blob: 15fc69d4a2531ffbb03a3dce921330cfab5c79d9 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_mips.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "mips_lir.h"
namespace art {
/* This file contains codegen for the MIPS32 ISA. */
LIR* MipsMir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
int opcode;
/* must be both DOUBLE or both not DOUBLE */
DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
if (r_dest.IsDouble()) {
opcode = kMipsFmovd;
} else {
if (r_dest.IsSingle()) {
if (r_src.IsSingle()) {
opcode = kMipsFmovs;
} else {
/* note the operands are swapped for the mtc1 instr */
RegStorage t_opnd = r_src;
r_src = r_dest;
r_dest = t_opnd;
opcode = kMipsMtc1;
}
} else {
DCHECK(r_src.IsSingle());
opcode = kMipsMfc1;
}
}
LIR* res = RawLIR(current_dalvik_offset_, opcode, r_src.GetReg(), r_dest.GetReg());
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
res->flags.is_nop = true;
}
return res;
}
bool MipsMir2Lir::InexpensiveConstantInt(int32_t value) {
return ((value == 0) || IsUint(16, value) || ((value < 0) && (value >= -32768)));
}
bool MipsMir2Lir::InexpensiveConstantFloat(int32_t value) {
UNUSED(value);
return false; // TUNING
}
bool MipsMir2Lir::InexpensiveConstantLong(int64_t value) {
UNUSED(value);
return false; // TUNING
}
bool MipsMir2Lir::InexpensiveConstantDouble(int64_t value) {
UNUSED(value);
return false; // TUNING
}
/*
* Load a immediate using a shortcut if possible; otherwise
* grab from the per-translation literal pool. If target is
* a high register, build constant into a low register and copy.
*
* No additional register clobbering operation performed. Use this version when
* 1) r_dest is freshly returned from AllocTemp or
* 2) The codegen is under fixed register usage
*/
LIR* MipsMir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
LIR *res;
RegStorage r_dest_save = r_dest;
int is_fp_reg = r_dest.IsFloat();
if (is_fp_reg) {
DCHECK(r_dest.IsSingle());
r_dest = AllocTemp();
}
/* See if the value can be constructed cheaply */
if (value == 0) {
res = NewLIR2(kMipsMove, r_dest.GetReg(), rZERO);
} else if ((value > 0) && (value <= 65535)) {
res = NewLIR3(kMipsOri, r_dest.GetReg(), rZERO, value);
} else if ((value < 0) && (value >= -32768)) {
res = NewLIR3(kMipsAddiu, r_dest.GetReg(), rZERO, value);
} else {
res = NewLIR2(kMipsLui, r_dest.GetReg(), value >> 16);
if (value & 0xffff)
NewLIR3(kMipsOri, r_dest.GetReg(), r_dest.GetReg(), value);
}
if (is_fp_reg) {
NewLIR2(kMipsMtc1, r_dest.GetReg(), r_dest_save.GetReg());
FreeTemp(r_dest);
}
return res;
}
LIR* MipsMir2Lir::OpUnconditionalBranch(LIR* target) {
LIR* res = NewLIR1(kMipsB, 0 /* offset to be patched during assembly*/);
res->target = target;
return res;
}
LIR* MipsMir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
MipsOpCode opcode = kMipsNop;
switch (op) {
case kOpBlx:
opcode = kMipsJalr;
break;
case kOpBx:
return NewLIR2(kMipsJalr, rZERO, r_dest_src.GetReg());
break;
default:
LOG(FATAL) << "Bad case in OpReg";
}
return NewLIR2(opcode, rRA, r_dest_src.GetReg());
}
LIR* MipsMir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
LIR *res;
bool neg = (value < 0);
int abs_value = (neg) ? -value : value;
bool short_form = (abs_value & 0xff) == abs_value;
MipsOpCode opcode = kMipsNop;
switch (op) {
case kOpAdd:
return OpRegRegImm(op, r_dest_src1, r_dest_src1, value);
break;
case kOpSub:
return OpRegRegImm(op, r_dest_src1, r_dest_src1, value);
