blob: 9163cd90f469c5de5ca801f73bcccf780ee2c03d [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compiler_internals.h"
#include "dataflow.h"
#include "quick/ralloc_util.h"
namespace art {
static bool SetFp(CompilationUnit* cu, int index, bool is_fp) {
bool change = false;
if (is_fp && !cu->reg_location[index].fp) {
cu->reg_location[index].fp = true;
cu->reg_location[index].defined = true;
change = true;
}
return change;
}
static bool SetCore(CompilationUnit* cu, int index, bool is_core) {
bool change = false;
if (is_core && !cu->reg_location[index].defined) {
cu->reg_location[index].core = true;
cu->reg_location[index].defined = true;
change = true;
}
return change;
}
static bool SetRef(CompilationUnit* cu, int index, bool is_ref) {
bool change = false;
if (is_ref && !cu->reg_location[index].defined) {
cu->reg_location[index].ref = true;
cu->reg_location[index].defined = true;
change = true;
}
return change;
}
static bool SetWide(CompilationUnit* cu, int index, bool is_wide) {
bool change = false;
if (is_wide && !cu->reg_location[index].wide) {
cu->reg_location[index].wide = true;
change = true;
}
return change;
}
static bool SetHigh(CompilationUnit* cu, int index, bool is_high) {
bool change = false;
if (is_high && !cu->reg_location[index].high_word) {
cu->reg_location[index].high_word = true;
change = true;
}
return change;
}
/*
* Infer types and sizes. We don't need to track change on sizes,
* as it doesn't propagate. We're guaranteed at least one pass through
* the cfg.
*/
static bool InferTypeAndSize(CompilationUnit* cu, BasicBlock* bb)
{
MIR *mir;
bool changed = false; // Did anything change?
if (bb->data_flow_info == NULL) return false;
if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock)
return false;
for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
SSARepresentation *ssa_rep = mir->ssa_rep;
if (ssa_rep) {
int attrs = oat_data_flow_attributes[mir->dalvikInsn.opcode];
// Handle defs
if (attrs & DF_DA) {
if (attrs & DF_CORE_A) {
changed |= SetCore(cu, ssa_rep->defs[0], true);
}
if (attrs & DF_REF_A) {
changed |= SetRef(cu, ssa_rep->defs[0], true);
}
if (attrs & DF_A_WIDE) {
cu->reg_location[ssa_rep->defs[0]].wide = true;
cu->reg_location[ssa_rep->defs[1]].wide = true;
cu->reg_location[ssa_rep->defs[1]].high_word = true;
DCHECK_EQ(SRegToVReg(cu, ssa_rep->defs[0])+1,
SRegToVReg(cu, ssa_rep->defs[1]));
}
}
// Handles uses
int next = 0;
if (attrs & DF_UA) {
if (attrs & DF_CORE_A) {
changed |= SetCore(cu, ssa_rep->uses[next], true);
}
if (attrs & DF_REF_A) {
changed |= SetRef(cu, ssa_rep->uses[next], true);
}
if (attrs & DF_A_WIDE) {
cu->reg_location[ssa_rep->uses[next]].wide = true;
cu->reg_location[ssa_rep->uses[next + 1]].wide = true;
cu->reg_location[ssa_rep->uses[next + 1]].high_word = true;
DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1,
SRegToVReg(cu, ssa_rep->uses[next + 1]));
next += 2;
} else {
next++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_CORE_B) {
changed |= SetCore(cu, ssa_rep->uses[next], true);
}
