blob: b1fbf2820458bb734706d4b06fc6c77f6209bd83 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_arm.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "art_method.h"
#include "code_generator_arm.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "intrinsics.h"
#include "intrinsics_utils.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
#include "thread.h"
#include "utils/arm/assembler_arm.h"
namespace art {
namespace arm {
ArmAssembler* IntrinsicCodeGeneratorARM::GetAssembler() {
return codegen_->GetAssembler();
}
ArenaAllocator* IntrinsicCodeGeneratorARM::GetAllocator() {
return codegen_->GetGraph()->GetArena();
}
using IntrinsicSlowPathARM = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARM>;
bool IntrinsicLocationsBuilderARM::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
if (kEmitCompilerReadBarrier && res->CanCall()) {
// Generating an intrinsic for this HInvoke may produce an
// IntrinsicSlowPathARM slow path. Currently this approach
// does not work when using read barriers, as the emitted
// calling sequence will make use of another slow path
// (ReadBarrierForRootSlowPathARM for HInvokeStaticOrDirect,
// ReadBarrierSlowPathARM for HInvokeVirtual). So we bail
// out in this case.
//
// TODO: Find a way to have intrinsics work with read barriers.
invoke->SetLocations(nullptr);
return false;
}
return res->Intrinsified();
}
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
if (is64bit) {
__ vmovrrd(output.AsRegisterPairLow<Register>(),
output.AsRegisterPairHigh<Register>(),
FromLowSToD(input.AsFpuRegisterPairLow<SRegister>()));
} else {
__ vmovrs(output.AsRegister<Register>(), input.AsFpuRegister<SRegister>());
}
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
if (is64bit) {
__ vmovdrr(FromLowSToD(output.AsFpuRegisterPairLow<SRegister>()),
input.AsRegisterPairLow<Register>(),
input.AsRegisterPairHigh<Register>());
} else {
__ vmovsr(output.AsFpuRegister<SRegister>(), input.AsRegister<Register>());
}
}
void IntrinsicLocationsBuilderARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicCodeGeneratorARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(arena_, invoke);
}
void IntrinsicLocationsBuilderARM::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
void IntrinsicCodeGeneratorARM::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
static void GenNumberOfLeadingZeros(LocationSummary* locations,
Primitive::Type type,
ArmAssembler* assembler) {
Location in = locations->InAt(0);
Register out = locations->Out().AsRegister<Register>();
DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
if (type == Primitive::kPrimLong) {
Register in_reg_lo = in.AsRegisterPairLow<Register>();
Register in_reg_hi = in.AsRegisterPairHigh<Register>();
Label end;
__ clz(out, in_reg_hi);
__ CompareAndBranchIfNonZero(in_reg_hi, &end);
__ clz(out, in_reg_lo);
__ AddConstant(out, 32);
__ Bind(&end);
} else {
__ clz(out, in.AsRegister<Register>());
}
}
void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
static void GenNumberOfTrailingZeros(LocationSummary* locations,
Primitive::Type type,
ArmAssembler* assembler) {
DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong));
Register out = locations->Out().AsRegister<Register>();
if (type == Primitive::kPrimLong) {
Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Label end;
__ rbit(out, in_reg_lo);
__ clz(out, out);
__ CompareAndBranchIfNonZero(in_reg_lo, &end);
__ rbit(out, in_reg_hi);
__ clz(out, out);
__ AddConstant(out, 32);
__ Bind(&end);
} else {
Register in = locations->InAt(0).AsRegister<Register>();
__ rbit(out, in);
__ clz(out, out);
}
}
void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
}
static void MathAbsFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) {
Location in = locations->InAt(0);
Location out = locations->Out();
if (is64bit) {
__ vabsd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
} else {
__ vabss(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
}
}
void IntrinsicLocationsBuilderARM::VisitMathAbsDouble(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsDouble(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathAbsFloat(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsFloat(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
locations->AddTemp(Location::RequiresRegister());
}
static void GenAbsInteger(LocationSummary* locations,
bool is64bit,
ArmAssembler* assembler) {
Location in = locations->InAt(0);
Location output = locations->Out();
Register mask = locations->GetTemp(0).AsRegister<Register>();
if (is64bit) {
Register in_reg_lo = in.AsRegisterPairLow<Register>();
Register in_reg_hi = in.AsRegisterPairHigh<Register>();
Register out_reg_lo = output.AsRegisterPairLow<Register>();
Register out_reg_hi = output.AsRegisterPairHigh<Register>();
