blob: ffe90206a0ef8cb349dacf5831ea99f0975b2911 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_macro_assembler_x86_64.h"
#include "base/casts.h"
#include "base/memory_region.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "thread.h"
namespace art {
namespace x86_64 {
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::X86_64Core(static_cast<int>(reg));
}
static dwarf::Reg DWARFReg(FloatRegister reg) {
return dwarf::Reg::X86_64Fp(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 8;
static constexpr size_t kNativeStackAlignment = 16;
static_assert(kNativeStackAlignment == kStackAlignment);
#define __ asm_.
void X86_64JNIMacroAssembler::BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> spill_regs,
const ManagedRegisterEntrySpills& entry_spills) {
DCHECK_EQ(CodeSize(), 0U); // Nothing emitted yet.
cfi().SetCurrentCFAOffset(8); // Return address on stack.
// Note: @CriticalNative tail call is not used (would have frame_size == kFramePointerSize).
if (method_reg.IsNoRegister()) {
CHECK_ALIGNED(frame_size, kNativeStackAlignment);
} else {
CHECK_ALIGNED(frame_size, kStackAlignment);
}
size_t gpr_count = 0u;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsCpuRegister()) {
__ pushq(spill.AsCpuRegister());
gpr_count++;
cfi().AdjustCFAOffset(kFramePointerSize);
cfi().RelOffset(DWARFReg(spill.AsCpuRegister().AsRegister()), 0);
}
}
// return address then method on stack.
int64_t rest_of_frame = static_cast<int64_t>(frame_size)
- (gpr_count * kFramePointerSize)
- kFramePointerSize /*return address*/;
if (rest_of_frame != 0) {
__ subq(CpuRegister(RSP), Immediate(rest_of_frame));
cfi().AdjustCFAOffset(rest_of_frame);
}
// spill xmms
int64_t offset = rest_of_frame;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsXmmRegister()) {
offset -= sizeof(double);
__ movsd(Address(CpuRegister(RSP), offset), spill.AsXmmRegister());
cfi().RelOffset(DWARFReg(spill.AsXmmRegister().AsFloatRegister()), offset);
}
}
static_assert(static_cast<size_t>(kX86_64PointerSize) == kFramePointerSize,
"Unexpected frame pointer size.");
if (method_reg.IsRegister()) {
__ movq(Address(CpuRegister(RSP), 0), method_reg.AsX86_64().AsCpuRegister());
}
for (const ManagedRegisterSpill& spill : entry_spills) {
if (spill.AsX86_64().IsCpuRegister()) {
if (spill.getSize() == 8) {
__ movq(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()),
spill.AsX86_64().AsCpuRegister());
} else {
CHECK_EQ(spill.getSize(), 4);
__ movl(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()),
spill.AsX86_64().AsCpuRegister());
}
} else {
if (spill.getSize() == 8) {
__ movsd(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()),
spill.AsX86_64().AsXmmRegister());
} else {
CHECK_EQ(spill.getSize(), 4);
__ movss(Address(CpuRegister(RSP), frame_size + spill.getSpillOffset()),
spill.AsX86_64().AsXmmRegister());
}
}
}
}
void X86_64JNIMacroAssembler::RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> spill_regs,
bool may_suspend ATTRIBUTE_UNUSED) {
CHECK_ALIGNED(frame_size, kNativeStackAlignment);
cfi().RememberState();
int gpr_count = 0;
// unspill xmms
int64_t offset = static_cast<int64_t>(frame_size)
- (spill_regs.size() * kFramePointerSize)
- kFramePointerSize;
for (size_t i = 0; i < spill_regs.size(); ++i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsXmmRegister()) {
__ movsd(spill.AsXmmRegister(), Address(CpuRegister(RSP), offset));
cfi().Restore(DWARFReg(spill.AsXmmRegister().AsFloatRegister()));
offset += sizeof(double);
} else {
gpr_count++;
}
}
DCHECK_EQ(static_cast<size_t>(offset),
frame_size - (gpr_count * kFramePointerSize) - kFramePointerSize);
if (offset != 0) {
__ addq(CpuRegister(RSP), Immediate(offset));
cfi().AdjustCFAOffset(-offset);
}
for (size_t i = 0; i < spill_regs.size(); ++i) {
x86_64::X86_64ManagedRegister spill = spill_regs[i].AsX86_64();
if (spill.IsCpuRegister()) {
__ popq(spill.AsCpuRegister());
cfi().AdjustCFAOffset(-static_cast<int>(kFramePointerSize));
cfi().Restore(DWARFReg(spill.AsCpuRegister().AsRegister()));
}
}
__ ret();
// The CFI should be restored for any code that follows the exit block.
