blob: 22e4430d4621f7fabb994372ce8cad26b92cbe23 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "dex_file.h"
#include <fcntl.h>
#include <map>
#include <stdio.h>
#include <string.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "globals.h"
#include "logging.h"
#include "object.h"
#include "os.h"
#include "scoped_ptr.h"
#include "stringprintf.h"
#include "thread.h"
#include "utils.h"
#include "zip_archive.h"
namespace art {
const byte DexFile::kDexMagic[] = { 'd', 'e', 'x', '\n' };
const byte DexFile::kDexMagicVersion[] = { '0', '3', '5', '\0' };
DexFile::ClassPathEntry DexFile::FindInClassPath(const StringPiece& descriptor,
ClassPath& class_path) {
for (size_t i = 0; i != class_path.size(); ++i) {
const DexFile* dex_file = class_path[i];
const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor);
if (dex_class_def != NULL) {
return ClassPathEntry(dex_file, dex_class_def);
}
}
// TODO remove reinterpret_cast when issue with -std=gnu++0x host issue resolved
return ClassPathEntry(reinterpret_cast<const DexFile*>(NULL),
reinterpret_cast<const DexFile::ClassDef*>(NULL));
}
DexFile::Closer::~Closer() {}
DexFile::MmapCloser::MmapCloser(void* addr, size_t length) : addr_(addr), length_(length) {
CHECK(addr != NULL);
}
DexFile::MmapCloser::~MmapCloser() {
if (munmap(addr_, length_) == -1) {
PLOG(INFO) << "munmap failed";
}
}
DexFile::PtrCloser::PtrCloser(byte* addr) : addr_(addr) {}
DexFile::PtrCloser::~PtrCloser() { delete[] addr_; }
DexFile* DexFile::OpenFile(const std::string& filename) {
int fd = open(filename.c_str(), O_RDONLY); // TODO: scoped_fd
if (fd == -1) {
PLOG(ERROR) << "open(\"" << filename << "\", O_RDONLY) failed";
return NULL;
}
struct stat sbuf;
memset(&sbuf, 0, sizeof(sbuf));
if (fstat(fd, &sbuf) == -1) {
PLOG(ERROR) << "fstat \"" << filename << "\" failed";
close(fd);
return NULL;
}
size_t length = sbuf.st_size;
void* addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
if (addr == MAP_FAILED) {
PLOG(ERROR) << "mmap \"" << filename << "\" failed";
close(fd);
return NULL;
}
close(fd);
byte* dex_file = reinterpret_cast<byte*>(addr);
Closer* closer = new MmapCloser(addr, length);
return Open(dex_file, length, closer);
}
static const char* kClassesDex = "classes.dex";
class LockedFd {
public:
static LockedFd* CreateAndLock(std::string& name, mode_t mode) {
int fd = open(name.c_str(), O_CREAT | O_RDWR, mode);
if (fd == -1) {
PLOG(ERROR) << "Can't open file '" << name << "'";
return NULL;
}
fchmod(fd, mode);
LOG(INFO) << "locking file " << name << " (fd=" << fd << ")";
int result = flock(fd, LOCK_EX | LOCK_NB);
if (result == -1) {
LOG(WARNING) << "sleeping while locking file " << name;
result = flock(fd, LOCK_EX);
}
if (result == -1 ) {
PLOG(ERROR) << "Can't lock file '" << name << "'";
close(fd);
return NULL;
}
return new LockedFd(fd);
}
int GetFd() const {
return fd_;
}
~LockedFd() {
if (fd_ != -1) {
int result = flock(fd_, LOCK_UN);
if (result == -1) {
PLOG(WARNING) << "flock(" << fd_ << ", LOCK_UN) failed";
}
close(fd_);
}
}
private:
LockedFd(int fd) : fd_(fd) {}
int fd_;
};
class TmpFile {
public:
TmpFile(const std::string name) : name_(name) {}
~TmpFile() {
unlink(name_.c_str());
}
private:
const std::string name_;
};
// Open classes.dex from within a .zip, .jar, .apk, ...
DexFile* DexFile::OpenZip(const std::string& filename) {
// First, look for a ".dex" alongside the jar file. It will have
// the same name/path except for the extension.
