' has pointers to its inputs' use entries.
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
HUserRecord<HInstruction*> input_record = instruction->InputRecordAt(i);
HInstruction* input = input_record.GetInstruction();
HUseListNode<HInstruction*>* use_node = input_record.GetUseNode();
if (use_node == nullptr || !input->GetUses().Contains(use_node)) {
AddError(StringPrintf("Instruction %s:%d has an invalid pointer to use entry "
"at input %u (%s:%d).",
instruction->DebugName(),
instruction->GetId(),
static_cast<unsigned>(i),
input->DebugName(),
input->GetId()));
}
}
}
void SSAChecker::VisitBasicBlock(HBasicBlock* block) {
super_type::VisitBasicBlock(block);
// Ensure there is no critical edge (i.e., an edge connecting a
// block with multiple successors to a block with multiple
// predecessors).
if (block->GetSuccessors().Size() > 1) {
for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
HBasicBlock* successor = block->GetSuccessors().Get(j);
if (successor->GetPredecessors().Size() > 1) {
AddError(StringPrintf("Critical edge between blocks %d and %d.",
block->GetBlockId(),
successor->GetBlockId()));
}
}
}
// Check Phi uniqueness (no two Phis with the same type refer to the same register).
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
if (phi->GetNextEquivalentPhiWithSameType() != nullptr) {
std::stringstream type_str;
type_str << phi->GetType();
AddError(StringPrintf("Equivalent phi (%d) found for VReg %d with type: %s",
phi->GetId(), phi->GetRegNumber(), type_str.str().c_str()));
}
}
if (block->IsLoopHeader()) {
CheckLoop(block);
}
}
void SSAChecker::CheckLoop(HBasicBlock* loop_header) {
int id = loop_header->GetBlockId();
// Ensure the pre-header block is first in the list of
// predecessors of a loop header.
if (!loop_header->IsLoopPreHeaderFirstPredecessor()) {
AddError(StringPrintf(
"Loop pre-header is not the first predecessor of the loop header %d.",
id));
}
// Ensure the loop header has only two predecessors and that only the
// second one is a back edge.
size_t num_preds = loop_header->GetPredecessors().Size();
if (num_preds < 2) {
AddError(StringPrintf(
"Loop header %d has less than two predecessors: %zu.",
id,
num_preds));
} else if (num_preds > 2) {
AddError(StringPrintf(
"Loop header %d has more than two predecessors: %zu.",
id,
num_preds));
} else {
HLoopInformation* loop_information = loop_header->GetLoopInformation();
HBasicBlock* first_predecessor = loop_header->GetPredecessors().Get(0);
if (loop_information->IsBackEdge(*first_predecessor)) {
AddError(StringPrintf(
"First predecessor of loop header %d is a back edge.",
id));
}
HBasicBlock* second_predecessor = loop_header->GetPredecessors().Get(1);
if (!loop_information->IsBackEdge(*second_predecessor)) {
AddError(StringPrintf(
"Second predecessor of loop header %d is not a back edge.",
id));
}
}
// Ensure there is only one back edge per loop.
size_t num_back_edges =
loop_header->GetLoopInformation()->GetBackEdges().Size();
if (num_back_edges == 0) {
AddError(StringPrintf(
"Loop defined by header %d has no back edge.",
id));
} else if (num_back_edges > 1) {
AddError(StringPrintf(
"Loop defined by header %d has several back edges: %zu.",
id,
num_back_edges));
}
// Ensure all blocks in the loop are dominated by the loop header.
const ArenaBitVector& loop_blocks =
loop_header->GetLoopInformation()->GetBlocks();
for (uint32_t i : loop_blocks.Indexes()) {
HBasicBlock* loop_block = GetGraph()->GetBlocks().Get(i);
if (!loop_header->Dominates(loop_block)) {
AddError(StringPrintf("Loop block %d not dominated by loop header %d.",
loop_block->GetBlockId(),
id));
}
}
// If this is a nested loop, ensure the outer loops contain a superset of the blocks.