cfi().RestoreState();
cfi().DefCFAOffset(frame_size);
}
void X86_64JNIMacroAssembler::IncreaseFrameSize(size_t adjust) {
if (adjust != 0u) {
CHECK_ALIGNED(adjust, kNativeStackAlignment);
__ addq(CpuRegister(RSP), Immediate(-static_cast<int64_t>(adjust)));
cfi().AdjustCFAOffset(adjust);
}
}
static void DecreaseFrameSizeImpl(size_t adjust, X86_64Assembler* assembler) {
if (adjust != 0u) {
CHECK_ALIGNED(adjust, kNativeStackAlignment);
assembler->addq(CpuRegister(RSP), Immediate(adjust));
assembler->cfi().AdjustCFAOffset(-adjust);
}
}
void X86_64JNIMacroAssembler::DecreaseFrameSize(size_t adjust) {
DecreaseFrameSizeImpl(adjust, &asm_);
}
void X86_64JNIMacroAssembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) {
X86_64ManagedRegister src = msrc.AsX86_64();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size);
__ movl(Address(CpuRegister(RSP), offs), src.AsCpuRegister());
} else {
CHECK_EQ(8u, size);
__ movq(Address(CpuRegister(RSP), offs), src.AsCpuRegister());
}
} else if (src.IsRegisterPair()) {
CHECK_EQ(0u, size);
__ movq(Address(CpuRegister(RSP), offs), src.AsRegisterPairLow());
__ movq(Address(CpuRegister(RSP), FrameOffset(offs.Int32Value()+4)),
src.AsRegisterPairHigh());
} else if (src.IsX87Register()) {
if (size == 4) {
__ fstps(Address(CpuRegister(RSP), offs));
} else {
__ fstpl(Address(CpuRegister(RSP), offs));
}
} else {
CHECK(src.IsXmmRegister());
if (size == 4) {
__ movss(Address(CpuRegister(RSP), offs), src.AsXmmRegister());
} else {
__ movsd(Address(CpuRegister(RSP), offs), src.AsXmmRegister());
}
}
}
void X86_64JNIMacroAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
X86_64ManagedRegister src = msrc.AsX86_64();
CHECK(src.IsCpuRegister());
__ movl(Address(CpuRegister(RSP), dest), src.AsCpuRegister());
}
void X86_64JNIMacroAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
X86_64ManagedRegister src = msrc.AsX86_64();
CHECK(src.IsCpuRegister());
