blob: 27dbdee8c23eef2dc430580f3bfc14407ce0ae48 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include <stdio.h>
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "class_linker.h"
#include "file.h"
#include "image.h"
#include "os.h"
#include "runtime.h"
#include "space.h"
#include "stringpiece.h"
#include "unordered_map.h"
namespace art {
static void usage() {
fprintf(stderr,
"Usage: oatdump [options] ...\n"
" Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art --host-prefix=$ANDROID_PRODUCT_OUT\n"
" Example: adb shell oatdump --image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --image=<file.art>: specifies the required input image filename.\n"
" Example: --image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --boot-image=<file.art>: provide the image file for the boot class path.\n"
" Example: --boot-image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --host-prefix may be used to translate host paths to target paths during\n"
" cross compilation.\n"
" Example: --host-prefix=out/target/product/crespo\n"
"\n");
fprintf(stderr,
" --output=<file> may be used to send the output to a file.\n"
" Example: --output=/tmp/oatdump.txt\n"
"\n");
exit(EXIT_FAILURE);
}
const char* image_roots_descriptions_[] = {
"kJniStubArray",
"kAbstractMethodErrorStubArray",
"kInstanceResolutionStubArray",
"kStaticResolutionStubArray",
"kUnknownMethodResolutionStubArray",
"kCalleeSaveMethod",
"kOatLocation",
"kDexCaches",
"kClassRoots",
};
class OatDump {
public:
static void Dump(const std::string& image_filename,
std::ostream& os,
Space& image_space,
const ImageHeader& image_header) {
os << "MAGIC:\n";
os << image_header.GetMagic() << "\n\n";
os << "IMAGE BASE:\n";
os << reinterpret_cast<void*>(image_header.GetImageBaseAddr()) << "\n\n";
os << "OAT BASE:\n";
os << reinterpret_cast<void*>(image_header.GetOatBaseAddr()) << "\n\n";
os << "ROOTS:\n";
CHECK_EQ(arraysize(image_roots_descriptions_), size_t(ImageHeader::kImageRootsMax));
for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
ImageHeader::ImageRoot image_root = static_cast<ImageHeader::ImageRoot>(i);
const char* image_root_description = image_roots_descriptions_[i];
Object* image_root_object = image_header.GetImageRoot(image_root);
os << StringPrintf("%s: %p\n", image_root_description, image_root_object);
if (image_root_object->IsObjectArray()) {
// TODO: replace down_cast with AsObjectArray (g++ currently has a problem with this)
ObjectArray<Object>* image_root_object_array
= down_cast<ObjectArray<Object>*>(image_root_object);
// = image_root_object->AsObjectArray<Object>();
for (int i = 0; i < image_root_object_array->GetLength(); i++) {
os << StringPrintf("\t%d: %p\n", i, image_root_object_array->Get(i));
}
}
}
os << "\n";
os << "OBJECTS:\n" << std::flush;
OatDump state(image_space, os);
HeapBitmap* heap_bitmap = Heap::GetLiveBits();
DCHECK(heap_bitmap != NULL);
heap_bitmap->Walk(OatDump::Callback, &state);
os << "\n";
os << "STATS:\n" << std::flush;
UniquePtr<File> file(OS::OpenFile(image_filename.c_str(), false));
state.stats_.file_bytes = file->Length();
size_t header_bytes = sizeof(ImageHeader);
state.stats_.header_bytes = header_bytes;
size_t alignment_bytes = RoundUp(header_bytes, kObjectAlignment) - header_bytes;
state.stats_.alignment_bytes += alignment_bytes;
state.stats_.Dump(os);
os << std::flush;
}
private:
OatDump(const Space& dump_space, std::ostream& os) : dump_space_(dump_space), os_(os) {
}
~OatDump() {
}
