blob: 460e81b52cf5f3b14b19092b80b099bb51184f61 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_arm.h"
#include "logging.h"
#include "oat/runtime/oat_support_entrypoints.h"
#include "offsets.h"
#include "thread.h"
#include "utils.h"
namespace art {
namespace arm {
// Instruction encoding bits.
enum {
H = 1 << 5, // halfword (or byte)
L = 1 << 20, // load (or store)
S = 1 << 20, // set condition code (or leave unchanged)
W = 1 << 21, // writeback base register (or leave unchanged)
A = 1 << 21, // accumulate in multiply instruction (or not)
B = 1 << 22, // unsigned byte (or word)
N = 1 << 22, // long (or short)
U = 1 << 23, // positive (or negative) offset/index
P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
I = 1 << 25, // immediate shifter operand (or not)
B0 = 1,
B1 = 1 << 1,
B2 = 1 << 2,
B3 = 1 << 3,
B4 = 1 << 4,
B5 = 1 << 5,
B6 = 1 << 6,
B7 = 1 << 7,
B8 = 1 << 8,
B9 = 1 << 9,
B10 = 1 << 10,
B11 = 1 << 11,
B12 = 1 << 12,
B16 = 1 << 16,
B17 = 1 << 17,
B18 = 1 << 18,
B19 = 1 << 19,
B20 = 1 << 20,
B21 = 1 << 21,
B22 = 1 << 22,
B23 = 1 << 23,
B24 = 1 << 24,
B25 = 1 << 25,
B26 = 1 << 26,
B27 = 1 << 27,
// Instruction bit masks.
RdMask = 15 << 12, // in str instruction
CondMask = 15 << 28,
CoprocessorMask = 15 << 8,
OpCodeMask = 15 << 21, // in data-processing instructions
Imm24Mask = (1 << 24) - 1,
Off12Mask = (1 << 12) - 1,
// ldrex/strex register field encodings.
kLdExRnShift = 16,
kLdExRtShift = 12,
kStrExRnShift = 16,
kStrExRdShift = 12,
kStrExRtShift = 0,
};
static const char* kRegisterNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10",
"fp", "ip", "sp", "lr", "pc"
};
std::ostream& operator<<(std::ostream& os, const Register& rhs) {
if (rhs >= R0 && rhs <= PC) {
os << kRegisterNames[rhs];
} else {
os << "Register[" << static_cast<int>(rhs) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const SRegister& rhs) {
if (rhs >= S0 && rhs < kNumberOfSRegisters) {
os << "s" << static_cast<int>(rhs);
} else {
os << "SRegister[" << static_cast<int>(rhs) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const DRegister& rhs) {
if (rhs >= D0 && rhs < kNumberOfDRegisters) {
os << "d" << static_cast<int>(rhs);
} else {
os << "DRegister[" << static_cast<int>(rhs) << "]";
}
return os;
}
static const char* kConditionNames[] = {
"EQ", "NE", "CS", "CC", "MI", "PL", "VS", "VC", "HI", "LS", "GE", "LT", "GT",
"LE", "AL",
};
std::ostream& operator<<(std::ostream& os, const Condition& rhs) {
if (rhs >= EQ && rhs <= AL) {
os << kConditionNames[rhs];
} else {
os << "Condition[" << static_cast<int>(rhs) << "]";
}
return os;
}
void ArmAssembler::Emit(int32_t value) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<int32_t>(value);
}
void ArmAssembler::EmitType01(Condition cond,
int type,
Opcode opcode,
int set_cc,
Register rn,
Register rd,
ShifterOperand so) {
CHECK_NE(rd, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
type << kTypeShift |
static_cast<int32_t>(opcode) << kOpcodeShift |
set_cc << kSShift |
static_cast<int32_t>(rn) << kRnShift |
static_cast<int32_t>(rd) << kRdShift |
so.encoding();
Emit(encoding);
}
void ArmAssembler::EmitType5(Condition cond, int offset, bool link) {
CHECK_NE(cond, kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
5 << kTypeShift |
(link ? 1 : 0) << kLinkShift;
Emit(ArmAssembler::EncodeBranchOffset(offset, encoding));
}
void ArmAssembler::EmitMemOp(Condition cond,
bool load,
bool byte,
Register rd,
Address ad) {
CHECK_NE(rd, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B26 |
(load ? L : 0) |
(byte ? B : 0) |
(static_cast<int32_t>(rd) << kRdShift) |
ad.encoding();
Emit(encoding);
}
void ArmAssembler::EmitMemOpAddressMode3(Condition cond,
int32_t mode,
Register rd,
Address ad) {
CHECK_NE(rd, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B22 |
mode |
(static_cast<int32_t>(rd) << kRdShift) |
ad.encoding3();
Emit(encoding);
}
void ArmAssembler::EmitMultiMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
RegList regs) {
CHECK_NE(base, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 |
am |
(load ? L : 0) |
(static_cast<int32_t>(base) << kRnShift) |
regs;
Emit(encoding);
}
void ArmAssembler::EmitShiftImmediate(Condition cond,
Shift opcode,
Register rd,
Register rm,
ShifterOperand so) {
CHECK_NE(cond, kNoCondition);
CHECK_EQ(so.type(), 1U);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
static_cast<int32_t>(rd) << kRdShift |
so.encoding() << kShiftImmShift |
static_cast<int32_t>(opcode) << kShiftShift |
static_cast<int32_t>(rm);
Emit(encoding);
}
void ArmAssembler::EmitShiftRegister(Condition cond,
Shift opcode,
Register rd,
Register rm,
ShifterOperand so) {
CHECK_NE(cond, kNoCondition);
CHECK_EQ(so.type(), 0U);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
static_cast<int32_t>(rd) << kRdShift |
so.encoding() << kShiftRegisterShift |
static_cast<int32_t>(opcode) << kShiftShift |
B4 |
static_cast<int32_t>(rm);
Emit(encoding);
}
void ArmAssembler::EmitBranch(Condition cond, Label* label, bool link) {
if (label->IsBound()) {
EmitType5(cond, label->Position() - buffer_.Size(), link);
} else {
int position = buffer_.Size();
// Use the offset field of the branch instruction for linking the sites.