for (HLoopInformationOutwardIterator it(*loop_header); !it.Done(); it.Advance()) {
HLoopInformation* outer_info = it.Current();
if (!loop_blocks.IsSubsetOf(&outer_info->GetBlocks())) {
AddError(StringPrintf("Blocks of loop defined by header %d are not a subset of blocks of "
"an outer loop defined by header %d.",
loop_header->GetBlockId(),
outer_info->GetHeader()->GetBlockId()));
}
}
}
void SSAChecker::VisitInstruction(HInstruction* instruction) {
super_type::VisitInstruction(instruction);
// Ensure an instruction dominates all its uses.
for (HUseIterator<HInstruction*> use_it(instruction->GetUses());
!use_it.Done(); use_it.Advance()) {
HInstruction* use = use_it.Current()->GetUser();
if (!use->IsPhi() && !instruction->StrictlyDominates(use)) {
AddError(StringPrintf("Instruction %d in block %d does not dominate "
"use %d in block %d.",
instruction->GetId(), current_block_->GetBlockId(),
use->GetId(), use->GetBlock()->GetBlockId()));
}
}
// Ensure an instruction having an environment is dominated by the
// instructions contained in the environment.
HEnvironment* environment = instruction->GetEnvironment();
if (environment != nullptr) {
for (size_t i = 0, e = environment->Size(); i < e; ++i) {
HInstruction* env_instruction = environment->GetInstructionAt(i);
if (env_instruction != nullptr
&& !env_instruction->StrictlyDominates(instruction)) {
AddError(StringPrintf("Instruction %d in environment of instruction %d "
"from block %d does not dominate instruction %d.",
env_instruction->GetId(),
instruction->GetId(),
current_block_->GetBlockId(),
instruction->GetId()));
}
}
}
}
static Primitive::Type PrimitiveKind(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt:
return Primitive::kPrimInt;
default:
return type;
}
}
void SSAChecker::VisitPhi(HPhi* phi) {
VisitInstruction(phi);
// Ensure the first input of a phi is not itself.
if (phi->InputAt(0) == phi) {
AddError(StringPrintf("Loop phi %d in block %d is its own first input.",
phi->GetId(),
phi->GetBlock()->GetBlockId()));
}
// Ensure the number of inputs of a phi is the same as the number of
// its predecessors.
const GrowableArray<HBasicBlock*>& predecessors =
phi->GetBlock()->GetPredecessors();
if (phi->InputCount() != predecessors.Size()) {
AddError(StringPrintf(
"Phi %d in block %d has %zu inputs, "
"but block %d has %zu predecessors.",
phi->GetId(), phi->GetBlock()->GetBlockId(), phi->InputCount(),
phi->GetBlock()->GetBlockId(), predecessors.Size()));
} else {
// Ensure phi input at index I either comes from the Ith
// predecessor or from a block that dominates this predecessor.
for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
HInstruction* input = phi->InputAt(i);
HBasicBlock* predecessor = predecessors.Get(i);
if (!(input->GetBlock() == predecessor
|| input->GetBlock()->Dominates(predecessor))) {
AddError(StringPrintf(
"Input %d at index %zu of phi %d from block %d is not defined in "
"predecessor number %zu nor in a block dominating it.",
input->GetId(), i, phi->GetId(), phi->GetBlock()->GetBlockId(),
i));
}
}
}
// Ensure that the inputs have the same primitive kind as the phi.
for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
HInstruction* input = phi->InputAt(i);
if (PrimitiveKind(input->GetType()) != PrimitiveKind(phi->GetType())) {
AddError(StringPrintf(
"Input %d at index %zu of phi %d from block %d does not have the "
"same type as the phi: %s versus %s",
input->GetId(), i, phi->GetId(), phi->GetBlock()->GetBlockId(),
Primitive::PrettyDescriptor(input->GetType()),
Primitive::PrettyDescriptor(phi->GetType())));
}
}
if (phi->GetType() != HPhi::ToPhiType(phi->GetType())) {
AddError(StringPrintf("Phi %d in block %d does not have an expected phi type: %s",
phi->GetId(),
phi->GetBlock()->GetBlockId(),
Primitive::PrettyDescriptor(phi->GetType())));
}
}
void SSAChecker::HandleBooleanInput(HInstruction* instruction, size_t input_index) {
HInstruction* input = instruction->InputAt(input_index);
if (input->IsIntConstant()) {
int32_t value = input->AsIntConstant()->GetValue();
if (value != 0 && value != 1) {
AddError(StringPrintf(
"%s instruction %d has a non-Boolean constant input %d whose value is: %d.",
instruction->DebugName(),
instruction->GetId(),
static_cast<int>(input_index),
value));
}
} else if (input->GetType() == Primitive::kPrimInt
&& (input->IsPhi() || input->IsAnd() || input->IsOr() || input->IsXor())) {
// TODO: We need a data-flow analysis to determine if the Phi or
// binary operation is actually Boolean. Allow for now.
