blob: 758e69f8e8a80b0d99a90a98b24d61e597d7074d [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <regex>
#include <sstream>
#include <string>
#include <vector>
#include <sys/wait.h>
#include <unistd.h>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include "common_runtime_test.h"
#include "arch/instruction_set_features.h"
#include "base/macros.h"
#include "base/mutex-inl.h"
#include "base/utils.h"
#include "dex/art_dex_file_loader.h"
#include "dex/base64_test_util.h"
#include "dex/bytecode_utils.h"
#include "dex/class_accessor-inl.h"
#include "dex/code_item_accessors-inl.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_loader.h"
#include "dex2oat_environment_test.h"
#include "dex2oat_return_codes.h"
#include "gc_root-inl.h"
#include "intern_table-inl.h"
#include "oat.h"
#include "oat_file.h"
#include "profile/profile_compilation_info.h"
#include "vdex_file.h"
#include "ziparchive/zip_writer.h"
namespace art {
static constexpr size_t kMaxMethodIds = 65535;
static constexpr bool kDebugArgs = false;
static const char* kDisableCompactDex = "--compact-dex-level=none";
using android::base::StringPrintf;
class Dex2oatTest : public Dex2oatEnvironmentTest {
public:
void TearDown() override {
Dex2oatEnvironmentTest::TearDown();
output_ = "";
error_msg_ = "";
success_ = false;
}
protected:
int GenerateOdexForTestWithStatus(const std::vector<std::string>& dex_locations,
const std::string& odex_location,
CompilerFilter::Filter filter,
std::string* error_msg,
const std::vector<std::string>& extra_args = {},
bool use_fd = false) {
std::unique_ptr<File> oat_file;
std::vector<std::string> args;
// Add dex file args.
for (const std::string& dex_location : dex_locations) {
args.push_back("--dex-file=" + dex_location);
}
if (use_fd) {
oat_file.reset(OS::CreateEmptyFile(odex_location.c_str()));
CHECK(oat_file != nullptr) << odex_location;
args.push_back("--oat-fd=" + std::to_string(oat_file->Fd()));
args.push_back("--oat-location=" + odex_location);
} else {
args.push_back("--oat-file=" + odex_location);
}
args.push_back("--compiler-filter=" + CompilerFilter::NameOfFilter(filter));
args.push_back("--runtime-arg");
args.push_back("-Xnorelocate");
// Unless otherwise stated, use a small amount of threads, so that potential aborts are
// shorter. This can be overridden with extra_args.
args.push_back("-j4");
args.insert(args.end(), extra_args.begin(), extra_args.end());
int status = Dex2Oat(args, error_msg);
if (oat_file != nullptr) {
CHECK_EQ(oat_file->FlushClose(), 0) << "Could not flush and close oat file";
}
return status;
}
::testing::AssertionResult GenerateOdexForTest(
const std::string& dex_location,
const std::string& odex_location,
CompilerFilter::Filter filter,
const std::vector<std::string>& extra_args = {},
bool expect_success = true,
bool use_fd = false) WARN_UNUSED {
return GenerateOdexForTest(dex_location,
odex_location,
filter,
extra_args,
expect_success,
use_fd,
[](const OatFile&) {});
}
bool test_accepts_odex_file_on_failure = false;
template <typename T>
::testing::AssertionResult GenerateOdexForTest(
const std::string& dex_location,
const std::string& odex_location,
CompilerFilter::Filter filter,
const std::vector<std::string>& extra_args,
bool expect_success,
bool use_fd,
T check_oat) WARN_UNUSED {
std::string error_msg;
int status = GenerateOdexForTestWithStatus({dex_location},
odex_location,
filter,
&error_msg,
extra_args,
use_fd);
bool success = (WIFEXITED(status) && WEXITSTATUS(status) == 0);
if (expect_success) {
if (!success) {
return ::testing::AssertionFailure()
<< "Failed to compile odex: " << error_msg << std::endl << output_;
}
// Verify the odex file was generated as expected.
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
if (odex_file == nullptr) {
return ::testing::AssertionFailure() << "Could not open odex file: " << error_msg;
}
CheckFilter(filter, odex_file->GetCompilerFilter());
check_oat(*(odex_file.get()));
} else {
if (success) {
return ::testing::AssertionFailure() << "Succeeded to compile odex: " << output_;
}
error_msg_ = error_msg;
if (!test_accepts_odex_file_on_failure) {
// Verify there's no loadable odex file.