EmitType5(cond, label->position_, link);
label->LinkTo(position);
}
}
void ArmAssembler::and_(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), AND, 0, rn, rd, so);
}
void ArmAssembler::eor(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), EOR, 0, rn, rd, so);
}
void ArmAssembler::sub(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), SUB, 0, rn, rd, so);
}
void ArmAssembler::rsb(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), RSB, 0, rn, rd, so);
}
void ArmAssembler::rsbs(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), RSB, 1, rn, rd, so);
}
void ArmAssembler::add(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), ADD, 0, rn, rd, so);
}
void ArmAssembler::adds(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), ADD, 1, rn, rd, so);
}
void ArmAssembler::subs(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), SUB, 1, rn, rd, so);
}
void ArmAssembler::adc(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), ADC, 0, rn, rd, so);
}
void ArmAssembler::sbc(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), SBC, 0, rn, rd, so);
}
void ArmAssembler::rsc(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), RSC, 0, rn, rd, so);
}
void ArmAssembler::tst(Register rn, ShifterOperand so, Condition cond) {
CHECK_NE(rn, PC); // Reserve tst pc instruction for exception handler marker.
EmitType01(cond, so.type(), TST, 1, rn, R0, so);
}
void ArmAssembler::teq(Register rn, ShifterOperand so, Condition cond) {
CHECK_NE(rn, PC); // Reserve teq pc instruction for exception handler marker.
EmitType01(cond, so.type(), TEQ, 1, rn, R0, so);
}
void ArmAssembler::cmp(Register rn, ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), CMP, 1, rn, R0, so);
}
void ArmAssembler::cmn(Register rn, ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), CMN, 1, rn, R0, so);
}
void ArmAssembler::orr(Register rd, Register rn,
ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), ORR, 0, rn, rd, so);
}
void ArmAssembler::orrs(Register rd, Register rn,
ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), ORR, 1, rn, rd, so);
}
void ArmAssembler::mov(Register rd, ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), MOV, 0, R0, rd, so);
}
void ArmAssembler::movs(Register rd, ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), MOV, 1, R0, rd, so);
}
void ArmAssembler::bic(Register rd, Register rn, ShifterOperand so,
Condition cond) {
EmitType01(cond, so.type(), BIC, 0, rn, rd, so);
}
void ArmAssembler::mvn(Register rd, ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), MVN, 0, R0, rd, so);
}
void ArmAssembler::mvns(Register rd, ShifterOperand so, Condition cond) {
EmitType01(cond, so.type(), MVN, 1, R0, rd, so);
}
void ArmAssembler::clz(Register rd, Register rm, Condition cond) {
CHECK_NE(rd, kNoRegister);
CHECK_NE(rm, kNoRegister);
CHECK_NE(cond, kNoCondition);
CHECK_NE(rd, PC);
CHECK_NE(rm, PC);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 | B22 | B21 | (0xf << 16) |
(static_cast<int32_t>(rd) << kRdShift) |
(0xf << 8) | B4 | static_cast<int32_t>(rm);
Emit(encoding);
}
void ArmAssembler::movw(Register rd, uint16_t imm16, Condition cond) {
CHECK_NE(cond, kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
B25 | B24 | ((imm16 >> 12) << 16) |
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
Emit(encoding);
}
void ArmAssembler::movt(Register rd, uint16_t imm16, Condition cond) {
CHECK_NE(cond, kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
B25 | B24 | B22 | ((imm16 >> 12) << 16) |
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
Emit(encoding);
}
void ArmAssembler::EmitMulOp(Condition cond, int32_t opcode,
Register rd, Register rn,
Register rm, Register rs) {
CHECK_NE(rd, kNoRegister);
CHECK_NE(rn, kNoRegister);
CHECK_NE(rm, kNoRegister);
CHECK_NE(rs, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = opcode |
(static_cast<int32_t>(cond) << kConditionShift) |
(static_cast<int32_t>(rn) << kRnShift) |
(static_cast<int32_t>(rd) << kRdShift) |
(static_cast<int32_t>(rs) << kRsShift) |
B7 | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
void ArmAssembler::mul(Register rd, Register rn, Register rm, Condition cond) {
// Assembler registers rd, rn, rm are encoded as rn, rm, rs.
EmitMulOp(cond, 0, R0, rd, rn, rm);
}
void ArmAssembler::mla(Register rd, Register rn, Register rm, Register ra,
Condition cond) {
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B21, ra, rd, rn, rm);
}
void ArmAssembler::mls(Register rd, Register rn, Register rm, Register ra,
Condition cond) {
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B22 | B21, ra, rd, rn, rm);
}
void ArmAssembler::umull(Register rd_lo, Register rd_hi, Register rn,
Register rm, Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm);
}
void ArmAssembler::ldr(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, false, rd, ad);
}
void ArmAssembler::str(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, false, rd, ad);
}
void ArmAssembler::ldrb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, true, rd, ad);
}
void ArmAssembler::strb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, true, rd, ad);
}
void ArmAssembler::ldrh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad);
}
void ArmAssembler::strh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad);
}
void ArmAssembler::ldrsb(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad);
}
void ArmAssembler::ldrsh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad);
}
void ArmAssembler::ldrd(Register rd, Address ad, Condition cond) {
CHECK_EQ(rd % 2, 0);
EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, ad);
}
void ArmAssembler::strd(Register rd, Address ad, Condition cond) {
CHECK_EQ(rd % 2, 0);
EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, ad);
}
void ArmAssembler::ldm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond) {
EmitMultiMemOp(cond, am, true, base, regs);
}
void ArmAssembler::stm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond) {
EmitMultiMemOp(cond, am, false, base, regs);
}
void ArmAssembler::ldrex(Register rt, Register rn, Condition cond) {
CHECK_NE(rn, kNoRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 |
B23 |
L |
(static_cast<int32_t>(rn) << kLdExRnShift) |
