blob: 6f3779879c6d3935559a5e040281345d46f83805 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include "arm_lir.h"
#include "codegen_arm.h"
#include "dex/compiler_internals.h"
#include "dex/quick/mir_to_lir-inl.h"
namespace art {
static int core_regs[] = {r0, r1, r2, r3, rARM_SUSPEND, r5, r6, r7, r8, rARM_SELF, r10,
r11, r12, rARM_SP, rARM_LR, rARM_PC};
static int ReservedRegs[] = {rARM_SUSPEND, rARM_SELF, rARM_SP, rARM_LR, rARM_PC};
static int FpRegs[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31};
static int core_temps[] = {r0, r1, r2, r3, r12};
static int fp_temps[] = {fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15};
RegLocation ArmMir2Lir::LocCReturn() {
RegLocation res = ARM_LOC_C_RETURN;
return res;
}
RegLocation ArmMir2Lir::LocCReturnWide() {
RegLocation res = ARM_LOC_C_RETURN_WIDE;
return res;
}
RegLocation ArmMir2Lir::LocCReturnFloat() {
RegLocation res = ARM_LOC_C_RETURN_FLOAT;
return res;
}
RegLocation ArmMir2Lir::LocCReturnDouble() {
RegLocation res = ARM_LOC_C_RETURN_DOUBLE;
return res;
}
// Return a target-dependent special register.
int ArmMir2Lir::TargetReg(SpecialTargetRegister reg) {
int res = INVALID_REG;
switch (reg) {
case kSelf: res = rARM_SELF; break;
case kSuspend: res = rARM_SUSPEND; break;
case kLr: res = rARM_LR; break;
case kPc: res = rARM_PC; break;
case kSp: res = rARM_SP; break;
case kArg0: res = rARM_ARG0; break;
case kArg1: res = rARM_ARG1; break;
case kArg2: res = rARM_ARG2; break;
case kArg3: res = rARM_ARG3; break;
case kFArg0: res = rARM_FARG0; break;
case kFArg1: res = rARM_FARG1; break;
case kFArg2: res = rARM_FARG2; break;
case kFArg3: res = rARM_FARG3; break;
case kRet0: res = rARM_RET0; break;
case kRet1: res = rARM_RET1; break;
case kInvokeTgt: res = rARM_INVOKE_TGT; break;
case kCount: res = rARM_COUNT; break;
}
return res;
}
// Create a double from a pair of singles.
int ArmMir2Lir::S2d(int low_reg, int high_reg) {
return ARM_S2D(low_reg, high_reg);
}
// Return mask to strip off fp reg flags and bias.
uint32_t ArmMir2Lir::FpRegMask() {
return ARM_FP_REG_MASK;
}
// True if both regs single, both core or both double.
bool ArmMir2Lir::SameRegType(int reg1, int reg2) {
return (ARM_REGTYPE(reg1) == ARM_REGTYPE(reg2));
}
/*
* Decode the register id.