DCHECK_NE(out_reg_lo, in_reg_hi) << "Diagonal overlap unexpected.";
__ Asr(mask, in_reg_hi, 31);
__ adds(out_reg_lo, in_reg_lo, ShifterOperand(mask));
__ adc(out_reg_hi, in_reg_hi, ShifterOperand(mask));
__ eor(out_reg_lo, mask, ShifterOperand(out_reg_lo));
__ eor(out_reg_hi, mask, ShifterOperand(out_reg_hi));
} else {
Register in_reg = in.AsRegister<Register>();
Register out_reg = output.AsRegister<Register>();
__ Asr(mask, in_reg, 31);
__ add(out_reg, in_reg, ShifterOperand(mask));
__ eor(out_reg, mask, ShifterOperand(out_reg));
}
}
void IntrinsicLocationsBuilderARM::VisitMathAbsInt(HInvoke* invoke) {
CreateIntToIntPlusTemp(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsInt(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathAbsLong(HInvoke* invoke) {
CreateIntToIntPlusTemp(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathAbsLong(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
static void GenMinMax(LocationSummary* locations,
bool is_min,
ArmAssembler* assembler) {
Register op1 = locations->InAt(0).AsRegister<Register>();
Register op2 = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ cmp(op1, ShifterOperand(op2));
__ it((is_min) ? Condition::LT : Condition::GT, kItElse);
__ mov(out, ShifterOperand(op1), is_min ? Condition::LT : Condition::GT);
__ mov(out, ShifterOperand(op2), is_min ? Condition::GE : Condition::LE);
}
static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void IntrinsicLocationsBuilderARM::VisitMathMinIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathMinIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ true, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathMaxIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathMaxIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ false, GetAssembler());
}
void IntrinsicLocationsBuilderARM::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
ArmAssembler* assembler = GetAssembler();
__ vsqrtd(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekByte(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
__ ldrsb(invoke->GetLocations()->Out().AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekIntNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
__ ldr(invoke->GetLocations()->Out().AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekLongNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
// Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
// exception. So we can't use ldrd as addr may be unaligned.
Register lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
Register hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
if (addr == lo) {
__ ldr(hi, Address(addr, 4));
__ ldr(lo, Address(addr, 0));
} else {
__ ldr(lo, Address(addr, 0));
__ ldr(hi, Address(addr, 4));
}
}
void IntrinsicLocationsBuilderARM::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPeekShortNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
__ ldrsh(invoke->GetLocations()->Out().AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeByte(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ strb(invoke->GetLocations()->InAt(1).AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeIntNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ str(invoke->GetLocations()->InAt(1).AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeLongNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
// Ignore upper 4B of long address.
Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
// Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
// exception. So we can't use ldrd as addr may be unaligned.
__ str(invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>(), Address(addr, 0));
__ str(invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>(), Address(addr, 4));
}
void IntrinsicLocationsBuilderARM::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitMemoryPokeShortNative(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ strh(invoke->GetLocations()->InAt(1).AsRegister<Register>(),
Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>()));
}
void IntrinsicLocationsBuilderARM::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitThreadCurrentThread(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ LoadFromOffset(kLoadWord,
invoke->GetLocations()->Out().AsRegister<Register>(),
TR,
Thread::PeerOffset<kArmPointerSize>().Int32Value());
}
static void GenUnsafeGet(HInvoke* invoke,
Primitive::Type type,
bool is_volatile,
CodeGeneratorARM* codegen) {
LocationSummary* locations = invoke->GetLocations();
ArmAssembler* assembler = codegen->GetAssembler();
Location base_loc = locations->InAt(1);
Register base = base_loc.AsRegister<Register>(); // Object pointer.
Location offset_loc = locations->InAt(2);
Register offset = offset_loc.AsRegisterPairLow<Register>(); // Long offset, lo part only.