(static_cast<int32_t>(rt) << kLdExRtShift) |
B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0;
Emit(encoding);
}
void ArmAssembler::strex(Register rd,
Register rt,
Register rn,
Condition cond) {
CHECK_NE(rn, kNoRegister);
CHECK_NE(rd, kNoRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 |
B23 |
(static_cast<int32_t>(rn) << kStrExRnShift) |
(static_cast<int32_t>(rd) << kStrExRdShift) |
B11 | B10 | B9 | B8 | B7 | B4 |
(static_cast<int32_t>(rt) << kStrExRtShift);
Emit(encoding);
}
void ArmAssembler::clrex() {
int32_t encoding = (kSpecialCondition << kConditionShift) |
B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf;
Emit(encoding);
}
void ArmAssembler::nop(Condition cond) {
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B25 | B24 | B21 | (0xf << 12);
Emit(encoding);
}
void ArmAssembler::vmovsr(SRegister sn, Register rt, Condition cond) {
CHECK_NE(sn, kNoSRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rt, SP);
CHECK_NE(rt, PC);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 |
((static_cast<int32_t>(sn) >> 1)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1)*B7) | B4;
Emit(encoding);
}
void ArmAssembler::vmovrs(Register rt, SRegister sn, Condition cond) {
CHECK_NE(sn, kNoSRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rt, SP);
CHECK_NE(rt, PC);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B20 |
((static_cast<int32_t>(sn) >> 1)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1)*B7) | B4;
Emit(encoding);
}
void ArmAssembler::vmovsrr(SRegister sm, Register rt, Register rt2,
Condition cond) {
CHECK_NE(sm, kNoSRegister);
CHECK_NE(sm, S31);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rt, SP);
CHECK_NE(rt, PC);
CHECK_NE(rt2, kNoRegister);
CHECK_NE(rt2, SP);
CHECK_NE(rt2, PC);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1)*B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void ArmAssembler::vmovrrs(Register rt, Register rt2, SRegister sm,
Condition cond) {
CHECK_NE(sm, kNoSRegister);
CHECK_NE(sm, S31);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rt, SP);
CHECK_NE(rt, PC);
CHECK_NE(rt2, kNoRegister);
CHECK_NE(rt2, SP);
CHECK_NE(rt2, PC);
CHECK_NE(rt, rt2);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 | B20 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1)*B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void ArmAssembler::vmovdrr(DRegister dm, Register rt, Register rt2,
Condition cond) {
CHECK_NE(dm, kNoDRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rt, SP);
CHECK_NE(rt, PC);
CHECK_NE(rt2, kNoRegister);
CHECK_NE(rt2, SP);
CHECK_NE(rt2, PC);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void ArmAssembler::vmovrrd(Register rt, Register rt2, DRegister dm,
Condition cond) {
CHECK_NE(dm, kNoDRegister);
CHECK_NE(rt, kNoRegister);
CHECK_NE(rt, SP);
CHECK_NE(rt, PC);
CHECK_NE(rt2, kNoRegister);
CHECK_NE(rt2, SP);
CHECK_NE(rt2, PC);
CHECK_NE(rt, rt2);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 | B20 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void ArmAssembler::vldrs(SRegister sd, Address ad, Condition cond) {
CHECK_NE(sd, kNoSRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 | B20 |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sd) >> 1)*B12) |
B11 | B9 | ad.vencoding();
Emit(encoding);
}
void ArmAssembler::vstrs(SRegister sd, Address ad, Condition cond) {
CHECK_NE(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)), PC);
CHECK_NE(sd, kNoSRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sd) >> 1)*B12) |
B11 | B9 | ad.vencoding();
Emit(encoding);
}
void ArmAssembler::vldrd(DRegister dd, Address ad, Condition cond) {
CHECK_NE(dd, kNoDRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 | B20 |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
B11 | B9 | B8 | ad.vencoding();
Emit(encoding);
}
void ArmAssembler::vstrd(DRegister dd, Address ad, Condition cond) {
CHECK_NE(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)), PC);
CHECK_NE(dd, kNoDRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
B11 | B9 | B8 | ad.vencoding();
Emit(encoding);
}
void ArmAssembler::EmitVFPsss(Condition cond, int32_t opcode,
SRegister sd, SRegister sn, SRegister sm) {
CHECK_NE(sd, kNoSRegister);
CHECK_NE(sn, kNoSRegister);
CHECK_NE(sm, kNoSRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | opcode |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sn) >> 1)*B16) |
((static_cast<int32_t>(sd) >> 1)*B12) |
((static_cast<int32_t>(sn) & 1)*B7) |
((static_cast<int32_t>(sm) & 1)*B5) |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void ArmAssembler::EmitVFPddd(Condition cond, int32_t opcode,
DRegister dd, DRegister dn, DRegister dm) {
CHECK_NE(dd, kNoDRegister);
CHECK_NE(dn, kNoDRegister);
CHECK_NE(dm, kNoDRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | B8 | opcode |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dn) & 0xf)*B16) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
((static_cast<int32_t>(dn) >> 4)*B7) |
((static_cast<int32_t>(dm) >> 4)*B5) |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void ArmAssembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
}
void ArmAssembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
}
bool ArmAssembler::vmovs(SRegister sd, float s_imm, Condition cond) {
uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
if (((imm32 & ((1 << 19) - 1)) == 0) &&
((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
(((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) {
uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
((imm32 >> 19) & ((1 << 6) -1));
EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf),
sd, S0, S0);
return true;
}
return false;
}
bool ArmAssembler::vmovd(DRegister dd, double d_imm, Condition cond) {
uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
if (((imm64 & ((1LL << 48) - 1)) == 0) &&
((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
(((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) {
uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
((imm64 >> 48) & ((1 << 6) -1));
EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf),
dd, D0, D0);
return true;
}
return false;
}
void ArmAssembler::vadds(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20, sd, sn, sm);