} else if (input->GetType() != Primitive::kPrimBoolean) {
AddError(StringPrintf(
"%s instruction %d has a non-Boolean input %d whose type is: %s.",
instruction->DebugName(),
instruction->GetId(),
static_cast<int>(input_index),
Primitive::PrettyDescriptor(input->GetType())));
}
}
void SSAChecker::VisitIf(HIf* instruction) {
VisitInstruction(instruction);
HandleBooleanInput(instruction, 0);
}
void SSAChecker::VisitBooleanNot(HBooleanNot* instruction) {
VisitInstruction(instruction);
HandleBooleanInput(instruction, 0);
}
void SSAChecker::VisitCondition(HCondition* op) {
VisitInstruction(op);
if (op->GetType() != Primitive::kPrimBoolean) {
AddError(StringPrintf(
"Condition %s %d has a non-Boolean result type: %s.",
op->DebugName(), op->GetId(),
Primitive::PrettyDescriptor(op->GetType())));
}
HInstruction* lhs = op->InputAt(0);
HInstruction* rhs = op->InputAt(1);
if (PrimitiveKind(lhs->GetType()) != PrimitiveKind(rhs->GetType())) {
AddError(StringPrintf(
"Condition %s %d has inputs of different types: %s, and %s.",
op->DebugName(), op->GetId(),
Primitive::PrettyDescriptor(lhs->GetType()),
Primitive::PrettyDescriptor(rhs->GetType())));
}
if (!op->IsEqual() && !op->IsNotEqual()) {
if ((lhs->GetType() == Primitive::kPrimNot)) {
AddError(StringPrintf(
"Condition %s %d uses an object as left-hand side input.",
op->DebugName(), op->GetId()));
} else if (rhs->GetType() == Primitive::kPrimNot) {
AddError(StringPrintf(
"Condition %s %d uses an object as right-hand side input.",
op->DebugName(), op->GetId()));
}
}
}
void SSAChecker::VisitBinaryOperation(HBinaryOperation* op) {
VisitInstruction(op);
if (op->IsUShr() || op->IsShr() || op->IsShl()) {
if (PrimitiveKind(op->InputAt(1)->GetType()) != Primitive::kPrimInt) {
AddError(StringPrintf(
"Shift operation %s %d has a non-int kind second input: "
"%s of type %s.",
op->DebugName(), op->GetId(),
op->InputAt(1)->DebugName(),
Primitive::PrettyDescriptor(op->InputAt(1)->GetType())));
}
} else {
if (PrimitiveKind(op->InputAt(1)->GetType()) != PrimitiveKind(op->InputAt(0)->GetType())) {
AddError(StringPrintf(
"Binary operation %s %d has inputs of different types: "
"%s, and %s.",
op->DebugName(), op->GetId(),
Primitive::PrettyDescriptor(op->InputAt(0)->GetType()),
Primitive::PrettyDescriptor(op->InputAt(1)->GetType())));
}
}
if (op->IsCompare()) {
if (op->GetType() != Primitive::kPrimInt) {
AddError(StringPrintf(
"Compare operation %d has a non-int result type: %s.",
op->GetId(),
Primitive::PrettyDescriptor(op->GetType())));
}
} else {
// Use the first input, so that we can also make this check for shift operations.
if (PrimitiveKind(op->GetType()) != PrimitiveKind(op->InputAt(0)->GetType())) {
AddError(StringPrintf(
"Binary operation %s %d has a result type different "
"from its input type: %s vs %s.",
op->DebugName(), op->GetId(),
Primitive::PrettyDescriptor(op->GetType()),
Primitive::PrettyDescriptor(op->InputAt(1)->GetType())));
}
}
}
void SSAChecker::VisitConstant(HConstant* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (!block->IsEntryBlock()) {
AddError(StringPrintf(
"%s %d should be in the entry block but is in block %d.",
instruction->DebugName(),
instruction->GetId(),
block->GetBlockId()));
}
}
} // namespace art