break;
default:
LOG(FATAL) << "Bad case in OpRegImm";
break;
}
if (short_form) {
res = NewLIR2(opcode, r_dest_src1.GetReg(), abs_value);
} else {
RegStorage r_scratch = AllocTemp();
res = LoadConstant(r_scratch, value);
if (op == kOpCmp)
NewLIR2(opcode, r_dest_src1.GetReg(), r_scratch.GetReg());
else
NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), r_scratch.GetReg());
}
return res;
}
LIR* MipsMir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) {
MipsOpCode opcode = kMipsNop;
switch (op) {
case kOpAdd:
opcode = kMipsAddu;
break;
case kOpSub:
opcode = kMipsSubu;
break;
case kOpAnd:
opcode = kMipsAnd;
break;
case kOpMul:
opcode = kMipsMul;
break;
case kOpOr:
opcode = kMipsOr;
break;
case kOpXor:
opcode = kMipsXor;
break;
case kOpLsl:
opcode = kMipsSllv;
break;
case kOpLsr:
opcode = kMipsSrlv;
break;
case kOpAsr:
opcode = kMipsSrav;
break;
case kOpAdc:
case kOpSbc:
LOG(FATAL) << "No carry bit on MIPS";
break;
default:
LOG(FATAL) << "bad case in OpRegRegReg";
break;
}
return NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg());
}
LIR* MipsMir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) {
LIR *res;
MipsOpCode opcode = kMipsNop;
bool short_form = true;
switch (op) {
case kOpAdd:
if (IS_SIMM16(value)) {
opcode = kMipsAddiu;
} else {
short_form = false;
opcode = kMipsAddu;
}
break;
case kOpSub:
if (IS_SIMM16((-value))) {
value = -value;
opcode = kMipsAddiu;
} else {
short_form = false;
opcode = kMipsSubu;
}
break;
case kOpLsl:
DCHECK(value >= 0 && value <= 31);
opcode = kMipsSll;
break;
case kOpLsr:
DCHECK(value >= 0 && value <= 31);
opcode = kMipsSrl;
break;
case kOpAsr:
DCHECK(value >= 0 && value <= 31);
opcode = kMipsSra;
break;
case kOpAnd:
if (IS_UIMM16((value))) {
opcode = kMipsAndi;
} else {
short_form = false;
opcode = kMipsAnd;
}
break;
case kOpOr:
if (IS_UIMM16((value))) {
opcode = kMipsOri;
} else {
short_form = false;
opcode = kMipsOr;
}
break;
case kOpXor:
if (IS_UIMM16((value))) {
opcode = kMipsXori;
} else {
short_form = false;
opcode = kMipsXor;
}
break;
case kOpMul:
short_form = false;
opcode = kMipsMul;
break;
default:
LOG(FATAL) << "Bad case in OpRegRegImm";
break;
}
if (short_form) {
res = NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), value);
} else {
if (r_dest != r_src1) {
res = LoadConstant(r_dest, value);
NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_dest.GetReg());
} else {
RegStorage r_scratch = AllocTemp();
res = LoadConstant(r_scratch, value);
NewLIR3(opcode, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg());
}
}
return res;
}
LIR* MipsMir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
MipsOpCode opcode = kMipsNop;
LIR *res;
switch (op) {
case kOpMov:
opcode = kMipsMove;
break;
case kOpMvn:
return NewLIR3(kMipsNor, r_dest_src1.GetReg(), r_src2.GetReg(), rZERO);
case kOpNeg:
return NewLIR3(kMipsSubu, r_dest_src1.GetReg(), rZERO, r_src2.GetReg());
case kOpAdd:
case kOpAnd:
case kOpMul:
case kOpOr:
case kOpSub:
case kOpXor:
return OpRegRegReg(op, r_dest_src1, r_dest_src1, r_src2);
case kOp2Byte:
if (cu_->GetInstructionSetFeatures()->AsMipsInstructionSetFeatures()
->IsMipsIsaRevGreaterThanEqual2()) {
res = NewLIR2(kMipsSeb, r_dest_src1.GetReg(), r_src2.GetReg());
} else {
res = OpRegRegImm(kOpLsl, r_dest_src1, r_src2, 24);
OpRegRegImm(kOpAsr, r_dest_src1, r_dest_src1, 24);
}
return res;
case kOp2Short:
