blob: e7ca94848944ed2ed87948f3afc501f8e0ec2ea9 [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include "android-base/file.h"
#include "android-base/properties.h"
#include "base/memfd.h"
#include "base/quasi_atomic.h"
#include "base/systrace.h"
#include "base/utils.h"
#include "gc/accounting/mod_union_table-inl.h"
#include "gc/collector_type.h"
#include "gc/reference_processor.h"
#include "gc/space/bump_pointer_space.h"
#include "gc/task_processor.h"
#include "gc/verification-inl.h"
#include "jit/jit_code_cache.h"
#include "mark_compact-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "read_barrier_config.h"
#include "scoped_thread_state_change-inl.h"
#include "sigchain.h"
#include "thread_list.h"
// Glibc v2.19 doesn't include these in fcntl.h so host builds will fail without.
#if !defined(FALLOC_FL_PUNCH_HOLE) || !defined(FALLOC_FL_KEEP_SIZE)
#include <linux/falloc.h>
#endif
#include <linux/userfaultfd.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <unistd.h>
#include <fstream>
#include <numeric>
#ifndef __BIONIC__
#ifndef MREMAP_DONTUNMAP
#define MREMAP_DONTUNMAP 4
#endif
#ifndef MAP_FIXED_NOREPLACE
#define MAP_FIXED_NOREPLACE 0x100000
#endif
#ifndef __NR_userfaultfd
#if defined(__x86_64__)
#define __NR_userfaultfd 323
#elif defined(__i386__)
#define __NR_userfaultfd 374
#elif defined(__aarch64__)
#define __NR_userfaultfd 282
#elif defined(__arm__)
#define __NR_userfaultfd 388
#else
#error "__NR_userfaultfd undefined"
#endif
#endif // __NR_userfaultfd
#endif // __BIONIC__
namespace {
using ::android::base::GetBoolProperty;
}
namespace art {
static bool HaveMremapDontunmap() {
void* old = mmap(nullptr, kPageSize, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0);
CHECK_NE(old, MAP_FAILED);
void* addr = mremap(old, kPageSize, kPageSize, MREMAP_MAYMOVE | MREMAP_DONTUNMAP, nullptr);
CHECK_EQ(munmap(old, kPageSize), 0);
if (addr != MAP_FAILED) {
CHECK_EQ(munmap(addr, kPageSize), 0);
return true;
} else {
return false;
}
}
// We require MREMAP_DONTUNMAP functionality of the mremap syscall, which was
// introduced in 5.13 kernel version. But it was backported to GKI kernels.
static bool gHaveMremapDontunmap = IsKernelVersionAtLeast(5, 13) || HaveMremapDontunmap();
// The other cases are defined as constexpr in runtime/read_barrier_config.h
#if !defined(ART_FORCE_USE_READ_BARRIER) && defined(ART_USE_READ_BARRIER)
// Returns collector type asked to be used on the cmdline.
static gc::CollectorType FetchCmdlineGcType() {
std::string argv;
gc::CollectorType gc_type = gc::CollectorType::kCollectorTypeNone;
if (android::base::ReadFileToString("/proc/self/cmdline", &argv)) {
if (argv.find("-Xgc:CMC") != std::string::npos) {
gc_type = gc::CollectorType::kCollectorTypeCMC;
} else if (argv.find("-Xgc:CC") != std::string::npos) {
gc_type = gc::CollectorType::kCollectorTypeCC;
}
}
return gc_type;
}
static bool SysPropSaysUffdGc() {
return GetBoolProperty("persist.device_config.runtime_native_boot.enable_uffd_gc",
GetBoolProperty("ro.dalvik.vm.enable_uffd_gc", false));
}
static bool KernelSupportsUffd() {
if (gHaveMremapDontunmap) {
int fd = syscall(__NR_userfaultfd, O_CLOEXEC | UFFD_USER_MODE_ONLY);
// On non-android devices we may not have the kernel patches that restrict
// userfaultfd to user mode. But that is not a security concern as we are
// on host. Therefore, attempt one more time without UFFD_USER_MODE_ONLY.
if (!kIsTargetAndroid && fd == -1 && errno == EINVAL) {
fd = syscall(__NR_userfaultfd, O_CLOEXEC);
}
if (fd >= 0) {
close(fd);
return true;
}
}
return false;
}
static bool ShouldUseUserfaultfd() {
static_assert(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
#ifdef __linux__
// Use CMC/CC if that is being explicitly asked for on cmdline. Otherwise,
// always use CC on host. On target, use CMC only if system properties says so
// and the kernel supports it.
gc::CollectorType gc_type = FetchCmdlineGcType();
return gc_type == gc::CollectorType::kCollectorTypeCMC ||
(gc_type == gc::CollectorType::kCollectorTypeNone &&
kIsTargetAndroid &&
SysPropSaysUffdGc() &&
KernelSupportsUffd());
#else
return false;
#endif
}
const bool gUseUserfaultfd = ShouldUseUserfaultfd();
const bool gUseReadBarrier = !gUseUserfaultfd;
#endif
namespace gc {
namespace collector {
// Turn off kCheckLocks when profiling the GC as it slows down the GC
// significantly.
static constexpr bool kCheckLocks = kDebugLocking;
static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
// Two threads should suffice on devices.
static constexpr size_t kMaxNumUffdWorkers = 2;
// Minimum from-space chunk to be madvised (during concurrent compaction) in one go.
static constexpr ssize_t kMinFromSpaceMadviseSize = 1 * MB;
// Concurrent compaction termination logic works if the kernel has the fault-retry feature
// (allowing repeated faults on the same page), which was introduced in 5.7.
// Otherwise, kernel only retries pagefaults once, therefore having 2 or less
// workers will also suffice as the termination logic requires (n-1) pagefault
// retries.
static const bool gKernelHasFaultRetry = kMaxNumUffdWorkers <= 2 || IsKernelVersionAtLeast(5, 7);
bool MarkCompact::CreateUserfaultfd(bool post_fork) {
if (post_fork || uffd_ == kFdUnused) {
// Don't use O_NONBLOCK as we rely on read waiting on uffd_ if there isn't
// any read event available. We don't use poll.
if (gKernelHasFaultRetry) {
uffd_ = syscall(__NR_userfaultfd, O_CLOEXEC | UFFD_USER_MODE_ONLY);
// On non-android devices we may not have the kernel patches that restrict
// userfaultfd to user mode. But that is not a security concern as we are
// on host. Therefore, attempt one more time without UFFD_USER_MODE_ONLY.
if (!kIsTargetAndroid && UNLIKELY(uffd_ == -1 && errno == EINVAL)) {
uffd_ = syscall(__NR_userfaultfd, O_CLOEXEC);
}
if (UNLIKELY(uffd_ == -1)) {
uffd_ = kFallbackMode;
LOG(WARNING) << "Userfaultfd isn't supported (reason: " << strerror(errno)
<< ") and therefore falling back to stop-the-world compaction.";
} else {
DCHECK(IsValidFd(uffd_));
// Get/update the features that we want in userfaultfd
struct uffdio_api api = {.api = UFFD_API,
.features = UFFD_FEATURE_MISSING_SHMEM | UFFD_FEATURE_MINOR_SHMEM};
CHECK_EQ(ioctl(uffd_, UFFDIO_API, &api), 0)
<< "ioctl_userfaultfd: API: " << strerror(errno);
// Missing userfaults on shmem should always be available.
DCHECK_NE(api.features & UFFD_FEATURE_MISSING_SHMEM, 0u);
uffd_minor_fault_supported_ =
gHaveMremapDontunmap && (api.features & UFFD_FEATURE_MINOR_SHMEM) != 0;
// TODO: Assert that minor-fault support isn't available only on 32-bit
// kernel.
}
} else {
// Without fault-retry feature in the kernel we can't terminate concurrent
// compaction. So fallback to stop-the-world compaction.
uffd_ = kFallbackMode;
}
}
uffd_initialized_ = !post_fork || uffd_ == kFallbackMode;
return IsValidFd(uffd_);
}
template <size_t kAlignment>
MarkCompact::LiveWordsBitmap<kAlignment>* MarkCompact::LiveWordsBitmap<kAlignment>::Create(
uintptr_t begin, uintptr_t end) {
return static_cast<LiveWordsBitmap<kAlignment>*>(
MemRangeBitmap::Create("Concurrent Mark Compact live words bitmap", begin, end));
}
MarkCompact::MarkCompact(Heap* heap)
: GarbageCollector(heap, "concurrent mark compact"),
gc_barrier_(0),
mark_stack_lock_("mark compact mark stack lock", kMarkSweepMarkStackLock),
bump_pointer_space_(heap->GetBumpPointerSpace()),
moving_to_space_fd_(kFdUnused),
moving_from_space_fd_(kFdUnused),
uffd_(kFdUnused),
thread_pool_counter_(0),
compaction_in_progress_count_(0),
compacting_(false),
uffd_initialized_(false),
uffd_minor_fault_supported_(false),
minor_fault_initialized_(false) {
// TODO: Depending on how the bump-pointer space move is implemented. If we
// switch between two virtual memories each time, then we will have to
// initialize live_words_bitmap_ accordingly.
live_words_bitmap_.reset(LiveWordsBitmap<kAlignment>::Create(
reinterpret_cast<uintptr_t>(bump_pointer_space_->Begin()),
reinterpret_cast<uintptr_t>(bump_pointer_space_->Limit())));
// Create one MemMap for all the data structures
size_t chunk_info_vec_size = bump_pointer_space_->Capacity() / kOffsetChunkSize;
size_t nr_moving_pages = bump_pointer_space_->Capacity() / kPageSize;
size_t nr_non_moving_pages = heap->GetNonMovingSpace()->Capacity() / kPageSize;
std::string err_msg;
info_map_ = MemMap::MapAnonymous("Concurrent mark-compact chunk-info vector",
chunk_info_vec_size * sizeof(uint32_t)
+ nr_non_moving_pages * sizeof(ObjReference)
+ nr_moving_pages * sizeof(ObjReference)
+ nr_moving_pages * sizeof(uint32_t),
PROT_READ | PROT_WRITE,
/*low_4gb=*/ false,
&err_msg);
if (UNLIKELY(!info_map_.IsValid())) {
LOG(FATAL) << "Failed to allocate concurrent mark-compact chunk-info vector: " << err_msg;
} else {
uint8_t* p = info_map_.Begin();
chunk_info_vec_ = reinterpret_cast<uint32_t*>(p);
vector_length_ = chunk_info_vec_size;
p += chunk_info_vec_size * sizeof(uint32_t);
first_objs_non_moving_space_ = reinterpret_cast<ObjReference*>(p);
p += nr_non_moving_pages * sizeof(ObjReference);
first_objs_moving_space_ = reinterpret_cast<ObjReference*>(p);
p += nr_moving_pages * sizeof(ObjReference);
pre_compact_offset_moving_space_ = reinterpret_cast<uint32_t*>(p);
}
// NOTE: PROT_NONE is used here as these mappings are for address space reservation
// only and will be used only after appropriately remapping them.
from_space_map_ = MemMap::MapAnonymous("Concurrent mark-compact from-space",
bump_pointer_space_->Capacity(),
PROT_NONE,
/*low_4gb=*/ kObjPtrPoisoning,
&err_msg);
if (UNLIKELY(!from_space_map_.IsValid())) {
LOG(FATAL) << "Failed to allocate concurrent mark-compact from-space" << err_msg;
} else {
from_space_begin_ = from_space_map_.Begin();
}
// In some cases (32-bit or kObjPtrPoisoning) it's too much to ask for 3
// heap-sized mappings in low-4GB. So tolerate failure here by attempting to
// mmap again right before the compaction pause. And if even that fails, then
// running the GC cycle in copy-mode rather than minor-fault.
//
// This map doesn't have to be aligned to 2MB as we don't mremap on it.
shadow_to_space_map_ = MemMap::MapAnonymous("Concurrent mark-compact moving-space shadow",
bump_pointer_space_->Capacity(),
PROT_NONE,
/*low_4gb=*/kObjPtrPoisoning,
&err_msg);
if (!shadow_to_space_map_.IsValid()) {
LOG(WARNING) << "Failed to allocate concurrent mark-compact moving-space shadow: " << err_msg;
}
const size_t num_pages = 1 + std::min(heap_->GetParallelGCThreadCount(), kMaxNumUffdWorkers);
compaction_buffers_map_ = MemMap::MapAnonymous("Concurrent mark-compact compaction buffers",
kPageSize * num_pages,
PROT_READ | PROT_WRITE,
/*low_4gb=*/kObjPtrPoisoning,
&err_msg);
if (UNLIKELY(!compaction_buffers_map_.IsValid())) {
LOG(FATAL) << "Failed to allocate concurrent mark-compact compaction buffers" << err_msg;
}
// We also use the first page-sized buffer for the purpose of terminating concurrent compaction.
conc_compaction_termination_page_ = compaction_buffers_map_.Begin();
// Touch the page deliberately to avoid userfaults on it. We madvise it in
// CompactionPhase() before using it to terminate concurrent compaction.
CHECK_EQ(*conc_compaction_termination_page_, 0);
// In most of the cases, we don't expect more than one LinearAlloc space.
linear_alloc_spaces_data_.reserve(1);
}
void MarkCompact::AddLinearAllocSpaceData(uint8_t* begin, size_t len, bool already_shared) {
DCHECK_ALIGNED(begin, kPageSize);
DCHECK_ALIGNED(len, kPageSize);
std::string err_msg;
MemMap shadow(MemMap::MapAnonymous("linear-alloc shadow map",
len,
PROT_NONE,
/*low_4gb=*/false,
&err_msg));
if (!shadow.IsValid()) {
LOG(FATAL) << "Failed to allocate linear-alloc shadow map: " << err_msg;
UNREACHABLE();
}
MemMap page_status_map(MemMap::MapAnonymous("linear-alloc page-status map",
len / kPageSize,
PROT_READ | PROT_WRITE,
/*low_4gb=*/false,
&err_msg));
if (!page_status_map.IsValid()) {
LOG(FATAL) << "Failed to allocate linear-alloc page-status shadow map: " << err_msg;
UNREACHABLE();
}
linear_alloc_spaces_data_.emplace_back(std::forward<MemMap>(shadow),
std::forward<MemMap>(page_status_map),
begin,
begin + len,
already_shared);
}
void MarkCompact::BindAndResetBitmaps() {
// TODO: We need to hold heap_bitmap_lock_ only for populating immune_spaces.
// The card-table and mod-union-table processing can be done without it. So
// change the logic below. Note that the bitmap clearing would require the
// lock.
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
accounting::CardTable* const card_table = heap_->GetCardTable();
// Mark all of the spaces we never collect as immune.
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
CHECK(space->IsZygoteSpace() || space->IsImageSpace());
immune_spaces_.AddSpace(space);
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
if (table != nullptr) {
table->ProcessCards();
} else {
// Keep cards aged if we don't have a mod-union table since we may need
// to scan them in future GCs. This case is for app images.
// TODO: We could probably scan the objects right here to avoid doing
// another scan through the card-table.
card_table->ModifyCardsAtomic(
space->Begin(),
space->End(),
[](uint8_t card) {
return (card == gc::accounting::CardTable::kCardClean)
? card
: gc::accounting::CardTable::kCardAged;
},
/* card modified visitor */ VoidFunctor());
}
} else {
CHECK(!space->IsZygoteSpace());
CHECK(!space->IsImageSpace());
// The card-table corresponding to bump-pointer and non-moving space can
// be cleared, because we are going to traverse all the reachable objects
// in these spaces. This card-table will eventually be used to track
// mutations while concurrent marking is going on.
card_table->ClearCardRange(space->Begin(), space->Limit());
if (space == bump_pointer_space_) {
// It is OK to clear the bitmap with mutators running since the only
// place it is read is VisitObjects which has exclusion with this GC.
moving_space_bitmap_ = bump_pointer_space_->GetMarkBitmap();
moving_space_bitmap_->Clear();
} else {
CHECK(space == heap_->GetNonMovingSpace());
non_moving_space_ = space;
non_moving_space_bitmap_ = space->GetMarkBitmap();
}
}
}
}
void MarkCompact::InitializePhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
mark_stack_ = heap_->GetMarkStack();
CHECK(mark_stack_->IsEmpty());
immune_spaces_.Reset();
moving_first_objs_count_ = 0;
non_moving_first_objs_count_ = 0;
black_page_count_ = 0;
freed_objects_ = 0;
from_space_slide_diff_ = from_space_begin_ - bump_pointer_space_->Begin();
black_allocations_begin_ = bump_pointer_space_->Limit();
compacting_ = false;
// TODO: Would it suffice to read it once in the constructor, which is called
// in zygote process?
pointer_size_ = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
}
void MarkCompact::RunPhases() {
Thread* self = Thread::Current();
thread_running_gc_ = self;
InitializePhase();
GetHeap()->PreGcVerification(this);
{
ReaderMutexLock mu(self, *Locks::mutator_lock_);
MarkingPhase();
}
{
ScopedPause pause(this);
MarkingPause();
if (kIsDebugBuild) {
bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
}
}
// To increase likelihood of black allocations. For testing purposes only.
if (kIsDebugBuild && heap_->GetTaskProcessor()->GetRunningThread() == thread_running_gc_) {
usleep(500'000);
}
{
ReaderMutexLock mu(self, *Locks::mutator_lock_);
ReclaimPhase();
PrepareForCompaction();
}
if (uffd_ != kFallbackMode) {
heap_->GetThreadPool()->WaitForWorkersToBeCreated();
}
{
heap_->ThreadFlipBegin(self);
{
ScopedPause pause(this);
PreCompactionPhase();
}
heap_->ThreadFlipEnd(self);
}
if (IsValidFd(uffd_)) {
ReaderMutexLock mu(self, *Locks::mutator_lock_);
CompactionPhase();
}
FinishPhase();
thread_running_gc_ = nullptr;
GetHeap()->PostGcVerification(this);
}
void MarkCompact::InitMovingSpaceFirstObjects(const size_t vec_len) {
// Find the first live word first.
size_t to_space_page_idx = 0;
uint32_t offset_in_chunk_word;
uint32_t offset;
mirror::Object* obj;
const uintptr_t heap_begin = moving_space_bitmap_->HeapBegin();
size_t chunk_idx;
// Find the first live word in the space
for (chunk_idx = 0; chunk_info_vec_[chunk_idx] == 0; chunk_idx++) {
if (chunk_idx > vec_len) {
// We don't have any live data on the moving-space.
return;
}
}
// Use live-words bitmap to find the first word
offset_in_chunk_word = live_words_bitmap_->FindNthLiveWordOffset(chunk_idx, /*n*/ 0);
offset = chunk_idx * kBitsPerVectorWord + offset_in_chunk_word;
DCHECK(live_words_bitmap_->Test(offset)) << "offset=" << offset
<< " chunk_idx=" << chunk_idx
<< " N=0"
<< " offset_in_word=" << offset_in_chunk_word
<< " word=" << std::hex
<< live_words_bitmap_->GetWord(chunk_idx);
// The first object doesn't require using FindPrecedingObject().
obj = reinterpret_cast<mirror::Object*>(heap_begin + offset * kAlignment);
// TODO: add a check to validate the object.
pre_compact_offset_moving_space_[to_space_page_idx] = offset;
first_objs_moving_space_[to_space_page_idx].Assign(obj);
to_space_page_idx++;
uint32_t page_live_bytes = 0;
while (true) {
for (; page_live_bytes <= kPageSize; chunk_idx++) {
if (chunk_idx > vec_len) {
moving_first_objs_count_ = to_space_page_idx;
return;
}
page_live_bytes += chunk_info_vec_[chunk_idx];
}
chunk_idx--;
page_live_bytes -= kPageSize;
DCHECK_LE(page_live_bytes, kOffsetChunkSize);
DCHECK_LE(page_live_bytes, chunk_info_vec_[chunk_idx])
<< " chunk_idx=" << chunk_idx
<< " to_space_page_idx=" << to_space_page_idx
<< " vec_len=" << vec_len;
DCHECK(IsAligned<kAlignment>(chunk_info_vec_[chunk_idx] - page_live_bytes));
offset_in_chunk_word =
live_words_bitmap_->FindNthLiveWordOffset(
chunk_idx, (chunk_info_vec_[chunk_idx] - page_live_bytes) / kAlignment);
offset = chunk_idx * kBitsPerVectorWord + offset_in_chunk_word;
DCHECK(live_words_bitmap_->Test(offset))
<< "offset=" << offset
<< " chunk_idx=" << chunk_idx
<< " N=" << ((chunk_info_vec_[chunk_idx] - page_live_bytes) / kAlignment)
<< " offset_in_word=" << offset_in_chunk_word
<< " word=" << std::hex << live_words_bitmap_->GetWord(chunk_idx);
// TODO: Can we optimize this for large objects? If we are continuing a
// large object that spans multiple pages, then we may be able to do without
// calling FindPrecedingObject().