}
void ArmAssembler::vaddd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20, dd, dn, dm);
}
void ArmAssembler::vsubs(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
}
void ArmAssembler::vsubd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
}
void ArmAssembler::vmuls(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21, sd, sn, sm);
}
void ArmAssembler::vmuld(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21, dd, dn, dm);
}
void ArmAssembler::vmlas(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, 0, sd, sn, sm);
}
void ArmAssembler::vmlad(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, 0, dd, dn, dm);
}
void ArmAssembler::vmlss(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B6, sd, sn, sm);
}
void ArmAssembler::vmlsd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B6, dd, dn, dm);
}
void ArmAssembler::vdivs(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B23, sd, sn, sm);
}
void ArmAssembler::vdivd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B23, dd, dn, dm);
}
void ArmAssembler::vabss(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
}
void ArmAssembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
}
void ArmAssembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
}
void ArmAssembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
}
void ArmAssembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
}
void ArmAssembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
}
void ArmAssembler::EmitVFPsd(Condition cond, int32_t opcode,
SRegister sd, DRegister dm) {
CHECK_NE(sd, kNoSRegister);
CHECK_NE(dm, kNoDRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | opcode |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sd) >> 1)*B12) |
((static_cast<int32_t>(dm) >> 4)*B5) |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void ArmAssembler::EmitVFPds(Condition cond, int32_t opcode,
DRegister dd, SRegister sm) {
CHECK_NE(dd, kNoDRegister);
CHECK_NE(sm, kNoSRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | opcode |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
((static_cast<int32_t>(sm) & 1)*B5) |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void ArmAssembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
}
void ArmAssembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
}
void ArmAssembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
}
void ArmAssembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
}
void ArmAssembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
}
void ArmAssembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
}
void ArmAssembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
}
void ArmAssembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
}
void ArmAssembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
}
void ArmAssembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
}
void ArmAssembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
}
void ArmAssembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
}
void ArmAssembler::vcmpsz(SRegister sd, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
}
void ArmAssembler::vcmpdz(DRegister dd, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
}
void ArmAssembler::vmstat(Condition cond) { // VMRS APSR_nzcv, FPSCR
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 |
(static_cast<int32_t>(PC)*B12) |
B11 | B9 | B4;
Emit(encoding);
}
void ArmAssembler::svc(uint32_t imm24) {
CHECK(IsUint(24, imm24)) << imm24;
int32_t encoding = (AL << kConditionShift) | B27 | B26 | B25 | B24 | imm24;
Emit(encoding);
}
void ArmAssembler::bkpt(uint16_t imm16) {
int32_t encoding = (AL << kConditionShift) | B24 | B21 |
((imm16 >> 4) << 8) | B6 | B5 | B4 | (imm16 & 0xf);
Emit(encoding);
}
void ArmAssembler::b(Label* label, Condition cond) {
EmitBranch(cond, label, false);
}
void ArmAssembler::bl(Label* label, Condition cond) {
EmitBranch(cond, label, true);
}
void ArmAssembler::blx(Register rm, Condition cond) {
CHECK_NE(rm, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 | B21 | (0xfff << 8) | B5 | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
void ArmAssembler::bx(Register rm, Condition cond) {
CHECK_NE(rm, kNoRegister);
CHECK_NE(cond, kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 | B21 | (0xfff << 8) | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
void ArmAssembler::MarkExceptionHandler(Label* label) {
EmitType01(AL, 1, TST, 1, PC, R0, ShifterOperand(0));
Label l;
b(&l);
EmitBranch(AL, label, false);
Bind(&l);
}
void ArmAssembler::Bind(Label* label) {
CHECK(!label->IsBound());
int bound_pc = buffer_.Size();
while (label->IsLinked()) {
int32_t position = label->Position();
int32_t next = buffer_.Load<int32_t>(position);
int32_t encoded = ArmAssembler::EncodeBranchOffset(bound_pc - position, next);
buffer_.Store<int32_t>(position, encoded);
label->position_ = ArmAssembler::DecodeBranchOffset(next);
}
label->BindTo(bound_pc);
}
void ArmAssembler::EncodeUint32InTstInstructions(uint32_t data) {
// TODO: Consider using movw ip, <16 bits>.
while (!IsUint(8, data)) {
tst(R0, ShifterOperand(data & 0xFF), VS);
data >>= 8;
}
tst(R0, ShifterOperand(data), MI);
}
int32_t ArmAssembler::EncodeBranchOffset(int offset, int32_t inst) {
// The offset is off by 8 due to the way the ARM CPUs read PC.
offset -= 8;
CHECK_ALIGNED(offset, 4);
CHECK(IsInt(CountOneBits(kBranchOffsetMask), offset)) << offset;
// Properly preserve only the bits supported in the instruction.
offset >>= 2;
offset &= kBranchOffsetMask;
return (inst & ~kBranchOffsetMask) | offset;
}
int ArmAssembler::DecodeBranchOffset(int32_t inst) {
// Sign-extend, left-shift by 2, then add 8.
return ((((inst & kBranchOffsetMask) << 8) >> 6) + 8);
}
void ArmAssembler::AddConstant(Register rd, int32_t value, Condition cond) {
AddConstant(rd, rd, value, cond);
}
void ArmAssembler::AddConstant(Register rd, Register rn, int32_t value,
Condition cond) {
if (value == 0) {
if (rd != rn) {
mov(rd, ShifterOperand(rn), cond);
}
return;
}
// We prefer to select the shorter code sequence rather than selecting add for
// positive values and sub for negatives ones, which would slightly improve
// the readability of generated code for some constants.