if (attrs & DF_REF_B) {
changed |= SetRef(cu, ssa_rep->uses[next], true);
}
if (attrs & DF_B_WIDE) {
cu->reg_location[ssa_rep->uses[next]].wide = true;
cu->reg_location[ssa_rep->uses[next + 1]].wide = true;
cu->reg_location[ssa_rep->uses[next + 1]].high_word = true;
DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1,
SRegToVReg(cu, ssa_rep->uses[next + 1]));
next += 2;
} else {
next++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_CORE_C) {
changed |= SetCore(cu, ssa_rep->uses[next], true);
}
if (attrs & DF_REF_C) {
changed |= SetRef(cu, ssa_rep->uses[next], true);
}
if (attrs & DF_C_WIDE) {
cu->reg_location[ssa_rep->uses[next]].wide = true;
cu->reg_location[ssa_rep->uses[next + 1]].wide = true;
cu->reg_location[ssa_rep->uses[next + 1]].high_word = true;
DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1,
SRegToVReg(cu, ssa_rep->uses[next + 1]));
}
}
// Special-case return handling
if ((mir->dalvikInsn.opcode == Instruction::RETURN) ||
(mir->dalvikInsn.opcode == Instruction::RETURN_WIDE) ||
(mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT)) {
switch(cu->shorty[0]) {
case 'I':
changed |= SetCore(cu, ssa_rep->uses[0], true);
break;
case 'J':
changed |= SetCore(cu, ssa_rep->uses[0], true);
changed |= SetCore(cu, ssa_rep->uses[1], true);
cu->reg_location[ssa_rep->uses[0]].wide = true;
cu->reg_location[ssa_rep->uses[1]].wide = true;
cu->reg_location[ssa_rep->uses[1]].high_word = true;
break;
case 'F':
changed |= SetFp(cu, ssa_rep->uses[0], true);
break;
case 'D':
changed |= SetFp(cu, ssa_rep->uses[0], true);
changed |= SetFp(cu, ssa_rep->uses[1], true);
cu->reg_location[ssa_rep->uses[0]].wide = true;
cu->reg_location[ssa_rep->uses[1]].wide = true;
cu->reg_location[ssa_rep->uses[1]].high_word = true;
break;
case 'L':
changed |= SetRef(cu, ssa_rep->uses[0], true);
break;
default: break;
}
}
// Special-case handling for format 35c/3rc invokes
Instruction::Code opcode = mir->dalvikInsn.opcode;
int flags = (static_cast<int>(opcode) >= kNumPackedOpcodes)
? 0 : Instruction::FlagsOf(mir->dalvikInsn.opcode);
if ((flags & Instruction::kInvoke) &&
(attrs & (DF_FORMAT_35C | DF_FORMAT_3RC))) {
DCHECK_EQ(next, 0);
int target_idx = mir->dalvikInsn.vB;
const char* shorty = GetShortyFromTargetIdx(cu, target_idx);
// Handle result type if floating point
if ((shorty[0] == 'F') || (shorty[0] == 'D')) {
MIR* move_result_mir = FindMoveResult(cu, bb, mir);
// Result might not be used at all, so no move-result
if (move_result_mir && (move_result_mir->dalvikInsn.opcode !=
Instruction::MOVE_RESULT_OBJECT)) {
SSARepresentation* tgt_rep = move_result_mir->ssa_rep;
DCHECK(tgt_rep != NULL);
tgt_rep->fp_def[0] = true;
changed |= SetFp(cu, tgt_rep->defs[0], true);
if (shorty[0] == 'D') {
tgt_rep->fp_def[1] = true;
changed |= SetFp(cu, tgt_rep->defs[1], true);
}
}
}
int num_uses = mir->dalvikInsn.vA;
// If this is a non-static invoke, mark implicit "this"
if (((mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC) &&
(mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC_RANGE))) {