Location trg_loc = locations->Out();
switch (type) {
case Primitive::kPrimInt: {
Register trg = trg_loc.AsRegister<Register>();
__ ldr(trg, Address(base, offset));
if (is_volatile) {
__ dmb(ISH);
}
break;
}
case Primitive::kPrimNot: {
Register trg = trg_loc.AsRegister<Register>();
if (kEmitCompilerReadBarrier) {
if (kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
codegen->GenerateArrayLoadWithBakerReadBarrier(
invoke, trg_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false);
if (is_volatile) {
__ dmb(ISH);
}
} else {
__ ldr(trg, Address(base, offset));
if (is_volatile) {
__ dmb(ISH);
}
codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
}
} else {
__ ldr(trg, Address(base, offset));
if (is_volatile) {
__ dmb(ISH);
}
__ MaybeUnpoisonHeapReference(trg);
}
break;
}
case Primitive::kPrimLong: {
Register trg_lo = trg_loc.AsRegisterPairLow<Register>();
__ add(IP, base, ShifterOperand(offset));
if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
Register trg_hi = trg_loc.AsRegisterPairHigh<Register>();
__ ldrexd(trg_lo, trg_hi, IP);
} else {
__ ldrd(trg_lo, Address(IP));
}
if (is_volatile) {
__ dmb(ISH);
}
break;
}
default:
LOG(FATAL) << "Unexpected type " << type;
UNREACHABLE();
}
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
HInvoke* invoke,
Primitive::Type type) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations = new (arena) LocationSummary(invoke,
can_call ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in InstructionCodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
}
static void CreateIntIntIntIntToVoid(ArenaAllocator* arena,
const ArmInstructionSetFeatures& features,
Primitive::Type type,
bool is_volatile,
HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (type == Primitive::kPrimLong) {
// Potentially need temps for ldrexd-strexd loop.
if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
}
} else if (type == Primitive::kPrimNot) {
// Temps for card-marking.
locations->AddTemp(Location::RequiresRegister()); // Temp.
locations->AddTemp(Location::RequiresRegister()); // Card.
}
}
void IntrinsicLocationsBuilderARM::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoid(
arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoid(
arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoid(
arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke);
}
static void GenUnsafePut(LocationSummary* locations,
Primitive::Type type,
bool is_volatile,
bool is_ordered,
CodeGeneratorARM* codegen) {
ArmAssembler* assembler = codegen->GetAssembler();
Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer.
Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); // Long offset, lo part only.
Register value;
if (is_volatile || is_ordered) {
__ dmb(ISH);
}
if (type == Primitive::kPrimLong) {
Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
value = value_lo;
if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
Register temp_lo = locations->GetTemp(0).AsRegister<Register>();
Register temp_hi = locations->GetTemp(1).AsRegister<Register>();
Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
__ add(IP, base, ShifterOperand(offset));
Label loop_head;
__ Bind(&loop_head);
__ ldrexd(temp_lo, temp_hi, IP);
__ strexd(temp_lo, value_lo, value_hi, IP);
__ cmp(temp_lo, ShifterOperand(0));
__ b(&loop_head, NE);
} else {
__ add(IP, base, ShifterOperand(offset));
__ strd(value_lo, Address(IP));
}
} else {
value = locations->InAt(3).AsRegister<Register>();
Register source = value;
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ Mov(temp, value);
__ PoisonHeapReference(temp);
source = temp;
}
__ str(source, Address(base, offset));
}
if (is_volatile) {
__ dmb(ISH);
}
if (type == Primitive::kPrimNot) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
}
}
void IntrinsicCodeGeneratorARM::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ false,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ false,
/* is_ordered */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimInt,
/* is_volatile */ true,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ false,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ false,
/* is_ordered */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimNot,
/* is_volatile */ true,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ false,
/* is_ordered */ false,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ false,
/* is_ordered */ true,
codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(),
Primitive::kPrimLong,
/* is_volatile */ true,
/* is_ordered */ false,
codegen_);
}
static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena,
HInvoke* invoke) {
LocationSummary* locations = new (arena) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
locations->AddTemp(Location::RequiresRegister()); // Pointer.
locations->AddTemp(Location::RequiresRegister()); // Temp 1.
locations->AddTemp(Location::RequiresRegister()); // Temp 2.