// Example filename = dir/foo.jar
std::string adjacent_dex_filename(filename);
size_t found = adjacent_dex_filename.find_last_of(".");
if (found == std::string::npos) {
LOG(WARNING) << "No . in filename" << filename;
}
adjacent_dex_filename.replace(adjacent_dex_filename.begin() + found,
adjacent_dex_filename.end(),
".dex");
// Example adjacent_dex_filename = dir/foo.dex
if (OS::FileExists(adjacent_dex_filename.c_str())) {
DexFile* adjacent_dex_file = DexFile::OpenFile(adjacent_dex_filename);
if (adjacent_dex_file != NULL) {
// We don't verify anything in this case, because we aren't in
// the cache and typically the file is in the readonly /system
// area, so if something is wrong, there is nothing we can do.
return adjacent_dex_file;
}
return NULL;
}
char resolved[PATH_MAX];
char* absolute_path = realpath(filename.c_str(), resolved);
if (absolute_path == NULL) {
LOG(WARNING) << "Could not create absolute path for " << filename
<< " when looking for classes.dex";
return NULL;
}
std::string cache_file(absolute_path+1); // skip leading slash
std::replace(cache_file.begin(), cache_file.end(), '/', '@');
cache_file.push_back('@');
cache_file.append(kClassesDex);
// Example cache_file = parent@dir@foo.jar@classes.dex
const char* data_root = getenv("ANDROID_DATA");
if (data_root == NULL) {
data_root = "/data";
}
std::string cache_path_tmp = StringPrintf("%s/art-cache/%s", data_root, cache_file.c_str());
// Example cache_path_tmp = /data/art-cache/parent@dir@foo.jar@classes.dex
scoped_ptr<ZipArchive> zip_archive(ZipArchive::Open(filename));
if (zip_archive == NULL) {
LOG(WARNING) << "Could not open " << filename << " when looking for classes.dex";
return NULL;
}
scoped_ptr<ZipEntry> zip_entry(zip_archive->Find(kClassesDex));
if (zip_entry == NULL) {
LOG(WARNING) << "Could not find classes.dex within " << filename;
return NULL;
}
std::string cache_path = StringPrintf("%s.%08x", cache_path_tmp.c_str(), zip_entry->GetCrc32());
// Example cache_path = /data/art-cache/parent@dir@foo.jar@classes.dex.1a2b3c4d
while (true) {
if (OS::FileExists(cache_path.c_str())) {
DexFile* cached_dex_file = DexFile::OpenFile(cache_path);
if (cached_dex_file != NULL) {
return cached_dex_file;
}
}
// Try to open the temporary cache file, grabbing an exclusive
// lock. If somebody else is working on it, we'll block here until
// they complete. Because we're waiting on an external resource,
// we go into native mode.
// Note that current_thread can be NULL if we're parsing the bootclasspath
// during JNI_CreateJavaVM.
Thread* current_thread = Thread::Current();
Thread::State old;
if (current_thread != NULL) {
old = current_thread->GetState();
current_thread->SetState(Thread::kNative);
}
scoped_ptr<LockedFd> fd(LockedFd::CreateAndLock(cache_path_tmp, 0644));
if (current_thread != NULL) {
current_thread->SetState(old);
}
if (fd == NULL) {
return NULL;
}
// Check to see if the fd we opened and locked matches the file in
// the filesystem. If they don't, then somebody else unlinked
// ours and created a new file, and we need to use that one
// instead. (If we caught them between the unlink and the create,
// we'll get an ENOENT from the file stat.)
struct stat fd_stat;
int fd_stat_result = fstat(fd->GetFd(), &fd_stat);
if (fd_stat_result == -1) {
PLOG(ERROR) << "Can't stat open file '" << cache_path_tmp << "'";
return NULL;
}
struct stat file_stat;
int file_stat_result = stat(cache_path_tmp.c_str(), &file_stat);
if (file_stat_result == -1 ||
fd_stat.st_dev != file_stat.st_dev || fd_stat.st_ino != file_stat.st_ino) {
LOG(WARNING) << "our open cache file is stale; sleeping and retrying";
usleep(250 * 1000); // if something is hosed, don't peg machine
continue;
}
// We have the correct file open and locked. Extract classes.dex
TmpFile tmp_file(cache_path_tmp);
scoped_ptr<File> file(OS::FileFromFd(cache_path_tmp.c_str(), fd->GetFd()));
if (file == NULL) {
return NULL;
}
bool success = zip_entry->Extract(*file);
if (!success) {
return NULL;
}
// TODO restat and check length against zip_entry->GetUncompressedLength()?