cu->reg_location[ssa_rep->uses[next]].defined = true;
cu->reg_location[ssa_rep->uses[next]].ref = true;
next++;
}
uint32_t cpos = 1;
if (strlen(shorty) > 1) {
for (int i = next; i < num_uses;) {
DCHECK_LT(cpos, strlen(shorty));
switch (shorty[cpos++]) {
case 'D':
ssa_rep->fp_use[i] = true;
ssa_rep->fp_use[i+1] = true;
cu->reg_location[ssa_rep->uses[i]].wide = true;
cu->reg_location[ssa_rep->uses[i+1]].wide = true;
cu->reg_location[ssa_rep->uses[i+1]].high_word = true;
DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[i])+1,
SRegToVReg(cu, ssa_rep->uses[i+1]));
i++;
break;
case 'J':
cu->reg_location[ssa_rep->uses[i]].wide = true;
cu->reg_location[ssa_rep->uses[i+1]].wide = true;
cu->reg_location[ssa_rep->uses[i+1]].high_word = true;
DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[i])+1,
SRegToVReg(cu, ssa_rep->uses[i+1]));
changed |= SetCore(cu, ssa_rep->uses[i],true);
i++;
break;
case 'F':
ssa_rep->fp_use[i] = true;
break;
case 'L':
changed |= SetRef(cu,ssa_rep->uses[i], true);
break;
default:
changed |= SetCore(cu,ssa_rep->uses[i], true);
break;
}
i++;
}
}
}
for (int i=0; ssa_rep->fp_use && i< ssa_rep->num_uses; i++) {
if (ssa_rep->fp_use[i])
changed |= SetFp(cu, ssa_rep->uses[i], true);
}
for (int i=0; ssa_rep->fp_def && i< ssa_rep->num_defs; i++) {
if (ssa_rep->fp_def[i])
changed |= SetFp(cu, ssa_rep->defs[i], true);
}
// Special-case handling for moves & Phi
if (attrs & (DF_IS_MOVE | DF_NULL_TRANSFER_N)) {
/*
* If any of our inputs or outputs is defined, set all.
* Some ugliness related to Phi nodes and wide values.
* The Phi set will include all low words or all high
* words, so we have to treat them specially.
*/
bool is_phi = (static_cast<int>(mir->dalvikInsn.opcode) ==
kMirOpPhi);
RegLocation rl_temp = cu->reg_location[ssa_rep->defs[0]];
bool defined_fp = rl_temp.defined && rl_temp.fp;
bool defined_core = rl_temp.defined && rl_temp.core;
bool defined_ref = rl_temp.defined && rl_temp.ref;
bool is_wide = rl_temp.wide || ((attrs & DF_A_WIDE) != 0);
bool is_high = is_phi && rl_temp.wide && rl_temp.high_word;
for (int i = 0; i < ssa_rep->num_uses;i++) {
rl_temp = cu->reg_location[ssa_rep->uses[i]];
defined_fp |= rl_temp.defined && rl_temp.fp;
defined_core |= rl_temp.defined && rl_temp.core;
defined_ref |= rl_temp.defined && rl_temp.ref;
is_wide |= rl_temp.wide;
is_high |= is_phi && rl_temp.wide && rl_temp.high_word;
}
/*
* TODO: cleaner fix
* We don't normally expect to see a Dalvik register
* definition used both as a floating point and core
* value. However, the instruction rewriting that occurs
* during verification can eliminate some type information,
* leaving us confused. The real fix here is either to
* add explicit type information to Dalvik byte codes,
* or to recognize THROW_VERIFICATION_ERROR as
* an unconditional branch and support dead code elimination.
* As a workaround we can detect this situation and
* disable register promotion (which is the only thing that
* relies on distinctions between core and fp usages.