}
static void GenCas(LocationSummary* locations, Primitive::Type type, CodeGeneratorARM* codegen) {
DCHECK_NE(type, Primitive::kPrimLong);
ArmAssembler* assembler = codegen->GetAssembler();
Register out = locations->Out().AsRegister<Register>(); // Boolean result.
Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer.
Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); // Offset (discard high 4B).
Register expected_lo = locations->InAt(3).AsRegister<Register>(); // Expected.
Register value_lo = locations->InAt(4).AsRegister<Register>(); // Value.
Register tmp_ptr = locations->GetTemp(0).AsRegister<Register>(); // Pointer to actual memory.
Register tmp_lo = locations->GetTemp(1).AsRegister<Register>(); // Value in memory.
if (type == Primitive::kPrimNot) {
// Mark card for object assuming new value is stored. Worst case we will mark an unchanged
// object and scan the receiver at the next GC for nothing.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(tmp_ptr, tmp_lo, base, value_lo, value_can_be_null);
}
// Prevent reordering with prior memory operations.
// Emit a DMB ISH instruction instead of an DMB ISHST one, as the
// latter allows a preceding load to be delayed past the STXR
// instruction below.
__ dmb(ISH);
__ add(tmp_ptr, base, ShifterOperand(offset));
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
codegen->GetAssembler()->PoisonHeapReference(expected_lo);
codegen->GetAssembler()->PoisonHeapReference(value_lo);
}
// do {
// tmp = [r_ptr] - expected;
// } while (tmp == 0 && failure([r_ptr] <- r_new_value));
// result = tmp != 0;
Label loop_head;
__ Bind(&loop_head);
// TODO: When `type == Primitive::kPrimNot`, add a read barrier for
// the reference stored in the object before attempting the CAS,
// similar to the one in the art::Unsafe_compareAndSwapObject JNI
// implementation.
//
// Note that this code is not (yet) used when read barriers are
// enabled (see IntrinsicLocationsBuilderARM::VisitUnsafeCASObject).
DCHECK(!(type == Primitive::kPrimNot && kEmitCompilerReadBarrier));
__ ldrex(tmp_lo, tmp_ptr);
__ subs(tmp_lo, tmp_lo, ShifterOperand(expected_lo));
__ it(EQ, ItState::kItT);
__ strex(tmp_lo, value_lo, tmp_ptr, EQ);
__ cmp(tmp_lo, ShifterOperand(1), EQ);
__ b(&loop_head, EQ);
__ dmb(ISH);
__ rsbs(out, tmp_lo, ShifterOperand(1));
__ it(CC);
__ mov(out, ShifterOperand(0), CC);
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
codegen->GetAssembler()->UnpoisonHeapReference(value_lo);
codegen->GetAssembler()->UnpoisonHeapReference(expected_lo);
}
}
void IntrinsicLocationsBuilderARM::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke);
}
void IntrinsicLocationsBuilderARM::VisitUnsafeCASObject(HInvoke* invoke) {
// The UnsafeCASObject intrinsic is missing a read barrier, and
// therefore sometimes does not work as expected (b/25883050).
// Turn it off temporarily as a quick fix, until the read barrier is
// implemented (see TODO in GenCAS below).
//
// Also, the UnsafeCASObject intrinsic does not always work when heap
// poisoning is enabled (it breaks run-test 004-UnsafeTest); turn it
// off temporarily as a quick fix (b/26204023).
//
// TODO(rpl): Fix these two issues and re-enable this intrinsic.
if (kEmitCompilerReadBarrier || kPoisonHeapReferences) {
return;
}
CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeCASInt(HInvoke* invoke) {
GenCas(invoke->GetLocations(), Primitive::kPrimInt, codegen_);
}
void IntrinsicCodeGeneratorARM::VisitUnsafeCASObject(HInvoke* invoke) {
GenCas(invoke->GetLocations(), Primitive::kPrimNot, codegen_);
}
void IntrinsicLocationsBuilderARM::VisitStringCharAt(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitStringCharAt(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Location of reference to data array
const MemberOffset value_offset = mirror::String::ValueOffset();
// Location of count
const MemberOffset count_offset = mirror::String::CountOffset();
Register obj = locations->InAt(0).AsRegister<Register>(); // String object pointer.