if (cu_->GetInstructionSetFeatures()->AsMipsInstructionSetFeatures()
->IsMipsIsaRevGreaterThanEqual2()) {
res = NewLIR2(kMipsSeh, r_dest_src1.GetReg(), r_src2.GetReg());
} else {
res = OpRegRegImm(kOpLsl, r_dest_src1, r_src2, 16);
OpRegRegImm(kOpAsr, r_dest_src1, r_dest_src1, 16);
}
return res;
case kOp2Char:
return NewLIR3(kMipsAndi, r_dest_src1.GetReg(), r_src2.GetReg(), 0xFFFF);
default:
LOG(FATAL) << "Bad case in OpRegReg";
UNREACHABLE();
}
return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
}
LIR* MipsMir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
MoveType move_type) {
UNUSED(r_dest, r_base, offset, move_type);
UNIMPLEMENTED(FATAL);
UNREACHABLE();
}
LIR* MipsMir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
UNUSED(r_base, offset, r_src, move_type);
UNIMPLEMENTED(FATAL);
UNREACHABLE();
}
LIR* MipsMir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
UNUSED(op, cc, r_dest, r_src);
LOG(FATAL) << "Unexpected use of OpCondRegReg for MIPS";
UNREACHABLE();
}
LIR* MipsMir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
LIR *res;
if (!r_dest.IsPair()) {
// Form 64-bit pair
r_dest = Solo64ToPair64(r_dest);
}
res = LoadConstantNoClobber(r_dest.GetLow(), Low32Bits(value));
LoadConstantNoClobber(r_dest.GetHigh(), High32Bits(value));
return res;
}
/* Load value from base + scaled index. */
LIR* MipsMir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
int scale, OpSize size) {
LIR *first = NULL;
LIR *res;
MipsOpCode opcode = kMipsNop;
RegStorage t_reg = AllocTemp();
if (r_dest.IsFloat()) {
DCHECK(r_dest.IsSingle());
DCHECK((size == k32) || (size == kSingle) || (size == kReference));
size = kSingle;
} else {
if (size == kSingle)
size = k32;
}
if (!scale) {
first = NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), r_index.GetReg());
} else {
first = OpRegRegImm(kOpLsl, t_reg, r_index, scale);
NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), t_reg.GetReg());
}
switch (size) {
case kSingle:
opcode = kMipsFlwc1;
break;
case k32:
case kReference:
opcode = kMipsLw;
break;
case kUnsignedHalf:
opcode = kMipsLhu;
break;
case kSignedHalf:
opcode = kMipsLh;
break;
case kUnsignedByte:
opcode = kMipsLbu;
break;
case kSignedByte:
opcode = kMipsLb;
break;
default:
LOG(FATAL) << "Bad case in LoadBaseIndexed";
}
res = NewLIR3(opcode, r_dest.GetReg(), 0, t_reg.GetReg());
FreeTemp(t_reg);
return (first) ? first : res;
}
/* store value base base + scaled index. */
LIR* MipsMir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
int scale, OpSize size) {
LIR *first = NULL;
MipsOpCode opcode = kMipsNop;
RegStorage t_reg = AllocTemp();
if (r_src.IsFloat()) {
DCHECK(r_src.IsSingle());
DCHECK((size == k32) || (size == kSingle) || (size == kReference));
size = kSingle;
} else {
if (size == kSingle)
size = k32;
}
if (!scale) {
first = NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), r_index.GetReg());
} else {
first = OpRegRegImm(kOpLsl, t_reg, r_index, scale);
NewLIR3(kMipsAddu, t_reg.GetReg() , r_base.GetReg(), t_reg.GetReg());
}
switch (size) {
case kSingle:
opcode = kMipsFswc1;
break;
case k32:
case kReference:
opcode = kMipsSw;
break;
case kUnsignedHalf:
case kSignedHalf:
opcode = kMipsSh;
break;
case kUnsignedByte:
case kSignedByte:
opcode = kMipsSb;
break;
default:
LOG(FATAL) << "Bad case in StoreBaseIndexed";
}
NewLIR3(opcode, r_src.GetReg(), 0, t_reg.GetReg());
return first;
}
// FIXME: don't split r_dest into 2 containers.
