blob: edd458d3ba3c7b0edca1864b853329372f34f341 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_SRC_MUTEX_H_
#define ART_SRC_MUTEX_H_
#include <pthread.h>
#include <stdint.h>
#include <iosfwd>
#include <string>
#include "globals.h"
#include "gtest/gtest.h"
#include "logging.h"
#include "macros.h"
// Currently Darwin doesn't support locks with timeouts.
#if !defined(__APPLE__)
#define HAVE_TIMED_RWLOCK 1
#else
#define HAVE_TIMED_RWLOCK 0
#endif
namespace art {
class LOCKABLE Mutex;
class LOCKABLE ReaderWriterMutex;
// MutexLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
// partial ordering and thereby cause deadlock situations to fail checks.
//
// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
enum MutexLevel {
kLoggingLock = 0,
kUnexpectedSignalLock = 1,
kThreadSuspendCountLock = 2,
kAbortLock = 3,
kDefaultMutexLevel = 4,
kLoadLibraryLock = 5,
kClassLinkerClassesLock = 6,
kThreadListLock = 7,
kHeapBitmapLock = 8,
kZygoteCreationLock = 9,
kMonitorLock = 10,
kMutatorLock = 11,
kMaxMutexLevel = kMutatorLock,
};
std::ostream& operator<<(std::ostream& os, const MutexLevel& rhs);
// Global mutexes corresponding to the levels above.
class GlobalSynchronization {
public:
static void Init();
// The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
// mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
// a share on the mutator_lock_. The garbage collector may also execute with shared access but
// at times requires exclusive access to the heap (not to be confused with the heap meta-data
// guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
// the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
// to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
// variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
// the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
// chance to acquire the lock.
//
// Thread suspension:
// Shared users | Exclusive user
// (holding mutator lock and in kRunnable state) | .. running ..
// .. running .. | Request thread suspension by:
// .. running .. | - acquiring thread_suspend_count_lock_
// .. running .. | - incrementing Thread::suspend_count_ on
// .. running .. | all mutator threads
// .. running .. | - releasing thread_suspend_count_lock_
// .. running .. | Block trying to acquire exclusive mutator lock
// Poll Thread::suspend_count_ and enter full | .. blocked ..
// suspend code. | .. blocked ..
// Change state to kSuspended | .. blocked ..
// x: Release share on mutator_lock_ | Carry out exclusive access
// Acquire thread_suspend_count_lock_ | .. exclusive ..
// while Thread::suspend_count_ > 0 | .. exclusive ..
// - wait on Thread::resume_cond_ | .. exclusive ..
// (releases thread_suspend_count_lock_) | .. exclusive ..
// .. waiting .. | Release mutator_lock_
// .. waiting .. | Request thread resumption by:
// .. waiting .. | - acquiring thread_suspend_count_lock_
// .. waiting .. | - decrementing Thread::suspend_count_ on
// .. waiting .. | all mutator threads
// .. waiting .. | - notifying on Thread::resume_cond_
// - re-acquire thread_suspend_count_lock_ | - releasing thread_suspend_count_lock_
// Release thread_suspend_count_lock_ | .. running ..
// Acquire share on mutator_lock_ | .. running ..
// - This could block but the thread still | .. running ..
// has a state of kSuspended and so this | .. running ..
// isn't an issue. | .. running ..
// Acquire thread_suspend_count_lock_ | .. running ..
// - we poll here as we're transitioning into | .. running ..
// kRunnable and an individual thread suspend | .. running ..
// request (e.g for debugging) won't try | .. running ..
// to acquire the mutator lock (which would | .. running ..
// block as we hold the mutator lock). This | .. running ..
// poll ensures that if the suspender thought | .. running ..
// we were suspended by incrementing our | .. running ..
// Thread::suspend_count_ and then reading | .. running ..
// our state we go back to waiting on | .. running ..
// Thread::resume_cond_. | .. running ..
// can_go_runnable = Thread::suspend_count_ == 0 | .. running ..
// Release thread_suspend_count_lock_ | .. running ..
// if can_go_runnable | .. running ..
// Change state to kRunnable | .. running ..
// else | .. running ..
// Goto x | .. running ..
// .. running .. | .. running ..
static ReaderWriterMutex* mutator_lock_;
// Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
// The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
// attaching and detaching.
static Mutex* thread_list_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
// Guards lists of classes within the class linker.
static Mutex* classlinker_classes_lock_ ACQUIRED_AFTER(thread_list_lock_);
// When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
// doesn't try to hold a higher level Mutex.