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
if (odex_file != nullptr) {
return ::testing::AssertionFailure() << "Could open odex file: " << error_msg;
}
}
}
return ::testing::AssertionSuccess();
}
// Check the input compiler filter against the generated oat file's filter. May be overridden
// in subclasses when equality is not expected.
virtual void CheckFilter(CompilerFilter::Filter expected, CompilerFilter::Filter actual) {
EXPECT_EQ(expected, actual);
}
int Dex2Oat(const std::vector<std::string>& dex2oat_args, std::string* error_msg) {
std::vector<std::string> argv;
if (!CommonRuntimeTest::StartDex2OatCommandLine(&argv, error_msg)) {
return false;
}
Runtime* runtime = Runtime::Current();
if (!runtime->IsVerificationEnabled()) {
argv.push_back("--compiler-filter=assume-verified");
}
if (runtime->MustRelocateIfPossible()) {
argv.push_back("--runtime-arg");
argv.push_back("-Xrelocate");
} else {
argv.push_back("--runtime-arg");
argv.push_back("-Xnorelocate");
}
if (!kIsTargetBuild) {
argv.push_back("--host");
}
argv.insert(argv.end(), dex2oat_args.begin(), dex2oat_args.end());
// We must set --android-root.
const char* android_root = getenv("ANDROID_ROOT");
CHECK(android_root != nullptr);
argv.push_back("--android-root=" + std::string(android_root));
if (kDebugArgs) {
std::string all_args;
for (const std::string& arg : argv) {
all_args += arg + " ";
}
LOG(ERROR) << all_args;
}
// We need dex2oat to actually log things.
auto post_fork_fn = []() { return setenv("ANDROID_LOG_TAGS", "*:d", 1) == 0; };
ForkAndExecResult res = ForkAndExec(argv, post_fork_fn, &output_);
if (res.stage != ForkAndExecResult::kFinished) {
*error_msg = strerror(errno);
return -1;
}
success_ = res.StandardSuccess();
return res.status_code;
}
std::string output_ = "";
std::string error_msg_ = "";
bool success_ = false;
};
class Dex2oatSwapTest : public Dex2oatTest {
protected:
void RunTest(bool use_fd, bool expect_use, const std::vector<std::string>& extra_args = {}) {
std::string dex_location = GetScratchDir() + "/Dex2OatSwapTest.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatSwapTest.odex";
Copy(GetTestDexFileName(), dex_location);
std::vector<std::string> copy(extra_args);
std::unique_ptr<ScratchFile> sf;
if (use_fd) {
sf.reset(new ScratchFile());
copy.push_back(android::base::StringPrintf("--swap-fd=%d", sf->GetFd()));
} else {
std::string swap_location = GetOdexDir() + "/Dex2OatSwapTest.odex.swap";
copy.push_back("--swap-file=" + swap_location);
}
ASSERT_TRUE(GenerateOdexForTest(dex_location, odex_location, CompilerFilter::kSpeed, copy));
CheckValidity();
ASSERT_TRUE(success_);
CheckResult(expect_use);
}
virtual std::string GetTestDexFileName() {
return Dex2oatEnvironmentTest::GetTestDexFileName("VerifierDeps");
}
virtual void CheckResult(bool expect_use) {
if (kIsTargetBuild) {
CheckTargetResult(expect_use);
} else {
CheckHostResult(expect_use);
}
}
virtual void CheckTargetResult(bool expect_use ATTRIBUTE_UNUSED) {
// TODO: Ignore for now, as we won't capture any output (it goes to the logcat). We may do
// something for variants with file descriptor where we can control the lifetime of
// the swap file and thus take a look at it.
}
virtual void CheckHostResult(bool expect_use) {
if (!kIsTargetBuild) {
if (expect_use) {
EXPECT_NE(output_.find("Large app, accepted running with swap."), std::string::npos)
<< output_;
} else {
EXPECT_EQ(output_.find("Large app, accepted running with swap."), std::string::npos)
<< output_;
}
}
}
// Check whether the dex2oat run was really successful.
virtual void CheckValidity() {
if (kIsTargetBuild) {
CheckTargetValidity();
} else {
CheckHostValidity();
}
}
virtual void CheckTargetValidity() {
// TODO: Ignore for now, as we won't capture any output (it goes to the logcat). We may do
// something for variants with file descriptor where we can control the lifetime of
// the swap file and thus take a look at it.