//
// Find the object which encapsulates offset in it, which could be
// starting at offset itself.
obj = moving_space_bitmap_->FindPrecedingObject(heap_begin + offset * kAlignment);
// TODO: add a check to validate the object.
pre_compact_offset_moving_space_[to_space_page_idx] = offset;
first_objs_moving_space_[to_space_page_idx].Assign(obj);
to_space_page_idx++;
chunk_idx++;
}
}
void MarkCompact::InitNonMovingSpaceFirstObjects() {
accounting::ContinuousSpaceBitmap* bitmap = non_moving_space_->GetLiveBitmap();
uintptr_t begin = reinterpret_cast<uintptr_t>(non_moving_space_->Begin());
const uintptr_t end = reinterpret_cast<uintptr_t>(non_moving_space_->End());
mirror::Object* prev_obj;
size_t page_idx;
{
// Find first live object
mirror::Object* obj = nullptr;
bitmap->VisitMarkedRange</*kVisitOnce*/ true>(begin,
end,
[&obj] (mirror::Object* o) {
obj = o;
});
if (obj == nullptr) {
// There are no live objects in the non-moving space
return;
}
page_idx = (reinterpret_cast<uintptr_t>(obj) - begin) / kPageSize;
first_objs_non_moving_space_[page_idx++].Assign(obj);
prev_obj = obj;
}
// TODO: check obj is valid
uintptr_t prev_obj_end = reinterpret_cast<uintptr_t>(prev_obj)
+ RoundUp(prev_obj->SizeOf<kDefaultVerifyFlags>(), kAlignment);
// For every page find the object starting from which we need to call
// VisitReferences. It could either be an object that started on some
// preceding page, or some object starting within this page.
begin = RoundDown(reinterpret_cast<uintptr_t>(prev_obj) + kPageSize, kPageSize);
while (begin < end) {
// Utilize, if any, large object that started in some preceding page, but
// overlaps with this page as well.
if (prev_obj != nullptr && prev_obj_end > begin) {
DCHECK_LT(prev_obj, reinterpret_cast<mirror::Object*>(begin));
first_objs_non_moving_space_[page_idx].Assign(prev_obj);
mirror::Class* klass = prev_obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (bump_pointer_space_->HasAddress(klass)) {
LOG(WARNING) << "found inter-page object " << prev_obj
<< " in non-moving space with klass " << klass
<< " in moving space";
}
} else {
prev_obj_end = 0;
// It's sufficient to only search for previous object in the preceding page.
// If no live object started in that page and some object had started in
// the page preceding to that page, which was big enough to overlap with
// the current page, then we wouldn't be in the else part.
prev_obj = bitmap->FindPrecedingObject(begin, begin - kPageSize);
if (prev_obj != nullptr) {
prev_obj_end = reinterpret_cast<uintptr_t>(prev_obj)
+ RoundUp(prev_obj->SizeOf<kDefaultVerifyFlags>(), kAlignment);
}
if (prev_obj_end > begin) {
mirror::Class* klass = prev_obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (bump_pointer_space_->HasAddress(klass)) {
LOG(WARNING) << "found inter-page object " << prev_obj
<< " in non-moving space with klass " << klass
<< " in moving space";
}
first_objs_non_moving_space_[page_idx].Assign(prev_obj);
} else {
// Find the first live object in this page
bitmap->VisitMarkedRange</*kVisitOnce*/ true>(
begin,
begin + kPageSize,
[this, page_idx] (mirror::Object* obj) {
first_objs_non_moving_space_[page_idx].Assign(obj);
});
}
// An empty entry indicates that the page has no live objects and hence
// can be skipped.
}
begin += kPageSize;
page_idx++;
}
non_moving_first_objs_count_ = page_idx;
}
bool MarkCompact::CanCompactMovingSpaceWithMinorFault() {
size_t min_size = (moving_first_objs_count_ + black_page_count_) * kPageSize;
return minor_fault_initialized_ && shadow_to_space_map_.IsValid() &&
shadow_to_space_map_.Size() >= min_size;
}
class MarkCompact::ConcurrentCompactionGcTask : public SelfDeletingTask {
public:
explicit ConcurrentCompactionGcTask(MarkCompact* collector, size_t idx)
: collector_(collector), index_(idx) {}
void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) {
if (collector_->CanCompactMovingSpaceWithMinorFault()) {
collector_->ConcurrentCompaction<MarkCompact::kMinorFaultMode>(/*buf=*/nullptr);
} else {
// The passed page/buf to ConcurrentCompaction is used by the thread as a
// kPageSize buffer for compacting and updating objects into and then
// passing the buf to uffd ioctls.
uint8_t* buf = collector_->compaction_buffers_map_.Begin() + index_ * kPageSize;
collector_->ConcurrentCompaction<MarkCompact::kCopyMode>(buf);
}
}
private:
MarkCompact* const collector_;
size_t index_;
};
void MarkCompact::PrepareForCompaction() {
uint8_t* space_begin = bump_pointer_space_->Begin();
size_t vector_len = (black_allocations_begin_ - space_begin) / kOffsetChunkSize;
DCHECK_LE(vector_len, vector_length_);
for (size_t i = 0; i < vector_len; i++) {
DCHECK_LE(chunk_info_vec_[i], kOffsetChunkSize);
DCHECK_EQ(chunk_info_vec_[i], live_words_bitmap_->LiveBytesInBitmapWord(i));
}
InitMovingSpaceFirstObjects(vector_len);
InitNonMovingSpaceFirstObjects();
// TODO: We can do a lot of neat tricks with this offset vector to tune the
// compaction as we wish. Originally, the compaction algorithm slides all
// live objects towards the beginning of the heap. This is nice because it
// keeps the spatial locality of objects intact.
// However, sometimes it's desired to compact objects in certain portions
// of the heap. For instance, it is expected that, over time,
// objects towards the beginning of the heap are long lived and are always
// densely packed. In this case, it makes sense to only update references in
// there and not try to compact it.
// Furthermore, we might have some large objects and may not want to move such
// objects.
// We can adjust, without too much effort, the values in the chunk_info_vec_ such
// that the objects in the dense beginning area aren't moved. OTOH, large
// objects, which could be anywhere in the heap, could also be kept from
// moving by using a similar trick. The only issue is that by doing this we will
// leave an unused hole in the middle of the heap which can't be used for
// allocations until we do a *full* compaction.
//
// At this point every element in the chunk_info_vec_ contains the live-bytes
// of the corresponding chunk. For old-to-new address computation we need
// every element to reflect total live-bytes till the corresponding chunk.
// Live-bytes count is required to compute post_compact_end_ below.
uint32_t total;
// Update the vector one past the heap usage as it is required for black
// allocated objects' post-compact address computation.
if (vector_len < vector_length_) {
vector_len++;
total = 0;
} else {
// Fetch the value stored in the last element before it gets overwritten by
// std::exclusive_scan().
total = chunk_info_vec_[vector_len - 1];
}
std::exclusive_scan(chunk_info_vec_, chunk_info_vec_ + vector_len, chunk_info_vec_, 0);
total += chunk_info_vec_[vector_len - 1];
for (size_t i = vector_len; i < vector_length_; i++) {
DCHECK_EQ(chunk_info_vec_[i], 0u);
}
post_compact_end_ = AlignUp(space_begin + total, kPageSize);
CHECK_EQ(post_compact_end_, space_begin + moving_first_objs_count_ * kPageSize);
black_objs_slide_diff_ = black_allocations_begin_ - post_compact_end_;
// How do we handle compaction of heap portion used for allocations after the
// marking-pause?
// All allocations after the marking-pause are considered black (reachable)
// for this GC cycle. However, they need not be allocated contiguously as
// different mutators use TLABs. So we will compact the heap till the point
// where allocations took place before the marking-pause. And everything after
// that will be slid with TLAB holes, and then TLAB info in TLS will be
// appropriately updated in the pre-compaction pause.
// The chunk-info vector entries for the post marking-pause allocations will be
// also updated in the pre-compaction pause.
bool is_zygote = Runtime::Current()->IsZygote();
if (!uffd_initialized_ && CreateUserfaultfd(/*post_fork*/false)) {
// Register the buffer that we use for terminating concurrent compaction
struct uffdio_register uffd_register;
uffd_register.range.start = reinterpret_cast<uintptr_t>(conc_compaction_termination_page_);
uffd_register.range.len = kPageSize;
uffd_register.mode = UFFDIO_REGISTER_MODE_MISSING;
CHECK_EQ(ioctl(uffd_, UFFDIO_REGISTER, &uffd_register), 0)
<< "ioctl_userfaultfd: register compaction termination page: " << strerror(errno);
// uffd_minor_fault_supported_ would be set appropriately in
// CreateUserfaultfd() above.
if (!uffd_minor_fault_supported_ && shadow_to_space_map_.IsValid()) {
// A valid shadow-map for moving space is only possible if we
// were able to map it in the constructor. That also means that its size
// matches the moving-space.
CHECK_EQ(shadow_to_space_map_.Size(), bump_pointer_space_->Capacity());
// Release the shadow map for moving-space if we don't support minor-fault
// as it's not required.
shadow_to_space_map_.Reset();
}
}
// For zygote we create the thread pool each time before starting compaction,
// and get rid of it when finished. This is expected to happen rarely as
// zygote spends most of the time in native fork loop.
if (uffd_ != kFallbackMode) {
ThreadPool* pool = heap_->GetThreadPool();
if (UNLIKELY(pool == nullptr)) {
// On devices with 2 cores, GetParallelGCThreadCount() will return 1,
// which is desired number of workers on such devices.
heap_->CreateThreadPool(std::min(heap_->GetParallelGCThreadCount(), kMaxNumUffdWorkers));
pool = heap_->GetThreadPool();
}
size_t num_threads = pool->GetThreadCount();
thread_pool_counter_ = num_threads;
for (size_t i = 0; i < num_threads; i++) {
pool->AddTask(thread_running_gc_, new ConcurrentCompactionGcTask(this, i + 1));
}
CHECK_EQ(pool->GetTaskCount(thread_running_gc_), num_threads);
/*
* Possible scenarios for mappings:
* A) All zygote GCs (or if minor-fault feature isn't available): uses
* uffd's copy mode
* 1) For moving-space ('to' space is same as the moving-space):
* a) Private-anonymous mappings for 'to' and 'from' space are created in
* the constructor.
* b) In the compaction pause, we mremap(dontunmap) from 'to' space to
* 'from' space. This results in moving all pages to 'from' space and
* emptying the 'to' space, thereby preparing it for userfaultfd
* registration.
*
* 2) For linear-alloc space:
* a) Private-anonymous mappings for the linear-alloc and its 'shadow'
* are created by the arena-pool.
* b) In the compaction pause, we mremap(dontumap) with similar effect as
* (A.1.b) above.
*
* B) First GC after zygote: uses uffd's copy-mode
* 1) For moving-space:
* a) If the mmap for shadow-map has been successful in the constructor,
* then we remap it (mmap with MAP_FIXED) to get a shared-anonymous
* mapping.
* b) Else, we create two memfd and ftruncate them to the moving-space
* size.
* c) Same as (A.1.b)
* d) If (B.1.a), then mremap(dontunmap) from shadow-map to
* 'to' space. This will make both of them map to the same pages
* e) If (B.1.b), then mmap with the first memfd in shared mode on the
* 'to' space.
* f) At the end of compaction, we will have moved the moving-space
* objects to a MAP_SHARED mapping, readying it for minor-fault from next
* GC cycle.
*
* 2) For linear-alloc space:
* a) Same as (A.2.b)
* b) mmap a shared-anonymous mapping onto the linear-alloc space.
* c) Same as (B.1.f)
*
* C) All subsequent GCs: preferable minor-fault mode. But may also require
* using copy-mode.
* 1) For moving-space:
* a) If the shadow-map is created and no memfd was used, then that means
* we are using shared-anonymous. Therefore, mmap a shared-anonymous on
* the shadow-space.
* b) If the shadow-map is not mapped yet, then mmap one with a size
* big enough to hold the compacted moving space. This may fail, in which
* case we will use uffd's copy-mode.
* c) If (b) is successful, then mmap the free memfd onto shadow-map.
* d) Same as (A.1.b)
* e) In compaction pause, if the shadow-map was not created, then use
* copy-mode.
* f) Else, if the created map is smaller than the required-size, then
* use mremap (without dontunmap) to expand the size. If failed, then use
* copy-mode.
* g) Otherwise, same as (B.1.d) and use minor-fault mode.
*
* 2) For linear-alloc space:
* a) Same as (A.2.b)
* b) Use minor-fault mode
*/
auto mmap_shadow_map = [this](int flags, int fd) {
void* ret = mmap(shadow_to_space_map_.Begin(),
shadow_to_space_map_.Size(),
PROT_READ | PROT_WRITE,
flags,
fd,
/*offset=*/0);
DCHECK_NE(ret, MAP_FAILED) << "mmap for moving-space shadow failed:" << strerror(errno);
};
// Setup all the virtual memory ranges required for concurrent compaction.
if (minor_fault_initialized_) {
DCHECK(!is_zygote);
if (UNLIKELY(!shadow_to_space_map_.IsValid())) {
// This case happens only once on the first GC in minor-fault mode, if
// we were unable to reserve shadow-map for moving-space in the
// beginning.
DCHECK_GE(moving_to_space_fd_, 0);
// Take extra 4MB to reduce the likelihood of requiring resizing this
// map in the pause due to black allocations.
size_t reqd_size = std::min(moving_first_objs_count_ * kPageSize + 4 * MB,
bump_pointer_space_->Capacity());
// We cannot support memory-tool with shadow-map (as it requires
// appending a redzone) in this case because the mapping may have to be expanded
// using mremap (in KernelPreparation()), which would ignore the redzone.
// MemMap::MapFile() appends a redzone, but MemMap::MapAnonymous() doesn't.
std::string err_msg;
shadow_to_space_map_ = MemMap::MapAnonymous("moving-space-shadow",
reqd_size,
PROT_NONE,
/*low_4gb=*/kObjPtrPoisoning,
&err_msg);
if (shadow_to_space_map_.IsValid()) {
CHECK(!kMemoryToolAddsRedzones || shadow_to_space_map_.GetRedzoneSize() == 0u);
// We want to use MemMap to get low-4GB mapping, if required, but then also
// want to have its ownership as we may grow it (in
// KernelPreparation()). If the ownership is not taken and we try to
// resize MemMap, then it unmaps the virtual range.
MemMap temp = shadow_to_space_map_.TakeReservedMemory(shadow_to_space_map_.Size(),
/*reuse*/ true);
std::swap(temp, shadow_to_space_map_);
DCHECK(!temp.IsValid());
} else {
LOG(WARNING) << "Failed to create moving space's shadow map of " << PrettySize(reqd_size)
<< " size. " << err_msg;
}
}
if (LIKELY(shadow_to_space_map_.IsValid())) {
int fd = moving_to_space_fd_;
int mmap_flags = MAP_SHARED | MAP_FIXED;
if (fd == kFdUnused) {
// Unused moving-to-space fd means we are using anonymous shared
// mapping.
DCHECK_EQ(shadow_to_space_map_.Size(), bump_pointer_space_->Capacity());
mmap_flags |= MAP_ANONYMOUS;
fd = -1;
}
// If the map is smaller than required, then we'll do mremap in the
// compaction pause to increase the size.
mmap_shadow_map(mmap_flags, fd);
}
for (auto& data : linear_alloc_spaces_data_) {
DCHECK_EQ(mprotect(data.shadow_.Begin(), data.shadow_.Size(), PROT_READ | PROT_WRITE), 0)
<< "mprotect failed: " << strerror(errno);
}
} else if (!is_zygote && uffd_minor_fault_supported_) {
// First GC after zygote-fork. We will still use uffd's copy mode but will
// use it to move objects to MAP_SHARED (to prepare for subsequent GCs, which
// will use uffd's minor-fault feature).
if (shadow_to_space_map_.IsValid() &&
shadow_to_space_map_.Size() == bump_pointer_space_->Capacity()) {
mmap_shadow_map(MAP_SHARED | MAP_FIXED | MAP_ANONYMOUS, /*fd=*/-1);
} else {
size_t size = bump_pointer_space_->Capacity();
DCHECK_EQ(moving_to_space_fd_, kFdUnused);
DCHECK_EQ(moving_from_space_fd_, kFdUnused);
const char* name = bump_pointer_space_->GetName();
moving_to_space_fd_ = memfd_create(name, MFD_CLOEXEC);
CHECK_NE(moving_to_space_fd_, -1)
<< "memfd_create: failed for " << name << ": " << strerror(errno);
moving_from_space_fd_ = memfd_create(name, MFD_CLOEXEC);
CHECK_NE(moving_from_space_fd_, -1)
<< "memfd_create: failed for " << name << ": " << strerror(errno);
// memfds are considered as files from resource limits point of view.