ShifterOperand shifter_op;
if (ShifterOperand::CanHold(value, &shifter_op)) {
add(rd, rn, shifter_op, cond);
} else if (ShifterOperand::CanHold(-value, &shifter_op)) {
sub(rd, rn, shifter_op, cond);
} else {
CHECK(rn != IP);
if (ShifterOperand::CanHold(~value, &shifter_op)) {
mvn(IP, shifter_op, cond);
add(rd, rn, ShifterOperand(IP), cond);
} else if (ShifterOperand::CanHold(~(-value), &shifter_op)) {
mvn(IP, shifter_op, cond);
sub(rd, rn, ShifterOperand(IP), cond);
} else {
movw(IP, Low16Bits(value), cond);
uint16_t value_high = High16Bits(value);
if (value_high != 0) {
movt(IP, value_high, cond);
}
add(rd, rn, ShifterOperand(IP), cond);
}
}
}
void ArmAssembler::AddConstantSetFlags(Register rd, Register rn, int32_t value,
Condition cond) {
ShifterOperand shifter_op;
if (ShifterOperand::CanHold(value, &shifter_op)) {
adds(rd, rn, shifter_op, cond);
} else if (ShifterOperand::CanHold(-value, &shifter_op)) {
subs(rd, rn, shifter_op, cond);
} else {
CHECK(rn != IP);
if (ShifterOperand::CanHold(~value, &shifter_op)) {
mvn(IP, shifter_op, cond);
adds(rd, rn, ShifterOperand(IP), cond);
} else if (ShifterOperand::CanHold(~(-value), &shifter_op)) {
mvn(IP, shifter_op, cond);
subs(rd, rn, ShifterOperand(IP), cond);
} else {
movw(IP, Low16Bits(value), cond);
uint16_t value_high = High16Bits(value);
if (value_high != 0) {
movt(IP, value_high, cond);
}
adds(rd, rn, ShifterOperand(IP), cond);
}
}
}
void ArmAssembler::LoadImmediate(Register rd, int32_t value, Condition cond) {
ShifterOperand shifter_op;
if (ShifterOperand::CanHold(value, &shifter_op)) {
mov(rd, shifter_op, cond);
} else if (ShifterOperand::CanHold(~value, &shifter_op)) {
mvn(rd, shifter_op, cond);
} else {
movw(rd, Low16Bits(value), cond);
uint16_t value_high = High16Bits(value);
if (value_high != 0) {
movt(rd, value_high, cond);
}
}
}
bool Address::CanHoldLoadOffset(LoadOperandType type, int offset) {
switch (type) {
case kLoadSignedByte:
case kLoadSignedHalfword:
case kLoadUnsignedHalfword:
case kLoadWordPair:
return IsAbsoluteUint(8, offset); // Addressing mode 3.
case kLoadUnsignedByte:
case kLoadWord:
return IsAbsoluteUint(12, offset); // Addressing mode 2.
case kLoadSWord:
case kLoadDWord:
return IsAbsoluteUint(10, offset); // VFP addressing mode.
default:
LOG(FATAL) << "UNREACHABLE";
return false;
}
}
bool Address::CanHoldStoreOffset(StoreOperandType type, int offset) {
switch (type) {
case kStoreHalfword:
case kStoreWordPair:
return IsAbsoluteUint(8, offset); // Addressing mode 3.
case kStoreByte:
case kStoreWord:
return IsAbsoluteUint(12, offset); // Addressing mode 2.
case kStoreSWord:
case kStoreDWord:
return IsAbsoluteUint(10, offset); // VFP addressing mode.
default:
LOG(FATAL) << "UNREACHABLE";
return false;
}
}
// Implementation note: this method must emit at most one instruction when
// Address::CanHoldLoadOffset.
void ArmAssembler::LoadFromOffset(LoadOperandType type,
Register reg,
Register base,
int32_t offset,
Condition cond) {
if (!Address::CanHoldLoadOffset(type, offset)) {
CHECK(base != IP);
LoadImmediate(IP, offset, cond);
add(IP, IP, ShifterOperand(base), cond);
base = IP;
offset = 0;
}
CHECK(Address::CanHoldLoadOffset(type, offset));
switch (type) {
case kLoadSignedByte:
ldrsb(reg, Address(base, offset), cond);
break;
case kLoadUnsignedByte:
ldrb(reg, Address(base, offset), cond);
break;
case kLoadSignedHalfword:
ldrsh(reg, Address(base, offset), cond);
break;
case kLoadUnsignedHalfword:
ldrh(reg, Address(base, offset), cond);
break;
case kLoadWord:
ldr(reg, Address(base, offset), cond);
break;
case kLoadWordPair:
ldrd(reg, Address(base, offset), cond);
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
// Implementation note: this method must emit at most one instruction when
// Address::CanHoldLoadOffset, as expected by JIT::GuardedLoadFromOffset.
void ArmAssembler::LoadSFromOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond) {
if (!Address::CanHoldLoadOffset(kLoadSWord, offset)) {
CHECK_NE(base, IP);
LoadImmediate(IP, offset, cond);
add(IP, IP, ShifterOperand(base), cond);
base = IP;
offset = 0;
}
CHECK(Address::CanHoldLoadOffset(kLoadSWord, offset));
vldrs(reg, Address(base, offset), cond);
}
// Implementation note: this method must emit at most one instruction when
// Address::CanHoldLoadOffset, as expected by JIT::GuardedLoadFromOffset.
void ArmAssembler::LoadDFromOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond) {
if (!Address::CanHoldLoadOffset(kLoadDWord, offset)) {
CHECK_NE(base, IP);
LoadImmediate(IP, offset, cond);
add(IP, IP, ShifterOperand(base), cond);
base = IP;
offset = 0;
}
CHECK(Address::CanHoldLoadOffset(kLoadDWord, offset));
vldrd(reg, Address(base, offset), cond);
}
// Implementation note: this method must emit at most one instruction when
// Address::CanHoldStoreOffset.
void ArmAssembler::StoreToOffset(StoreOperandType type,
Register reg,
Register base,
int32_t offset,
Condition cond) {
if (!Address::CanHoldStoreOffset(type, offset)) {
CHECK(reg != IP);
CHECK(base != IP);
LoadImmediate(IP, offset, cond);
add(IP, IP, ShifterOperand(base), cond);
base = IP;
offset = 0;
}
CHECK(Address::CanHoldStoreOffset(type, offset));
switch (type) {
case kStoreByte:
strb(reg, Address(base, offset), cond);
break;
case kStoreHalfword:
strh(reg, Address(base, offset), cond);
break;
case kStoreWord:
str(reg, Address(base, offset), cond);
break;
case kStoreWordPair:
strd(reg, Address(base, offset), cond);
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
// Implementation note: this method must emit at most one instruction when
// Address::CanHoldStoreOffset, as expected by JIT::GuardedStoreToOffset.
void ArmAssembler::StoreSToOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond) {
if (!Address::CanHoldStoreOffset(kStoreSWord, offset)) {
CHECK_NE(base, IP);
LoadImmediate(IP, offset, cond);
add(IP, IP, ShifterOperand(base), cond);
base = IP;
offset = 0;
}
CHECK(Address::CanHoldStoreOffset(kStoreSWord, offset));
vstrs(reg, Address(base, offset), cond);
}
// Implementation note: this method must emit at most one instruction when
// Address::CanHoldStoreOffset, as expected by JIT::GuardedStoreSToOffset.