*/
uint64_t ArmMir2Lir::GetRegMaskCommon(int reg) {
uint64_t seed;
int shift;
int reg_id;
reg_id = reg & 0x1f;
/* Each double register is equal to a pair of single-precision FP registers */
seed = ARM_DOUBLEREG(reg) ? 3 : 1;
/* FP register starts at bit position 16 */
shift = ARM_FPREG(reg) ? kArmFPReg0 : 0;
/* Expand the double register id into single offset */
shift += reg_id;
return (seed << shift);
}
uint64_t ArmMir2Lir::GetPCUseDefEncoding() {
return ENCODE_ARM_REG_PC;
}
void ArmMir2Lir::SetupTargetResourceMasks(LIR* lir) {
DCHECK_EQ(cu_->instruction_set, kThumb2);
// Thumb2 specific setup
uint64_t flags = ArmMir2Lir::EncodingMap[lir->opcode].flags;
int opcode = lir->opcode;
if (flags & REG_DEF_SP) {
lir->def_mask |= ENCODE_ARM_REG_SP;
}
if (flags & REG_USE_SP) {
lir->use_mask |= ENCODE_ARM_REG_SP;
}
if (flags & REG_DEF_LIST0) {
lir->def_mask |= ENCODE_ARM_REG_LIST(lir->operands[0]);
}
if (flags & REG_DEF_LIST1) {
lir->def_mask |= ENCODE_ARM_REG_LIST(lir->operands[1]);
}
if (flags & REG_DEF_FPCS_LIST0) {
lir->def_mask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]);
}
if (flags & REG_DEF_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(&lir->def_mask, lir->operands[1] + i);
}
}
if (flags & REG_USE_PC) {
lir->use_mask |= ENCODE_ARM_REG_PC;
}
/* Conservatively treat the IT block */
if (flags & IS_IT) {
lir->def_mask = ENCODE_ALL;
}
if (flags & REG_USE_LIST0) {
lir->use_mask |= ENCODE_ARM_REG_LIST(lir->operands[0]);
}
if (flags & REG_USE_LIST1) {
lir->use_mask |= ENCODE_ARM_REG_LIST(lir->operands[1]);
}
if (flags & REG_USE_FPCS_LIST0) {
lir->use_mask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]);
}
if (flags & REG_USE_FPCS_LIST2) {
for (int i = 0; i < lir->operands[2]; i++) {
SetupRegMask(&lir->use_mask, lir->operands[1] + i);
}
}
/* Fixup for kThumbPush/lr and kThumbPop/pc */
if (opcode == kThumbPush || opcode == kThumbPop) {
uint64_t r8Mask = GetRegMaskCommon(r8);
if ((opcode == kThumbPush) && (lir->use_mask & r8Mask)) {
lir->use_mask &= ~r8Mask;
lir->use_mask |= ENCODE_ARM_REG_LR;
} else if ((opcode == kThumbPop) && (lir->def_mask & r8Mask)) {
lir->def_mask &= ~r8Mask;
lir->def_mask |= ENCODE_ARM_REG_PC;
}
}
if (flags & REG_DEF_LR) {
lir->def_mask |= ENCODE_ARM_REG_LR;
}
}
ArmConditionCode ArmMir2Lir::ArmConditionEncoding(ConditionCode ccode) {
ArmConditionCode res;
switch (ccode) {
case kCondEq: res = kArmCondEq; break;
case kCondNe: res = kArmCondNe; break;
case kCondCs: res = kArmCondCs; break;
case kCondCc: res = kArmCondCc; break;
case kCondMi: res = kArmCondMi; break;
case kCondPl: res = kArmCondPl; break;
case kCondVs: res = kArmCondVs; break;
case kCondVc: res = kArmCondVc; break;
case kCondHi: res = kArmCondHi; break;
case kCondLs: res = kArmCondLs; break;
case kCondGe: res = kArmCondGe; break;
case kCondLt: res = kArmCondLt; break;
case kCondGt: res = kArmCondGt; break;
case kCondLe: res = kArmCondLe; break;
case kCondAl: res = kArmCondAl; break;
case kCondNv: res = kArmCondNv; break;
default:
LOG(FATAL) << "Bad condition code " << ccode;
res = static_cast<ArmConditionCode>(0); // Quiet gcc
}
return res;
}
static const char* core_reg_names[16] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"rSELF",
"r10",
"r11",
"r12",
"sp",
"lr",
"pc",
};
static const char* shift_names[4] = {
"lsl",
"lsr",
"asr",
"ror"};
/* Decode and print a ARM register name */
static char* DecodeRegList(int opcode, int vector, char* buf) {
int i;
bool printed = false;
buf[0] = 0;
for (i = 0; i < 16; i++, vector >>= 1) {
if (vector & 0x1) {
int reg_id = i;
if (opcode == kThumbPush && i == 8) {
reg_id = r14lr;
} else if (opcode == kThumbPop && i == 8) {
reg_id = r15pc;
}
if (printed) {
sprintf(buf + strlen(buf), ", r%d", reg_id);
} else {
printed = true;
sprintf(buf, "r%d", reg_id);
}
}
}
return buf;
}
static char* DecodeFPCSRegList(int count, int base, char* buf) {
sprintf(buf, "s%d", base);