// And the moving space could be several hundred MBs. So increase the
// limit, if it's lower than moving-space size.
bool rlimit_changed = false;
rlimit rlim_read;
CHECK_EQ(getrlimit(RLIMIT_FSIZE, &rlim_read), 0) << "getrlimit failed: " << strerror(errno);
if (rlim_read.rlim_cur < size) {
rlimit_changed = true;
rlimit rlim = rlim_read;
rlim.rlim_cur = size;
CHECK_EQ(setrlimit(RLIMIT_FSIZE, &rlim), 0) << "setrlimit failed: " << strerror(errno);
}
// moving-space will map this fd so that we compact objects into it.
int ret = ftruncate(moving_to_space_fd_, size);
CHECK_EQ(ret, 0) << "ftruncate failed for moving-space:" << strerror(errno);
ret = ftruncate(moving_from_space_fd_, size);
CHECK_EQ(ret, 0) << "ftruncate failed for moving-space:" << strerror(errno);
if (rlimit_changed) {
// reset the rlimit to the original limits.
CHECK_EQ(setrlimit(RLIMIT_FSIZE, &rlim_read), 0)
<< "setrlimit failed: " << strerror(errno);
}
}
}
}
}
class MarkCompact::VerifyRootMarkedVisitor : public SingleRootVisitor {
public:
explicit VerifyRootMarkedVisitor(MarkCompact* collector) : collector_(collector) { }
void VisitRoot(mirror::Object* root, const RootInfo& info) override
REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
}
private:
MarkCompact* const collector_;
};
void MarkCompact::ReMarkRoots(Runtime* runtime) {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
DCHECK_EQ(thread_running_gc_, Thread::Current());
Locks::mutator_lock_->AssertExclusiveHeld(thread_running_gc_);
MarkNonThreadRoots(runtime);
MarkConcurrentRoots(static_cast<VisitRootFlags>(kVisitRootFlagNewRoots
| kVisitRootFlagStopLoggingNewRoots
| kVisitRootFlagClearRootLog),
runtime);
if (kVerifyRootsMarked) {
TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
VerifyRootMarkedVisitor visitor(this);
runtime->VisitRoots(&visitor);
}
}
void MarkCompact::MarkingPause() {
TimingLogger::ScopedTiming t("(Paused)MarkingPause", GetTimings());
Runtime* runtime = Runtime::Current();
Locks::mutator_lock_->AssertExclusiveHeld(thread_running_gc_);
{
// Handle the dirty objects as we are a concurrent GC
WriterMutexLock mu(thread_running_gc_, *Locks::heap_bitmap_lock_);
{
MutexLock mu2(thread_running_gc_, *Locks::runtime_shutdown_lock_);
MutexLock mu3(thread_running_gc_, *Locks::thread_list_lock_);
std::list<Thread*> thread_list = runtime->GetThreadList()->GetList();
for (Thread* thread : thread_list) {
thread->VisitRoots(this, static_cast<VisitRootFlags>(0));
// Need to revoke all the thread-local allocation stacks since we will
// swap the allocation stacks (below) and don't want anybody to allocate
// into the live stack.
thread->RevokeThreadLocalAllocationStack();
bump_pointer_space_->RevokeThreadLocalBuffers(thread);
}
}
// Re-mark root set. Doesn't include thread-roots as they are already marked
// above.
ReMarkRoots(runtime);
// Scan dirty objects.
RecursiveMarkDirtyObjects(/*paused*/ true, accounting::CardTable::kCardDirty);
{
TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
heap_->SwapStacks();
live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
}
}
// Fetch only the accumulated objects-allocated count as it is guaranteed to
// be up-to-date after the TLAB revocation above.
freed_objects_ += bump_pointer_space_->GetAccumulatedObjectsAllocated();
// TODO: For PreSweepingGcVerification(), find correct strategy to visit/walk
// objects in bump-pointer space when we have a mark-bitmap to indicate live
// objects. At the same time we also need to be able to visit black allocations,
// even though they are not marked in the bitmap. Without both of these we fail
// pre-sweeping verification. As well as we leave windows open wherein a
// VisitObjects/Walk on the space would either miss some objects or visit
// unreachable ones. These windows are when we are switching from shared
// mutator-lock to exclusive and vice-versa starting from here till compaction pause.
// heap_->PreSweepingGcVerification(this);
// Disallow new system weaks to prevent a race which occurs when someone adds
// a new system weak before we sweep them. Since this new system weak may not
// be marked, the GC may incorrectly sweep it. This also fixes a race where
// interning may attempt to return a strong reference to a string that is
// about to be swept.
runtime->DisallowNewSystemWeaks();
// Enable the reference processing slow path, needs to be done with mutators
// paused since there is no lock in the GetReferent fast path.
heap_->GetReferenceProcessor()->EnableSlowPath();
// Capture 'end' of moving-space at this point. Every allocation beyond this
// point will be considered as black.
// Align-up to page boundary so that black allocations happen from next page
// onwards.
black_allocations_begin_ = bump_pointer_space_->AlignEnd(thread_running_gc_, kPageSize);
DCHECK(IsAligned<kAlignment>(black_allocations_begin_));
black_allocations_begin_ = AlignUp(black_allocations_begin_, kPageSize);
}
void MarkCompact::SweepSystemWeaks(Thread* self, Runtime* runtime, const bool paused) {
TimingLogger::ScopedTiming t(paused ? "(Paused)SweepSystemWeaks" : "SweepSystemWeaks",
GetTimings());
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
runtime->SweepSystemWeaks(this);
}
void MarkCompact::ProcessReferences(Thread* self) {
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings());
}
void MarkCompact::Sweep(bool swap_bitmaps) {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
// Ensure that nobody inserted objects in the live stack after we swapped the
// stacks.
CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
{
TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
// Mark everything allocated since the last GC as live so that we can sweep
// concurrently, knowing that new allocations won't be marked as live.
accounting::ObjectStack* live_stack = heap_->GetLiveStack();
heap_->MarkAllocStackAsLive(live_stack);
live_stack->Reset();
DCHECK(mark_stack_->IsEmpty());
}
for (const auto& space : GetHeap()->GetContinuousSpaces()) {
if (space->IsContinuousMemMapAllocSpace() && space != bump_pointer_space_) {
space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
TimingLogger::ScopedTiming split(
alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
GetTimings());
RecordFree(alloc_space->Sweep(swap_bitmaps));
}
}
SweepLargeObjects(swap_bitmaps);
}
void MarkCompact::SweepLargeObjects(bool swap_bitmaps) {
space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
if (los != nullptr) {
TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
RecordFreeLOS(los->Sweep(swap_bitmaps));
}
}
void MarkCompact::ReclaimPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
DCHECK(thread_running_gc_ == Thread::Current());
Runtime* const runtime = Runtime::Current();
// Process the references concurrently.
ProcessReferences(thread_running_gc_);
// TODO: Try to merge this system-weak sweeping with the one while updating
// references during the compaction pause.
SweepSystemWeaks(thread_running_gc_, runtime, /*paused*/ false);
runtime->AllowNewSystemWeaks();
// Clean up class loaders after system weaks are swept since that is how we know if class
// unloading occurred.
runtime->GetClassLinker()->CleanupClassLoaders();
{
WriterMutexLock mu(thread_running_gc_, *Locks::heap_bitmap_lock_);
// Reclaim unmarked objects.
Sweep(false);
// Swap the live and mark bitmaps for each space which we modified space. This is an
// optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
// bitmaps.
SwapBitmaps();
// Unbind the live and mark bitmaps.
GetHeap()->UnBindBitmaps();
}
}
// We want to avoid checking for every reference if it's within the page or
// not. This can be done if we know where in the page the holder object lies.
// If it doesn't overlap either boundaries then we can skip the checks.
template <bool kCheckBegin, bool kCheckEnd>
class MarkCompact::RefsUpdateVisitor {
public:
explicit RefsUpdateVisitor(MarkCompact* collector,
mirror::Object* obj,
uint8_t* begin,
uint8_t* end)
: collector_(collector), obj_(obj), begin_(begin), end_(end) {
DCHECK(!kCheckBegin || begin != nullptr);
DCHECK(!kCheckEnd || end != nullptr);
}
void operator()(mirror::Object* old ATTRIBUTE_UNUSED, MemberOffset offset, bool /* is_static */)
const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
bool update = true;
if (kCheckBegin || kCheckEnd) {
uint8_t* ref = reinterpret_cast<uint8_t*>(obj_) + offset.Int32Value();
update = (!kCheckBegin || ref >= begin_) && (!kCheckEnd || ref < end_);
}
if (update) {
collector_->UpdateRef(obj_, offset);
}
}
// For object arrays we don't need to check boundaries here as it's done in
// VisitReferenes().
// TODO: Optimize reference updating using SIMD instructions. Object arrays
// are perfect as all references are tightly packed.
void operator()(mirror::Object* old ATTRIBUTE_UNUSED,
MemberOffset offset,
bool /*is_static*/,
bool /*is_obj_array*/)
const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
collector_->UpdateRef(obj_, offset);
}
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
ALWAYS_INLINE
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
ALWAYS_INLINE
REQUIRES_SHARED(Locks::mutator_lock_) {
collector_->UpdateRoot(root);
}
private:
MarkCompact* const collector_;
mirror::Object* const obj_;
uint8_t* const begin_;
uint8_t* const end_;
};
bool MarkCompact::IsValidObject(mirror::Object* obj) const {
mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
if (!heap_->GetVerification()->IsValidHeapObjectAddress(klass)) {
return false;
}
return heap_->GetVerification()->IsValidClassUnchecked<kWithFromSpaceBarrier>(
obj->GetClass<kVerifyNone, kWithFromSpaceBarrier>());
}
template <typename Callback>
void MarkCompact::VerifyObject(mirror::Object* ref, Callback& callback) const {
if (kIsDebugBuild) {
mirror::Class* klass = ref->GetClass<kVerifyNone, kWithFromSpaceBarrier>();
mirror::Class* pre_compact_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
mirror::Class* klass_klass = klass->GetClass<kVerifyNone, kWithFromSpaceBarrier>();
mirror::Class* klass_klass_klass = klass_klass->GetClass<kVerifyNone, kWithFromSpaceBarrier>();
if (bump_pointer_space_->HasAddress(pre_compact_klass) &&
reinterpret_cast<uint8_t*>(pre_compact_klass) < black_allocations_begin_) {
CHECK(moving_space_bitmap_->Test(pre_compact_klass))
<< "ref=" << ref
<< " post_compact_end=" << static_cast<void*>(post_compact_end_)
<< " pre_compact_klass=" << pre_compact_klass
<< " black_allocations_begin=" << static_cast<void*>(black_allocations_begin_);
CHECK(live_words_bitmap_->Test(pre_compact_klass));
}
if (!IsValidObject(ref)) {
std::ostringstream oss;
oss << "Invalid object: "
<< "ref=" << ref
<< " klass=" << klass
<< " klass_klass=" << klass_klass
<< " klass_klass_klass=" << klass_klass_klass
<< " pre_compact_klass=" << pre_compact_klass
<< " from_space_begin=" << static_cast<void*>(from_space_begin_)
<< " pre_compact_begin=" << static_cast<void*>(bump_pointer_space_->Begin())
<< " post_compact_end=" << static_cast<void*>(post_compact_end_)
<< " black_allocations_begin=" << static_cast<void*>(black_allocations_begin_);
// Call callback before dumping larger data like RAM and space dumps.
callback(oss);
oss << " \nobject="
<< heap_->GetVerification()->DumpRAMAroundAddress(reinterpret_cast<uintptr_t>(ref), 128)
<< " \nklass(from)="
<< heap_->GetVerification()->DumpRAMAroundAddress(reinterpret_cast<uintptr_t>(klass), 128)
<< "spaces:\n";
heap_->DumpSpaces(oss);
LOG(FATAL) << oss.str();
}
}
}
void MarkCompact::CompactPage(mirror::Object* obj,
uint32_t offset,
uint8_t* addr,
bool needs_memset_zero) {
DCHECK(moving_space_bitmap_->Test(obj)
&& live_words_bitmap_->Test(obj));
DCHECK(live_words_bitmap_->Test(offset)) << "obj=" << obj
<< " offset=" << offset
<< " addr=" << static_cast<void*>(addr)
<< " black_allocs_begin="
<< static_cast<void*>(black_allocations_begin_)
<< " post_compact_addr="
<< static_cast<void*>(post_compact_end_);
uint8_t* const start_addr = addr;
// How many distinct live-strides do we have.
size_t stride_count = 0;
uint8_t* last_stride = addr;
uint32_t last_stride_begin = 0;
auto verify_obj_callback = [&] (std::ostream& os) {
os << " stride_count=" << stride_count
<< " last_stride=" << static_cast<void*>(last_stride)
<< " offset=" << offset
<< " start_addr=" << static_cast<void*>(start_addr);
};
obj = GetFromSpaceAddr(obj);
live_words_bitmap_->VisitLiveStrides(offset,
black_allocations_begin_,
kPageSize,
[&addr,
&last_stride,
&stride_count,
&last_stride_begin,
verify_obj_callback,
this] (uint32_t stride_begin,
size_t stride_size,
bool /*is_last*/)
REQUIRES_SHARED(Locks::mutator_lock_) {
const size_t stride_in_bytes = stride_size * kAlignment;
DCHECK_LE(stride_in_bytes, kPageSize);
last_stride_begin = stride_begin;
DCHECK(IsAligned<kAlignment>(addr));
memcpy(addr,
from_space_begin_ + stride_begin * kAlignment,
stride_in_bytes);
if (kIsDebugBuild) {
uint8_t* space_begin = bump_pointer_space_->Begin();
// We can interpret the first word of the stride as an
// obj only from second stride onwards, as the first
// stride's first-object may have started on previous
// page. The only exception is the first page of the
// moving space.
if (stride_count > 0
|| stride_begin * kAlignment < kPageSize) {
mirror::Object* o =
reinterpret_cast<mirror::Object*>(space_begin
+ stride_begin
* kAlignment);
CHECK(live_words_bitmap_->Test(o)) << "ref=" << o;
CHECK(moving_space_bitmap_->Test(o))
<< "ref=" << o
<< " bitmap: "
<< moving_space_bitmap_->DumpMemAround(o);
VerifyObject(reinterpret_cast<mirror::Object*>(addr),
verify_obj_callback);
}
}
last_stride = addr;
addr += stride_in_bytes;
stride_count++;
});
DCHECK_LT(last_stride, start_addr + kPageSize);
DCHECK_GT(stride_count, 0u);
size_t obj_size = 0;
uint32_t offset_within_obj = offset * kAlignment
- (reinterpret_cast<uint8_t*>(obj) - from_space_begin_);
// First object
if (offset_within_obj > 0) {
mirror::Object* to_ref = reinterpret_cast<mirror::Object*>(start_addr - offset_within_obj);
if (stride_count > 1) {
RefsUpdateVisitor</*kCheckBegin*/true, /*kCheckEnd*/false> visitor(this,
to_ref,
start_addr,
nullptr);
obj_size = obj->VisitRefsForCompaction</*kFetchObjSize*/true, /*kVisitNativeRoots*/false>(
visitor, MemberOffset(offset_within_obj), MemberOffset(-1));
} else {
RefsUpdateVisitor</*kCheckBegin*/true, /*kCheckEnd*/true> visitor(this,
to_ref,
start_addr,
start_addr + kPageSize);
obj_size = obj->VisitRefsForCompaction</*kFetchObjSize*/true, /*kVisitNativeRoots*/false>(
visitor, MemberOffset(offset_within_obj), MemberOffset(offset_within_obj
+ kPageSize));
}
obj_size = RoundUp(obj_size, kAlignment);
DCHECK_GT(obj_size, offset_within_obj);
obj_size -= offset_within_obj;
// If there is only one stride, then adjust last_stride_begin to the
// end of the first object.
if (stride_count == 1) {
last_stride_begin += obj_size / kAlignment;
}
}
// Except for the last page being compacted, the pages will have addr ==
// start_addr + kPageSize.
uint8_t* const end_addr = addr;
addr = start_addr;
size_t bytes_done = obj_size;
// All strides except the last one can be updated without any boundary
// checks.
DCHECK_LE(addr, last_stride);
size_t bytes_to_visit = last_stride - addr;
DCHECK_LE(bytes_to_visit, kPageSize);
while (bytes_to_visit > bytes_done) {
mirror::Object* ref = reinterpret_cast<mirror::Object*>(addr + bytes_done);
VerifyObject(ref, verify_obj_callback);
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/false>
visitor(this, ref, nullptr, nullptr);
obj_size = ref->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(-1));
obj_size = RoundUp(obj_size, kAlignment);
bytes_done += obj_size;
}
// Last stride may have multiple objects in it and we don't know where the
// last object which crosses the page boundary starts, therefore check
// page-end in all of these objects. Also, we need to call
// VisitRefsForCompaction() with from-space object as we fetch object size,
// which in case of klass requires 'class_size_'.
uint8_t* from_addr = from_space_begin_ + last_stride_begin * kAlignment;
bytes_to_visit = end_addr - addr;
DCHECK_LE(bytes_to_visit, kPageSize);
while (bytes_to_visit > bytes_done) {
mirror::Object* ref = reinterpret_cast<mirror::Object*>(addr + bytes_done);
obj = reinterpret_cast<mirror::Object*>(from_addr);
VerifyObject(ref, verify_obj_callback);
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/true>
visitor(this, ref, nullptr, start_addr + kPageSize);
obj_size = obj->VisitRefsForCompaction(visitor,
MemberOffset(0),
MemberOffset(end_addr - (addr + bytes_done)));
obj_size = RoundUp(obj_size, kAlignment);
from_addr += obj_size;
bytes_done += obj_size;
}
// The last page that we compact may have some bytes left untouched in the
// end, we should zero them as the kernel copies at page granularity.
if (needs_memset_zero && UNLIKELY(bytes_done < kPageSize)) {
std::memset(addr + bytes_done, 0x0, kPageSize - bytes_done);
}
}
// We store the starting point (pre_compact_page - first_obj) and first-chunk's
// size. If more TLAB(s) started in this page, then those chunks are identified
// using mark bitmap. All this info is prepared in UpdateMovingSpaceBlackAllocations().