// Compute checksum and compare to zip. If things look okay, rename from tmp.
off_t lseek_result = lseek(fd->GetFd(), 0, SEEK_SET);
if (lseek_result == -1) {
return NULL;
}
const size_t kBufSize = 32768;
scoped_array<uint8_t> buf(new uint8_t[kBufSize]);
if (buf == NULL) {
return NULL;
}
uint32_t computed_crc = crc32(0L, Z_NULL, 0);
while (true) {
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd->GetFd(), buf.get(), kBufSize));
if (bytes_read == -1) {
PLOG(ERROR) << "Problem computing CRC of '" << cache_path_tmp << "'";
return NULL;
}
if (bytes_read == 0) {
break;
}
computed_crc = crc32(computed_crc, buf.get(), bytes_read);
}
if (computed_crc != zip_entry->GetCrc32()) {
return NULL;
}
int rename_result = rename(cache_path_tmp.c_str(), cache_path.c_str());
if (rename_result == -1) {
PLOG(ERROR) << "Can't install dex cache file '" << cache_path << "'"
<< " from '" << cache_path_tmp << "'";
unlink(cache_path.c_str());
}
}
// NOTREACHED
}
DexFile* DexFile::OpenPtr(byte* ptr, size_t length) {
CHECK(ptr != NULL);
DexFile::Closer* closer = new PtrCloser(ptr);
return Open(ptr, length, closer);
}
DexFile* DexFile::Open(const byte* dex_bytes, size_t length,
Closer* closer) {
scoped_ptr<DexFile> dex_file(new DexFile(dex_bytes, length, closer));
if (!dex_file->Init()) {
return NULL;
} else {
return dex_file.release();
}
}
DexFile::~DexFile() {}
bool DexFile::Init() {
InitMembers();
if (!IsMagicValid()) {
return false;
}
InitIndex();
return true;
}
void DexFile::InitMembers() {
const byte* b = base_;
header_ = reinterpret_cast<const Header*>(b);
const Header* h = header_;
string_ids_ = reinterpret_cast<const StringId*>(b + h->string_ids_off_);
type_ids_ = reinterpret_cast<const TypeId*>(b + h->type_ids_off_);
field_ids_ = reinterpret_cast<const FieldId*>(b + h->field_ids_off_);
method_ids_ = reinterpret_cast<const MethodId*>(b + h->method_ids_off_);
proto_ids_ = reinterpret_cast<const ProtoId*>(b + h->proto_ids_off_);
class_defs_ = reinterpret_cast<const ClassDef*>(b + h->class_defs_off_);
}
bool DexFile::IsMagicValid() {
return CheckMagic(header_->magic_);
}
bool DexFile::CheckMagic(const byte* magic) {
CHECK(magic != NULL);
if (memcmp(magic, kDexMagic, sizeof(kDexMagic)) != 0) {
LOG(WARNING) << "Unrecognized magic number:"
<< " " << magic[0]
<< " " << magic[1]
<< " " << magic[2]
<< " " << magic[3];
return false;
}
const byte* version = &magic[sizeof(kDexMagic)];
if (memcmp(version, kDexMagicVersion, sizeof(kDexMagicVersion)) != 0) {
LOG(WARNING) << "Unrecognized version number:"
<< " " << version[0]
<< " " << version[1]
<< " " << version[2]
<< " " << version[3];
return false;
}
return true;
}
void DexFile::InitIndex() {
CHECK_EQ(index_.size(), 0U);
for (size_t i = 0; i < NumClassDefs(); ++i) {
const ClassDef& class_def = GetClassDef(i);
const char* descriptor = GetClassDescriptor(class_def);
index_[descriptor] = &class_def;
}
}
const DexFile::ClassDef* DexFile::FindClassDef(const StringPiece& descriptor) const {
CHECK(descriptor != NULL);
Index::const_iterator it = index_.find(descriptor);
if (it == index_.end()) {
return NULL;
} else {
return it->second;
}
}
// Materializes the method descriptor for a method prototype. Method
// descriptors are not stored directly in the dex file. Instead, one
// must assemble the descriptor from references in the prototype.