for (int i = 1; i < count; i++) {
sprintf(buf + strlen(buf), ", s%d", base + i);
}
return buf;
}
static int ExpandImmediate(int value) {
int mode = (value & 0xf00) >> 8;
uint32_t bits = value & 0xff;
switch (mode) {
case 0:
return bits;
case 1:
return (bits << 16) | bits;
case 2:
return (bits << 24) | (bits << 8);
case 3:
return (bits << 24) | (bits << 16) | (bits << 8) | bits;
default:
break;
}
bits = (bits | 0x80) << 24;
return bits >> (((value & 0xf80) >> 7) - 8);
}
const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
"hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string ArmMir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
std::string buf;
int i;
const char* fmt_end = &fmt[strlen(fmt)];
char tbuf[256];
const char* name;
char nc;
while (fmt < fmt_end) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmt_end);
nc = *fmt++;
if (nc == '!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmt_end);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'H':
if (operand != 0) {
sprintf(tbuf, ", %s %d", shift_names[operand & 0x3], operand >> 2);
} else {
strcpy(tbuf, "");
}
break;
case 'B':
switch (operand) {
case kSY:
name = "sy";
break;
case kST:
name = "st";
break;
case kISH:
name = "ish";
break;
case kISHST:
name = "ishst";
break;
case kNSH:
name = "nsh";
break;
case kNSHST:
name = "shst";
break;
default:
name = "DecodeError2";
break;
}
strcpy(tbuf, name);
break;
case 'b':
strcpy(tbuf, "0000");
for (i = 3; i >= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 'n':
operand = ~ExpandImmediate(operand);
sprintf(tbuf, "%d [%#x]", operand, operand);
break;
case 'm':
operand = ExpandImmediate(operand);
sprintf(tbuf, "%d [%#x]", operand, operand);
break;
case 's':
sprintf(tbuf, "s%d", operand & ARM_FP_REG_MASK);
break;
case 'S':
sprintf(tbuf, "d%d", (operand & ARM_FP_REG_MASK) >> 1);
break;
case 'h':
sprintf(tbuf, "%04x", operand);
break;
case 'M':
case 'd':
sprintf(tbuf, "%d", operand);
break;
case 'C':
DCHECK_LT(operand, static_cast<int>(
sizeof(core_reg_names)/sizeof(core_reg_names[0])));
sprintf(tbuf, "%s", core_reg_names[operand]);
break;
case 'E':
sprintf(tbuf, "%d", operand*4);
break;
case 'F':
sprintf(tbuf, "%d", operand*2);
break;
case 'c':
strcpy(tbuf, cc_names[operand]);
break;
case 't':
sprintf(tbuf, "0x%08x (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 +
(operand << 1),
lir->target);
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) &
~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) &
0xfffffffc;
sprintf(tbuf, "%p", reinterpret_cast<void *>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'R':
DecodeRegList(lir->opcode, operand, tbuf);
break;
case 'P':
DecodeFPCSRegList(operand, 16, tbuf);
break;
case 'Q':
DecodeFPCSRegList(operand, 0, tbuf);
break;
default:
strcpy(tbuf, "DecodeError1");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
void ArmMir2Lir::DumpResourceMask(LIR* arm_lir, uint64_t mask, const char* prefix) {
char buf[256];
buf[0] = 0;
if (mask == ENCODE_ALL) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kArmRegEnd; i++) {
if (mask & (1ULL << i)) {
sprintf(num, "%d ", i);
strcat(buf, num);
}
}
if (mask & ENCODE_CCODE) {
strcat(buf, "cc ");
}
if (mask & ENCODE_FP_STATUS) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (arm_lir && (mask & ENCODE_DALVIK_REG)) {
sprintf(buf + strlen(buf), "dr%d%s", arm_lir->alias_info & 0xffff,
(arm_lir->alias_info & 0x80000000) ? "(+1)" : "");
}
if (mask & ENCODE_LITERAL) {
strcat(buf, "lit ");
}
if (mask & ENCODE_HEAP_REF) {
strcat(buf, "heap ");
}
if (mask & ENCODE_MUST_NOT_ALIAS) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
bool ArmMir2Lir::IsUnconditionalBranch(LIR* lir) {
return ((lir->opcode == kThumbBUncond) || (lir->opcode == kThumb2BUncond));
}
ArmMir2Lir::ArmMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena) {
// Sanity check - make sure encoding map lines up.