// If we find a set bit in the bitmap, then we copy the remaining page and then
// use the bitmap to visit each object for updating references.
void MarkCompact::SlideBlackPage(mirror::Object* first_obj,
const size_t page_idx,
uint8_t* const pre_compact_page,
uint8_t* dest,
bool needs_memset_zero) {
DCHECK(IsAligned<kPageSize>(pre_compact_page));
size_t bytes_copied;
const uint32_t first_chunk_size = black_alloc_pages_first_chunk_size_[page_idx];
mirror::Object* next_page_first_obj = first_objs_moving_space_[page_idx + 1].AsMirrorPtr();
uint8_t* src_addr = reinterpret_cast<uint8_t*>(GetFromSpaceAddr(first_obj));
uint8_t* pre_compact_addr = reinterpret_cast<uint8_t*>(first_obj);
uint8_t* const pre_compact_page_end = pre_compact_page + kPageSize;
uint8_t* const dest_page_end = dest + kPageSize;
auto verify_obj_callback = [&] (std::ostream& os) {
os << " first_obj=" << first_obj
<< " next_page_first_obj=" << next_page_first_obj
<< " first_chunk_sie=" << first_chunk_size
<< " dest=" << static_cast<void*>(dest)
<< " pre_compact_page="
<< static_cast<void* const>(pre_compact_page);
};
// We have empty portion at the beginning of the page. Zero it.
if (pre_compact_addr > pre_compact_page) {
bytes_copied = pre_compact_addr - pre_compact_page;
DCHECK_LT(bytes_copied, kPageSize);
if (needs_memset_zero) {
std::memset(dest, 0x0, bytes_copied);
}
dest += bytes_copied;
} else {
bytes_copied = 0;
size_t offset = pre_compact_page - pre_compact_addr;
pre_compact_addr = pre_compact_page;
src_addr += offset;
DCHECK(IsAligned<kPageSize>(src_addr));
}
// Copy the first chunk of live words
std::memcpy(dest, src_addr, first_chunk_size);
// Update references in the first chunk. Use object size to find next object.
{
size_t bytes_to_visit = first_chunk_size;
size_t obj_size;
// The first object started in some previous page. So we need to check the
// beginning.
DCHECK_LE(reinterpret_cast<uint8_t*>(first_obj), pre_compact_addr);
size_t offset = pre_compact_addr - reinterpret_cast<uint8_t*>(first_obj);
if (bytes_copied == 0 && offset > 0) {
mirror::Object* to_obj = reinterpret_cast<mirror::Object*>(dest - offset);
mirror::Object* from_obj = reinterpret_cast<mirror::Object*>(src_addr - offset);
// If the next page's first-obj is in this page or nullptr, then we don't
// need to check end boundary
if (next_page_first_obj == nullptr
|| (first_obj != next_page_first_obj
&& reinterpret_cast<uint8_t*>(next_page_first_obj) <= pre_compact_page_end)) {
RefsUpdateVisitor</*kCheckBegin*/true, /*kCheckEnd*/false> visitor(this,
to_obj,
dest,
nullptr);
obj_size = from_obj->VisitRefsForCompaction<
/*kFetchObjSize*/true, /*kVisitNativeRoots*/false>(visitor,
MemberOffset(offset),
MemberOffset(-1));
} else {
RefsUpdateVisitor</*kCheckBegin*/true, /*kCheckEnd*/true> visitor(this,
to_obj,
dest,
dest_page_end);
from_obj->VisitRefsForCompaction<
/*kFetchObjSize*/false, /*kVisitNativeRoots*/false>(visitor,
MemberOffset(offset),
MemberOffset(offset
+ kPageSize));
return;
}
obj_size = RoundUp(obj_size, kAlignment);
obj_size -= offset;
dest += obj_size;
bytes_to_visit -= obj_size;
}
bytes_copied += first_chunk_size;
// If the last object in this page is next_page_first_obj, then we need to check end boundary
bool check_last_obj = false;
if (next_page_first_obj != nullptr
&& reinterpret_cast<uint8_t*>(next_page_first_obj) < pre_compact_page_end
&& bytes_copied == kPageSize) {
size_t diff = pre_compact_page_end - reinterpret_cast<uint8_t*>(next_page_first_obj);
DCHECK_LE(diff, kPageSize);
DCHECK_LE(diff, bytes_to_visit);
bytes_to_visit -= diff;
check_last_obj = true;
}
while (bytes_to_visit > 0) {
mirror::Object* dest_obj = reinterpret_cast<mirror::Object*>(dest);
VerifyObject(dest_obj, verify_obj_callback);
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/false> visitor(this,
dest_obj,
nullptr,
nullptr);
obj_size = dest_obj->VisitRefsForCompaction(visitor, MemberOffset(0), MemberOffset(-1));
obj_size = RoundUp(obj_size, kAlignment);
bytes_to_visit -= obj_size;
dest += obj_size;
}
DCHECK_EQ(bytes_to_visit, 0u);
if (check_last_obj) {
mirror::Object* dest_obj = reinterpret_cast<mirror::Object*>(dest);
VerifyObject(dest_obj, verify_obj_callback);
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/true> visitor(this,
dest_obj,
nullptr,
dest_page_end);
mirror::Object* obj = GetFromSpaceAddr(next_page_first_obj);
obj->VisitRefsForCompaction</*kFetchObjSize*/false>(visitor,
MemberOffset(0),
MemberOffset(dest_page_end - dest));
return;
}
}
// Probably a TLAB finished on this page and/or a new TLAB started as well.
if (bytes_copied < kPageSize) {
src_addr += first_chunk_size;
pre_compact_addr += first_chunk_size;
// Use mark-bitmap to identify where objects are. First call
// VisitMarkedRange for only the first marked bit. If found, zero all bytes
// until that object and then call memcpy on the rest of the page.
// Then call VisitMarkedRange for all marked bits *after* the one found in
// this invocation. This time to visit references.
uintptr_t start_visit = reinterpret_cast<uintptr_t>(pre_compact_addr);
uintptr_t page_end = reinterpret_cast<uintptr_t>(pre_compact_page_end);
mirror::Object* found_obj = nullptr;
moving_space_bitmap_->VisitMarkedRange</*kVisitOnce*/true>(start_visit,
page_end,
[&found_obj](mirror::Object* obj) {
found_obj = obj;
});
size_t remaining_bytes = kPageSize - bytes_copied;
if (found_obj == nullptr) {
if (needs_memset_zero) {
// No more black objects in this page. Zero the remaining bytes and return.
std::memset(dest, 0x0, remaining_bytes);
}
return;
}
// Copy everything in this page, which includes any zeroed regions
// in-between.
std::memcpy(dest, src_addr, remaining_bytes);
DCHECK_LT(reinterpret_cast<uintptr_t>(found_obj), page_end);
moving_space_bitmap_->VisitMarkedRange(
reinterpret_cast<uintptr_t>(found_obj) + mirror::kObjectHeaderSize,
page_end,
[&found_obj, pre_compact_addr, dest, this, verify_obj_callback] (mirror::Object* obj)
REQUIRES_SHARED(Locks::mutator_lock_) {
ptrdiff_t diff = reinterpret_cast<uint8_t*>(found_obj) - pre_compact_addr;
mirror::Object* ref = reinterpret_cast<mirror::Object*>(dest + diff);
VerifyObject(ref, verify_obj_callback);
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/false>
visitor(this, ref, nullptr, nullptr);
ref->VisitRefsForCompaction</*kFetchObjSize*/false>(visitor,
MemberOffset(0),
MemberOffset(-1));
// Remember for next round.
found_obj = obj;
});
// found_obj may have been updated in VisitMarkedRange. Visit the last found
// object.
DCHECK_GT(reinterpret_cast<uint8_t*>(found_obj), pre_compact_addr);
DCHECK_LT(reinterpret_cast<uintptr_t>(found_obj), page_end);
ptrdiff_t diff = reinterpret_cast<uint8_t*>(found_obj) - pre_compact_addr;
mirror::Object* ref = reinterpret_cast<mirror::Object*>(dest + diff);
VerifyObject(ref, verify_obj_callback);
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/true> visitor(this,
ref,
nullptr,
dest_page_end);
ref->VisitRefsForCompaction</*kFetchObjSize*/false>(
visitor, MemberOffset(0), MemberOffset(page_end -
reinterpret_cast<uintptr_t>(found_obj)));
}
}
template <bool kFirstPageMapping>
void MarkCompact::MapProcessedPages(uint8_t* to_space_start,
Atomic<PageState>* state_arr,
size_t arr_idx,
size_t arr_len) {
DCHECK(minor_fault_initialized_);
DCHECK_LT(arr_idx, arr_len);
DCHECK_ALIGNED(to_space_start, kPageSize);
// Claim all the contiguous pages, which are ready to be mapped, and then do
// so in a single ioctl. This helps avoid the overhead of invoking syscall
// several times and also maps the already-processed pages, avoiding
// unnecessary faults on them.
size_t length = kFirstPageMapping ? kPageSize : 0;
if (kFirstPageMapping) {
arr_idx++;
}
// We need to guarantee that we don't end up sucsessfully marking a later
// page 'mapping' and then fail to mark an earlier page. To guarantee that
// we use acq_rel order.
for (; arr_idx < arr_len; arr_idx++, length += kPageSize) {
PageState expected_state = PageState::kProcessed;
if (!state_arr[arr_idx].compare_exchange_strong(
expected_state, PageState::kProcessedAndMapping, std::memory_order_acq_rel)) {
break;
}
}
if (length > 0) {
// Note: We need the first page to be attempted (to be mapped) by the ioctl
// as this function is called due to some mutator thread waiting on the
// 'to_space_start' page. Therefore, the ioctl must always be called
// with 'to_space_start' as the 'start' address because it can bail out in
// the middle (not attempting to map the subsequent pages) if it finds any
// page either already mapped in between, or missing on the shadow-map.
struct uffdio_continue uffd_continue;
uffd_continue.range.start = reinterpret_cast<uintptr_t>(to_space_start);
uffd_continue.range.len = length;
uffd_continue.mode = 0;
int ret = ioctl(uffd_, UFFDIO_CONTINUE, &uffd_continue);
if (UNLIKELY(ret == -1 && errno == EAGAIN)) {
// This can happen only in linear-alloc.
DCHECK(linear_alloc_spaces_data_.end() !=
std::find_if(linear_alloc_spaces_data_.begin(),
linear_alloc_spaces_data_.end(),
[to_space_start](const LinearAllocSpaceData& data) {
return data.begin_ <= to_space_start && to_space_start < data.end_;
}));
// This could happen if userfaultfd couldn't find any pages mapped in the
// shadow map. For instance, if there are certain (contiguous) pages on
// linear-alloc which are allocated and have first-object set-up but have
// not been accessed yet.
// Bail out by setting the remaining pages' state back to kProcessed and
// then waking up any waiting threads.
DCHECK_GE(uffd_continue.mapped, 0);
DCHECK_ALIGNED(uffd_continue.mapped, kPageSize);
DCHECK_LT(uffd_continue.mapped, static_cast<ssize_t>(length));
if (kFirstPageMapping) {
// In this case the first page must be mapped.
DCHECK_GE(uffd_continue.mapped, static_cast<ssize_t>(kPageSize));
}
// Nobody would modify these pages' state simultaneously so only atomic
// store is sufficient. Use 'release' order to ensure that all states are
// modified sequentially.
for (size_t remaining_len = length - uffd_continue.mapped; remaining_len > 0;
remaining_len -= kPageSize) {
arr_idx--;
DCHECK_EQ(state_arr[arr_idx].load(std::memory_order_relaxed),
PageState::kProcessedAndMapping);
state_arr[arr_idx].store(PageState::kProcessed, std::memory_order_release);
}
uffd_continue.range.start =
reinterpret_cast<uintptr_t>(to_space_start) + uffd_continue.mapped;
uffd_continue.range.len = length - uffd_continue.mapped;
ret = ioctl(uffd_, UFFDIO_WAKE, &uffd_continue.range);
CHECK_EQ(ret, 0) << "ioctl_userfaultfd: wake failed: " << strerror(errno);
} else {
// We may receive ENOENT if gc-thread unregisters the
// range behind our back, which is fine because that
// happens only when it knows compaction is done.
CHECK(ret == 0 || !kFirstPageMapping || errno == ENOENT)
<< "ioctl_userfaultfd: continue failed: " << strerror(errno);
if (ret == 0) {
DCHECK_EQ(uffd_continue.mapped, static_cast<ssize_t>(length));
}
}
}
}
template <int kMode, typename CompactionFn>
void MarkCompact::DoPageCompactionWithStateChange(size_t page_idx,
size_t status_arr_len,
uint8_t* to_space_page,
uint8_t* page,
CompactionFn func) {
auto copy_ioctl = [this] (void* dst, void* buffer) {
struct uffdio_copy uffd_copy;
uffd_copy.src = reinterpret_cast<uintptr_t>(buffer);
uffd_copy.dst = reinterpret_cast<uintptr_t>(dst);
uffd_copy.len = kPageSize;
uffd_copy.mode = 0;
CHECK_EQ(ioctl(uffd_, UFFDIO_COPY, &uffd_copy), 0)
<< "ioctl_userfaultfd: copy failed: " << strerror(errno)
<< ". src:" << buffer << " dst:" << dst;
DCHECK_EQ(uffd_copy.copy, static_cast<ssize_t>(kPageSize));
};
PageState expected_state = PageState::kUnprocessed;
PageState desired_state =
kMode == kCopyMode ? PageState::kProcessingAndMapping : PageState::kProcessing;
// In the concurrent case (kMode != kFallbackMode) we need to ensure that the update
// to moving_spaces_status_[page_idx] is released before the contents of the page are
// made accessible to other threads.
//
// In minor-fault case, we need acquire ordering here to ensure that when the
// CAS fails, another thread has completed processing the page, which is guaranteed
// by the release below.
// Relaxed memory-order is used in copy mode as the subsequent ioctl syscall acts as a fence.
std::memory_order order =
kMode == kCopyMode ? std::memory_order_relaxed : std::memory_order_acquire;
if (kMode == kFallbackMode || moving_pages_status_[page_idx].compare_exchange_strong(
expected_state, desired_state, order)) {
func();
if (kMode == kCopyMode) {
copy_ioctl(to_space_page, page);
} else if (kMode == kMinorFaultMode) {
expected_state = PageState::kProcessing;
desired_state = PageState::kProcessed;
// the CAS needs to be with release order to ensure that stores to the
// page makes it to memory *before* other threads observe that it's
// ready to be mapped.
if (!moving_pages_status_[page_idx].compare_exchange_strong(
expected_state, desired_state, std::memory_order_release)) {
// Some mutator has requested to map the page after processing it.
DCHECK_EQ(expected_state, PageState::kProcessingAndMapping);
MapProcessedPages</*kFirstPageMapping=*/true>(
to_space_page, moving_pages_status_, page_idx, status_arr_len);
}
}
} else {
DCHECK_GT(expected_state, PageState::kProcessed);
}
}
template <int kMode>
void MarkCompact::FreeFromSpacePages(size_t cur_page_idx,
size_t* last_checked_page_idx,
uint8_t** last_freed_page) {
// Thanks to sliding compaction, bump-pointer allocations, and reverse
// compaction (see CompactMovingSpace) the logic here is pretty simple: find
// the to-space page up to which compaction has finished, all the from-space
// pages corresponding to this onwards can be freed. There are some corner
// cases to be taken care of, which are described below.
size_t idx = *last_checked_page_idx;
// Find the to-space page upto which the corresponding from-space pages can be
// freed.
for (; idx > cur_page_idx; idx--) {
PageState state = moving_pages_status_[idx - 1].load(std::memory_order_acquire);
if (state == PageState::kMutatorProcessing) {
// Some mutator is working on the page.
break;
}
DCHECK(state >= PageState::kProcessed ||
(state == PageState::kUnprocessed && idx > moving_first_objs_count_));
}
uint8_t* first;
// Calculate the first from-space page to be freed using idx. If the
// first-object of this to-space page started before the corresponding
// from-space page, which is almost always the case in the compaction portion
// of the moving-space, then it indicates that the subsequent pages that are
// yet to be compacted will need the from-space. Therefore, find the page
// (from the already compacted pages) whose first-object is different from
// ours. All the from-space pages starting from that one are safe to be
// removed. Please note that this iteration is not expected to be long in
// normal cases as objects are smaller than page size.
if (idx >= moving_first_objs_count_) {
// black-allocated portion of the moving-space
first = black_allocations_begin_ + (idx - moving_first_objs_count_) * kPageSize;
mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr();
if (first_obj != nullptr && reinterpret_cast<uint8_t*>(first_obj) < first) {
size_t idx_len = moving_first_objs_count_ + black_page_count_;
for (size_t i = idx + 1; i < idx_len; i++) {
mirror::Object* obj = first_objs_moving_space_[i].AsMirrorPtr();
// A null first-object indicates that the corresponding to-space page is
// not used yet. So we can compute its from-space page and use that.
if (obj != first_obj) {
first = obj != nullptr ?
AlignUp(reinterpret_cast<uint8_t*>(obj), kPageSize) :
(black_allocations_begin_ + (i - moving_first_objs_count_) * kPageSize);
break;
}
}
}
} else {
DCHECK_GE(pre_compact_offset_moving_space_[idx], 0u);
first = bump_pointer_space_->Begin() + pre_compact_offset_moving_space_[idx] * kAlignment;
DCHECK_LE(first, black_allocations_begin_);
mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr();
if (reinterpret_cast<uint8_t*>(first_obj) < first) {
DCHECK_LT(idx, moving_first_objs_count_);
mirror::Object* obj = first_obj;
for (size_t i = idx + 1; i < moving_first_objs_count_; i++) {
obj = first_objs_moving_space_[i].AsMirrorPtr();
if (first_obj != obj) {
DCHECK_LT(first_obj, obj);
DCHECK_LT(first, reinterpret_cast<uint8_t*>(obj));
first = reinterpret_cast<uint8_t*>(obj);
break;
}
}
if (obj == first_obj) {
first = black_allocations_begin_;
}
}
first = AlignUp(first, kPageSize);
}
DCHECK_NE(first, nullptr);
DCHECK_ALIGNED(first, kPageSize);
DCHECK_ALIGNED(*last_freed_page, kPageSize);
ssize_t size = *last_freed_page - first;
if (size >= kMinFromSpaceMadviseSize) {
int behavior = kMode == kMinorFaultMode ? MADV_REMOVE : MADV_DONTNEED;
CHECK_EQ(madvise(first + from_space_slide_diff_, size, behavior), 0)
<< "madvise of from-space failed: " << strerror(errno);
*last_freed_page = first;
}
*last_checked_page_idx = idx;
}
template <int kMode>
void MarkCompact::CompactMovingSpace(uint8_t* page) {
// For every page we have a starting object, which may have started in some
// preceding page, and an offset within that object from where we must start
// copying.