}
// On the host, we can get the dex2oat output. Here, look for "dex2oat took."
virtual void CheckHostValidity() {
EXPECT_NE(output_.find("dex2oat took"), std::string::npos) << output_;
}
};
TEST_F(Dex2oatSwapTest, DoNotUseSwapDefaultSingleSmall) {
RunTest(/*use_fd=*/ false, /*expect_use=*/ false);
RunTest(/*use_fd=*/ true, /*expect_use=*/ false);
}
TEST_F(Dex2oatSwapTest, DoNotUseSwapSingle) {
RunTest(/*use_fd=*/ false, /*expect_use=*/ false, { "--swap-dex-size-threshold=0" });
RunTest(/*use_fd=*/ true, /*expect_use=*/ false, { "--swap-dex-size-threshold=0" });
}
TEST_F(Dex2oatSwapTest, DoNotUseSwapSmall) {
RunTest(/*use_fd=*/ false, /*expect_use=*/ false, { "--swap-dex-count-threshold=0" });
RunTest(/*use_fd=*/ true, /*expect_use=*/ false, { "--swap-dex-count-threshold=0" });
}
TEST_F(Dex2oatSwapTest, DoUseSwapSingleSmall) {
RunTest(/*use_fd=*/ false,
/*expect_use=*/ true,
{ "--swap-dex-size-threshold=0", "--swap-dex-count-threshold=0" });
RunTest(/*use_fd=*/ true,
/*expect_use=*/ true,
{ "--swap-dex-size-threshold=0", "--swap-dex-count-threshold=0" });
}
class Dex2oatSwapUseTest : public Dex2oatSwapTest {
protected:
void CheckHostResult(bool expect_use) override {
if (!kIsTargetBuild) {
if (expect_use) {
EXPECT_NE(output_.find("Large app, accepted running with swap."), std::string::npos)
<< output_;
} else {
EXPECT_EQ(output_.find("Large app, accepted running with swap."), std::string::npos)
<< output_;
}
}
}
std::string GetTestDexFileName() override {
// Use Statics as it has a handful of functions.
return CommonRuntimeTest::GetTestDexFileName("Statics");
}
void GrabResult1() {
if (!kIsTargetBuild) {
native_alloc_1_ = ParseNativeAlloc();
swap_1_ = ParseSwap(/*expected=*/ false);
} else {
native_alloc_1_ = std::numeric_limits<size_t>::max();
swap_1_ = 0;
}
}
void GrabResult2() {
if (!kIsTargetBuild) {
native_alloc_2_ = ParseNativeAlloc();
swap_2_ = ParseSwap(/*expected=*/ true);
} else {
native_alloc_2_ = 0;
swap_2_ = std::numeric_limits<size_t>::max();
}
}
private:
size_t ParseNativeAlloc() {
std::regex native_alloc_regex("dex2oat took.*native alloc=[^ ]+ \\(([0-9]+)B\\)");
std::smatch native_alloc_match;
bool found = std::regex_search(output_, native_alloc_match, native_alloc_regex);
if (!found) {
EXPECT_TRUE(found);
return 0;
}
if (native_alloc_match.size() != 2U) {
EXPECT_EQ(native_alloc_match.size(), 2U);
return 0;
}
std::istringstream stream(native_alloc_match[1].str());
size_t value;
stream >> value;
return value;
}
size_t ParseSwap(bool expected) {
std::regex swap_regex("dex2oat took[^\\n]+swap=[^ ]+ \\(([0-9]+)B\\)");
std::smatch swap_match;
bool found = std::regex_search(output_, swap_match, swap_regex);
if (found != expected) {
EXPECT_EQ(expected, found);
return 0;
}
if (!found) {
return 0;
}
if (swap_match.size() != 2U) {
EXPECT_EQ(swap_match.size(), 2U);
return 0;
}
std::istringstream stream(swap_match[1].str());
size_t value;
stream >> value;
return value;
}
protected:
size_t native_alloc_1_;
size_t native_alloc_2_;
size_t swap_1_;
size_t swap_2_;
};
TEST_F(Dex2oatSwapUseTest, CheckSwapUsage) {
// Native memory usage isn't correctly tracked when running under ASan.
TEST_DISABLED_FOR_MEMORY_TOOL();
// The `native_alloc_2_ >= native_alloc_1_` assertion below may not
// hold true on some x86 systems; disable this test while we
// investigate (b/29259363).