__ movq(Address(CpuRegister(RSP), dest), src.AsCpuRegister());
}
void X86_64JNIMacroAssembler::StoreImmediateToFrame(FrameOffset dest,
uint32_t imm,
ManagedRegister) {
__ movl(Address(CpuRegister(RSP), dest), Immediate(imm)); // TODO(64) movq?
}
void X86_64JNIMacroAssembler::StoreStackOffsetToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
__ leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), fr_offs));
__ gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister());
}
void X86_64JNIMacroAssembler::StoreStackPointerToThread(ThreadOffset64 thr_offs) {
__ gs()->movq(Address::Absolute(thr_offs, true), CpuRegister(RSP));
}
void X86_64JNIMacroAssembler::StoreSpanning(FrameOffset /*dst*/,
ManagedRegister /*src*/,
FrameOffset /*in_off*/,
ManagedRegister /*scratch*/) {
UNIMPLEMENTED(FATAL); // this case only currently exists for ARM
}
void X86_64JNIMacroAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
if (size == 4) {
CHECK_EQ(4u, size);
__ movl(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
} else {
CHECK_EQ(8u, size);
__ movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
}
} else if (dest.IsRegisterPair()) {
CHECK_EQ(0u, size);
__ movq(dest.AsRegisterPairLow(), Address(CpuRegister(RSP), src));
__ movq(dest.AsRegisterPairHigh(), Address(CpuRegister(RSP), FrameOffset(src.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
__ flds(Address(CpuRegister(RSP), src));
} else {
__ fldl(Address(CpuRegister(RSP), src));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), src));
} else {
__ movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), src));
}
}
}
void X86_64JNIMacroAssembler::LoadFromThread(ManagedRegister mdest,
ThreadOffset64 src, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
if (size == 1u) {
__ gs()->movzxb(dest.AsCpuRegister(), Address::Absolute(src, true));
} else {
CHECK_EQ(4u, size);
__ gs()->movl(dest.AsCpuRegister(), Address::Absolute(src, true));
}
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ gs()->movq(dest.AsRegisterPairLow(), Address::Absolute(src, true));
} else if (dest.IsX87Register()) {
if (size == 4) {
__ gs()->flds(Address::Absolute(src, true));
} else {
__ gs()->fldl(Address::Absolute(src, true));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ gs()->movss(dest.AsXmmRegister(), Address::Absolute(src, true));
} else {
__ gs()->movsd(dest.AsXmmRegister(), Address::Absolute(src, true));
}
}
}
void X86_64JNIMacroAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister());
__ movq(dest.AsCpuRegister(), Address(CpuRegister(RSP), src));
}
void X86_64JNIMacroAssembler::LoadRef(ManagedRegister mdest,
ManagedRegister mbase,
MemberOffset offs,
bool unpoison_reference) {
X86_64ManagedRegister base = mbase.AsX86_64();
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(base.IsCpuRegister());
CHECK(dest.IsCpuRegister());
__ movl(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
if (unpoison_reference) {
__ MaybeUnpoisonHeapReference(dest.AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::LoadRawPtr(ManagedRegister mdest,
ManagedRegister mbase,
Offset offs) {
X86_64ManagedRegister base = mbase.AsX86_64();
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(base.IsCpuRegister());
CHECK(dest.IsCpuRegister());
__ movq(dest.AsCpuRegister(), Address(base.AsCpuRegister(), offs));
}
void X86_64JNIMacroAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) {
X86_64ManagedRegister dest = mdest.AsX86_64();
CHECK(dest.IsCpuRegister());
__ gs()->movq(dest.AsCpuRegister(), Address::Absolute(offs, true));
}
void X86_64JNIMacroAssembler::SignExtend(ManagedRegister mreg, size_t size) {
X86_64ManagedRegister reg = mreg.AsX86_64();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movsxb(reg.AsCpuRegister(), reg.AsCpuRegister());
} else {
__ movsxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::ZeroExtend(ManagedRegister mreg, size_t size) {
X86_64ManagedRegister reg = mreg.AsX86_64();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movzxb(reg.AsCpuRegister(), reg.AsCpuRegister());
} else {
__ movzxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86_64JNIMacroAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
X86_64ManagedRegister dest = mdest.AsX86_64();
X86_64ManagedRegister src = msrc.AsX86_64();
if (!dest.Equals(src)) {
if (dest.IsCpuRegister() && src.IsCpuRegister()) {
__ movq(dest.AsCpuRegister(), src.AsCpuRegister());
} else if (src.IsX87Register() && dest.IsXmmRegister()) {
// Pass via stack and pop X87 register
__ subl(CpuRegister(RSP), Immediate(16));
if (size == 4) {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstps(Address(CpuRegister(RSP), 0));