// Consult the live-words bitmap to copy all contiguously live words at a
// time. These words may constitute multiple objects. To avoid the need for
// consulting mark-bitmap to find where does the next live object start, we
// use the object-size returned by VisitRefsForCompaction.
//
// We do the compaction in reverse direction so that the pages containing
// TLAB and latest allocations are processed first.
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
size_t page_status_arr_len = moving_first_objs_count_ + black_page_count_;
size_t idx = page_status_arr_len;
uint8_t* to_space_end = bump_pointer_space_->Begin() + page_status_arr_len * kPageSize;
uint8_t* shadow_space_end = nullptr;
if (kMode == kMinorFaultMode) {
shadow_space_end = shadow_to_space_map_.Begin() + page_status_arr_len * kPageSize;
}
uint8_t* pre_compact_page = black_allocations_begin_ + (black_page_count_ * kPageSize);
DCHECK(IsAligned<kPageSize>(pre_compact_page));
// These variables are maintained by FreeFromSpacePages().
uint8_t* last_freed_page = pre_compact_page;
size_t last_checked_page_idx = idx;
// Allocated-black pages
while (idx > moving_first_objs_count_) {
idx--;
pre_compact_page -= kPageSize;
to_space_end -= kPageSize;
if (kMode == kMinorFaultMode) {
shadow_space_end -= kPageSize;
page = shadow_space_end;
} else if (kMode == kFallbackMode) {
page = to_space_end;
}
mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr();
if (first_obj != nullptr) {
DoPageCompactionWithStateChange<kMode>(
idx,
page_status_arr_len,
to_space_end,
page,
[&]() REQUIRES_SHARED(Locks::mutator_lock_) {
SlideBlackPage(first_obj, idx, pre_compact_page, page, kMode == kCopyMode);
});
// We are sliding here, so no point attempting to madvise for every
// page. Wait for enough pages to be done.
if (idx % (kMinFromSpaceMadviseSize / kPageSize) == 0) {
FreeFromSpacePages<kMode>(idx, &last_checked_page_idx, &last_freed_page);
}
}
}
DCHECK_EQ(pre_compact_page, black_allocations_begin_);
while (idx > 0) {
idx--;
to_space_end -= kPageSize;
if (kMode == kMinorFaultMode) {
shadow_space_end -= kPageSize;
page = shadow_space_end;
} else if (kMode == kFallbackMode) {
page = to_space_end;
}
mirror::Object* first_obj = first_objs_moving_space_[idx].AsMirrorPtr();
DoPageCompactionWithStateChange<kMode>(
idx, page_status_arr_len, to_space_end, page, [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
CompactPage(first_obj, pre_compact_offset_moving_space_[idx], page, kMode == kCopyMode);
});
FreeFromSpacePages<kMode>(idx, &last_checked_page_idx, &last_freed_page);
}
DCHECK_EQ(to_space_end, bump_pointer_space_->Begin());
}
void MarkCompact::UpdateNonMovingPage(mirror::Object* first, uint8_t* page) {
DCHECK_LT(reinterpret_cast<uint8_t*>(first), page + kPageSize);
// For every object found in the page, visit the previous object. This ensures
// that we can visit without checking page-end boundary.
// Call VisitRefsForCompaction with from-space read-barrier as the klass object and
// super-class loads require it.
// TODO: Set kVisitNativeRoots to false once we implement concurrent
// compaction
mirror::Object* curr_obj = first;
non_moving_space_bitmap_->VisitMarkedRange(
reinterpret_cast<uintptr_t>(first) + mirror::kObjectHeaderSize,
reinterpret_cast<uintptr_t>(page + kPageSize),
[&](mirror::Object* next_obj) {
// TODO: Once non-moving space update becomes concurrent, we'll
// require fetching the from-space address of 'curr_obj' and then call
// visitor on that.
if (reinterpret_cast<uint8_t*>(curr_obj) < page) {
RefsUpdateVisitor</*kCheckBegin*/true, /*kCheckEnd*/false>
visitor(this, curr_obj, page, page + kPageSize);
MemberOffset begin_offset(page - reinterpret_cast<uint8_t*>(curr_obj));
// Native roots shouldn't be visited as they are done when this
// object's beginning was visited in the preceding page.
curr_obj->VisitRefsForCompaction</*kFetchObjSize*/false, /*kVisitNativeRoots*/false>(
visitor, begin_offset, MemberOffset(-1));
} else {
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/false>
visitor(this, curr_obj, page, page + kPageSize);
curr_obj->VisitRefsForCompaction</*kFetchObjSize*/false>(visitor,
MemberOffset(0),
MemberOffset(-1));
}
curr_obj = next_obj;
});
MemberOffset end_offset(page + kPageSize - reinterpret_cast<uint8_t*>(curr_obj));
if (reinterpret_cast<uint8_t*>(curr_obj) < page) {
RefsUpdateVisitor</*kCheckBegin*/true, /*kCheckEnd*/true>
visitor(this, curr_obj, page, page + kPageSize);
curr_obj->VisitRefsForCompaction</*kFetchObjSize*/false, /*kVisitNativeRoots*/false>(
visitor, MemberOffset(page - reinterpret_cast<uint8_t*>(curr_obj)), end_offset);
} else {
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/true>
visitor(this, curr_obj, page, page + kPageSize);
curr_obj->VisitRefsForCompaction</*kFetchObjSize*/false>(visitor, MemberOffset(0), end_offset);
}
}
void MarkCompact::UpdateNonMovingSpace() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
// Iterating in reverse ensures that the class pointer in objects which span
// across more than one page gets updated in the end. This is necessary for
// VisitRefsForCompaction() to work correctly.
// TODO: If and when we make non-moving space update concurrent, implement a
// mechanism to remember class pointers for such objects off-heap and pass it
// to VisitRefsForCompaction().
if (non_moving_first_objs_count_ > 0) {
uint8_t* page = non_moving_space_->Begin() + non_moving_first_objs_count_ * kPageSize;
for (size_t i = non_moving_first_objs_count_ - 1; i >= 0; i--) {
mirror::Object* obj = first_objs_non_moving_space_[i].AsMirrorPtr();
page -= kPageSize;
// null means there are no objects on the page to update references.
if (obj != nullptr) {
UpdateNonMovingPage(obj, page);
}
}
}
}
void MarkCompact::UpdateMovingSpaceBlackAllocations() {
// For sliding black pages, we need the first-object, which overlaps with the
// first byte of the page. Additionally, we compute the size of first chunk of
// black objects. This will suffice for most black pages. Unlike, compaction
// pages, here we don't need to pre-compute the offset within first-obj from
// where sliding has to start. That can be calculated using the pre-compact
// address of the page. Therefore, to save space, we store the first chunk's
// size in black_alloc_pages_first_chunk_size_ array.
// For the pages which may have holes after the first chunk, which could happen
// if a new TLAB starts in the middle of the page, we mark the objects in
// the mark-bitmap. So, if the first-chunk size is smaller than kPageSize,
// then we use the mark-bitmap for the remainder of the page.
uint8_t* const begin = bump_pointer_space_->Begin();
uint8_t* black_allocs = black_allocations_begin_;
DCHECK_LE(begin, black_allocs);
size_t consumed_blocks_count = 0;
size_t first_block_size;
// Get the list of all blocks allocated in the bump-pointer space.
std::vector<size_t>* block_sizes = bump_pointer_space_->GetBlockSizes(thread_running_gc_,
&first_block_size);
DCHECK_LE(first_block_size, (size_t)(black_allocs - begin));
if (block_sizes != nullptr) {
size_t black_page_idx = moving_first_objs_count_;
uint8_t* block_end = begin + first_block_size;
uint32_t remaining_chunk_size = 0;
uint32_t first_chunk_size = 0;
mirror::Object* first_obj = nullptr;
for (size_t block_size : *block_sizes) {
block_end += block_size;
// Skip the blocks that are prior to the black allocations. These will be
// merged with the main-block later.
if (black_allocs >= block_end) {
consumed_blocks_count++;
continue;
}
mirror::Object* obj = reinterpret_cast<mirror::Object*>(black_allocs);
bool set_mark_bit = remaining_chunk_size > 0;
// We don't know how many objects are allocated in the current block. When we hit
// a null assume it's the end. This works as every block is expected to
// have objects allocated linearly using bump-pointer.
// BumpPointerSpace::Walk() also works similarly.
while (black_allocs < block_end
&& obj->GetClass<kDefaultVerifyFlags, kWithoutReadBarrier>() != nullptr) {
if (first_obj == nullptr) {
first_obj = obj;
}
// We only need the mark-bitmap in the pages wherein a new TLAB starts in
// the middle of the page.
if (set_mark_bit) {
moving_space_bitmap_->Set(obj);
}
size_t obj_size = RoundUp(obj->SizeOf(), kAlignment);
// Handle objects which cross page boundary, including objects larger
// than page size.
if (remaining_chunk_size + obj_size >= kPageSize) {
set_mark_bit = false;
first_chunk_size += kPageSize - remaining_chunk_size;
remaining_chunk_size += obj_size;
// We should not store first-object and remaining_chunk_size if there were
// unused bytes before this TLAB, in which case we must have already
// stored the values (below).
if (black_alloc_pages_first_chunk_size_[black_page_idx] == 0) {
black_alloc_pages_first_chunk_size_[black_page_idx] = first_chunk_size;
first_objs_moving_space_[black_page_idx].Assign(first_obj);
}
black_page_idx++;
remaining_chunk_size -= kPageSize;
// Consume an object larger than page size.
while (remaining_chunk_size >= kPageSize) {
black_alloc_pages_first_chunk_size_[black_page_idx] = kPageSize;
first_objs_moving_space_[black_page_idx].Assign(obj);
black_page_idx++;
remaining_chunk_size -= kPageSize;
}
first_obj = remaining_chunk_size > 0 ? obj : nullptr;
first_chunk_size = remaining_chunk_size;
} else {
DCHECK_LE(first_chunk_size, remaining_chunk_size);
first_chunk_size += obj_size;
remaining_chunk_size += obj_size;
}
black_allocs += obj_size;
obj = reinterpret_cast<mirror::Object*>(black_allocs);
}
DCHECK_LE(black_allocs, block_end);
DCHECK_LT(remaining_chunk_size, kPageSize);
// consume the unallocated portion of the block
if (black_allocs < block_end) {
// first-chunk of the current page ends here. Store it.
if (first_chunk_size > 0) {
black_alloc_pages_first_chunk_size_[black_page_idx] = first_chunk_size;
first_objs_moving_space_[black_page_idx].Assign(first_obj);
first_chunk_size = 0;
}
first_obj = nullptr;
size_t page_remaining = kPageSize - remaining_chunk_size;
size_t block_remaining = block_end - black_allocs;
if (page_remaining <= block_remaining) {
block_remaining -= page_remaining;
// current page and the subsequent empty pages in the block
black_page_idx += 1 + block_remaining / kPageSize;
remaining_chunk_size = block_remaining % kPageSize;
} else {
remaining_chunk_size += block_remaining;
}
black_allocs = block_end;
}
}
black_page_count_ = black_page_idx - moving_first_objs_count_;
delete block_sizes;
}
// Update bump-pointer space by consuming all the pre-black blocks into the
// main one.
bump_pointer_space_->SetBlockSizes(thread_running_gc_,
post_compact_end_ - begin,
consumed_blocks_count);
}
void MarkCompact::UpdateNonMovingSpaceBlackAllocations() {
accounting::ObjectStack* stack = heap_->GetAllocationStack();
const StackReference<mirror::Object>* limit = stack->End();
uint8_t* const space_begin = non_moving_space_->Begin();
for (StackReference<mirror::Object>* it = stack->Begin(); it != limit; ++it) {
mirror::Object* obj = it->AsMirrorPtr();
if (obj != nullptr && non_moving_space_bitmap_->HasAddress(obj)) {
non_moving_space_bitmap_->Set(obj);
// Clear so that we don't try to set the bit again in the next GC-cycle.
it->Clear();
size_t idx = (reinterpret_cast<uint8_t*>(obj) - space_begin) / kPageSize;
uint8_t* page_begin = AlignDown(reinterpret_cast<uint8_t*>(obj), kPageSize);
mirror::Object* first_obj = first_objs_non_moving_space_[idx].AsMirrorPtr();
if (first_obj == nullptr
|| (obj < first_obj && reinterpret_cast<uint8_t*>(first_obj) > page_begin)) {
first_objs_non_moving_space_[idx].Assign(obj);
}
mirror::Object* next_page_first_obj = first_objs_non_moving_space_[++idx].AsMirrorPtr();
uint8_t* next_page_begin = page_begin + kPageSize;
if (next_page_first_obj == nullptr
|| reinterpret_cast<uint8_t*>(next_page_first_obj) > next_page_begin) {
size_t obj_size = RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kAlignment);
uint8_t* obj_end = reinterpret_cast<uint8_t*>(obj) + obj_size;
while (next_page_begin < obj_end) {
first_objs_non_moving_space_[idx++].Assign(obj);
next_page_begin += kPageSize;
}
}
// update first_objs count in case we went past non_moving_first_objs_count_
non_moving_first_objs_count_ = std::max(non_moving_first_objs_count_, idx);
}
}
}
class MarkCompact::ImmuneSpaceUpdateObjVisitor {
public:
ImmuneSpaceUpdateObjVisitor(MarkCompact* collector, bool visit_native_roots)
: collector_(collector), visit_native_roots_(visit_native_roots) {}
ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES(Locks::mutator_lock_) {
RefsUpdateVisitor</*kCheckBegin*/false, /*kCheckEnd*/false> visitor(collector_,
obj,
/*begin_*/nullptr,
/*end_*/nullptr);
if (visit_native_roots_) {
obj->VisitRefsForCompaction</*kFetchObjSize*/ false, /*kVisitNativeRoots*/ true>(
visitor, MemberOffset(0), MemberOffset(-1));
} else {
obj->VisitRefsForCompaction</*kFetchObjSize*/ false>(
visitor, MemberOffset(0), MemberOffset(-1));
}
}
static void Callback(mirror::Object* obj, void* arg) REQUIRES(Locks::mutator_lock_) {
reinterpret_cast<ImmuneSpaceUpdateObjVisitor*>(arg)->operator()(obj);
}
private:
MarkCompact* const collector_;
const bool visit_native_roots_;
};
class MarkCompact::ClassLoaderRootsUpdater : public ClassLoaderVisitor {
public:
explicit ClassLoaderRootsUpdater(MarkCompact* collector) : collector_(collector) {}
void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) {
ClassTable* const class_table = class_loader->GetClassTable();
if (class_table != nullptr) {
class_table->VisitRoots(*this);
}
}
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES(Locks::heap_bitmap_lock_) REQUIRES_SHARED(Locks::mutator_lock_) {
collector_->VisitRoots(&root, 1, RootInfo(RootType::kRootVMInternal));
}
private:
MarkCompact* collector_;
};
class MarkCompact::LinearAllocPageUpdater {
public:
explicit LinearAllocPageUpdater(MarkCompact* collector) : collector_(collector) {}
void operator()(uint8_t* page_begin, uint8_t* first_obj) const ALWAYS_INLINE
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_ALIGNED(page_begin, kPageSize);
uint8_t* page_end = page_begin + kPageSize;
uint32_t obj_size;
for (uint8_t* byte = first_obj; byte < page_end;) {
TrackingHeader* header = reinterpret_cast<TrackingHeader*>(byte);
obj_size = header->GetSize();
if (UNLIKELY(obj_size == 0)) {
// No more objects in this page to visit.
break;
}
uint8_t* obj = byte + sizeof(TrackingHeader);
uint8_t* obj_end = byte + obj_size;
if (header->Is16Aligned()) {
obj = AlignUp(obj, 16);
}
uint8_t* begin_boundary = std::max(obj, page_begin);
uint8_t* end_boundary = std::min(obj_end, page_end);
if (begin_boundary < end_boundary) {
VisitObject(header->GetKind(), obj, begin_boundary, end_boundary);
}
if (ArenaAllocator::IsRunningOnMemoryTool()) {
obj_size += ArenaAllocator::kMemoryToolRedZoneBytes;
}
byte += RoundUp(obj_size, LinearAlloc::kAlignment);
}
}
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* old_ref = root->AsMirrorPtr();
DCHECK_NE(old_ref, nullptr);
if (collector_->live_words_bitmap_->HasAddress(old_ref)) {
mirror::Object* new_ref = old_ref;
if (reinterpret_cast<uint8_t*>(old_ref) >= collector_->black_allocations_begin_) {
new_ref = collector_->PostCompactBlackObjAddr(old_ref);
} else if (collector_->live_words_bitmap_->Test(old_ref)) {
DCHECK(collector_->moving_space_bitmap_->Test(old_ref)) << old_ref;
new_ref = collector_->PostCompactOldObjAddr(old_ref);
}
if (old_ref != new_ref) {
root->Assign(new_ref);
}
}
}
private:
void VisitObject(LinearAllocKind kind,
void* obj,
uint8_t* start_boundary,
uint8_t* end_boundary) const REQUIRES_SHARED(Locks::mutator_lock_) {
switch (kind) {
case LinearAllocKind::kNoGCRoots:
break;
case LinearAllocKind::kGCRootArray:
{
GcRoot<mirror::Object>* root = reinterpret_cast<GcRoot<mirror::Object>*>(start_boundary);
GcRoot<mirror::Object>* last = reinterpret_cast<GcRoot<mirror::Object>*>(end_boundary);
for (; root < last; root++) {
VisitRootIfNonNull(root->AddressWithoutBarrier());
}
}
break;
case LinearAllocKind::kArtMethodArray:
{
LengthPrefixedArray<ArtMethod>* array = static_cast<LengthPrefixedArray<ArtMethod>*>(obj);
// Old methods are clobbered in debug builds. Check size to confirm if the array
// has any GC roots to visit. See ClassLinker::LinkMethodsHelper::ClobberOldMethods()
if (array->size() > 0) {
if (collector_->pointer_size_ == PointerSize::k64) {
ArtMethod::VisitArrayRoots<PointerSize::k64>(
*this, start_boundary, end_boundary, array);
} else {
DCHECK_EQ(collector_->pointer_size_, PointerSize::k32);
ArtMethod::VisitArrayRoots<PointerSize::k32>(
*this, start_boundary, end_boundary, array);
}
}
}
break;
case LinearAllocKind::kArtMethod:
ArtMethod::VisitRoots(*this, start_boundary, end_boundary, static_cast<ArtMethod*>(obj));
break;
case LinearAllocKind::kArtFieldArray:
ArtField::VisitArrayRoots(*this,
start_boundary,
end_boundary,
static_cast<LengthPrefixedArray<ArtField>*>(obj));
break;
case LinearAllocKind::kDexCacheArray:
{
mirror::DexCachePair<mirror::Object>* first =
reinterpret_cast<mirror::DexCachePair<mirror::Object>*>(start_boundary);
mirror::DexCachePair<mirror::Object>* last =
reinterpret_cast<mirror::DexCachePair<mirror::Object>*>(end_boundary);
mirror::DexCache::VisitDexCachePairRoots(*this, first, last);
}
}
}
MarkCompact* const collector_;
};
void MarkCompact::PreCompactionPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
Runtime* runtime = Runtime::Current();
non_moving_space_bitmap_ = non_moving_space_->GetLiveBitmap();
if (kIsDebugBuild) {
DCHECK_EQ(thread_running_gc_, Thread::Current());
stack_low_addr_ = thread_running_gc_->GetStackEnd();
stack_high_addr_ =
reinterpret_cast<char*>(stack_low_addr_) + thread_running_gc_->GetStackSize();
}
compacting_ = true;
{
TimingLogger::ScopedTiming t2("(Paused)UpdateCompactionDataStructures", GetTimings());
ReaderMutexLock rmu(thread_running_gc_, *Locks::heap_bitmap_lock_);
// Refresh data-structures to catch-up on allocations that may have
// happened since marking-phase pause.