LIR* MipsMir2Lir::LoadBaseDispBody(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size) {
/*
* Load value from base + displacement. Optionally perform null check
* on base (which must have an associated s_reg and MIR). If not
* performing null check, incoming MIR can be null. IMPORTANT: this
* code must not allocate any new temps. If a new register is needed
* and base and dest are the same, spill some other register to
* rlp and then restore.
*/
LIR *res;
LIR *load = NULL;
LIR *load2 = NULL;
MipsOpCode opcode = kMipsNop;
bool short_form = IS_SIMM16(displacement);
bool pair = r_dest.IsPair();
switch (size) {
case k64:
case kDouble:
if (!pair) {
// Form 64-bit pair
r_dest = Solo64ToPair64(r_dest);
pair = 1;
}
if (r_dest.IsFloat()) {
DCHECK_EQ(r_dest.GetLowReg(), r_dest.GetHighReg() - 1);
opcode = kMipsFlwc1;
} else {
opcode = kMipsLw;
}
short_form = IS_SIMM16_2WORD(displacement);
DCHECK_EQ((displacement & 0x3), 0);
break;
case k32:
case kSingle:
case kReference:
opcode = kMipsLw;
if (r_dest.IsFloat()) {
opcode = kMipsFlwc1;
DCHECK(r_dest.IsSingle());
}
DCHECK_EQ((displacement & 0x3), 0);
break;
case kUnsignedHalf:
opcode = kMipsLhu;
DCHECK_EQ((displacement & 0x1), 0);
break;
case kSignedHalf:
opcode = kMipsLh;
DCHECK_EQ((displacement & 0x1), 0);
break;
case kUnsignedByte:
opcode = kMipsLbu;
break;
case kSignedByte:
opcode = kMipsLb;
break;
default:
LOG(FATAL) << "Bad case in LoadBaseIndexedBody";
}
if (short_form) {
if (!pair) {
load = res = NewLIR3(opcode, r_dest.GetReg(), displacement, r_base.GetReg());
} else {
load = res = NewLIR3(opcode, r_dest.GetLowReg(), displacement + LOWORD_OFFSET, r_base.GetReg());
load2 = NewLIR3(opcode, r_dest.GetHighReg(), displacement + HIWORD_OFFSET, r_base.GetReg());
}
} else {
if (pair) {
RegStorage r_tmp = AllocTemp();
res = OpRegRegImm(kOpAdd, r_tmp, r_base, displacement);
load = NewLIR3(opcode, r_dest.GetLowReg(), LOWORD_OFFSET, r_tmp.GetReg());
load2 = NewLIR3(opcode, r_dest.GetHighReg(), HIWORD_OFFSET, r_tmp.GetReg());
FreeTemp(r_tmp);
} else {
RegStorage r_tmp = (r_base == r_dest) ? AllocTemp() : r_dest;
res = OpRegRegImm(kOpAdd, r_tmp, r_base, displacement);
load = NewLIR3(opcode, r_dest.GetReg(), 0, r_tmp.GetReg());
if (r_tmp != r_dest)
FreeTemp(r_tmp);
}
}
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, rs_rMIPS_SP);
AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
true /* is_load */, pair /* is64bit */);
if (pair) {
AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, pair /* is64bit */);
}
}
return load;
}
LIR* MipsMir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size, VolatileKind is_volatile) {
if (UNLIKELY(is_volatile == kVolatile && (size == k64 || size == kDouble))) {
// Do atomic 64-bit load.
return GenAtomic64Load(r_base, displacement, r_dest);
}
// TODO: base this on target.
if (size == kWord) {
size = k32;
}
LIR* load;
load = LoadBaseDispBody(r_base, displacement, r_dest, size);
if (UNLIKELY(is_volatile == kVolatile)) {
GenMemBarrier(kLoadAny);
}
return load;
}
// FIXME: don't split r_dest into 2 containers.
