blob: 33a7aed9d265922b18b40a177c9e493acb5c79dc [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the Mips ISA */
#include "oat/runtime/oat_support_entrypoints.h"
#include "mips_lir.h"
#include "../codegen_util.h"
#include "../ralloc_util.h"
namespace art {
void GenSpecialCase(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir,
SpecialCaseHandler specialCase)
{
// TODO
}
/*
* The lack of pc-relative loads on Mips presents somewhat of a challenge
* for our PIC switch table strategy. To materialize the current location
* we'll do a dummy JAL and reference our tables using r_RA as the
* base register. Note that r_RA will be used both as the base to
* locate the switch table data and as the reference base for the switch
* target offsets stored in the table. We'll use a special pseudo-instruction
* to represent the jal and trigger the construction of the
* switch table offsets (which will happen after final assembly and all
* labels are fixed).
*
* The test loop will look something like:
*
* ori rEnd, r_ZERO, #tableSize ; size in bytes
* jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
* nop ; opportunistically fill
* BaseLabel:
* addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel
addu rEnd, rEnd, rBase ; end of table
* lw rVal, [rSP, vRegOff] ; Test Value
* loop:
* beq rBase, rEnd, done
* lw rKey, 0(rBase)
* addu rBase, 8
* bne rVal, rKey, loop
* lw rDisp, -4(rBase)
* addu r_RA, rDisp
* jr r_RA
* done:
*
*/
void GenSparseSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
if (cUnit->printMe) {
DumpSparseSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tabRec =
static_cast<SwitchTable*>(NewMem(cUnit, sizeof(SwitchTable), true, kAllocData));
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
int elements = table[1];
tabRec->targets =
static_cast<LIR**>(NewMem(cUnit, elements * sizeof(LIR*), true, kAllocLIR));
InsertGrowableList(cUnit, &cUnit->switchTables, reinterpret_cast<uintptr_t>(tabRec));
// The table is composed of 8-byte key/disp pairs
int byteSize = elements * 8;
int sizeHi = byteSize >> 16;
int sizeLo = byteSize & 0xffff;
int rEnd = AllocTemp(cUnit);
if (sizeHi) {
NewLIR2(cUnit, kMipsLui, rEnd, sizeHi);
}
// Must prevent code motion for the curr pc pair
GenBarrier(cUnit); // Scheduling barrier
NewLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
// Now, fill the branch delay slot
if (sizeHi) {
NewLIR3(cUnit, kMipsOri, rEnd, rEnd, sizeLo);
} else {
NewLIR3(cUnit, kMipsOri, rEnd, r_ZERO, sizeLo);
}
GenBarrier(cUnit); // Scheduling barrier
// Construct BaseLabel and set up table base register
LIR* baseLabel = NewLIR0(cUnit, kPseudoTargetLabel);
// Remember base label so offsets can be computed later
tabRec->anchor = baseLabel;
int rBase = AllocTemp(cUnit);
NewLIR4(cUnit, kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(baseLabel),
reinterpret_cast<uintptr_t>(tabRec));
OpRegRegReg(cUnit, kOpAdd, rEnd, rEnd, rBase);
// Grab switch test value
rlSrc = LoadValue(cUnit, rlSrc, kCoreReg);
// Test loop
int rKey = AllocTemp(cUnit);
LIR* loopLabel = NewLIR0(cUnit, kPseudoTargetLabel);
LIR* exitBranch = OpCmpBranch(cUnit , kCondEq, rBase, rEnd, NULL);
LoadWordDisp(cUnit, rBase, 0, rKey);
OpRegImm(cUnit, kOpAdd, rBase, 8);
OpCmpBranch(cUnit, kCondNe, rlSrc.lowReg, rKey, loopLabel);
int rDisp = AllocTemp(cUnit);
LoadWordDisp(cUnit, rBase, -4, rDisp);
OpRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp);
OpReg(cUnit, kOpBx, r_RA);
// Loop exit
LIR* exitLabel = NewLIR0(cUnit, kPseudoTargetLabel);
exitBranch->target = exitLabel;
}
/*
* Code pattern will look something like:
*
* lw rVal
* jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
* nop ; opportunistically fill
* [subiu rVal, bias] ; Remove bias if lowVal != 0