// There could be several TLABs that got allocated since marking pause. We
// don't want to compact them and instead update the TLAB info in TLS and
// let mutators continue to use the TLABs.
// We need to set all the bits in live-words bitmap corresponding to allocated
// objects. Also, we need to find the objects that are overlapping with
// page-begin boundaries. Unlike objects allocated before
// black_allocations_begin_, which can be identified via mark-bitmap, we can get
// this info only via walking the space past black_allocations_begin_, which
// involves fetching object size.
// TODO: We can reduce the time spent on this in a pause by performing one
// round of this concurrently prior to the pause.
UpdateMovingSpaceBlackAllocations();
// TODO: If we want to avoid this allocation in a pause then we will have to
// allocate an array for the entire moving-space size, which can be made
// part of info_map_.
moving_pages_status_ = new Atomic<PageState>[moving_first_objs_count_ + black_page_count_];
if (kIsDebugBuild) {
size_t len = moving_first_objs_count_ + black_page_count_;
for (size_t i = 0; i < len; i++) {
CHECK_EQ(moving_pages_status_[i].load(std::memory_order_relaxed),
PageState::kUnprocessed);
}
}
// Iterate over the allocation_stack_, for every object in the non-moving
// space:
// 1. Mark the object in live bitmap
// 2. Erase the object from allocation stack
// 3. In the corresponding page, if the first-object vector needs updating
// then do so.
UpdateNonMovingSpaceBlackAllocations();
heap_->GetReferenceProcessor()->UpdateRoots(this);
}
{
// Thread roots must be updated first (before space mremap and native root
// updation) to ensure that pre-update content is accessible.
TimingLogger::ScopedTiming t2("(Paused)UpdateThreadRoots", GetTimings());
MutexLock mu1(thread_running_gc_, *Locks::runtime_shutdown_lock_);
MutexLock mu2(thread_running_gc_, *Locks::thread_list_lock_);
std::list<Thread*> thread_list = runtime->GetThreadList()->GetList();
for (Thread* thread : thread_list) {
thread->VisitRoots(this, kVisitRootFlagAllRoots);
// Interpreter cache is thread-local so it needs to be swept either in a
// checkpoint, or a stop-the-world pause.
thread->SweepInterpreterCache(this);
thread->AdjustTlab(black_objs_slide_diff_);
}
}
{
TimingLogger::ScopedTiming t2("(Paused)UpdateClassLoaderRoots", GetTimings());
ReaderMutexLock rmu(thread_running_gc_, *Locks::classlinker_classes_lock_);
{
ClassLoaderRootsUpdater updater(this);
runtime->GetClassLinker()->VisitClassLoaders(&updater);
}
}
bool has_zygote_space = heap_->HasZygoteSpace();
GcVisitedArenaPool* arena_pool =
static_cast<GcVisitedArenaPool*>(runtime->GetLinearAllocArenaPool());
if (uffd_ == kFallbackMode || (!has_zygote_space && runtime->IsZygote())) {
// Besides fallback-mode, visit linear-alloc space in the pause for zygote
// processes prior to first fork (that's when zygote space gets created).
if (kIsDebugBuild && IsValidFd(uffd_)) {
// All arenas allocated so far are expected to be pre-zygote fork.
arena_pool->ForEachAllocatedArena(
[](const TrackedArena& arena)
REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(arena.IsPreZygoteForkArena()); });
}
LinearAllocPageUpdater updater(this);
arena_pool->VisitRoots(updater);
} else {
arena_pool->ForEachAllocatedArena(
[this](const TrackedArena& arena) REQUIRES_SHARED(Locks::mutator_lock_) {
// The pre-zygote fork arenas are not visited concurrently in the
// zygote children processes. The native roots of the dirty objects
// are visited during immune space visit below.
if (!arena.IsPreZygoteForkArena()) {
uint8_t* last_byte = arena.GetLastUsedByte();
CHECK(linear_alloc_arenas_.insert({&arena, last_byte}).second);
}
});
}
SweepSystemWeaks(thread_running_gc_, runtime, /*paused*/ true);
{
TimingLogger::ScopedTiming t2("(Paused)UpdateConcurrentRoots", GetTimings());
runtime->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
}
{
// TODO: don't visit the transaction roots if it's not active.
TimingLogger::ScopedTiming t2("(Paused)UpdateNonThreadRoots", GetTimings());
runtime->VisitNonThreadRoots(this);
}
{
// TODO: Immune space updation has to happen either before or after
// remapping pre-compact pages to from-space. And depending on when it's
// done, we have to invoke VisitRefsForCompaction() with or without
// read-barrier.
TimingLogger::ScopedTiming t2("(Paused)UpdateImmuneSpaces", GetTimings());
accounting::CardTable* const card_table = heap_->GetCardTable();
for (auto& space : immune_spaces_.GetSpaces()) {
DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
// Having zygote-space indicates that the first zygote fork has taken
// place and that the classes/dex-caches in immune-spaces may have allocations
// (ArtMethod/ArtField arrays, dex-cache array, etc.) in the
// non-userfaultfd visited private-anonymous mappings. Visit them here.
ImmuneSpaceUpdateObjVisitor visitor(this, /*visit_native_roots=*/has_zygote_space);
if (table != nullptr) {
table->ProcessCards();
table->VisitObjects(ImmuneSpaceUpdateObjVisitor::Callback, &visitor);
} else {
WriterMutexLock wmu(thread_running_gc_, *Locks::heap_bitmap_lock_);
card_table->Scan<false>(
live_bitmap,
space->Begin(),
space->Limit(),
visitor,
accounting::CardTable::kCardDirty - 1);
}
}
}
KernelPreparation();
UpdateNonMovingSpace();
// fallback mode
if (uffd_ == kFallbackMode) {
CompactMovingSpace<kFallbackMode>(nullptr);
int32_t freed_bytes = black_objs_slide_diff_;
bump_pointer_space_->RecordFree(freed_objects_, freed_bytes);
RecordFree(ObjectBytePair(freed_objects_, freed_bytes));
} else {
DCHECK_EQ(compaction_in_progress_count_.load(std::memory_order_relaxed), 0u);
// We must start worker threads before resuming mutators to avoid deadlocks.
heap_->GetThreadPool()->StartWorkers(thread_running_gc_);
}
stack_low_addr_ = nullptr;
}
void MarkCompact::KernelPrepareRange(uint8_t* to_addr,
uint8_t* from_addr,
size_t map_size,
size_t uffd_size,
int fd,
int uffd_mode,
uint8_t* shadow_addr) {
// TODO: Create mapping's at 2MB aligned addresses to benefit from optimized
// mremap.
int mremap_flags = MREMAP_MAYMOVE | MREMAP_FIXED;
if (gHaveMremapDontunmap) {
mremap_flags |= MREMAP_DONTUNMAP;
}
void* ret = mremap(to_addr, map_size, map_size, mremap_flags, from_addr);
CHECK_EQ(ret, static_cast<void*>(from_addr))
<< "mremap to move pages failed: " << strerror(errno)
<< ". space-addr=" << reinterpret_cast<void*>(to_addr) << " size=" << PrettySize(map_size);
if (shadow_addr != nullptr) {
DCHECK_EQ(fd, kFdUnused);
DCHECK(gHaveMremapDontunmap);
ret = mremap(shadow_addr, map_size, map_size, mremap_flags, to_addr);
CHECK_EQ(ret, static_cast<void*>(to_addr))
<< "mremap from shadow to to-space map failed: " << strerror(errno);
} else if (!gHaveMremapDontunmap || fd > kFdUnused) {
// Without MREMAP_DONTUNMAP the source mapping is unmapped by mremap. So mmap
// the moving space again.
int mmap_flags = MAP_FIXED;
if (fd == kFdUnused) {
// Use MAP_FIXED_NOREPLACE so that if someone else reserves 'to_addr'
// mapping in meantime, which can happen when MREMAP_DONTUNMAP isn't
// available, to avoid unmapping someone else' mapping and then causing
// crashes elsewhere.
mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE;
// On some platforms MAP_ANONYMOUS expects fd to be -1.
fd = -1;
} else if (IsValidFd(fd)) {
mmap_flags |= MAP_SHARED;
} else {
DCHECK_EQ(fd, kFdSharedAnon);
mmap_flags |= MAP_SHARED | MAP_ANONYMOUS;
}
ret = mmap(to_addr, map_size, PROT_READ | PROT_WRITE, mmap_flags, fd, 0);
CHECK_EQ(ret, static_cast<void*>(to_addr))
<< "mmap for moving space failed: " << strerror(errno);
}
if (IsValidFd(uffd_)) {
// Userfaultfd registration
struct uffdio_register uffd_register;
uffd_register.range.start = reinterpret_cast<uintptr_t>(to_addr);
uffd_register.range.len = uffd_size;
uffd_register.mode = UFFDIO_REGISTER_MODE_MISSING;
if (uffd_mode == kMinorFaultMode) {
uffd_register.mode |= UFFDIO_REGISTER_MODE_MINOR;
}
CHECK_EQ(ioctl(uffd_, UFFDIO_REGISTER, &uffd_register), 0)
<< "ioctl_userfaultfd: register failed: " << strerror(errno)
<< ". start:" << static_cast<void*>(to_addr) << " len:" << PrettySize(uffd_size);
}
}
void MarkCompact::KernelPreparation() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
uint8_t* moving_space_begin = bump_pointer_space_->Begin();
size_t moving_space_size = bump_pointer_space_->Capacity();
int mode = kCopyMode;
size_t moving_space_register_sz;
if (minor_fault_initialized_) {
moving_space_register_sz = (moving_first_objs_count_ + black_page_count_) * kPageSize;
if (shadow_to_space_map_.IsValid()) {
size_t shadow_size = shadow_to_space_map_.Size();
void* addr = shadow_to_space_map_.Begin();
if (shadow_size < moving_space_register_sz) {
addr = mremap(addr,
shadow_size,
moving_space_register_sz,
// Don't allow moving with obj-ptr poisoning as the
// mapping needs to be in <4GB address space.
kObjPtrPoisoning ? 0 : MREMAP_MAYMOVE,
/*new_address=*/nullptr);
if (addr != MAP_FAILED) {
// Succeeded in expanding the mapping. Update the MemMap entry for shadow map.
MemMap temp = MemMap::MapPlaceholder(
"moving-space-shadow", static_cast<uint8_t*>(addr), moving_space_register_sz);
std::swap(shadow_to_space_map_, temp);
}
}
if (addr != MAP_FAILED) {
mode = kMinorFaultMode;
} else {
// We are not going to use shadow map. So protect it to catch any
// potential bugs.
DCHECK_EQ(mprotect(shadow_to_space_map_.Begin(), shadow_to_space_map_.Size(), PROT_NONE), 0)
<< "mprotect failed: " << strerror(errno);
}
}
} else {
moving_space_register_sz = moving_space_size;
}
bool map_shared =
minor_fault_initialized_ || (!Runtime::Current()->IsZygote() && uffd_minor_fault_supported_);
uint8_t* shadow_addr = nullptr;
if (moving_to_space_fd_ == kFdUnused && map_shared) {
DCHECK(gHaveMremapDontunmap);
DCHECK(shadow_to_space_map_.IsValid());
DCHECK_EQ(shadow_to_space_map_.Size(), moving_space_size);
shadow_addr = shadow_to_space_map_.Begin();
}
KernelPrepareRange(moving_space_begin,
from_space_begin_,
moving_space_size,
moving_space_register_sz,
moving_to_space_fd_,
mode,
shadow_addr);
if (IsValidFd(uffd_)) {
for (auto& data : linear_alloc_spaces_data_) {
KernelPrepareRange(data.begin_,
data.shadow_.Begin(),
data.shadow_.Size(),
data.shadow_.Size(),
map_shared && !data.already_shared_ ? kFdSharedAnon : kFdUnused,
minor_fault_initialized_ ? kMinorFaultMode : kCopyMode);
if (map_shared) {
data.already_shared_ = true;
}
}
}
}
template <int kMode>
void MarkCompact::ConcurrentCompaction(uint8_t* buf) {
DCHECK_NE(kMode, kFallbackMode);
DCHECK(kMode != kCopyMode || buf != nullptr);
auto zeropage_ioctl = [this](void* addr, bool tolerate_eexist, bool tolerate_enoent) {
struct uffdio_zeropage uffd_zeropage;
DCHECK(IsAligned<kPageSize>(addr));
uffd_zeropage.range.start = reinterpret_cast<uintptr_t>(addr);
uffd_zeropage.range.len = kPageSize;
uffd_zeropage.mode = 0;
int ret = ioctl(uffd_, UFFDIO_ZEROPAGE, &uffd_zeropage);
if (LIKELY(ret == 0)) {
DCHECK_EQ(uffd_zeropage.zeropage, static_cast<ssize_t>(kPageSize));
} else {
CHECK((tolerate_enoent && errno == ENOENT) || (tolerate_eexist && errno == EEXIST))
<< "ioctl_userfaultfd: zeropage failed: " << strerror(errno) << ". addr:" << addr;
}
};
auto copy_ioctl = [this] (void* fault_page, void* src) {
struct uffdio_copy uffd_copy;
uffd_copy.src = reinterpret_cast<uintptr_t>(src);
uffd_copy.dst = reinterpret_cast<uintptr_t>(fault_page);
uffd_copy.len = kPageSize;
uffd_copy.mode = 0;
int ret = ioctl(uffd_, UFFDIO_COPY, &uffd_copy);
CHECK_EQ(ret, 0) << "ioctl_userfaultfd: copy failed: " << strerror(errno)
<< ". src:" << src << " fault_page:" << fault_page;
DCHECK_EQ(uffd_copy.copy, static_cast<ssize_t>(kPageSize));
};
size_t nr_moving_space_used_pages = moving_first_objs_count_ + black_page_count_;
while (true) {
struct uffd_msg msg;
ssize_t nread = read(uffd_, &msg, sizeof(msg));
CHECK_GT(nread, 0);
CHECK_EQ(msg.event, UFFD_EVENT_PAGEFAULT);
DCHECK_EQ(nread, static_cast<ssize_t>(sizeof(msg)));
uint8_t* fault_addr = reinterpret_cast<uint8_t*>(msg.arg.pagefault.address);
if (fault_addr == conc_compaction_termination_page_) {
// The counter doesn't need to be updated atomically as only one thread
// would wake up against the gc-thread's load to this fault_addr. In fact,
// the other threads would wake up serially because every exiting thread
// will wake up gc-thread, which would retry load but again would find the
// page missing. Also, the value will be flushed to caches due to the ioctl
// syscall below.
uint8_t ret = thread_pool_counter_--;
// Only the last thread should map the zeropage so that the gc-thread can
// proceed.
if (ret == 1) {
zeropage_ioctl(fault_addr, /*tolerate_eexist=*/false, /*tolerate_enoent=*/false);
} else {
struct uffdio_range uffd_range;
uffd_range.start = msg.arg.pagefault.address;
uffd_range.len = kPageSize;
CHECK_EQ(ioctl(uffd_, UFFDIO_WAKE, &uffd_range), 0)
<< "ioctl_userfaultfd: wake failed for concurrent-compaction termination page: "
<< strerror(errno);
}
break;
}
uint8_t* fault_page = AlignDown(fault_addr, kPageSize);
if (bump_pointer_space_->HasAddress(reinterpret_cast<mirror::Object*>(fault_addr))) {
ConcurrentlyProcessMovingPage<kMode>(
zeropage_ioctl, copy_ioctl, fault_page, buf, nr_moving_space_used_pages);
} else if (minor_fault_initialized_) {
ConcurrentlyProcessLinearAllocPage<kMinorFaultMode>(
zeropage_ioctl,
copy_ioctl,
fault_page,
(msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_MINOR) != 0);
} else {
ConcurrentlyProcessLinearAllocPage<kCopyMode>(
zeropage_ioctl,
copy_ioctl,
fault_page,
(msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_MINOR) != 0);
}
}
}
template <int kMode, typename ZeropageType, typename CopyType>
void MarkCompact::ConcurrentlyProcessMovingPage(ZeropageType& zeropage_ioctl,
CopyType& copy_ioctl,
uint8_t* fault_page,
uint8_t* buf,
size_t nr_moving_space_used_pages) {
class ScopedInProgressCount {
public:
explicit ScopedInProgressCount(MarkCompact* collector) : collector_(collector) {
collector_->compaction_in_progress_count_.fetch_add(1, std::memory_order_relaxed);
}
~ScopedInProgressCount() {
collector_->compaction_in_progress_count_.fetch_add(-1, std::memory_order_relaxed);
}
private:
MarkCompact* collector_;
};
uint8_t* unused_space_begin =
bump_pointer_space_->Begin() + nr_moving_space_used_pages * kPageSize;
DCHECK(IsAligned<kPageSize>(unused_space_begin));
DCHECK(kMode == kCopyMode || fault_page < unused_space_begin);
if (kMode == kCopyMode && fault_page >= unused_space_begin) {
// There is a race which allows more than one thread to install a
// zero-page. But we can tolerate that. So absorb the EEXIST returned by
// the ioctl and move on.
zeropage_ioctl(fault_page, /*tolerate_eexist=*/true, /*tolerate_enoent=*/true);
return;
}
size_t page_idx = (fault_page - bump_pointer_space_->Begin()) / kPageSize;
mirror::Object* first_obj = first_objs_moving_space_[page_idx].AsMirrorPtr();
if (first_obj == nullptr) {
// We should never have a case where two workers are trying to install a
// zeropage in this range as we synchronize using moving_pages_status_[page_idx].