void ArmAssembler::StoreDToOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond) {
if (!Address::CanHoldStoreOffset(kStoreDWord, offset)) {
CHECK_NE(base, IP);
LoadImmediate(IP, offset, cond);
add(IP, IP, ShifterOperand(base), cond);
base = IP;
offset = 0;
}
CHECK(Address::CanHoldStoreOffset(kStoreDWord, offset));
vstrd(reg, Address(base, offset), cond);
}
void ArmAssembler::Push(Register rd, Condition cond) {
str(rd, Address(SP, -kRegisterSize, Address::PreIndex), cond);
}
void ArmAssembler::Pop(Register rd, Condition cond) {
ldr(rd, Address(SP, kRegisterSize, Address::PostIndex), cond);
}
void ArmAssembler::PushList(RegList regs, Condition cond) {
stm(DB_W, SP, regs, cond);
}
void ArmAssembler::PopList(RegList regs, Condition cond) {
ldm(IA_W, SP, regs, cond);
}
void ArmAssembler::Mov(Register rd, Register rm, Condition cond) {
if (rd != rm) {
mov(rd, ShifterOperand(rm), cond);
}
}
void ArmAssembler::Lsl(Register rd, Register rm, uint32_t shift_imm,
Condition cond) {
CHECK_NE(shift_imm, 0u); // Do not use Lsl if no shift is wanted.
mov(rd, ShifterOperand(rm, LSL, shift_imm), cond);
}
void ArmAssembler::Lsr(Register rd, Register rm, uint32_t shift_imm,
Condition cond) {
CHECK_NE(shift_imm, 0u); // Do not use Lsr if no shift is wanted.
if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax.
mov(rd, ShifterOperand(rm, LSR, shift_imm), cond);
}
void ArmAssembler::Asr(Register rd, Register rm, uint32_t shift_imm,
Condition cond) {
CHECK_NE(shift_imm, 0u); // Do not use Asr if no shift is wanted.
if (shift_imm == 32) shift_imm = 0; // Comply to UAL syntax.
mov(rd, ShifterOperand(rm, ASR, shift_imm), cond);
}
void ArmAssembler::Ror(Register rd, Register rm, uint32_t shift_imm,
Condition cond) {
CHECK_NE(shift_imm, 0u); // Use Rrx instruction.
mov(rd, ShifterOperand(rm, ROR, shift_imm), cond);
}
void ArmAssembler::Rrx(Register rd, Register rm, Condition cond) {
mov(rd, ShifterOperand(rm, ROR, 0), cond);
}
void ArmAssembler::BuildFrame(size_t frame_size, ManagedRegister method_reg,
const std::vector<ManagedRegister>& callee_save_regs,
const std::vector<ManagedRegister>& entry_spills) {
CHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK_EQ(entry_spills.size(), 0u);
CHECK_EQ(R0, method_reg.AsArm().AsCoreRegister());
// Push callee saves and link register
RegList push_list = 1 << LR;
size_t pushed_values = 1;
for (size_t i = 0; i < callee_save_regs.size(); i++) {
Register reg = callee_save_regs.at(i).AsArm().AsCoreRegister();
push_list |= 1 << reg;
pushed_values++;
}
PushList(push_list);
// Increase frame to required size
CHECK_GT(frame_size, pushed_values * kPointerSize); // Must be at least space to push Method*
size_t adjust = frame_size - (pushed_values * kPointerSize);
IncreaseFrameSize(adjust);
// Write out Method*
StoreToOffset(kStoreWord, R0, SP, 0);
}
void ArmAssembler::RemoveFrame(size_t frame_size,
const std::vector<ManagedRegister>& callee_save_regs) {
CHECK_ALIGNED(frame_size, kStackAlignment);
// Compute callee saves to pop and PC
RegList pop_list = 1 << PC;
size_t pop_values = 1;
for (size_t i = 0; i < callee_save_regs.size(); i++) {
Register reg = callee_save_regs.at(i).AsArm().AsCoreRegister();
pop_list |= 1 << reg;
pop_values++;
}
// Decrease frame to start of callee saves
CHECK_GT(frame_size, pop_values * kPointerSize);
size_t adjust = frame_size - (pop_values * kPointerSize);
DecreaseFrameSize(adjust);
// Pop callee saves and PC
PopList(pop_list);
}
void ArmAssembler::IncreaseFrameSize(size_t adjust) {
AddConstant(SP, -adjust);
}
void ArmAssembler::DecreaseFrameSize(size_t adjust) {
AddConstant(SP, adjust);
}
void ArmAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
ArmManagedRegister src = msrc.AsArm();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCoreRegister()) {
CHECK_EQ(4u, size);
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
} else if (src.IsRegisterPair()) {
CHECK_EQ(8u, size);
StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value());
StoreToOffset(kStoreWord, src.AsRegisterPairHigh(),
SP, dest.Int32Value() + 4);
} else if (src.IsSRegister()) {
StoreSToOffset(src.AsSRegister(), SP, dest.Int32Value());
} else {
CHECK(src.IsDRegister()) << src;
StoreDToOffset(src.AsDRegister(), SP, dest.Int32Value());
}
}
void ArmAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
ArmManagedRegister src = msrc.AsArm();
CHECK(src.IsCoreRegister()) << src;
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
ArmManagedRegister src = msrc.AsArm();
CHECK(src.IsCoreRegister()) << src;
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
FrameOffset in_off, ManagedRegister mscratch) {
ArmManagedRegister src = msrc.AsArm();
ArmManagedRegister scratch = mscratch.AsArm();
StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4);
}
void ArmAssembler::CopyRef(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base,
MemberOffset offs) {
ArmManagedRegister dst = mdest.AsArm();
CHECK(dst.IsCoreRegister() && dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(),
base.AsArm().AsCoreRegister(), offs.Int32Value());
}
void ArmAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
ArmManagedRegister dst = mdest.AsArm();
CHECK(dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(), SP, src.Int32Value());
}
void ArmAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base,
Offset offs) {
ArmManagedRegister dst = mdest.AsArm();
CHECK(dst.IsCoreRegister() && dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(),
base.AsArm().AsCoreRegister(), offs.Int32Value());
}
void ArmAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadImmediate(scratch.AsCoreRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
}
void ArmAssembler::StoreImmediateToThread(ThreadOffset dest, uint32_t imm,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadImmediate(scratch.AsCoreRegister(), imm);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), TR, dest.Int32Value());