static void Callback(Object* obj, void* arg) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
OatDump* state = reinterpret_cast<OatDump*>(arg);
if (!state->InDumpSpace(obj)) {
return;
}
size_t object_bytes = obj->SizeOf();
size_t alignment_bytes = RoundUp(object_bytes, kObjectAlignment) - object_bytes;
state->stats_.object_bytes += object_bytes;
state->stats_.alignment_bytes += alignment_bytes;
std::string summary;
StringAppendF(&summary, "%p: ", obj);
if (obj->IsClass()) {
Class* klass = obj->AsClass();
StringAppendF(&summary, "CLASS %s", klass->GetDescriptor()->ToModifiedUtf8().c_str());
std::stringstream ss;
ss << " (" << klass->GetStatus() << ")";
summary += ss.str();
} else if (obj->IsMethod()) {
Method* method = obj->AsMethod();
StringAppendF(&summary, "METHOD %s", PrettyMethod(method).c_str());
} else if (obj->IsField()) {
Field* field = obj->AsField();
Class* type = field->GetType();
std::string type_string;
type_string += (type == NULL) ? "<UNKNOWN>" : type->GetDescriptor()->ToModifiedUtf8();
StringAppendF(&summary, "FIELD %s", PrettyField(field).c_str());
} else if (obj->IsArrayInstance()) {
StringAppendF(&summary, "ARRAY %d", obj->AsArray()->GetLength());
} else if (obj->IsString()) {
StringAppendF(&summary, "STRING %s", obj->AsString()->ToModifiedUtf8().c_str());
} else {
StringAppendF(&summary, "OBJECT");
}
StringAppendF(&summary, "\n");
std::string descriptor = obj->GetClass()->GetDescriptor()->ToModifiedUtf8();
StringAppendF(&summary, "\tclass %p: %s\n", obj->GetClass(), descriptor.c_str());
state->stats_.descriptor_to_bytes[descriptor] += object_bytes;
state->stats_.descriptor_to_count[descriptor] += 1;
// StringAppendF(&summary, "\tsize %d (alignment padding %d)\n",
// object_bytes, RoundUp(object_bytes, kObjectAlignment) - object_bytes);
if (obj->IsMethod()) {
Method* method = obj->AsMethod();
if (!method->IsPhony()) {
const ByteArray* code = method->GetCodeArray();
const int8_t* code_base = NULL;
const int8_t* code_limit = NULL;
if (code != NULL) {
size_t code_bytes = code->GetLength();
code_base = code->GetData();
code_limit = code_base + code_bytes;
if (method->IsNative()) {
state->stats_.managed_to_native_code_bytes += code_bytes;
} else {
state->stats_.managed_code_bytes += code_bytes;
}
} else {
code_base = reinterpret_cast<const int8_t*>(method->GetCode());
}
StringAppendF(&summary, "\tCODE %p-%p\n", code_base, code_limit);
const ByteArray* invoke = method->GetInvokeStubArray();
const int8_t* invoke_base = NULL;
const int8_t* invoke_limit = NULL;
if (invoke != NULL) {
size_t native_to_managed_code_bytes = invoke->GetLength();
invoke_base = invoke->GetData();
invoke_limit = invoke_base + native_to_managed_code_bytes;
state->stats_.native_to_managed_code_bytes += native_to_managed_code_bytes;
StringAppendF(&summary, "\tJNI STUB %p-%p\n", invoke_base, invoke_limit);
}
}
if (method->IsNative()) {
if (method->IsRegistered()) {
StringAppendF(&summary, "\tNATIVE REGISTERED %p\n", method->GetNativeMethod());
} else {
StringAppendF(&summary, "\tNATIVE UNREGISTERED\n");
}
DCHECK(method->GetRegisterMapHeader() == NULL);
DCHECK(method->GetRegisterMapData() == NULL);
DCHECK(method->GetMappingTable() == NULL);
} else if (method->IsAbstract()) {
StringAppendF(&summary, "\tABSTRACT\n");
DCHECK(method->GetRegisterMapHeader() == NULL);
DCHECK(method->GetRegisterMapData() == NULL);
DCHECK(method->GetMappingTable() == NULL);
} else if (method->IsPhony()) {
StringAppendF(&summary, "\tPHONY\n");