* bound check -> done
* lw rDisp, [r_RA, rVal]
* addu r_RA, rDisp
* jr r_RA
* done:
*/
void GenPackedSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
if (cUnit->printMe) {
DumpPackedSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tabRec =
static_cast<SwitchTable*>(NewMem(cUnit, sizeof(SwitchTable), true, kAllocData));
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
int size = table[1];
tabRec->targets = static_cast<LIR**>(NewMem(cUnit, size * sizeof(LIR*), true, kAllocLIR));
InsertGrowableList(cUnit, &cUnit->switchTables, reinterpret_cast<uintptr_t>(tabRec));
// Get the switch value
rlSrc = LoadValue(cUnit, rlSrc, kCoreReg);
// Prepare the bias. If too big, handle 1st stage here
int lowKey = s4FromSwitchData(&table[2]);
bool largeBias = false;
int rKey;
if (lowKey == 0) {
rKey = rlSrc.lowReg;
} else if ((lowKey & 0xffff) != lowKey) {
rKey = AllocTemp(cUnit);
LoadConstant(cUnit, rKey, lowKey);
largeBias = true;
} else {
rKey = AllocTemp(cUnit);
}
// Must prevent code motion for the curr pc pair
GenBarrier(cUnit);
NewLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
// Now, fill the branch delay slot with bias strip
if (lowKey == 0) {
NewLIR0(cUnit, kMipsNop);
} else {
if (largeBias) {
OpRegRegReg(cUnit, kOpSub, rKey, rlSrc.lowReg, rKey);
} else {
OpRegRegImm(cUnit, kOpSub, rKey, rlSrc.lowReg, lowKey);
}
}
GenBarrier(cUnit); // Scheduling barrier
// Construct BaseLabel and set up table base register
LIR* baseLabel = NewLIR0(cUnit, kPseudoTargetLabel);
// Remember base label so offsets can be computed later
tabRec->anchor = baseLabel;
// Bounds check - if < 0 or >= size continue following switch
LIR* branchOver = OpCmpImmBranch(cUnit, kCondHi, rKey, size-1, NULL);
// Materialize the table base pointer
int rBase = AllocTemp(cUnit);
NewLIR4(cUnit, kMipsDelta, rBase, 0, reinterpret_cast<uintptr_t>(baseLabel),
reinterpret_cast<uintptr_t>(tabRec));
// Load the displacement from the switch table
int rDisp = AllocTemp(cUnit);
LoadBaseIndexed(cUnit, rBase, rKey, rDisp, 2, kWord);
// Add to r_AP and go
OpRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp);
OpReg(cUnit, kOpBx, r_RA);
/* branchOver target here */
LIR* target = NewLIR0(cUnit, kPseudoTargetLabel);
branchOver->target = target;
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void GenFillArrayData(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const uint16_t* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
// Add the table to the list - we'll process it later
FillArrayData *tabRec =
reinterpret_cast<FillArrayData*>(NewMem(cUnit, sizeof(FillArrayData), true, kAllocData));
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
uint16_t width = tabRec->table[1];
uint32_t size = tabRec->table[2] | ((static_cast<uint32_t>(tabRec->table[3])) << 16);
tabRec->size = (size * width) + 8;
InsertGrowableList(cUnit, &cUnit->fillArrayData, reinterpret_cast<uintptr_t>(tabRec));
// Making a call - use explicit registers
FlushAllRegs(cUnit); /* Everything to home location */
LockCallTemps(cUnit);
LoadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0);
// Must prevent code motion for the curr pc pair
GenBarrier(cUnit);
NewLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
// Now, fill the branch delay slot with the helper load
int rTgt = LoadHelper(cUnit, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
GenBarrier(cUnit); // Scheduling barrier
// Construct BaseLabel and set up table base register
LIR* baseLabel = NewLIR0(cUnit, kPseudoTargetLabel);
// Materialize a pointer to the fill data image
NewLIR4(cUnit, kMipsDelta, rMIPS_ARG1, 0, reinterpret_cast<uintptr_t>(baseLabel),
reinterpret_cast<uintptr_t>(tabRec));
// And go...