for (int i = 0; i < kArmLast; i++) {
if (ArmMir2Lir::EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << ArmMir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(ArmMir2Lir::EncodingMap[i].opcode);
}
}
}
Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new ArmMir2Lir(cu, mir_graph, arena);
}
/*
* Alloc a pair of core registers, or a double. Low reg in low byte,
* high reg in next byte.
*/
int ArmMir2Lir::AllocTypedTempPair(bool fp_hint, int reg_class) {
int high_reg;
int low_reg;
int res = 0;
if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
low_reg = AllocTempDouble();
high_reg = low_reg + 1;
} else {
low_reg = AllocTemp();
high_reg = AllocTemp();
}
res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
return res;
}
int ArmMir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg))
return AllocTempFloat();
return AllocTemp();
}
void ArmMir2Lir::CompilerInitializeRegAlloc() {
int num_regs = sizeof(core_regs)/sizeof(*core_regs);
int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
int num_temps = sizeof(core_temps)/sizeof(*core_temps);
int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
reg_pool_ = static_cast<RegisterPool*>(arena_->NewMem(sizeof(*reg_pool_), true,
ArenaAllocator::kAllocRegAlloc));
reg_pool_->num_core_regs = num_regs;
reg_pool_->core_regs = reinterpret_cast<RegisterInfo*>
(arena_->NewMem(num_regs * sizeof(*reg_pool_->core_regs), true,
ArenaAllocator::kAllocRegAlloc));
reg_pool_->num_fp_regs = num_fp_regs;
reg_pool_->FPRegs = static_cast<RegisterInfo*>
(arena_->NewMem(num_fp_regs * sizeof(*reg_pool_->FPRegs), true,
ArenaAllocator::kAllocRegAlloc));
CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
// Keep special registers from being allocated
for (int i = 0; i < num_reserved; i++) {
if (NO_SUSPEND && (ReservedRegs[i] == rARM_SUSPEND)) {
// To measure cost of suspend check
continue;
}
MarkInUse(ReservedRegs[i]);
}
// Mark temp regs - all others not in use can be used for promotion
for (int i = 0; i < num_temps; i++) {
MarkTemp(core_temps[i]);
}
for (int i = 0; i < num_fp_temps; i++) {
MarkTemp(fp_temps[i]);
}
// Start allocation at r2 in an attempt to avoid clobbering return values
reg_pool_->next_core_reg = r2;
}
void ArmMir2Lir::FreeRegLocTemps(RegLocation rl_keep,
RegLocation rl_free) {
if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
(rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
// No overlap, free both
FreeTemp(rl_free.low_reg);
FreeTemp(rl_free.high_reg);
}
}
/*
* TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void ArmMir2Lir::AdjustSpillMask() {
core_spill_mask_ |= (1 << rARM_LR);
num_core_spills_++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void ArmMir2Lir::MarkPreservedSingle(int v_reg, int reg) {
DCHECK_GE(reg, ARM_FP_REG_MASK + ARM_FP_CALLEE_SAVE_BASE);
reg = (reg & ARM_FP_REG_MASK) - ARM_FP_CALLEE_SAVE_BASE;
// Ensure fp_vmap_table is large enough
int table_size = fp_vmap_table_.size();
for (int i = table_size; i < (reg + 1); i++) {
fp_vmap_table_.push_back(INVALID_VREG);