PageState expected_state = PageState::kUnprocessed;
if (moving_pages_status_[page_idx].compare_exchange_strong(
expected_state, PageState::kProcessedAndMapping, std::memory_order_relaxed)) {
// Note: ioctl acts as an acquire fence.
zeropage_ioctl(fault_page, /*tolerate_eexist=*/false, /*tolerate_enoent=*/true);
} else {
DCHECK_EQ(expected_state, PageState::kProcessedAndMapping);
}
return;
}
PageState state = moving_pages_status_[page_idx].load(std::memory_order_relaxed);
while (true) {
switch (state) {
case PageState::kUnprocessed: {
// The increment to the in-progress counter must be done before updating
// the page's state. Otherwise, we will end up leaving a window wherein
// the GC-thread could observe that no worker is working on compaction
// and could end up unregistering the moving space from userfaultfd.
ScopedInProgressCount in_progress(this);
// Acquire order to ensure we don't start writing to shadow map, which is
// shared, before the CAS is successful. Release order to ensure that the
// increment to moving_compactions_in_progress above is not re-ordered
// after the CAS.
if (moving_pages_status_[page_idx].compare_exchange_strong(
state, PageState::kMutatorProcessing, std::memory_order_acquire)) {
if (kMode == kMinorFaultMode) {
DCHECK_EQ(buf, nullptr);
buf = shadow_to_space_map_.Begin() + page_idx * kPageSize;
}
if (fault_page < post_compact_end_) {
// The page has to be compacted.
CompactPage(
first_obj, pre_compact_offset_moving_space_[page_idx], buf, kMode == kCopyMode);
} else {
DCHECK_NE(first_obj, nullptr);
DCHECK_GT(pre_compact_offset_moving_space_[page_idx], 0u);
uint8_t* pre_compact_page = black_allocations_begin_ + (fault_page - post_compact_end_);
DCHECK(IsAligned<kPageSize>(pre_compact_page));
SlideBlackPage(first_obj, page_idx, pre_compact_page, buf, kMode == kCopyMode);
}
// Nobody else would simultaneously modify this page's state so an
// atomic store is sufficient. Use 'release' order to guarantee that
// loads/stores to the page are finished before this store.
moving_pages_status_[page_idx].store(PageState::kProcessedAndMapping,
std::memory_order_release);
if (kMode == kCopyMode) {
copy_ioctl(fault_page, buf);
return;
} else {
break;
}
}
}
continue;
case PageState::kProcessing:
DCHECK_EQ(kMode, kMinorFaultMode);
if (moving_pages_status_[page_idx].compare_exchange_strong(
state, PageState::kProcessingAndMapping, std::memory_order_relaxed)) {
// Somebody else took or will take care of finishing the compaction and
// then mapping the page.
return;
}
continue;
case PageState::kProcessed:
// The page is processed but not mapped. We should map it.
break;
default:
// Somebody else took care of the page.
return;
}
break;
}
DCHECK_EQ(kMode, kMinorFaultMode);
if (state == PageState::kUnprocessed) {
MapProcessedPages</*kFirstPageMapping=*/true>(
fault_page, moving_pages_status_, page_idx, nr_moving_space_used_pages);
} else {
DCHECK_EQ(state, PageState::kProcessed);
MapProcessedPages</*kFirstPageMapping=*/false>(
fault_page, moving_pages_status_, page_idx, nr_moving_space_used_pages);
}
}
template <int kMode, typename ZeropageType, typename CopyType>
void MarkCompact::ConcurrentlyProcessLinearAllocPage(ZeropageType& zeropage_ioctl,
CopyType& copy_ioctl,
uint8_t* fault_page,
bool is_minor_fault) {
DCHECK(!is_minor_fault || kMode == kMinorFaultMode);
auto arena_iter = linear_alloc_arenas_.end();
{
TrackedArena temp_arena(fault_page);
arena_iter = linear_alloc_arenas_.upper_bound(&temp_arena);
arena_iter = arena_iter != linear_alloc_arenas_.begin() ? std::prev(arena_iter)
: linear_alloc_arenas_.end();
}
if (arena_iter == linear_alloc_arenas_.end() || arena_iter->second <= fault_page) {
// Fault page isn't in any of the arenas that existed before we started
// compaction. So map zeropage and return.
zeropage_ioctl(fault_page, /*tolerate_eexist=*/true, /*tolerate_enoent=*/false);
} else {
// fault_page should always belong to some arena.
DCHECK(arena_iter != linear_alloc_arenas_.end())
<< "fault_page:" << static_cast<void*>(fault_page) << "is_minor_fault:" << is_minor_fault;
// Find the linear-alloc space containing fault-page
LinearAllocSpaceData* space_data = nullptr;
for (auto& data : linear_alloc_spaces_data_) {
if (data.begin_ <= fault_page && fault_page < data.end_) {
space_data = &data;
break;
}
}
DCHECK_NE(space_data, nullptr);
ptrdiff_t diff = space_data->shadow_.Begin() - space_data->begin_;
size_t page_idx = (fault_page - space_data->begin_) / kPageSize;
Atomic<PageState>* state_arr =
reinterpret_cast<Atomic<PageState>*>(space_data->page_status_map_.Begin());
PageState state = state_arr[page_idx].load(std::memory_order_relaxed);
while (true) {
switch (state) {
case PageState::kUnprocessed:
if (state_arr[page_idx].compare_exchange_strong(
state, PageState::kProcessingAndMapping, std::memory_order_acquire)) {
if (kMode == kCopyMode || is_minor_fault) {
uint8_t* first_obj = arena_iter->first->GetFirstObject(fault_page);
DCHECK_NE(first_obj, nullptr);
LinearAllocPageUpdater updater(this);
updater(fault_page + diff, first_obj + diff);
if (kMode == kCopyMode) {
copy_ioctl(fault_page, fault_page + diff);
return;
}
} else {
// Don't touch the page in this case (there is no reason to do so
// anyways) as it would mean reading from first_obj, which could be on
// another missing page and hence may cause this thread to block, leading
// to deadlocks.
// Force read the page if it is missing so that a zeropage gets mapped on
// the shadow map and then CONTINUE ioctl will map it on linear-alloc.
ForceRead(fault_page + diff);
}
MapProcessedPages</*kFirstPageMapping=*/true>(
fault_page, state_arr, page_idx, space_data->page_status_map_.Size());
return;
}
continue;
case PageState::kProcessing:
DCHECK_EQ(kMode, kMinorFaultMode);
if (state_arr[page_idx].compare_exchange_strong(
state, PageState::kProcessingAndMapping, std::memory_order_relaxed)) {
// Somebody else took or will take care of finishing the updates and
// then mapping the page.
return;
}
continue;
case PageState::kProcessed:
// The page is processed but not mapped. We should map it.
break;
default:
// Somebody else took care of the page.
return;
}
break;
}
DCHECK_EQ(kMode, kMinorFaultMode);
DCHECK_EQ(state, PageState::kProcessed);
if (!is_minor_fault) {
// Force read the page if it is missing so that a zeropage gets mapped on
// the shadow map and then CONTINUE ioctl will map it on linear-alloc.
ForceRead(fault_page + diff);
}
MapProcessedPages</*kFirstPageMapping=*/false>(
fault_page, state_arr, page_idx, space_data->page_status_map_.Size());
}
}
void MarkCompact::ProcessLinearAlloc() {
for (auto& pair : linear_alloc_arenas_) {
const TrackedArena* arena = pair.first;
uint8_t* last_byte = pair.second;
DCHECK_ALIGNED(last_byte, kPageSize);
bool others_processing = false;
// Find the linear-alloc space containing the arena
LinearAllocSpaceData* space_data = nullptr;
for (auto& data : linear_alloc_spaces_data_) {
if (data.begin_ <= arena->Begin() && arena->Begin() < data.end_) {
space_data = &data;
break;
}
}
DCHECK_NE(space_data, nullptr);
ptrdiff_t diff = space_data->shadow_.Begin() - space_data->begin_;
auto visitor = [space_data, last_byte, diff, this, &others_processing](
uint8_t* page_begin,
uint8_t* first_obj) REQUIRES_SHARED(Locks::mutator_lock_) {
// No need to process pages past last_byte as they already have updated
// gc-roots, if any.
if (page_begin >= last_byte) {
return;
}
LinearAllocPageUpdater updater(this);
size_t page_idx = (page_begin - space_data->begin_) / kPageSize;
DCHECK_LT(page_idx, space_data->page_status_map_.Size());
Atomic<PageState>* state_arr =
reinterpret_cast<Atomic<PageState>*>(space_data->page_status_map_.Begin());
PageState expected_state = PageState::kUnprocessed;
PageState desired_state =
minor_fault_initialized_ ? PageState::kProcessing : PageState::kProcessingAndMapping;
// Acquire order to ensure that we don't start accessing the shadow page,
// which is shared with other threads, prior to CAS. Also, for same
// reason, we used 'release' order for changing the state to 'processed'.
if (state_arr[page_idx].compare_exchange_strong(
expected_state, desired_state, std::memory_order_acquire)) {
updater(page_begin + diff, first_obj + diff);
expected_state = PageState::kProcessing;
if (!minor_fault_initialized_) {
struct uffdio_copy uffd_copy;
uffd_copy.src = reinterpret_cast<uintptr_t>(page_begin + diff);
uffd_copy.dst = reinterpret_cast<uintptr_t>(page_begin);
uffd_copy.len = kPageSize;
uffd_copy.mode = 0;
CHECK_EQ(ioctl(uffd_, UFFDIO_COPY, &uffd_copy), 0)
<< "ioctl_userfaultfd: linear-alloc copy failed:" << strerror(errno)
<< ". dst:" << static_cast<void*>(page_begin);
DCHECK_EQ(uffd_copy.copy, static_cast<ssize_t>(kPageSize));
} else if (!state_arr[page_idx].compare_exchange_strong(
expected_state, PageState::kProcessed, std::memory_order_release)) {
DCHECK_EQ(expected_state, PageState::kProcessingAndMapping);
// Force read in case the page was missing and updater didn't touch it
// as there was nothing to do. This will ensure that a zeropage is
// faulted on the shadow map.
ForceRead(page_begin + diff);
MapProcessedPages</*kFirstPageMapping=*/true>(
page_begin, state_arr, page_idx, space_data->page_status_map_.Size());
}
} else {
others_processing = true;
}
};
arena->VisitRoots(visitor);
// If we are not in minor-fault mode and if no other thread was found to be
// processing any pages in this arena, then we can madvise the shadow size.
// Otherwise, we will double the memory use for linear-alloc.
if (!minor_fault_initialized_ && !others_processing) {
ZeroAndReleasePages(arena->Begin() + diff, arena->Size());
}
}
}
void MarkCompact::UnregisterUffd(uint8_t* start, size_t len) {
struct uffdio_range range;
range.start = reinterpret_cast<uintptr_t>(start);
range.len = len;
CHECK_EQ(ioctl(uffd_, UFFDIO_UNREGISTER, &range), 0)
<< "ioctl_userfaultfd: unregister failed: " << strerror(errno)
<< ". addr:" << static_cast<void*>(start) << " len:" << PrettySize(len);
// Due to an oversight in the kernel implementation of 'unregister', the
// waiting threads are woken up only for copy uffds. Therefore, for now, we
// have to explicitly wake up the threads in minor-fault case.
// TODO: The fix in the kernel is being worked on. Once the kernel version
// containing the fix is known, make it conditional on that as well.
if (minor_fault_initialized_) {
CHECK_EQ(ioctl(uffd_, UFFDIO_WAKE, &range), 0)
<< "ioctl_userfaultfd: wake failed: " << strerror(errno)
<< ". addr:" << static_cast<void*>(start) << " len:" << PrettySize(len);
}
}
void MarkCompact::CompactionPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
{
int32_t freed_bytes = black_objs_slide_diff_;
bump_pointer_space_->RecordFree(freed_objects_, freed_bytes);
RecordFree(ObjectBytePair(freed_objects_, freed_bytes));
}
if (CanCompactMovingSpaceWithMinorFault()) {
CompactMovingSpace<kMinorFaultMode>(/*page=*/nullptr);
} else {
CompactMovingSpace<kCopyMode>(compaction_buffers_map_.Begin());
}
// madvise the page so that we can get userfaults on it.
ZeroAndReleasePages(conc_compaction_termination_page_, kPageSize);
// TODO: add more sophisticated logic here wherein we sleep after attempting
// yield a couple of times.
while (compaction_in_progress_count_.load(std::memory_order_relaxed) > 0) {
sched_yield();
}
size_t moving_space_size = bump_pointer_space_->Capacity();
UnregisterUffd(bump_pointer_space_->Begin(),
minor_fault_initialized_ ?
(moving_first_objs_count_ + black_page_count_) * kPageSize :
moving_space_size);
// Release all of the memory taken by moving-space's from-map
if (minor_fault_initialized_) {
int ret = madvise(from_space_begin_, moving_space_size, MADV_REMOVE);
CHECK_EQ(ret, 0) << "madvise(MADV_REMOVE) failed for from-space map:" << strerror(errno);
} else {
from_space_map_.MadviseDontNeedAndZero();
}
ProcessLinearAlloc();
// The following load triggers 'special' userfaults. When received by the
// thread-pool workers, they will exit out of the compaction task. This fault
// happens because we madvise info_map_ above and it is at least kPageSize in length.
DCHECK(IsAligned<kPageSize>(conc_compaction_termination_page_));
CHECK_EQ(*reinterpret_cast<volatile uint8_t*>(conc_compaction_termination_page_), 0);
DCHECK_EQ(thread_pool_counter_, 0);
// Unregister linear-alloc spaces
for (auto& data : linear_alloc_spaces_data_) {
DCHECK_EQ(data.end_ - data.begin_, static_cast<ssize_t>(data.shadow_.Size()));
UnregisterUffd(data.begin_, data.shadow_.Size());
// madvise linear-allocs's page-status array
data.page_status_map_.MadviseDontNeedAndZero();
// Madvise the entire linear-alloc space's shadow. In copy-mode it gets rid
// of the pages which are still mapped. In minor-fault mode this unmaps all
// pages, which is good in reducing the mremap (done in STW pause) time in
// next GC cycle.
data.shadow_.MadviseDontNeedAndZero();
if (minor_fault_initialized_) {
DCHECK_EQ(mprotect(data.shadow_.Begin(), data.shadow_.Size(), PROT_NONE), 0)
<< "mprotect failed: " << strerror(errno);
}
}
heap_->GetThreadPool()->StopWorkers(thread_running_gc_);
}
template <size_t kBufferSize>
class MarkCompact::ThreadRootsVisitor : public RootVisitor {
public:
explicit ThreadRootsVisitor(MarkCompact* mark_compact, Thread* const self)
: mark_compact_(mark_compact), self_(self) {}
~ThreadRootsVisitor() {
Flush();
}
void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
override REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_) {
for (size_t i = 0; i < count; i++) {
mirror::Object* obj = *roots[i];
if (mark_compact_->MarkObjectNonNullNoPush</*kParallel*/true>(obj)) {
Push(obj);
}
}
}
void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
size_t count,
const RootInfo& info ATTRIBUTE_UNUSED)
override REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_) {
for (size_t i = 0; i < count; i++) {
mirror::Object* obj = roots[i]->AsMirrorPtr();
if (mark_compact_->MarkObjectNonNullNoPush</*kParallel*/true>(obj)) {
Push(obj);
}
}
}
private:
void Flush() REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_) {
StackReference<mirror::Object>* start;
StackReference<mirror::Object>* end;
{
MutexLock mu(self_, mark_compact_->mark_stack_lock_);
// Loop here because even after expanding once it may not be sufficient to
// accommodate all references. It's almost impossible, but there is no harm
// in implementing it this way.
while (!mark_compact_->mark_stack_->BumpBack(idx_, &start, &end)) {
mark_compact_->ExpandMarkStack();
}
}
while (idx_ > 0) {
*start++ = roots_[--idx_];
}
DCHECK_EQ(start, end);
}
void Push(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(Locks::heap_bitmap_lock_) {
if (UNLIKELY(idx_ >= kBufferSize)) {
Flush();
}
roots_[idx_++].Assign(obj);
}
StackReference<mirror::Object> roots_[kBufferSize];
size_t idx_ = 0;
MarkCompact* const mark_compact_;
Thread* const self_;
};
class MarkCompact::CheckpointMarkThreadRoots : public Closure {
public:
explicit CheckpointMarkThreadRoots(MarkCompact* mark_compact) : mark_compact_(mark_compact) {}
void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
ScopedTrace trace("Marking thread roots");
// Note: self is not necessarily equal to thread since thread may be
// suspended.
Thread* const self = Thread::Current();
CHECK(thread == self
|| thread->IsSuspended()
|| thread->GetState() == ThreadState::kWaitingPerformingGc)
<< thread->GetState() << " thread " << thread << " self " << self;
{
ThreadRootsVisitor</*kBufferSize*/ 20> visitor(mark_compact_, self);
thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
}
// If thread is a running mutator, then act on behalf of the garbage
// collector. See the code in ThreadList::RunCheckpoint.
mark_compact_->GetBarrier().Pass(self);
}
private:
MarkCompact* const mark_compact_;
};
void MarkCompact::MarkRootsCheckpoint(Thread* self, Runtime* runtime) {
// We revote TLABs later during paused round of marking.
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
CheckpointMarkThreadRoots check_point(this);
ThreadList* thread_list = runtime->GetThreadList();
gc_barrier_.Init(self, 0);
// Request the check point is run on all threads returning a count of the threads that must
// run through the barrier including self.
size_t barrier_count = thread_list->RunCheckpoint(&check_point);
// Release locks then wait for all mutator threads to pass the barrier.