ClobberCalleeSave(cUnit);
LIR* callInst = OpReg(cUnit, kOpBlx, rTgt); // ( array*, fill_data* )
MarkSafepointPC(cUnit, callInst);
}
/*
* TODO: implement fast path to short-circuit thin-lock case
*/
void GenMonitorEnter(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
{
FlushAllRegs(cUnit);
LoadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0); // Get obj
LockCallTemps(cUnit); // Prepare for explicit register usage
GenNullCheck(cUnit, rlSrc.sRegLow, rMIPS_ARG0, optFlags);
// Go expensive route - artLockObjectFromCode(self, obj);
int rTgt = LoadHelper(cUnit, ENTRYPOINT_OFFSET(pLockObjectFromCode));
ClobberCalleeSave(cUnit);
LIR* callInst = OpReg(cUnit, kOpBlx, rTgt);
MarkSafepointPC(cUnit, callInst);
}
/*
* TODO: implement fast path to short-circuit thin-lock case
*/
void GenMonitorExit(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
{
FlushAllRegs(cUnit);
LoadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0); // Get obj
LockCallTemps(cUnit); // Prepare for explicit register usage
GenNullCheck(cUnit, rlSrc.sRegLow, rMIPS_ARG0, optFlags);
// Go expensive route - UnlockObjectFromCode(obj);
int rTgt = LoadHelper(cUnit, ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
ClobberCalleeSave(cUnit);
LIR* callInst = OpReg(cUnit, kOpBlx, rTgt);
MarkSafepointPC(cUnit, callInst);
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
void MarkGCCard(CompilationUnit* cUnit, int valReg, int tgtAddrReg)
{
int regCardBase = AllocTemp(cUnit);
int regCardNo = AllocTemp(cUnit);
LIR* branchOver = OpCmpImmBranch(cUnit, kCondEq, valReg, 0, NULL);
LoadWordDisp(cUnit, rMIPS_SELF, Thread::CardTableOffset().Int32Value(), regCardBase);
OpRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, CardTable::kCardShift);
StoreBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
kUnsignedByte);
LIR* target = NewLIR0(cUnit, kPseudoTargetLabel);
branchOver->target = target;
FreeTemp(cUnit, regCardBase);
FreeTemp(cUnit, regCardNo);
}
void GenEntrySequence(CompilationUnit* cUnit, RegLocation* ArgLocs,
RegLocation rlMethod)
{
int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills;
/*
* On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register
* allocation mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with a single temp: r12. This should be enough.
*/
LockTemp(cUnit, rMIPS_ARG0);
LockTemp(cUnit, rMIPS_ARG1);
LockTemp(cUnit, rMIPS_ARG2);
LockTemp(cUnit, rMIPS_ARG3);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skipOverflowCheck = ((cUnit->attrs & METHOD_IS_LEAF) &&
(static_cast<size_t>(cUnit->frameSize) < Thread::kStackOverflowReservedBytes));
NewLIR0(cUnit, kPseudoMethodEntry);
int checkReg = AllocTemp(cUnit);
int newSP = AllocTemp(cUnit);
if (!skipOverflowCheck) {
/* Load stack limit */
LoadWordDisp(cUnit, rMIPS_SELF, Thread::StackEndOffset().Int32Value(), checkReg);
}
/* Spill core callee saves */
SpillCoreRegs(cUnit);
/* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
DCHECK_EQ(cUnit->numFPSpills, 0);
if (!skipOverflowCheck) {
OpRegRegImm(cUnit, kOpSub, newSP, rMIPS_SP, cUnit->frameSize - (spillCount * 4));
GenRegRegCheck(cUnit, kCondCc, newSP, checkReg, kThrowStackOverflow);
OpRegCopy(cUnit, rMIPS_SP, newSP); // Establish stack
} else {
OpRegImm(cUnit, kOpSub, rMIPS_SP, cUnit->frameSize - (spillCount * 4));
}
FlushIns(cUnit, ArgLocs, rlMethod);
FreeTemp(cUnit, rMIPS_ARG0);
FreeTemp(cUnit, rMIPS_ARG1);
FreeTemp(cUnit, rMIPS_ARG2);
FreeTemp(cUnit, rMIPS_ARG3);
}
void GenExitSequence(CompilationUnit* cUnit)
{
/*
* In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(cUnit, rMIPS_RET0);
LockTemp(cUnit, rMIPS_RET1);
NewLIR0(cUnit, kPseudoMethodExit);
UnSpillCoreRegs(cUnit);
OpReg(cUnit, kOpBx, r_RA);
}
} // namespace art