}
static void EmitLoad(ArmAssembler* assembler, ManagedRegister m_dst,
Register src_register, int32_t src_offset, size_t size) {
ArmManagedRegister dst = m_dst.AsArm();
if (dst.IsNoRegister()) {
CHECK_EQ(0u, size) << dst;
} else if (dst.IsCoreRegister()) {
CHECK_EQ(4u, size) << dst;
assembler->LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset);
} else if (dst.IsRegisterPair()) {
CHECK_EQ(8u, size) << dst;
assembler->LoadFromOffset(kLoadWord, dst.AsRegisterPairLow(), src_register, src_offset);
assembler->LoadFromOffset(kLoadWord, dst.AsRegisterPairHigh(), src_register, src_offset + 4);
} else if (dst.IsSRegister()) {
assembler->LoadSFromOffset(dst.AsSRegister(), src_register, src_offset);
} else {
CHECK(dst.IsDRegister()) << dst;
assembler->LoadDFromOffset(dst.AsDRegister(), src_register, src_offset);
}
}
void ArmAssembler::Load(ManagedRegister m_dst, FrameOffset src, size_t size) {
return EmitLoad(this, m_dst, SP, src.Int32Value(), size);
}
void ArmAssembler::Load(ManagedRegister m_dst, ThreadOffset src, size_t size) {
return EmitLoad(this, m_dst, TR, src.Int32Value(), size);
}
void ArmAssembler::LoadRawPtrFromThread(ManagedRegister m_dst, ThreadOffset offs) {
ArmManagedRegister dst = m_dst.AsArm();
CHECK(dst.IsCoreRegister()) << dst;
LoadFromOffset(kLoadWord, dst.AsCoreRegister(), TR, offs.Int32Value());
}
void ArmAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset thr_offs,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
TR, thr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
SP, fr_offs.Int32Value());
}
void ArmAssembler::CopyRawPtrToThread(ThreadOffset thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
SP, fr_offs.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
TR, thr_offs.Int32Value());
}
void ArmAssembler::StoreStackOffsetToThread(ThreadOffset thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
AddConstant(scratch.AsCoreRegister(), SP, fr_offs.Int32Value(), AL);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
TR, thr_offs.Int32Value());
}
void ArmAssembler::StoreStackPointerToThread(ThreadOffset thr_offs) {
StoreToOffset(kStoreWord, SP, TR, thr_offs.Int32Value());
}
void ArmAssembler::Move(ManagedRegister m_dst, ManagedRegister m_src, size_t /*size*/) {
ArmManagedRegister dst = m_dst.AsArm();
ArmManagedRegister src = m_src.AsArm();
if (!dst.Equals(src)) {
if (dst.IsCoreRegister()) {
CHECK(src.IsCoreRegister()) << src;
mov(dst.AsCoreRegister(), ShifterOperand(src.AsCoreRegister()));
} else if (dst.IsDRegister()) {
CHECK(src.IsDRegister()) << src;
vmovd(dst.AsDRegister(), src.AsDRegister());
} else if (dst.IsSRegister()) {
CHECK(src.IsSRegister()) << src;
vmovs(dst.AsSRegister(), src.AsSRegister());
} else {
CHECK(dst.IsRegisterPair()) << dst;
CHECK(src.IsRegisterPair()) << src;
// Ensure that the first move doesn't clobber the input of the second
if (src.AsRegisterPairHigh() != dst.AsRegisterPairLow()) {
mov(dst.AsRegisterPairLow(), ShifterOperand(src.AsRegisterPairLow()));
mov(dst.AsRegisterPairHigh(), ShifterOperand(src.AsRegisterPairHigh()));
} else {
mov(dst.AsRegisterPairHigh(), ShifterOperand(src.AsRegisterPairHigh()));
mov(dst.AsRegisterPairLow(), ShifterOperand(src.AsRegisterPairLow()));
}
}
}
}
void ArmAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
CHECK(size == 4 || size == 8) << size;
if (size == 4) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
} else if (size == 8) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + 4);
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4);
}
}
void ArmAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsArm().AsCoreRegister();
CHECK_EQ(size, 4u);
LoadFromOffset(kLoadWord, scratch, src_base.AsArm().AsCoreRegister(), src_offset.Int32Value());
StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value());
}
void ArmAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsArm().AsCoreRegister();
CHECK_EQ(size, 4u);
LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
StoreToOffset(kStoreWord, scratch, dest_base.AsArm().AsCoreRegister(), dest_offset.Int32Value());
}
void ArmAssembler::Copy(FrameOffset /*dst*/, FrameOffset /*src_base*/, Offset /*src_offset*/,
ManagedRegister /*mscratch*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void ArmAssembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
CHECK_EQ(size, 4u);
Register scratch = mscratch.AsArm().AsCoreRegister();
LoadFromOffset(kLoadWord, scratch, src.AsArm().AsCoreRegister(), src_offset.Int32Value());
StoreToOffset(kStoreWord, scratch, dest.AsArm().AsCoreRegister(), dest_offset.Int32Value());
}
void ArmAssembler::Copy(FrameOffset /*dst*/, Offset /*dest_offset*/, FrameOffset /*src*/, Offset /*src_offset*/,
ManagedRegister /*scratch*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void ArmAssembler::MemoryBarrier(ManagedRegister mscratch) {
CHECK_EQ(mscratch.AsArm().AsCoreRegister(), R12);
#if ANDROID_SMP != 0
#if defined(__ARM_HAVE_DMB)
int32_t encoding = 0xf57ff05f; // dmb
Emit(encoding);
#elif defined(__ARM_HAVE_LDREX_STREX)
LoadImmediate(R12, 0);
int32_t encoding = 0xee07cfba; // mcr p15, 0, r12, c7, c10, 5
Emit(encoding);
#else
LoadImmediate(R12, 0xffff0fa0); // kuser_memory_barrier
blx(R12);
#endif
#endif
}
void ArmAssembler::CreateSirtEntry(ManagedRegister mout_reg,
FrameOffset sirt_offset,
ManagedRegister min_reg, bool null_allowed) {
ArmManagedRegister out_reg = mout_reg.AsArm();
ArmManagedRegister in_reg = min_reg.AsArm();
CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg;
CHECK(out_reg.IsCoreRegister()) << out_reg;
if (null_allowed) {
// Null values get a SIRT entry value of 0. Otherwise, the SIRT entry is
// the address in the SIRT holding the reference.