Register idx = locations->InAt(1).AsRegister<Register>(); // Index of character.
Register out = locations->Out().AsRegister<Register>(); // Result character.
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register array_temp = locations->GetTemp(1).AsRegister<Register>();
// TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth
// the cost.
// TODO: For simplicity, the index parameter is requested in a register, so different from Quick
// we will not optimize the code for constants (which would save a register).
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ ldr(temp, Address(obj, count_offset.Int32Value())); // temp = str.length.
codegen_->MaybeRecordImplicitNullCheck(invoke);
__ cmp(idx, ShifterOperand(temp));
__ b(slow_path->GetEntryLabel(), CS);
__ add(array_temp, obj, ShifterOperand(value_offset.Int32Value())); // array_temp := str.value.
// Load the value.
__ ldrh(out, Address(array_temp, idx, LSL, 1)); // out := array_temp[idx].
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM::VisitStringCompareTo(HInvoke* invoke) {
// The inputs plus one temp.
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringCompareTo(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
Register argument = locations->InAt(1).AsRegister<Register>();
__ cmp(argument, ShifterOperand(0));
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), EQ);
__ LoadFromOffset(
kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pStringCompareTo).Int32Value());
__ blx(LR);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kNoCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Temporary registers to store lengths of strings and for calculations.
// Using instruction cbz requires a low register, so explicitly set a temp to be R0.
locations->AddTemp(Location::RegisterLocation(R0));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitStringEquals(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register str = locations->InAt(0).AsRegister<Register>();
Register arg = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register temp1 = locations->GetTemp(1).AsRegister<Register>();
Register temp2 = locations->GetTemp(2).AsRegister<Register>();
Label loop;
Label end;
Label return_true;
Label return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check if input is null, return false if it is.
__ CompareAndBranchIfZero(arg, &return_false);
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
__ ldr(temp, Address(str, class_offset));
__ ldr(temp1, Address(arg, class_offset));
__ cmp(temp, ShifterOperand(temp1));
__ b(&return_false, NE);
// Load lengths of this and argument strings.
__ ldr(temp, Address(str, count_offset));
__ ldr(temp1, Address(arg, count_offset));
// Check if lengths are equal, return false if they're not.
__ cmp(temp, ShifterOperand(temp1));
__ b(&return_false, NE);
// Return true if both strings are empty.
__ cbz(temp, &return_true);
// Reference equality check, return true if same reference.
__ cmp(str, ShifterOperand(arg));
__ b(&return_true, EQ);
// Assertions that must hold in order to compare strings 2 characters at a time.
DCHECK_ALIGNED(value_offset, 4);
static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
__ LoadImmediate(temp1, value_offset);
// Loop to compare strings 2 characters at a time starting at the front of the string.
// Ok to do this because strings with an odd length are zero-padded.
__ Bind(&loop);
__ ldr(out, Address(str, temp1));
__ ldr(temp2, Address(arg, temp1));
__ cmp(out, ShifterOperand(temp2));
__ b(&return_false, NE);
__ add(temp1, temp1, ShifterOperand(sizeof(uint32_t)));
__ subs(temp, temp, ShifterOperand(sizeof(uint32_t) / sizeof(uint16_t)));
__ b(&loop, GT);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ LoadImmediate(out, 1);
__ b(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ LoadImmediate(out, 0);
__ Bind(&end);
}
static void GenerateVisitStringIndexOf(HInvoke* invoke,
ArmAssembler* assembler,
CodeGeneratorARM* codegen,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
Register tmp_reg = locations->GetTemp(0).AsRegister<Register>();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch if we have a constant.
SlowPathCode* slow_path = nullptr;
if (invoke->InputAt(1)->IsIntConstant()) {
if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) >
std::numeric_limits<uint16_t>::max()) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (allocator) IntrinsicSlowPathARM(invoke);
codegen->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else {
Register char_reg = locations->InAt(1).AsRegister<Register>();
__ LoadImmediate(tmp_reg, std::numeric_limits<uint16_t>::max());
__ cmp(char_reg, ShifterOperand(tmp_reg));
slow_path = new (allocator) IntrinsicSlowPathARM(invoke);
codegen->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), HI);
}
if (start_at_zero) {
DCHECK_EQ(tmp_reg, R2);
// Start-index = 0.