char* DexFile::CreateMethodDescriptor(uint32_t proto_idx,
int32_t* unicode_length) const {
CHECK(unicode_length != NULL);
const ProtoId& proto_id = GetProtoId(proto_idx);
std::string descriptor;
descriptor.push_back('(');
const TypeList* type_list = GetProtoParameters(proto_id);
size_t parameter_length = 0;
if (type_list != NULL) {
// A non-zero number of arguments. Append the type names.
for (size_t i = 0; i < type_list->Size(); ++i) {
const TypeItem& type_item = type_list->GetTypeItem(i);
uint32_t type_idx = type_item.type_idx_;
int32_t type_length;
const char* name = dexStringByTypeIdx(type_idx, &type_length);
parameter_length += type_length;
descriptor.append(name);
}
}
descriptor.push_back(')');
uint32_t return_type_idx = proto_id.return_type_idx_;
int32_t return_type_length;
const char* name = dexStringByTypeIdx(return_type_idx, &return_type_length);
descriptor.append(name);
// TODO: should this just return a std::string?
scoped_ptr<char> c_string(new char[descriptor.size() + 1]);
strcpy(c_string.get(), descriptor.c_str());
*unicode_length = parameter_length + return_type_length + 2; // 2 for ( and )
return c_string.release();
}
// Read a signed integer. "zwidth" is the zero-based byte count.
static int32_t ReadSignedInt(const byte* ptr, int zwidth)
{
int32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
return val;
}
// Read an unsigned integer. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint32_t ReadUnsignedInt(const byte* ptr, int zwidth,
bool fill_on_right) {
uint32_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
}
return val;
}
// Read a signed long. "zwidth" is the zero-based byte count.
static int64_t ReadSignedLong(const byte* ptr, int zwidth) {
int64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
return val;
}
// Read an unsigned long. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint64_t ReadUnsignedLong(const byte* ptr, int zwidth,
bool fill_on_right) {
uint64_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
}
return val;
}
DexFile::ValueType DexFile::ReadEncodedValue(const byte** stream,
JValue* value) const {
const byte* ptr = *stream;
byte value_type = *ptr++;
byte value_arg = value_type >> kEncodedValueArgShift;
size_t width = value_arg + 1; // assume and correct later
int type = value_type & kEncodedValueTypeMask;
switch (type) {
case DexFile::kByte: {
int32_t b = ReadSignedInt(ptr, value_arg);
CHECK(IsInt(8, b));
value->i = b;
break;
}
case DexFile::kShort: {
int32_t s = ReadSignedInt(ptr, value_arg);
CHECK(IsInt(16, s));
value->i = s;
break;
}
case DexFile::kChar: {
uint32_t c = ReadUnsignedInt(ptr, value_arg, false);
CHECK(IsUint(16, c));
value->i = c;
break;
}
case DexFile::kInt:
value->i = ReadSignedInt(ptr, value_arg);
break;
case DexFile::kLong:
value->j = ReadSignedLong(ptr, value_arg);
break;
case DexFile::kFloat:
value->i = ReadUnsignedInt(ptr, value_arg, true);
break;
case DexFile::kDouble:
value->j = ReadUnsignedLong(ptr, value_arg, true);
break;
case DexFile::kBoolean:
value->i = (value_arg != 0);
width = 0;
break;
case DexFile::kString:
case DexFile::kType:
case DexFile::kMethod:
case DexFile::kEnum:
value->i = ReadUnsignedInt(ptr, value_arg, false);
break;
case DexFile::kField:
case DexFile::kArray:
case DexFile::kAnnotation:
UNIMPLEMENTED(FATAL) << ": type " << type;
break;
case DexFile::kNull:
value->i = 0;
width = 0;
break;
default:
LOG(FATAL) << "Unreached";
}
ptr += width;
*stream = ptr;
return static_cast<ValueType>(type);
}
} // namespace art