*/
if ((defined_fp && (defined_core | defined_ref)) &&
((cu->disable_opt & (1 << kPromoteRegs)) == 0)) {
LOG(WARNING) << PrettyMethod(cu->method_idx, *cu->dex_file)
<< " op at block " << bb->id
<< " has both fp and core/ref uses for same def.";
cu->disable_opt |= (1 << kPromoteRegs);
}
changed |= SetFp(cu, ssa_rep->defs[0], defined_fp);
changed |= SetCore(cu, ssa_rep->defs[0], defined_core);
changed |= SetRef(cu, ssa_rep->defs[0], defined_ref);
changed |= SetWide(cu, ssa_rep->defs[0], is_wide);
changed |= SetHigh(cu, ssa_rep->defs[0], is_high);
if (attrs & DF_A_WIDE) {
changed |= SetWide(cu, ssa_rep->defs[1], true);
changed |= SetHigh(cu, ssa_rep->defs[1], true);
}
for (int i = 0; i < ssa_rep->num_uses; i++) {
changed |= SetFp(cu, ssa_rep->uses[i], defined_fp);
changed |= SetCore(cu, ssa_rep->uses[i], defined_core);
changed |= SetRef(cu, ssa_rep->uses[i], defined_ref);
changed |= SetWide(cu, ssa_rep->uses[i], is_wide);
changed |= SetHigh(cu, ssa_rep->uses[i], is_high);
}
if (attrs & DF_A_WIDE) {
DCHECK_EQ(ssa_rep->num_uses, 2);
changed |= SetWide(cu, ssa_rep->uses[1], true);
changed |= SetHigh(cu, ssa_rep->uses[1], true);
}
}
}
}
return changed;
}
static const char* storage_name[] = {" Frame ", "PhysReg", " Spill "};
static void DumpRegLocTable(CompilationUnit* cu, RegLocation* table, int count)
{
Codegen* cg = cu->cg.get();
for (int i = 0; i < count; i++) {
LOG(INFO) << StringPrintf("Loc[%02d] : %s, %c %c %c %c %c %c %c%d %c%d S%d",
table[i].orig_sreg, storage_name[table[i].location],
table[i].wide ? 'W' : 'N', table[i].defined ? 'D' : 'U',
table[i].fp ? 'F' : table[i].ref ? 'R' :'C',
table[i].is_const ? 'c' : 'n',
table[i].high_word ? 'H' : 'L', table[i].home ? 'h' : 't',
cg->IsFpReg(table[i].low_reg) ? 's' : 'r',
table[i].low_reg & cg->FpRegMask(),
cg->IsFpReg(table[i].high_reg) ? 's' : 'r',
table[i].high_reg & cg->FpRegMask(), table[i].s_reg_low);
}
}
static const RegLocation fresh_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0,
INVALID_REG, INVALID_REG, INVALID_SREG,
INVALID_SREG};
int ComputeFrameSize(CompilationUnit* cu) {
/* Figure out the frame size */
static const uint32_t kAlignMask = kStackAlignment - 1;
uint32_t size = (cu->num_core_spills + cu->num_fp_spills +
1 /* filler word */ + cu->num_regs + cu->num_outs +
cu->num_compiler_temps + 1 /* cur_method* */)
* sizeof(uint32_t);
/* Align and set */
return (size + kAlignMask) & ~(kAlignMask);
}
/*
* Simple register allocation. Some Dalvik virtual registers may
* be promoted to physical registers. Most of the work for temp
* allocation is done on the fly. We also do some initialization and
* type inference here.
*/
void SimpleRegAlloc(CompilationUnit* cu)
{
int i;
RegLocation* loc;
/* Allocate the location map */
loc = static_cast<RegLocation*>(NewMem(cu, cu->num_ssa_regs * sizeof(*loc),
true, kAllocRegAlloc));
for (i=0; i< cu->num_ssa_regs; i++) {
loc[i] = fresh_loc;
loc[i].s_reg_low = i;
loc[i].is_const = IsBitSet(cu->is_constant_v, i);
}
/* Patch up the locations for Method* and the compiler temps */
loc[cu->method_sreg].location = kLocCompilerTemp;
loc[cu->method_sreg].defined = true;
for (i = 0; i < cu->num_compiler_temps; i++) {
CompilerTemp* ct = reinterpret_cast<CompilerTemp*>(cu->compiler_temps.elem_list[i]);
loc[ct->s_reg].location = kLocCompilerTemp;
loc[ct->s_reg].defined = true;
}
cu->reg_location = loc;