__ LoadImmediate(tmp_reg, 0);
}
__ LoadFromOffset(kLoadWord, LR, TR,
QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pIndexOf).Int32Value());
__ blx(LR);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderARM::VisitStringIndexOf(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(R0));
// Need a temp for slow-path codepoint compare, and need to send start-index=0.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}
void IntrinsicCodeGeneratorARM::VisitStringIndexOf(HInvoke* invoke) {
GenerateVisitStringIndexOf(
invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
}
void IntrinsicLocationsBuilderARM::VisitStringIndexOfAfter(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
// best to align the inputs accordingly.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(R0));
// Need a temp for slow-path codepoint compare.
locations->AddTemp(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorARM::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateVisitStringIndexOf(
invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
}
void IntrinsicLocationsBuilderARM::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringNewStringFromBytes(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register byte_array = locations->InAt(0).AsRegister<Register>();
__ cmp(byte_array, ShifterOperand(0));
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), EQ);
__ LoadFromOffset(
kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pAllocStringFromBytes).Int32Value());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
__ blx(LR);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringNewStringFromChars(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
__ LoadFromOffset(
kLoadWord, LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pAllocStringFromChars).Int32Value());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
__ blx(LR);
}
void IntrinsicLocationsBuilderARM::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (arena_) LocationSummary(invoke,
LocationSummary::kCall,
kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(R0));
}
void IntrinsicCodeGeneratorARM::VisitStringNewStringFromString(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Register string_to_copy = locations->InAt(0).AsRegister<Register>();
__ cmp(string_to_copy, ShifterOperand(0));
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), EQ);
__ LoadFromOffset(kLoadWord,
LR, TR, QUICK_ENTRYPOINT_OFFSET(kArmWordSize, pAllocStringFromString).Int32Value());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
__ blx(LR);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderARM::VisitSystemArrayCopy(HInvoke* invoke) {
CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
LocationSummary* locations = invoke->GetLocations();
if (locations == nullptr) {
return;
}
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
locations->SetInAt(1, Location::RequiresRegister());
}
if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
locations->SetInAt(3, Location::RequiresRegister());
}
if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
locations->SetInAt(4, Location::RequiresRegister());
}
}
static void CheckPosition(ArmAssembler* assembler,
Location pos,
Register input,
Location length,
SlowPathCode* slow_path,
Register input_len,
Register temp,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
__ LoadFromOffset(kLoadWord, temp, input, length_offset);
if (length.IsConstant()) {
__ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmp(temp, ShifterOperand(length.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
} else {
// Check that length(input) >= pos.
__ LoadFromOffset(kLoadWord, input_len, input, length_offset);
__ subs(temp, input_len, ShifterOperand(pos_const));
__ b(slow_path->GetEntryLabel(), LT);
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmp(temp, ShifterOperand(length.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
Register pos_reg = pos.AsRegister<Register>();
__ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
Register pos_reg = pos.AsRegister<Register>();
__ cmp(pos_reg, ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), LT);
// Check that pos <= length(input).
__ LoadFromOffset(kLoadWord, temp, input, length_offset);
__ subs(temp, temp, ShifterOperand(pos_reg));
__ b(slow_path->GetEntryLabel(), LT);
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmp(temp, ShifterOperand(length.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
}
// TODO: Implement read barriers in the SystemArrayCopy intrinsic.
// Note that this code path is not used (yet) because we do not
// intrinsify methods that can go into the IntrinsicSlowPathARM
// slow path.
void IntrinsicCodeGeneratorARM::VisitSystemArrayCopy(HInvoke* invoke) {
ArmAssembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
Register src = locations->InAt(0).AsRegister<Register>();
Location src_pos = locations->InAt(1);
Register dest = locations->InAt(2).AsRegister<Register>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
Register temp3 = locations->GetTemp(2).AsRegister<Register>();
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke);
codegen_->AddSlowPath(slow_path);
Label ok;
SystemArrayCopyOptimizations optimizations(invoke);
if (!optimizations.GetDestinationIsSource()) {
if (!src_pos.IsConstant() || !dest_pos.IsConstant()) {
__ cmp(src, ShifterOperand(dest));
}
}
// If source and destination are the same, we go to slow path if we need to do
// forward copying.