DCHECK(method->GetRegisterMapHeader() == NULL);
DCHECK(method->GetRegisterMapData() == NULL);
DCHECK(method->GetMappingTable() == NULL);
} else {
size_t register_map_bytes = (method->GetRegisterMapHeader()->GetLength() +
method->GetRegisterMapData()->GetLength());
state->stats_.register_map_bytes += register_map_bytes;
if (method->GetMappingTable() != NULL) {
size_t pc_mapping_table_bytes = method->GetMappingTable()->GetLength();
state->stats_.pc_mapping_table_bytes += pc_mapping_table_bytes;
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
class DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache();
const DexFile& dex_file = class_linker->FindDexFile(dex_cache);
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset());
size_t dex_instruction_bytes = code_item->insns_size_ * 2;
state->stats_.dex_instruction_bytes += dex_instruction_bytes;
}
}
state->os_ << summary << std::flush;
}
bool InDumpSpace(const Object* object) {
const byte* o = reinterpret_cast<const byte*>(object);
return (o >= dump_space_.GetBase() && o < dump_space_.GetLimit());
}
public:
struct Stats {
size_t file_bytes;
size_t header_bytes;
size_t object_bytes;
size_t alignment_bytes;
size_t managed_code_bytes;
size_t managed_to_native_code_bytes;
size_t native_to_managed_code_bytes;
size_t register_map_bytes;
size_t pc_mapping_table_bytes;
size_t dex_instruction_bytes;
Stats()
: file_bytes(0),
header_bytes(0),
object_bytes(0),
alignment_bytes(0),
managed_code_bytes(0),
managed_to_native_code_bytes(0),
native_to_managed_code_bytes(0),
register_map_bytes(0),
pc_mapping_table_bytes(0),
dex_instruction_bytes(0) {}
typedef std::tr1::unordered_map<std::string,size_t> TableBytes;
TableBytes descriptor_to_bytes;
typedef std::tr1::unordered_map<std::string,size_t> TableCount;
TableCount descriptor_to_count;
double PercentOfFileBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(file_bytes)) * 100;
}
double PercentOfObjectBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(object_bytes)) * 100;
}
void Dump(std::ostream& os) {
os << StringPrintf("\tfile_bytes = %d\n", file_bytes);
os << "\n";
os << "\tfile_bytes = header_bytes + object_bytes + alignment_bytes\n";
os << StringPrintf("\theader_bytes = %10d (%2.0f%% of file_bytes)\n",
header_bytes, PercentOfFileBytes(header_bytes));
os << StringPrintf("\tobject_bytes = %10d (%2.0f%% of file_bytes)\n",
object_bytes, PercentOfFileBytes(object_bytes));
os << StringPrintf("\talignment_bytes = %10d (%2.0f%% of file_bytes)\n",
alignment_bytes, PercentOfFileBytes(alignment_bytes));
os << "\n";
os << std::flush;
CHECK_EQ(file_bytes, header_bytes + object_bytes + alignment_bytes);
os << "\tobject_bytes = sum of descriptor_to_bytes values below:\n";
size_t object_bytes_total = 0;
typedef TableBytes::const_iterator It; // TODO: C++0x auto
for (It it = descriptor_to_bytes.begin(), end = descriptor_to_bytes.end(); it != end; ++it) {
const std::string& descriptor = it->first;
size_t bytes = it->second;
size_t count = descriptor_to_count[descriptor];
double average = static_cast<double>(bytes) / static_cast<double>(count);
double percent = PercentOfObjectBytes(bytes);
os << StringPrintf("\t%32s %8d bytes %6d instances "
"(%3.0f bytes/instance) %2.0f%% of object_bytes\n",
descriptor.c_str(), bytes, count,
average, percent);
object_bytes_total += bytes;
}
os << "\n";
os << std::flush;
CHECK_EQ(object_bytes, object_bytes_total);
os << StringPrintf("\tmanaged_code_bytes = %8d (%2.0f%% of object_bytes)\n",