#define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(classlinker_classes_lock_)
// Have an exclusive aborting thread.
static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
// Allow mutual exclusion when manipulating Thread::suspend_count_.
// TODO: Does the trade-off of a per-thread lock make sense?
static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
// One unexpected signal at a time lock.
static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
// Have an exclusive logging thread.
static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
};
// Base class for all Mutex implementations
class BaseMutex {
public:
const std::string& GetName() const {
return name_;
}
virtual bool IsMutex() const { return false; }
virtual bool IsReaderWriterMutex() const { return false; }
protected:
friend class ConditionVariable;
BaseMutex(const char* name, MutexLevel level);
virtual ~BaseMutex() {}
void RegisterAsLockedWithCurrentThread();
void RegisterAsUnlockedWithCurrentThread();
void CheckSafeToWait();
const MutexLevel level_; // Support for lock hierarchy.
const std::string name_;
};
// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
// exclusive access to what it guards. A Mutex can be in one of two states:
// - Free - not owned by any thread,
// - Exclusive - owned by a single thread.
//
// The effect of locking and unlocking operations on the state is:
// State | ExclusiveLock | ExclusiveUnlock
// -------------------------------------------
// Free | Exclusive | error
// Exclusive | Block* | Free
// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
// an error. Being non-reentrant simplifies Waiting on ConditionVariables.
class LOCKABLE Mutex : public BaseMutex {
public:
explicit Mutex(const char* name, MutexLevel level = kDefaultMutexLevel, bool recursive = false);
~Mutex();
virtual bool IsMutex() const { return true; }
// Block until mutex is free then acquire exclusive access.
void ExclusiveLock() EXCLUSIVE_LOCK_FUNCTION();
void Lock() EXCLUSIVE_LOCK_FUNCTION() { ExclusiveLock(); }
// Returns true if acquires exclusive access, false otherwise.
bool ExclusiveTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(); }
// Release exclusive access.
void ExclusiveUnlock() UNLOCK_FUNCTION();
void Unlock() UNLOCK_FUNCTION() { ExclusiveUnlock(); }
// Is the current thread the exclusive holder of the Mutex.
bool IsExclusiveHeld() const;
// Assert that the Mutex is exclusively held by the current thread.
void AssertExclusiveHeld() {
if (kIsDebugBuild) {
CHECK(IsExclusiveHeld());
}
}
void AssertHeld() { AssertExclusiveHeld(); }
// Assert that the Mutex is not held by the current thread.
void AssertNotHeldExclusive() {
if (kIsDebugBuild) {
CHECK(!IsExclusiveHeld());
}
}
void AssertNotHeld() { AssertNotHeldExclusive(); }
// Id associated with exclusive owner.
uint64_t GetExclusiveOwnerTid() const;
// Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
unsigned int GetDepth() const {
return recursion_count_;
}
private:
pthread_mutex_t mutex_;
const bool recursive_; // Can the lock be recursively held?
unsigned int recursion_count_;
friend class ConditionVariable;
friend class MutexTester;
DISALLOW_COPY_AND_ASSIGN(Mutex);
};
// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
// condition variable. A ReaderWriterMutex can be in one of three states:
// - Free - not owned by any thread,
// - Exclusive - owned by a single thread,
// - Shared(n) - shared amongst n threads.
//
// The effect of locking and unlocking operations on the state is:
//
// State | ExclusiveLock | ExclusiveUnlock | SharedLock | SharedUnlock
// ----------------------------------------------------------------------------
// Free | Exclusive | error | SharedLock(1) | error
// Exclusive | Block | Free | Block | error
// Shared(n) | Block | error | SharedLock(n+1)* | Shared(n-1) or Free
// * for large values of n the SharedLock may block.
class LOCKABLE ReaderWriterMutex : public BaseMutex {
public:
explicit ReaderWriterMutex(const char* name, MutexLevel level = kDefaultMutexLevel);
~ReaderWriterMutex();
virtual bool IsReaderWriterMutex() const { return true; }
// Block until ReaderWriterMutex is free then acquire exclusive access.
void ExclusiveLock() EXCLUSIVE_LOCK_FUNCTION();
void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { ExclusiveLock(); }
// Release exclusive access.
void ExclusiveUnlock() UNLOCK_FUNCTION();
void WriterUnlock() UNLOCK_FUNCTION() { ExclusiveUnlock(); }
// Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
// or false if timeout is reached.