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
// Checked when building locations.
DCHECK(!optimizations.GetDestinationIsSource()
|| (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue()));
} else {
if (!optimizations.GetDestinationIsSource()) {
__ b(&ok, NE);
}
__ cmp(dest_pos.AsRegister<Register>(), ShifterOperand(src_pos_constant));
__ b(slow_path->GetEntryLabel(), GT);
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ b(&ok, NE);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos_constant));
} else {
__ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos.AsRegister<Register>()));
}
__ b(slow_path->GetEntryLabel(), LT);
}
__ Bind(&ok);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ CompareAndBranchIfZero(src, slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ CompareAndBranchIfZero(dest, slow_path->GetEntryLabel());
}
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant() &&
!optimizations.GetCountIsSourceLength() &&
!optimizations.GetCountIsDestinationLength()) {
__ cmp(length.AsRegister<Register>(), ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), LT);
}
// Validity checks: source.
CheckPosition(assembler,
src_pos,
src,
length,
slow_path,
temp1,
temp2,
optimizations.GetCountIsSourceLength());
// Validity checks: dest.
CheckPosition(assembler,
dest_pos,
dest,
length,
slow_path,
temp1,
temp2,
optimizations.GetCountIsDestinationLength());
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
__ LoadFromOffset(kLoadWord, temp1, dest, class_offset);
__ LoadFromOffset(kLoadWord, temp2, src, class_offset);
bool did_unpoison = false;
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
!optimizations.GetSourceIsNonPrimitiveArray()) {
// One or two of the references need to be unpoisoned. Unpoisoned them
// both to make the identity check valid.
__ MaybeUnpoisonHeapReference(temp1);
__ MaybeUnpoisonHeapReference(temp2);
did_unpoison = true;
}
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
__ LoadFromOffset(kLoadWord, temp3, temp1, component_offset);
__ CompareAndBranchIfZero(temp3, slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp3);
__ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp3, slow_path->GetEntryLabel());
}
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// Bail out if the source is not a non primitive array.
// Bail out if the destination is not a non primitive array.
__ LoadFromOffset(kLoadWord, temp3, temp2, component_offset);
__ CompareAndBranchIfZero(temp3, slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp3);
__ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp3, slow_path->GetEntryLabel());
}
__ cmp(temp1, ShifterOperand(temp2));
if (optimizations.GetDestinationIsTypedObjectArray()) {
Label do_copy;
__ b(&do_copy, EQ);
if (!did_unpoison) {
__ MaybeUnpoisonHeapReference(temp1);
}
__ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
__ MaybeUnpoisonHeapReference(temp1);
__ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
// No need to unpoison the result, we're comparing against null.
__ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ b(slow_path->GetEntryLabel(), NE);
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
__ LoadFromOffset(kLoadWord, temp1, src, class_offset);
__ MaybeUnpoisonHeapReference(temp1);
__ LoadFromOffset(kLoadWord, temp3, temp1, component_offset);
__ CompareAndBranchIfZero(temp3, slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(temp3);
__ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ CompareAndBranchIfNonZero(temp3, slow_path->GetEntryLabel());
}
// Compute base source address, base destination address, and end source address.
uint32_t element_size = sizeof(int32_t);
uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
if (src_pos.IsConstant()) {
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp1, src, element_size * constant + offset);
} else {
__ add(temp1, src, ShifterOperand(src_pos.AsRegister<Register>(), LSL, 2));
__ AddConstant(temp1, offset);
}
if (dest_pos.IsConstant()) {
int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp2, dest, element_size * constant + offset);
} else {
__ add(temp2, dest, ShifterOperand(dest_pos.AsRegister<Register>(), LSL, 2));
__ AddConstant(temp2, offset);
}
if (length.IsConstant()) {
int32_t constant = length.GetConstant()->AsIntConstant()->GetValue();
__ AddConstant(temp3, temp1, element_size * constant);
} else {
__ add(temp3, temp1, ShifterOperand(length.AsRegister<Register>(), LSL, 2));
}
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison, nor do any read barrier as the next uses of the destination
// array will do it.