managed_code_bytes, PercentOfObjectBytes(managed_code_bytes));
os << StringPrintf("\tmanaged_to_native_code_bytes = %8d (%2.0f%% of object_bytes)\n",
managed_to_native_code_bytes,
PercentOfObjectBytes(managed_to_native_code_bytes));
os << StringPrintf("\tnative_to_managed_code_bytes = %8d (%2.0f%% of object_bytes)\n",
native_to_managed_code_bytes,
PercentOfObjectBytes(native_to_managed_code_bytes));
os << "\n";
os << std::flush;
os << StringPrintf("\tregister_map_bytes = %7d (%2.0f%% of object_bytes)\n",
register_map_bytes, PercentOfObjectBytes(register_map_bytes));
os << StringPrintf("\tpc_mapping_table_bytes = %7d (%2.0f%% of object_bytes)\n",
pc_mapping_table_bytes, PercentOfObjectBytes(pc_mapping_table_bytes));
os << "\n";
os << std::flush;
os << StringPrintf("\tdex_instruction_bytes = %d\n", dex_instruction_bytes);
os << StringPrintf("\tmanaged_code_bytes expansion = %.2f\n",
static_cast<double>(managed_code_bytes)
/ static_cast<double>(dex_instruction_bytes));
os << "\n";
os << std::flush;
}
} stats_;
private:
const Space& dump_space_;
std::ostream& os_;
DISALLOW_COPY_AND_ASSIGN(OatDump);
};
int oatdump(int argc, char** argv) {
// Skip over argv[0].
argv++;
argc--;
if (argc == 0) {
fprintf(stderr, "no arguments specified\n");
usage();
}
const char* image_filename = NULL;
const char* boot_image_filename = NULL;
std::string host_prefix;
std::ostream* os = &std::cout;
UniquePtr<std::ofstream> out;
for (int i = 0; i < argc; i++) {
const StringPiece option(argv[i]);
if (option.starts_with("--image=")) {
image_filename = option.substr(strlen("--image=")).data();
} else if (option.starts_with("--boot-image=")) {
boot_image_filename = option.substr(strlen("--boot-image=")).data();
} else if (option.starts_with("--host-prefix=")) {
host_prefix = option.substr(strlen("--host-prefix=")).data();
} else if (option.starts_with("--output=")) {
const char* filename = option.substr(strlen("--output=")).data();
out.reset(new std::ofstream(filename));
if (!out->good()) {
fprintf(stderr, "failed to open output filename %s\n", filename);
usage();
}
os = out.get();
} else {
fprintf(stderr, "unknown argument %s\n", option.data());
usage();
}
}
if (image_filename == NULL) {
fprintf(stderr, "--image file name not specified\n");
return EXIT_FAILURE;
}
Runtime::Options options;
std::string image_option;
std::string oat_option;
std::string boot_image_option;
std::string boot_oat_option;
if (boot_image_filename != NULL) {
boot_image_option += "-Ximage:";
boot_image_option += boot_image_filename;
options.push_back(std::make_pair(boot_image_option.c_str(), reinterpret_cast<void*>(NULL)));
}
image_option += "-Ximage:";
image_option += image_filename;
options.push_back(std::make_pair(image_option.c_str(), reinterpret_cast<void*>(NULL)));
if (!host_prefix.empty()) {
options.push_back(std::make_pair("host-prefix", host_prefix.c_str()));
}
UniquePtr<Runtime> runtime(Runtime::Create(options, false));
if (runtime.get() == NULL) {
fprintf(stderr, "could not create runtime\n");
return EXIT_FAILURE;
}
Space* image_space = Heap::GetSpaces()[Heap::GetSpaces().size()-2];
CHECK(image_space != NULL);
const ImageHeader& image_header = image_space->GetImageHeader();
if (!image_header.IsValid()) {
fprintf(stderr, "invalid image header %s\n", image_filename);
return EXIT_FAILURE;
}
OatDump::Dump(image_filename, *os, *image_space, image_header);
return EXIT_SUCCESS;
}
} // namespace art
int main(int argc, char** argv) {
return art::oatdump(argc, argv);
}