#if HAVE_TIMED_RWLOCK
bool ExclusiveLockWithTimeout(const timespec& abs_timeout) EXCLUSIVE_TRYLOCK_FUNCTION(true);
#endif
// Block until ReaderWriterMutex is shared or free then acquire a share on the access.
void SharedLock() SHARED_LOCK_FUNCTION();
void ReaderLock() SHARED_LOCK_FUNCTION() { SharedLock(); }
// Try to acquire share of ReaderWriterMutex.
bool SharedTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true);
// Release a share of the access.
void SharedUnlock() UNLOCK_FUNCTION();
void ReaderUnlock() UNLOCK_FUNCTION() { SharedUnlock(); }
// Is the current thread the exclusive holder of the ReaderWriterMutex.
bool IsExclusiveHeld() const;
// Assert the current thread has exclusive access to the ReaderWriterMutex.
void AssertExclusiveHeld() {
if (kIsDebugBuild) {
CHECK(IsExclusiveHeld());
}
}
void AssertWriterHeld() { AssertExclusiveHeld(); }
// Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
void AssertNotExclusiveHeld() {
if (kIsDebugBuild) {
CHECK(!IsExclusiveHeld());
}
}
void AssertNotWriterHeld() { AssertNotExclusiveHeld(); }
// Is the current thread a shared holder of the ReaderWriterMutex.
bool IsSharedHeld() const;
// Assert the current thread has shared access to the ReaderWriterMutex.
void AssertSharedHeld() {
if (kIsDebugBuild) {
CHECK(IsSharedHeld());
}
}
void AssertReaderHeld() { AssertSharedHeld(); }
// Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
// mode.
void AssertNotHeld() {
if (kIsDebugBuild) {
CHECK(!IsSharedHeld());
}
}
// Id associated with exclusive owner.
uint64_t GetExclusiveOwnerTid() const;
private:
pthread_rwlock_t rwlock_;
friend class MutexTester;
DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
};
// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
// (Signal) or all at once (Broadcast).
class ConditionVariable {
public:
explicit ConditionVariable(const std::string& name);
~ConditionVariable();
void Broadcast();
void Signal();
void Wait(Mutex& mutex);
void TimedWait(Mutex& mutex, const timespec& ts);
private:
pthread_cond_t cond_;
std::string name_;
DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
};
// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
// upon destruction.
class SCOPED_LOCKABLE MutexLock {
public:
explicit MutexLock(Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
mu_.ExclusiveLock();
}
~MutexLock() UNLOCK_FUNCTION() {
mu_.ExclusiveUnlock();
}
private:
Mutex& mu_;
DISALLOW_COPY_AND_ASSIGN(MutexLock);
};
// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
// construction and releases it upon destruction.
class SCOPED_LOCKABLE ReaderMutexLock {
public:
explicit ReaderMutexLock(ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
mu_.SharedLock();
}
~ReaderMutexLock() UNLOCK_FUNCTION() {
mu_.SharedUnlock();
}
private:
ReaderWriterMutex& mu_;
DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
};
// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
// "ReaderMutexLock mu(lock)".
#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
// construction and releases it upon destruction.
class SCOPED_LOCKABLE WriterMutexLock {
public:
explicit WriterMutexLock(ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
mu_.ExclusiveLock();
}
~WriterMutexLock() UNLOCK_FUNCTION() {
mu_.ExclusiveUnlock();
}
private:
ReaderWriterMutex& mu_;
DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
};
// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
// "WriterMutexLock mu(lock)".
#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
// Scoped unlocker/locker for a ReaderWriterMutex that releases read access to mu upon
// construction and acquires it again upon destruction.
class ReaderMutexUnlock {
public:
explicit ReaderMutexUnlock(ReaderWriterMutex& mu) UNLOCK_FUNCTION(mu) : mu_(mu) {
mu_.SharedUnlock();
}
~ReaderMutexUnlock() SHARED_LOCK_FUNCTION(mu_) {
mu_.SharedLock();
}
private:
ReaderWriterMutex& mu_;
DISALLOW_COPY_AND_ASSIGN(ReaderMutexUnlock);
};
// Catch bug where variable name is omitted. "ReaderMutexUnlock (lock);" instead of
// "ReaderMutexUnlock mu(lock)".
#define ReaderMutexUnlock(x) \
COMPILE_ASSERT(0, reader_mutex_unlock_declaration_missing_variable_name)
} // namespace art
#endif // ART_SRC_MUTEX_H_