// e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset)
if (in_reg.IsNoRegister()) {
LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
SP, sirt_offset.Int32Value());
in_reg = out_reg;
}
cmp(in_reg.AsCoreRegister(), ShifterOperand(0));
if (!out_reg.Equals(in_reg)) {
LoadImmediate(out_reg.AsCoreRegister(), 0, EQ);
}
AddConstant(out_reg.AsCoreRegister(), SP, sirt_offset.Int32Value(), NE);
} else {
AddConstant(out_reg.AsCoreRegister(), SP, sirt_offset.Int32Value(), AL);
}
}
void ArmAssembler::CreateSirtEntry(FrameOffset out_off,
FrameOffset sirt_offset,
ManagedRegister mscratch,
bool null_allowed) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
if (null_allowed) {
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP,
sirt_offset.Int32Value());
// Null values get a SIRT entry value of 0. Otherwise, the sirt entry is
// the address in the SIRT holding the reference.
// e.g. scratch = (scratch == 0) ? 0 : (SP+sirt_offset)
cmp(scratch.AsCoreRegister(), ShifterOperand(0));
AddConstant(scratch.AsCoreRegister(), SP, sirt_offset.Int32Value(), NE);
} else {
AddConstant(scratch.AsCoreRegister(), SP, sirt_offset.Int32Value(), AL);
}
StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value());
}
void ArmAssembler::LoadReferenceFromSirt(ManagedRegister mout_reg,
ManagedRegister min_reg) {
ArmManagedRegister out_reg = mout_reg.AsArm();
ArmManagedRegister in_reg = min_reg.AsArm();
CHECK(out_reg.IsCoreRegister()) << out_reg;
CHECK(in_reg.IsCoreRegister()) << in_reg;
Label null_arg;
if (!out_reg.Equals(in_reg)) {
LoadImmediate(out_reg.AsCoreRegister(), 0, EQ);
}
cmp(in_reg.AsCoreRegister(), ShifterOperand(0));
LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
in_reg.AsCoreRegister(), 0, NE);
}
void ArmAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void ArmAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void ArmAssembler::Call(ManagedRegister mbase, Offset offset,
ManagedRegister mscratch) {
ArmManagedRegister base = mbase.AsArm();
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(base.IsCoreRegister()) << base;
CHECK(scratch.IsCoreRegister()) << scratch;
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
base.AsCoreRegister(), offset.Int32Value());
blx(scratch.AsCoreRegister());
// TODO: place reference map on call
}
void ArmAssembler::Call(FrameOffset base, Offset offset,
ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
CHECK(scratch.IsCoreRegister()) << scratch;
// Call *(*(SP + base) + offset)
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
SP, base.Int32Value());
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
scratch.AsCoreRegister(), offset.Int32Value());
blx(scratch.AsCoreRegister());
// TODO: place reference map on call
}
void ArmAssembler::Call(ThreadOffset /*offset*/, ManagedRegister /*scratch*/) {
UNIMPLEMENTED(FATAL);
}
void ArmAssembler::GetCurrentThread(ManagedRegister tr) {
mov(tr.AsArm().AsCoreRegister(), ShifterOperand(TR));
}
void ArmAssembler::GetCurrentThread(FrameOffset offset,
ManagedRegister /*scratch*/) {
StoreToOffset(kStoreWord, TR, SP, offset.Int32Value(), AL);
}
void ArmAssembler::SuspendPoll(ManagedRegister mscratch,
ManagedRegister return_reg,
FrameOffset return_save_location,
size_t return_size) {
ArmManagedRegister scratch = mscratch.AsArm();
ArmSuspendCountSlowPath* slow =
new ArmSuspendCountSlowPath(return_reg.AsArm(), return_save_location,
return_size);
buffer_.EnqueueSlowPath(slow);
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
TR, Thread::SuspendCountOffset().Int32Value());
cmp(scratch.AsCoreRegister(), ShifterOperand(0));
b(slow->Entry(), NE);
Bind(slow->Continuation());
}
void ArmSuspendCountSlowPath::Emit(Assembler* sasm) {
ArmAssembler* sp_asm = down_cast<ArmAssembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Save return value
__ Store(return_save_location_, return_register_, return_size_);
// Pass thread as argument
__ mov(R0, ShifterOperand(TR));
__ LoadFromOffset(kLoadWord, R12, TR, ENTRYPOINT_OFFSET(pCheckSuspendFromCode));
// Note: assume that link register will be spilled/filled on method entry/exit
__ blx(R12);
// Reload return value
__ Load(return_register_, return_save_location_, return_size_);
__ b(&continuation_);
#undef __
}
void ArmAssembler::ExceptionPoll(ManagedRegister mscratch) {
ArmManagedRegister scratch = mscratch.AsArm();
ArmExceptionSlowPath* slow = new ArmExceptionSlowPath(scratch);
buffer_.EnqueueSlowPath(slow);
LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
TR, Thread::ExceptionOffset().Int32Value());
cmp(scratch.AsCoreRegister(), ShifterOperand(0));
b(slow->Entry(), NE);
}
void ArmExceptionSlowPath::Emit(Assembler* sasm) {
ArmAssembler* sp_asm = down_cast<ArmAssembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Pass exception object as argument
// Don't care about preserving R0 as this call won't return
__ mov(R0, ShifterOperand(scratch_.AsCoreRegister()));
// Set up call to Thread::Current()->pDeliverException
__ LoadFromOffset(kLoadWord, R12, TR, ENTRYPOINT_OFFSET(pDeliverException));
__ blx(R12);
// Call never returns
__ bkpt(0);
#undef __
}
} // namespace arm
} // namespace art