__ movss(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0));
} else {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstpl(Address(CpuRegister(RSP), 0));
__ movsd(dest.AsXmmRegister(), Address(CpuRegister(RSP), 0));
}
__ addq(CpuRegister(RSP), Immediate(16));
} else {
// TODO: x87, SSE
UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src;
}
}
}
void X86_64JNIMacroAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
__ movl(scratch.AsCpuRegister(), Address(CpuRegister(RSP), src));
__ movl(Address(CpuRegister(RSP), dest), scratch.AsCpuRegister());
}
void X86_64JNIMacroAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset64 thr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
__ gs()->movq(scratch.AsCpuRegister(), Address::Absolute(thr_offs, true));
Store(fr_offs, scratch, 8);
}
void X86_64JNIMacroAssembler::CopyRawPtrToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
Load(scratch, fr_offs, 8);
__ gs()->movq(Address::Absolute(thr_offs, true), scratch.AsCpuRegister());
}
void X86_64JNIMacroAssembler::Copy(FrameOffset dest,
FrameOffset src,
ManagedRegister mscratch,
size_t size) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
if (scratch.IsCpuRegister() && size == 8) {
Load(scratch, src, 4);
Store(dest, scratch, 4);
Load(scratch, FrameOffset(src.Int32Value() + 4), 4);
Store(FrameOffset(dest.Int32Value() + 4), scratch, 4);
} else {
Load(scratch, src, size);
Store(dest, scratch, size);
}
}
void X86_64JNIMacroAssembler::Copy(FrameOffset /*dst*/,
ManagedRegister /*src_base*/,
Offset /*src_offset*/,
ManagedRegister /*scratch*/,
size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void X86_64JNIMacroAssembler::Copy(ManagedRegister dest_base,
Offset dest_offset,
FrameOffset src,
ManagedRegister scratch,
size_t size) {
CHECK(scratch.IsNoRegister());
CHECK_EQ(size, 4u);
__ pushq(Address(CpuRegister(RSP), src));
__ popq(Address(dest_base.AsX86_64().AsCpuRegister(), dest_offset));
}
void X86_64JNIMacroAssembler::Copy(FrameOffset dest,
FrameOffset src_base,
Offset src_offset,
ManagedRegister mscratch,
size_t size) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
CHECK_EQ(size, 4u);
__ movq(scratch, Address(CpuRegister(RSP), src_base));
__ movq(scratch, Address(scratch, src_offset));
__ movq(Address(CpuRegister(RSP), dest), scratch);
}
void X86_64JNIMacroAssembler::Copy(ManagedRegister dest,
Offset dest_offset,
ManagedRegister src,
Offset src_offset,
ManagedRegister scratch,
size_t size) {
CHECK_EQ(size, 4u);
CHECK(scratch.IsNoRegister());
__ pushq(Address(src.AsX86_64().AsCpuRegister(), src_offset));
__ popq(Address(dest.AsX86_64().AsCpuRegister(), dest_offset));
}
void X86_64JNIMacroAssembler::Copy(FrameOffset dest,
Offset dest_offset,
FrameOffset src,
Offset src_offset,
ManagedRegister mscratch,
size_t size) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
CHECK_EQ(size, 4u);
CHECK_EQ(dest.Int32Value(), src.Int32Value());
__ movq(scratch, Address(CpuRegister(RSP), src));
__ pushq(Address(scratch, src_offset));
__ popq(Address(scratch, dest_offset));
}
void X86_64JNIMacroAssembler::MemoryBarrier(ManagedRegister) {
__ mfence();
}
void X86_64JNIMacroAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg,
bool null_allowed) {
X86_64ManagedRegister out_reg = mout_reg.AsX86_64();
X86_64ManagedRegister in_reg = min_reg.AsX86_64();
if (in_reg.IsNoRegister()) { // TODO(64): && null_allowed
// Use out_reg as indicator of null.
in_reg = out_reg;
// TODO: movzwl
__ movl(in_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
}
CHECK(in_reg.IsCpuRegister());
CHECK(out_reg.IsCpuRegister());
VerifyObject(in_reg, null_allowed);
if (null_allowed) {
Label null_arg;
if (!out_reg.Equals(in_reg)) {
__ xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
__ testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
__ j(kZero, &null_arg);
__ leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
__ Bind(&null_arg);
} else {
__ leaq(out_reg.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
}
}
void X86_64JNIMacroAssembler::CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handle_scope_offset,
ManagedRegister mscratch,
bool null_allowed) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
CHECK(scratch.IsCpuRegister());
if (null_allowed) {
Label null_arg;
__ movl(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
__ testl(scratch.AsCpuRegister(), scratch.AsCpuRegister());
__ j(kZero, &null_arg);
__ leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
__ Bind(&null_arg);
} else {
__ leaq(scratch.AsCpuRegister(), Address(CpuRegister(RSP), handle_scope_offset));
}
Store(out_off, scratch, 8);
}
// Given a handle scope entry, load the associated reference.