Label loop, done;
__ cmp(temp1, ShifterOperand(temp3));
__ b(&done, EQ);
__ Bind(&loop);
__ ldr(IP, Address(temp1, element_size, Address::PostIndex));
__ str(IP, Address(temp2, element_size, Address::PostIndex));
__ cmp(temp1, ShifterOperand(temp3));
__ b(&loop, NE);
__ Bind(&done);
// We only need one card marking on the destination array.
codegen_->MarkGCCard(temp1,
temp2,
dest,
Register(kNoRegister),
/* can_be_null */ false);
__ Bind(slow_path->GetExitLabel());
}
// Unimplemented intrinsics.
#define UNIMPLEMENTED_INTRINSIC(Name) \
void IntrinsicLocationsBuilderARM::Visit ## Name(HInvoke* invoke ATTRIBUTE_UNUSED) { \
} \
void IntrinsicCodeGeneratorARM::Visit ## Name(HInvoke* invoke ATTRIBUTE_UNUSED) { \
}
UNIMPLEMENTED_INTRINSIC(IntegerReverse)
UNIMPLEMENTED_INTRINSIC(IntegerReverseBytes)
UNIMPLEMENTED_INTRINSIC(IntegerRotateLeft)
UNIMPLEMENTED_INTRINSIC(IntegerRotateRight)
UNIMPLEMENTED_INTRINSIC(LongReverse)
UNIMPLEMENTED_INTRINSIC(LongReverseBytes)
UNIMPLEMENTED_INTRINSIC(LongRotateLeft)
UNIMPLEMENTED_INTRINSIC(LongRotateRight)
UNIMPLEMENTED_INTRINSIC(ShortReverseBytes)
UNIMPLEMENTED_INTRINSIC(MathMinDoubleDouble)
UNIMPLEMENTED_INTRINSIC(MathMinFloatFloat)
UNIMPLEMENTED_INTRINSIC(MathMaxDoubleDouble)
UNIMPLEMENTED_INTRINSIC(MathMaxFloatFloat)
UNIMPLEMENTED_INTRINSIC(MathMinLongLong)
UNIMPLEMENTED_INTRINSIC(MathMaxLongLong)
UNIMPLEMENTED_INTRINSIC(MathCeil) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(MathFloor) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(MathRint)
UNIMPLEMENTED_INTRINSIC(MathRoundDouble) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(MathRoundFloat) // Could be done by changing rounding mode, maybe?
UNIMPLEMENTED_INTRINSIC(UnsafeCASLong) // High register pressure.
UNIMPLEMENTED_INTRINSIC(SystemArrayCopyChar)
UNIMPLEMENTED_INTRINSIC(ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(StringGetCharsNoCheck)
UNIMPLEMENTED_INTRINSIC(MathCos)
UNIMPLEMENTED_INTRINSIC(MathSin)
UNIMPLEMENTED_INTRINSIC(MathAcos)
UNIMPLEMENTED_INTRINSIC(MathAsin)
UNIMPLEMENTED_INTRINSIC(MathAtan)
UNIMPLEMENTED_INTRINSIC(MathAtan2)
UNIMPLEMENTED_INTRINSIC(MathCbrt)
UNIMPLEMENTED_INTRINSIC(MathCosh)
UNIMPLEMENTED_INTRINSIC(MathExp)
UNIMPLEMENTED_INTRINSIC(MathExpm1)
UNIMPLEMENTED_INTRINSIC(MathHypot)
UNIMPLEMENTED_INTRINSIC(MathLog)
UNIMPLEMENTED_INTRINSIC(MathLog10)
UNIMPLEMENTED_INTRINSIC(MathNextAfter)
UNIMPLEMENTED_INTRINSIC(MathSinh)
UNIMPLEMENTED_INTRINSIC(MathTan)
UNIMPLEMENTED_INTRINSIC(MathTanh)
#undef UNIMPLEMENTED_INTRINSIC
#undef __
} // namespace arm
} // namespace art