/* Allocation the promotion map */
int num_regs = cu->num_dalvik_registers;
cu->promotion_map = static_cast<PromotionMap*>
(NewMem(cu, (num_regs + cu->num_compiler_temps + 1) * sizeof(cu->promotion_map[0]),
true, kAllocRegAlloc));
/* Add types of incoming arguments based on signature */
int num_ins = cu->num_ins;
if (num_ins > 0) {
int s_reg = num_regs - num_ins;
if ((cu->access_flags & kAccStatic) == 0) {
// For non-static, skip past "this"
cu->reg_location[s_reg].defined = true;
cu->reg_location[s_reg].ref = true;
s_reg++;
}
const char* shorty = cu->shorty;
int shorty_len = strlen(shorty);
for (int i = 1; i < shorty_len; i++) {
switch (shorty[i]) {
case 'D':
cu->reg_location[s_reg].wide = true;
cu->reg_location[s_reg+1].high_word = true;
cu->reg_location[s_reg+1].fp = true;
DCHECK_EQ(SRegToVReg(cu, s_reg)+1, SRegToVReg(cu, s_reg+1));
cu->reg_location[s_reg].fp = true;
cu->reg_location[s_reg].defined = true;
s_reg++;
break;
case 'J':
cu->reg_location[s_reg].wide = true;
cu->reg_location[s_reg+1].high_word = true;
DCHECK_EQ(SRegToVReg(cu, s_reg)+1, SRegToVReg(cu, s_reg+1));
cu->reg_location[s_reg].core = true;
cu->reg_location[s_reg].defined = true;
s_reg++;
break;
case 'F':
cu->reg_location[s_reg].fp = true;
cu->reg_location[s_reg].defined = true;
break;
case 'L':
cu->reg_location[s_reg].ref = true;
cu->reg_location[s_reg].defined = true;
break;
default:
cu->reg_location[s_reg].core = true;
cu->reg_location[s_reg].defined = true;
break;
}
s_reg++;
}
}
/* Do type & size inference pass */
DataFlowAnalysisDispatcher(cu, InferTypeAndSize,
kPreOrderDFSTraversal,
true /* is_iterative */);
/*
* Set the s_reg_low field to refer to the pre-SSA name of the
* base Dalvik virtual register. Once we add a better register
* allocator, remove this remapping.
*/
for (i=0; i < cu->num_ssa_regs; i++) {
if (cu->reg_location[i].location != kLocCompilerTemp) {
int orig_sreg = cu->reg_location[i].s_reg_low;
cu->reg_location[i].orig_sreg = orig_sreg;
cu->reg_location[i].s_reg_low = SRegToVReg(cu, orig_sreg);
}
}
/*
* Now that everything is typed and constants propagated, identify those constants
* that can be cheaply materialized and don't need to be flushed to a home location.
* The default is to not flush, and some have already been marked as must flush.
*/
for (i=0; i < cu->num_ssa_regs; i++) {
if (IsBitSet(cu->is_constant_v, i)) {
bool flush = false;
RegLocation loc = cu->reg_location[i];
if (loc.wide) {
int64_t value = ConstantValueWide(cu, loc);
if (loc.fp) {
flush = !cu->cg->InexpensiveConstantDouble(value);
} else {
flush = !cu->cg->InexpensiveConstantLong(value);
}
} else {
int32_t value = ConstantValue(cu, loc);
if (loc.fp) {
flush = !cu->cg->InexpensiveConstantFloat(value);
} else {
flush = !cu->cg->InexpensiveConstantInt(value);
}
}
if (flush) {
SetBit(cu, cu->must_flush_constant_v, i);
}
if (loc.wide) {
i++; // Skip the high word
}
}
}
cu->core_spill_mask = 0;
cu->fp_spill_mask = 0;
cu->num_core_spills = 0;
DoPromotion(cu);
/* Get easily-accessable post-promotion copy of RegLocation for Method* */
cu->method_loc = cu->reg_location[cu->method_sreg];
if (cu->verbose && !(cu->disable_opt & (1 << kPromoteRegs))) {
LOG(INFO) << "After Promotion";
DumpRegLocTable(cu, cu->reg_location, cu->num_ssa_regs);
}
/* Set the frame size */
cu->frame_size = ComputeFrameSize(cu);
}
} // namespace art