void X86_64JNIMacroAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
ManagedRegister min_reg) {
X86_64ManagedRegister out_reg = mout_reg.AsX86_64();
X86_64ManagedRegister in_reg = min_reg.AsX86_64();
CHECK(out_reg.IsCpuRegister());
CHECK(in_reg.IsCpuRegister());
Label null_arg;
if (!out_reg.Equals(in_reg)) {
__ xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
__ testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
__ j(kZero, &null_arg);
__ movq(out_reg.AsCpuRegister(), Address(in_reg.AsCpuRegister(), 0));
__ Bind(&null_arg);
}
void X86_64JNIMacroAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86_64JNIMacroAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86_64JNIMacroAssembler::Jump(ManagedRegister mbase, Offset offset, ManagedRegister) {
X86_64ManagedRegister base = mbase.AsX86_64();
CHECK(base.IsCpuRegister());
__ jmp(Address(base.AsCpuRegister(), offset.Int32Value()));
}
void X86_64JNIMacroAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister) {
X86_64ManagedRegister base = mbase.AsX86_64();
CHECK(base.IsCpuRegister());
__ call(Address(base.AsCpuRegister(), offset.Int32Value()));
// TODO: place reference map on call
}
void X86_64JNIMacroAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
CpuRegister scratch = mscratch.AsX86_64().AsCpuRegister();
__ movq(scratch, Address(CpuRegister(RSP), base));
__ call(Address(scratch, offset));
}
void X86_64JNIMacroAssembler::CallFromThread(ThreadOffset64 offset, ManagedRegister /*mscratch*/) {
__ gs()->call(Address::Absolute(offset, true));
}
void X86_64JNIMacroAssembler::GetCurrentThread(ManagedRegister tr) {
__ gs()->movq(tr.AsX86_64().AsCpuRegister(),
Address::Absolute(Thread::SelfOffset<kX86_64PointerSize>(), true));
}
void X86_64JNIMacroAssembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch) {
X86_64ManagedRegister scratch = mscratch.AsX86_64();
__ gs()->movq(scratch.AsCpuRegister(),
Address::Absolute(Thread::SelfOffset<kX86_64PointerSize>(), true));
__ movq(Address(CpuRegister(RSP), offset), scratch.AsCpuRegister());
}
// Slowpath entered when Thread::Current()->_exception is non-null
class X86_64ExceptionSlowPath final : public SlowPath {
public:
explicit X86_64ExceptionSlowPath(size_t stack_adjust) : stack_adjust_(stack_adjust) {}
void Emit(Assembler *sp_asm) override;
private:
const size_t stack_adjust_;
};
void X86_64JNIMacroAssembler::ExceptionPoll(ManagedRegister /*scratch*/, size_t stack_adjust) {
X86_64ExceptionSlowPath* slow = new (__ GetAllocator()) X86_64ExceptionSlowPath(stack_adjust);
__ GetBuffer()->EnqueueSlowPath(slow);
__ gs()->cmpl(Address::Absolute(Thread::ExceptionOffset<kX86_64PointerSize>(), true),
Immediate(0));
__ j(kNotEqual, slow->Entry());
}
std::unique_ptr<JNIMacroLabel> X86_64JNIMacroAssembler::CreateLabel() {
return std::unique_ptr<JNIMacroLabel>(new X86_64JNIMacroLabel());
}
void X86_64JNIMacroAssembler::Jump(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ jmp(X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
void X86_64JNIMacroAssembler::Jump(JNIMacroLabel* label,
JNIMacroUnaryCondition condition,
ManagedRegister test) {
CHECK(label != nullptr);
art::x86_64::Condition x86_64_cond;
switch (condition) {
case JNIMacroUnaryCondition::kZero:
x86_64_cond = art::x86_64::kZero;
break;
case JNIMacroUnaryCondition::kNotZero:
x86_64_cond = art::x86_64::kNotZero;
break;
default:
LOG(FATAL) << "Not implemented condition: " << static_cast<int>(condition);
UNREACHABLE();
}
// TEST reg, reg
// Jcc <Offset>
__ testq(test.AsX86_64().AsCpuRegister(), test.AsX86_64().AsCpuRegister());
__ j(x86_64_cond, X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
void X86_64JNIMacroAssembler::Bind(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ Bind(X86_64JNIMacroLabel::Cast(label)->AsX86_64());
}
#undef __
void X86_64ExceptionSlowPath::Emit(Assembler *sasm) {
X86_64Assembler* sp_asm = down_cast<X86_64Assembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Note: the return value is dead
if (stack_adjust_ != 0) { // Fix up the frame.
DecreaseFrameSizeImpl(stack_adjust_, sp_asm);
}
// Pass exception as argument in RDI
__ gs()->movq(CpuRegister(RDI),
Address::Absolute(Thread::ExceptionOffset<kX86_64PointerSize>(), true));
__ gs()->call(
Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64PointerSize, pDeliverException), true));
// this call should never return
__ int3();
#undef __
}
} // namespace x86_64
} // namespace art