LIR* MipsMir2Lir::StoreBaseDispBody(RegStorage r_base, int displacement,
RegStorage r_src, OpSize size) {
LIR *res;
LIR *store = NULL;
LIR *store2 = NULL;
MipsOpCode opcode = kMipsNop;
bool short_form = IS_SIMM16(displacement);
bool pair = r_src.IsPair();
switch (size) {
case k64:
case kDouble:
if (!pair) {
// Form 64-bit pair
r_src = Solo64ToPair64(r_src);
pair = 1;
}
if (r_src.IsFloat()) {
DCHECK_EQ(r_src.GetLowReg(), r_src.GetHighReg() - 1);
opcode = kMipsFswc1;
} else {
opcode = kMipsSw;
}
short_form = IS_SIMM16_2WORD(displacement);
DCHECK_EQ((displacement & 0x3), 0);
break;
case k32:
case kSingle:
case kReference:
opcode = kMipsSw;
if (r_src.IsFloat()) {
opcode = kMipsFswc1;
DCHECK(r_src.IsSingle());
}
DCHECK_EQ((displacement & 0x3), 0);
break;
case kUnsignedHalf:
case kSignedHalf:
opcode = kMipsSh;
DCHECK_EQ((displacement & 0x1), 0);
break;
case kUnsignedByte:
case kSignedByte:
opcode = kMipsSb;
break;
default:
LOG(FATAL) << "Bad case in StoreBaseDispBody";
}
if (short_form) {
if (!pair) {
store = res = NewLIR3(opcode, r_src.GetReg(), displacement, r_base.GetReg());
} else {
store = res = NewLIR3(opcode, r_src.GetLowReg(), displacement + LOWORD_OFFSET, r_base.GetReg());
store2 = NewLIR3(opcode, r_src.GetHighReg(), displacement + HIWORD_OFFSET, r_base.GetReg());
}
} else {
RegStorage r_scratch = AllocTemp();
res = OpRegRegImm(kOpAdd, r_scratch, r_base, displacement);
if (!pair) {
store = NewLIR3(opcode, r_src.GetReg(), 0, r_scratch.GetReg());
} else {
store = NewLIR3(opcode, r_src.GetLowReg(), LOWORD_OFFSET, r_scratch.GetReg());
store2 = NewLIR3(opcode, r_src.GetHighReg(), HIWORD_OFFSET, r_scratch.GetReg());
}
FreeTemp(r_scratch);
}
if (mem_ref_type_ == ResourceMask::kDalvikReg) {
DCHECK_EQ(r_base, rs_rMIPS_SP);
AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
false /* is_load */, pair /* is64bit */);
if (pair) {
AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, pair /* is64bit */);
}
}
return res;
}
LIR* MipsMir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
OpSize size, VolatileKind is_volatile) {
if (is_volatile == kVolatile) {
// Ensure that prior accesses become visible to other threads first.
GenMemBarrier(kAnyStore);
}
LIR* store;
if (UNLIKELY(is_volatile == kVolatile && (size == k64 || size == kDouble))) {
// Do atomic 64-bit load.
store = GenAtomic64Store(r_base, displacement, r_src);
} else {
// TODO: base this on target.
if (size == kWord) {
size = k32;
}
store = StoreBaseDispBody(r_base, displacement, r_src, size);
}
if (UNLIKELY(is_volatile == kVolatile)) {
// Preserve order with respect to any subsequent volatile loads.
// We need StoreLoad, but that generally requires the most expensive barrier.
GenMemBarrier(kAnyAny);
}
return store;
}
LIR* MipsMir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
UNUSED(op, r_base, disp);
LOG(FATAL) << "Unexpected use of OpMem for MIPS";
UNREACHABLE();
}
LIR* MipsMir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
UNUSED(cc, target);
LOG(FATAL) << "Unexpected use of OpCondBranch for MIPS";
UNREACHABLE();
}
LIR* MipsMir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
UNUSED(trampoline); // The address of the trampoline is already loaded into r_tgt.
return OpReg(op, r_tgt);
}
} // namespace art