}
// Add the current mapping
fp_vmap_table_[reg] = v_reg;
// Size of fp_vmap_table is high-water mark, use to set mask
num_fp_spills_ = fp_vmap_table_.size();
fp_spill_mask_ = ((1 << num_fp_spills_) - 1) << ARM_FP_CALLEE_SAVE_BASE;
}
void ArmMir2Lir::FlushRegWide(int reg1, int reg2) {
RegisterInfo* info1 = GetRegInfo(reg1);
RegisterInfo* info2 = GetRegInfo(reg2);
DCHECK(info1 && info2 && info1->pair && info2->pair &&
(info1->partner == info2->reg) &&
(info2->partner == info1->reg));
if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
if (!(info1->is_temp && info2->is_temp)) {
/* Should not happen. If it does, there's a problem in eval_loc */
LOG(FATAL) << "Long half-temp, half-promoted";
}
info1->dirty = false;
info2->dirty = false;
if (mir_graph_->SRegToVReg(info2->s_reg) <
mir_graph_->SRegToVReg(info1->s_reg))
info1 = info2;
int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
StoreBaseDispWide(rARM_SP, VRegOffset(v_reg), info1->reg, info1->partner);
}
}
void ArmMir2Lir::FlushReg(int reg) {
RegisterInfo* info = GetRegInfo(reg);
if (info->live && info->dirty) {
info->dirty = false;
int v_reg = mir_graph_->SRegToVReg(info->s_reg);
StoreBaseDisp(rARM_SP, VRegOffset(v_reg), reg, kWord);
}
}
/* Give access to the target-dependent FP register encoding to common code */
bool ArmMir2Lir::IsFpReg(int reg) {
return ARM_FPREG(reg);
}
/* Clobber all regs that might be used by an external C call */
void ArmMir2Lir::ClobberCalleeSave() {
Clobber(r0);
Clobber(r1);
Clobber(r2);
Clobber(r3);
Clobber(r12);
Clobber(r14lr);
Clobber(fr0);
Clobber(fr1);
Clobber(fr2);
Clobber(fr3);
Clobber(fr4);
Clobber(fr5);
Clobber(fr6);
Clobber(fr7);
Clobber(fr8);
Clobber(fr9);
Clobber(fr10);
Clobber(fr11);
Clobber(fr12);
Clobber(fr13);
Clobber(fr14);
Clobber(fr15);
}
RegLocation ArmMir2Lir::GetReturnWideAlt() {
RegLocation res = LocCReturnWide();
res.low_reg = r2;
res.high_reg = r3;
Clobber(r2);
Clobber(r3);
MarkInUse(r2);
MarkInUse(r3);
MarkPair(res.low_reg, res.high_reg);
return res;
}
RegLocation ArmMir2Lir::GetReturnAlt() {
RegLocation res = LocCReturn();
res.low_reg = r1;
Clobber(r1);
MarkInUse(r1);
return res;
}
ArmMir2Lir::RegisterInfo* ArmMir2Lir::GetRegInfo(int reg) {
return ARM_FPREG(reg) ? &reg_pool_->FPRegs[reg & ARM_FP_REG_MASK]
: &reg_pool_->core_regs[reg];
}
/* To be used when explicitly managing register use */
void ArmMir2Lir::LockCallTemps() {
LockTemp(r0);
LockTemp(r1);
LockTemp(r2);
LockTemp(r3);
}
/* To be used when explicitly managing register use */
void ArmMir2Lir::FreeCallTemps() {
FreeTemp(r0);
FreeTemp(r1);
FreeTemp(r2);
FreeTemp(r3);
}
int ArmMir2Lir::LoadHelper(int offset) {
LoadWordDisp(rARM_SELF, offset, rARM_LR);
return rARM_LR;
}
uint64_t ArmMir2Lir::GetTargetInstFlags(int opcode) {
return ArmMir2Lir::EncodingMap[opcode].flags;
}
const char* ArmMir2Lir::GetTargetInstName(int opcode) {
return ArmMir2Lir::EncodingMap[opcode].name;
}
const char* ArmMir2Lir::GetTargetInstFmt(int opcode) {
return ArmMir2Lir::EncodingMap[opcode].fmt;
}
} // namespace art