// If there are no threads to wait which implys that all the checkpoint functions are finished,
// then no need to release locks.
if (barrier_count == 0) {
return;
}
Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
Locks::mutator_lock_->SharedUnlock(self);
{
ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
gc_barrier_.Increment(self, barrier_count);
}
Locks::mutator_lock_->SharedLock(self);
Locks::heap_bitmap_lock_->ExclusiveLock(self);
}
void MarkCompact::MarkNonThreadRoots(Runtime* runtime) {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
runtime->VisitNonThreadRoots(this);
}
void MarkCompact::MarkConcurrentRoots(VisitRootFlags flags, Runtime* runtime) {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
runtime->VisitConcurrentRoots(this, flags);
}
void MarkCompact::RevokeAllThreadLocalBuffers() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
bump_pointer_space_->RevokeAllThreadLocalBuffers();
}
class MarkCompact::ScanObjectVisitor {
public:
explicit ScanObjectVisitor(MarkCompact* const mark_compact) ALWAYS_INLINE
: mark_compact_(mark_compact) {}
void operator()(ObjPtr<mirror::Object> obj) const
ALWAYS_INLINE
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
mark_compact_->ScanObject</*kUpdateLiveWords*/ false>(obj.Ptr());
}
private:
MarkCompact* const mark_compact_;
};
void MarkCompact::UpdateAndMarkModUnion() {
accounting::CardTable* const card_table = heap_->GetCardTable();
for (const auto& space : immune_spaces_.GetSpaces()) {
const char* name = space->IsZygoteSpace()
? "UpdateAndMarkZygoteModUnionTable"
: "UpdateAndMarkImageModUnionTable";
DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
TimingLogger::ScopedTiming t(name, GetTimings());
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
if (table != nullptr) {
// UpdateAndMarkReferences() doesn't visit Reference-type objects. But
// that's fine because these objects are immutable enough (referent can
// only be cleared) and hence the only referents they can have are intra-space.
table->UpdateAndMarkReferences(this);
} else {
// No mod-union table, scan all dirty/aged cards in the corresponding
// card-table. This can only occur for app images.
card_table->Scan</*kClearCard*/ false>(space->GetMarkBitmap(),
space->Begin(),
space->End(),
ScanObjectVisitor(this),
gc::accounting::CardTable::kCardAged);
}
}
}
void MarkCompact::MarkReachableObjects() {
UpdateAndMarkModUnion();
// Recursively mark all the non-image bits set in the mark bitmap.
ProcessMarkStack();
}
class MarkCompact::CardModifiedVisitor {
public:
explicit CardModifiedVisitor(MarkCompact* const mark_compact,
accounting::ContinuousSpaceBitmap* const bitmap,
accounting::CardTable* const card_table)
: visitor_(mark_compact), bitmap_(bitmap), card_table_(card_table) {}
void operator()(uint8_t* card,
uint8_t expected_value,
uint8_t new_value ATTRIBUTE_UNUSED) const {
if (expected_value == accounting::CardTable::kCardDirty) {
uintptr_t start = reinterpret_cast<uintptr_t>(card_table_->AddrFromCard(card));
bitmap_->VisitMarkedRange(start, start + accounting::CardTable::kCardSize, visitor_);
}
}
private:
ScanObjectVisitor visitor_;
accounting::ContinuousSpaceBitmap* bitmap_;
accounting::CardTable* const card_table_;
};
void MarkCompact::ScanDirtyObjects(bool paused, uint8_t minimum_age) {
accounting::CardTable* card_table = heap_->GetCardTable();
for (const auto& space : heap_->GetContinuousSpaces()) {
const char* name = nullptr;
switch (space->GetGcRetentionPolicy()) {
case space::kGcRetentionPolicyNeverCollect:
name = paused ? "(Paused)ScanGrayImmuneSpaceObjects" : "ScanGrayImmuneSpaceObjects";
break;
case space::kGcRetentionPolicyFullCollect:
name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
break;
case space::kGcRetentionPolicyAlwaysCollect:
name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
break;
default:
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
TimingLogger::ScopedTiming t(name, GetTimings());
ScanObjectVisitor visitor(this);
const bool is_immune_space = space->IsZygoteSpace() || space->IsImageSpace();
if (paused) {
DCHECK_EQ(minimum_age, gc::accounting::CardTable::kCardDirty);
// We can clear the card-table for any non-immune space.
if (is_immune_space) {
card_table->Scan</*kClearCard*/false>(space->GetMarkBitmap(),
space->Begin(),
space->End(),
visitor,
minimum_age);
} else {
card_table->Scan</*kClearCard*/true>(space->GetMarkBitmap(),
space->Begin(),
space->End(),
visitor,
minimum_age);
}
} else {
DCHECK_EQ(minimum_age, gc::accounting::CardTable::kCardAged);
accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
if (table) {
table->ProcessCards();
card_table->Scan</*kClearCard*/false>(space->GetMarkBitmap(),
space->Begin(),
space->End(),
visitor,
minimum_age);
} else {
CardModifiedVisitor card_modified_visitor(this, space->GetMarkBitmap(), card_table);
// For the alloc spaces we should age the dirty cards and clear the rest.
// For image and zygote-space without mod-union-table, age the dirty
// cards but keep the already aged cards unchanged.
// In either case, visit the objects on the cards that were changed from
// dirty to aged.
if (is_immune_space) {
card_table->ModifyCardsAtomic(space->Begin(),
space->End(),
[](uint8_t card) {
return (card == gc::accounting::CardTable::kCardClean)
? card
: gc::accounting::CardTable::kCardAged;
},
card_modified_visitor);
} else {
card_table->ModifyCardsAtomic(space->Begin(),
space->End(),
AgeCardVisitor(),
card_modified_visitor);
}
}
}
}
}
void MarkCompact::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
ScanDirtyObjects(paused, minimum_age);
ProcessMarkStack();
}
void MarkCompact::MarkRoots(VisitRootFlags flags) {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
Runtime* runtime = Runtime::Current();
// Make sure that the checkpoint which collects the stack roots is the first
// one capturning GC-roots. As this one is supposed to find the address
// everything allocated after that (during this marking phase) will be
// considered 'marked'.
MarkRootsCheckpoint(thread_running_gc_, runtime);
MarkNonThreadRoots(runtime);
MarkConcurrentRoots(flags, runtime);
}
void MarkCompact::PreCleanCards() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
CHECK(!Locks::mutator_lock_->IsExclusiveHeld(thread_running_gc_));
MarkRoots(static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
RecursiveMarkDirtyObjects(/*paused*/ false, accounting::CardTable::kCardDirty - 1);
}
// In a concurrent marking algorithm, if we are not using a write/read barrier, as
// in this case, then we need a stop-the-world (STW) round in the end to mark
// objects which were written into concurrently while concurrent marking was
// performed.
// In order to minimize the pause time, we could take one of the two approaches:
// 1. Keep repeating concurrent marking of dirty cards until the time spent goes
// below a threshold.
// 2. Do two rounds concurrently and then attempt a paused one. If we figure
// that it's taking too long, then resume mutators and retry.
//
// Given the non-trivial fixed overhead of running a round (card table and root
// scan), it might be better to go with approach 2.
void MarkCompact::MarkingPhase() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
DCHECK_EQ(thread_running_gc_, Thread::Current());
WriterMutexLock mu(thread_running_gc_, *Locks::heap_bitmap_lock_);
BindAndResetBitmaps();
MarkRoots(
static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
MarkReachableObjects();
// Pre-clean dirtied cards to reduce pauses.
PreCleanCards();
// Setup reference processing and forward soft references once before enabling
// slow path (in MarkingPause)
ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor();
bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences();
rp->Setup(thread_running_gc_, this, /*concurrent=*/ true, clear_soft_references);
if (!clear_soft_references) {
// Forward as many SoftReferences as possible before inhibiting reference access.
rp->ForwardSoftReferences(GetTimings());
}
}
class MarkCompact::RefFieldsVisitor {
public:
ALWAYS_INLINE explicit RefFieldsVisitor(MarkCompact* const mark_compact)
: mark_compact_(mark_compact) {}
ALWAYS_INLINE void operator()(mirror::Object* obj,
MemberOffset offset,
bool is_static ATTRIBUTE_UNUSED) const
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kCheckLocks) {
Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
}
mark_compact_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
}
void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
mark_compact_->DelayReferenceReferent(klass, ref);
}
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES(Locks::heap_bitmap_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kCheckLocks) {
Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
}
mark_compact_->MarkObject(root->AsMirrorPtr());
}
private:
MarkCompact* const mark_compact_;
};
template <size_t kAlignment>
size_t MarkCompact::LiveWordsBitmap<kAlignment>::LiveBytesInBitmapWord(size_t chunk_idx) const {
const size_t index = chunk_idx * kBitmapWordsPerVectorWord;
size_t words = 0;
for (uint32_t i = 0; i < kBitmapWordsPerVectorWord; i++) {
words += POPCOUNT(Bitmap::Begin()[index + i]);
}
return words * kAlignment;
}
void MarkCompact::UpdateLivenessInfo(mirror::Object* obj) {
DCHECK(obj != nullptr);
uintptr_t obj_begin = reinterpret_cast<uintptr_t>(obj);
size_t size = RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kAlignment);
uintptr_t bit_index = live_words_bitmap_->SetLiveWords(obj_begin, size);
size_t chunk_idx = (obj_begin - live_words_bitmap_->Begin()) / kOffsetChunkSize;
// Compute the bit-index within the chunk-info vector word.
bit_index %= kBitsPerVectorWord;
size_t first_chunk_portion = std::min(size, (kBitsPerVectorWord - bit_index) * kAlignment);
chunk_info_vec_[chunk_idx++] += first_chunk_portion;
DCHECK_LE(first_chunk_portion, size);
for (size -= first_chunk_portion; size > kOffsetChunkSize; size -= kOffsetChunkSize) {
DCHECK_EQ(chunk_info_vec_[chunk_idx], 0u);
chunk_info_vec_[chunk_idx++] = kOffsetChunkSize;
}
chunk_info_vec_[chunk_idx] += size;
freed_objects_--;
}
template <bool kUpdateLiveWords>
void MarkCompact::ScanObject(mirror::Object* obj) {
RefFieldsVisitor visitor(this);
DCHECK(IsMarked(obj)) << "Scanning marked object " << obj << "\n" << heap_->DumpSpaces();
if (kUpdateLiveWords && moving_space_bitmap_->HasAddress(obj)) {
UpdateLivenessInfo(obj);
}
obj->VisitReferences(visitor, visitor);
}
// Scan anything that's on the mark stack.
void MarkCompact::ProcessMarkStack() {
TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
// TODO: try prefetch like in CMS
while (!mark_stack_->IsEmpty()) {
mirror::Object* obj = mark_stack_->PopBack();
DCHECK(obj != nullptr);
ScanObject</*kUpdateLiveWords*/ true>(obj);
}
}
void MarkCompact::ExpandMarkStack() {
const size_t new_size = mark_stack_->Capacity() * 2;
std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(),
mark_stack_->End());
mark_stack_->Resize(new_size);
for (auto& ref : temp) {
mark_stack_->PushBack(ref.AsMirrorPtr());
}
DCHECK(!mark_stack_->IsFull());
}
inline void MarkCompact::PushOnMarkStack(mirror::Object* obj) {
if (UNLIKELY(mark_stack_->IsFull())) {
ExpandMarkStack();
}
mark_stack_->PushBack(obj);
}
inline void MarkCompact::MarkObjectNonNull(mirror::Object* obj,
mirror::Object* holder,
MemberOffset offset) {
DCHECK(obj != nullptr);
if (MarkObjectNonNullNoPush</*kParallel*/false>(obj, holder, offset)) {
PushOnMarkStack(obj);
}
}
template <bool kParallel>
inline bool MarkCompact::MarkObjectNonNullNoPush(mirror::Object* obj,
mirror::Object* holder,
MemberOffset offset) {
// We expect most of the referenes to be in bump-pointer space, so try that
// first to keep the cost of this function minimal.
if (LIKELY(moving_space_bitmap_->HasAddress(obj))) {
return kParallel ? !moving_space_bitmap_->AtomicTestAndSet(obj)
: !moving_space_bitmap_->Set(obj);
} else if (non_moving_space_bitmap_->HasAddress(obj)) {
return kParallel ? !non_moving_space_bitmap_->AtomicTestAndSet(obj)
: !non_moving_space_bitmap_->Set(obj);
} else if (immune_spaces_.ContainsObject(obj)) {
DCHECK(IsMarked(obj) != nullptr);
return false;
} else {
// Must be a large-object space, otherwise it's a case of heap corruption.
if (!IsAligned<kPageSize>(obj)) {
// Objects in large-object space are page aligned. So if we have an object
// which doesn't belong to any space and is not page-aligned as well, then
// it's memory corruption.
// TODO: implement protect/unprotect in bump-pointer space.
heap_->GetVerification()->LogHeapCorruption(holder, offset, obj, /*fatal*/ true);
}
DCHECK_NE(heap_->GetLargeObjectsSpace(), nullptr)
<< "ref=" << obj
<< " doesn't belong to any of the spaces and large object space doesn't exist";
accounting::LargeObjectBitmap* los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
DCHECK(los_bitmap->HasAddress(obj));
return kParallel ? !los_bitmap->AtomicTestAndSet(obj)
: !los_bitmap->Set(obj);
}
}
inline void MarkCompact::MarkObject(mirror::Object* obj,
mirror::Object* holder,
MemberOffset offset) {
if (obj != nullptr) {
MarkObjectNonNull(obj, holder, offset);
}
}
mirror::Object* MarkCompact::MarkObject(mirror::Object* obj) {
MarkObject(obj, nullptr, MemberOffset(0));
return obj;
}
void MarkCompact::MarkHeapReference(mirror::HeapReference<mirror::Object>* obj,
bool do_atomic_update ATTRIBUTE_UNUSED) {
MarkObject(obj->AsMirrorPtr(), nullptr, MemberOffset(0));
}
void MarkCompact::VisitRoots(mirror::Object*** roots,
size_t count,
const RootInfo& info) {
if (compacting_) {
for (size_t i = 0; i < count; ++i) {
UpdateRoot(roots[i], info);
}
} else {
for (size_t i = 0; i < count; ++i) {
MarkObjectNonNull(*roots[i]);
}
}
}
void MarkCompact::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
size_t count,
const RootInfo& info) {
// TODO: do we need to check if the root is null or not?
if (compacting_) {
for (size_t i = 0; i < count; ++i) {
UpdateRoot(roots[i], info);
}
} else {
for (size_t i = 0; i < count; ++i) {
MarkObjectNonNull(roots[i]->AsMirrorPtr());
}
}
}
mirror::Object* MarkCompact::IsMarked(mirror::Object* obj) {
if (moving_space_bitmap_->HasAddress(obj)) {
const bool is_black = reinterpret_cast<uint8_t*>(obj) >= black_allocations_begin_;
if (compacting_) {
if (is_black) {
return PostCompactBlackObjAddr(obj);
} else if (live_words_bitmap_->Test(obj)) {
return PostCompactOldObjAddr(obj);
} else {
return nullptr;
}
}
return (is_black || moving_space_bitmap_->Test(obj)) ? obj : nullptr;
} else if (non_moving_space_bitmap_->HasAddress(obj)) {
return non_moving_space_bitmap_->Test(obj) ? obj : nullptr;
} else if (immune_spaces_.ContainsObject(obj)) {
return obj;
} else {
DCHECK(heap_->GetLargeObjectsSpace())
<< "ref=" << obj
<< " doesn't belong to any of the spaces and large object space doesn't exist";
accounting::LargeObjectBitmap* los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
if (los_bitmap->HasAddress(obj)) {
DCHECK(IsAligned<kPageSize>(obj));
return los_bitmap->Test(obj) ? obj : nullptr;
} else {
// The given obj is not in any of the known spaces, so return null. This could
// happen for instance in interpreter caches wherein a concurrent updation
// to the cache could result in obj being a non-reference. This is
// tolerable because SweepInterpreterCaches only updates if the given
// object has moved, which can't be the case for the non-reference.
return nullptr;
}
}
}
bool MarkCompact::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* obj,
bool do_atomic_update ATTRIBUTE_UNUSED) {
mirror::Object* ref = obj->AsMirrorPtr();
if (ref == nullptr) {
return true;
}
return IsMarked(ref);
}
// Process the 'referent' field in a java.lang.ref.Reference. If the referent
// has not yet been marked, put it on the appropriate list in the heap for later
// processing.
void MarkCompact::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
ObjPtr<mirror::Reference> ref) {
heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
}
void MarkCompact::FinishPhase() {
bool is_zygote = Runtime::Current()->IsZygote();
minor_fault_initialized_ = !is_zygote && uffd_minor_fault_supported_;
// When poisoning ObjPtr, we are forced to use buffers for page compaction in
// lower 4GB. Now that the usage is done, madvise them. But skip the first
// page, which is used by the gc-thread for the next iteration. Otherwise, we
// get into a deadlock due to userfault on it in the next iteration. This page
// is not consuming any physical memory because we already madvised it above
// and then we triggered a read userfault, which maps a special zero-page.
if (!minor_fault_initialized_ || !shadow_to_space_map_.IsValid() ||
shadow_to_space_map_.Size() < (moving_first_objs_count_ + black_page_count_) * kPageSize) {
ZeroAndReleasePages(compaction_buffers_map_.Begin() + kPageSize,
compaction_buffers_map_.Size() - kPageSize);
} else if (shadow_to_space_map_.Size() == bump_pointer_space_->Capacity()) {
// Now that we are going to use minor-faults from next GC cycle, we can
// unmap the buffers used by worker threads.
compaction_buffers_map_.SetSize(kPageSize);
}
info_map_.MadviseDontNeedAndZero();
live_words_bitmap_->ClearBitmap();
if (UNLIKELY(is_zygote && IsValidFd(uffd_))) {
heap_->DeleteThreadPool();
// This unregisters all ranges as a side-effect.
close(uffd_);
uffd_ = kFdUnused;
uffd_initialized_ = false;
}
CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty.
mark_stack_->Reset();
updated_roots_.clear();
delete[] moving_pages_status_;
linear_alloc_arenas_.clear();
{
DCHECK_EQ(thread_running_gc_, Thread::Current());
ReaderMutexLock mu(thread_running_gc_, *Locks::mutator_lock_);
WriterMutexLock mu2(thread_running_gc_, *Locks::heap_bitmap_lock_);
heap_->ClearMarkedObjects();
}
std::swap(moving_to_space_fd_, moving_from_space_fd_);
}
} // namespace collector
} // namespace gc
} // namespace art