TEST_DISABLED_FOR_X86();
RunTest(/*use_fd=*/ false,
/*expect_use=*/ false);
GrabResult1();
std::string output_1 = output_;
output_ = "";
RunTest(/*use_fd=*/ false,
/*expect_use=*/ true,
{ "--swap-dex-size-threshold=0", "--swap-dex-count-threshold=0" });
GrabResult2();
std::string output_2 = output_;
if (native_alloc_2_ >= native_alloc_1_ || swap_1_ >= swap_2_) {
EXPECT_LT(native_alloc_2_, native_alloc_1_);
EXPECT_LT(swap_1_, swap_2_);
LOG(ERROR) << output_1;
LOG(ERROR) << output_2;
}
}
class Dex2oatVeryLargeTest : public Dex2oatTest {
protected:
void CheckFilter(CompilerFilter::Filter input ATTRIBUTE_UNUSED,
CompilerFilter::Filter result ATTRIBUTE_UNUSED) override {
// Ignore, we'll do our own checks.
}
void RunTest(CompilerFilter::Filter filter,
bool expect_large,
bool expect_downgrade,
const std::vector<std::string>& extra_args = {}) {
std::string dex_location = GetScratchDir() + "/DexNoOat.jar";
std::string odex_location = GetOdexDir() + "/DexOdexNoOat.odex";
std::string app_image_file = GetScratchDir() + "/Test.art";
Copy(GetDexSrc1(), dex_location);
std::vector<std::string> new_args(extra_args);
new_args.push_back("--app-image-file=" + app_image_file);
ASSERT_TRUE(GenerateOdexForTest(dex_location, odex_location, filter, new_args));
CheckValidity();
ASSERT_TRUE(success_);
CheckResult(dex_location,
odex_location,
app_image_file,
filter,
expect_large,
expect_downgrade);
}
void CheckResult(const std::string& dex_location,
const std::string& odex_location,
const std::string& app_image_file,
CompilerFilter::Filter filter,
bool expect_large,
bool expect_downgrade) {
if (expect_downgrade) {
EXPECT_TRUE(expect_large);
}
// Host/target independent checks.
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file.get() != nullptr) << error_msg;
EXPECT_GT(app_image_file.length(), 0u);
std::unique_ptr<File> file(OS::OpenFileForReading(app_image_file.c_str()));
if (expect_large) {
// Note: we cannot check the following
// EXPECT_FALSE(CompilerFilter::IsAotCompilationEnabled(odex_file->GetCompilerFilter()));
// The reason is that the filter override currently happens when the dex files are
// loaded in dex2oat, which is after the oat file has been started. Thus, the header
// store cannot be changed, and the original filter is set in stone.
for (const OatDexFile* oat_dex_file : odex_file->GetOatDexFiles()) {
std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
ASSERT_TRUE(dex_file != nullptr);
uint32_t class_def_count = dex_file->NumClassDefs();
ASSERT_LT(class_def_count, std::numeric_limits<uint16_t>::max());
for (uint16_t class_def_index = 0; class_def_index < class_def_count; ++class_def_index) {
OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index);
EXPECT_EQ(oat_class.GetType(), OatClassType::kOatClassNoneCompiled);
}
}
// If the input filter was "below," it should have been used.
if (!CompilerFilter::IsAsGoodAs(CompilerFilter::kExtract, filter)) {
EXPECT_EQ(odex_file->GetCompilerFilter(), filter);
}
// If expect large, make sure the app image isn't generated or is empty.
if (file != nullptr) {
EXPECT_EQ(file->GetLength(), 0u);
}
} else {
EXPECT_EQ(odex_file->GetCompilerFilter(), filter);
ASSERT_TRUE(file != nullptr) << app_image_file;
EXPECT_GT(file->GetLength(), 0u);
}
// Host/target dependent checks.
if (kIsTargetBuild) {
CheckTargetResult(expect_downgrade);
} else {
CheckHostResult(expect_downgrade);
}
}
void CheckTargetResult(bool expect_downgrade ATTRIBUTE_UNUSED) {
// TODO: Ignore for now. May do something for fd things.
}
void CheckHostResult(bool expect_downgrade) {
if (!kIsTargetBuild) {
if (expect_downgrade) {
EXPECT_NE(output_.find("Very large app, downgrading to"), std::string::npos) << output_;
} else {
EXPECT_EQ(output_.find("Very large app, downgrading to"), std::string::npos) << output_;
}
}
}
// Check whether the dex2oat run was really successful.
void CheckValidity() {
if (kIsTargetBuild) {
CheckTargetValidity();
} else {
CheckHostValidity();
}
}
void CheckTargetValidity() {
// TODO: Ignore for now.
}
// On the host, we can get the dex2oat output. Here, look for "dex2oat took."
void CheckHostValidity() {
EXPECT_NE(output_.find("dex2oat took"), std::string::npos) << output_;
}
};
TEST_F(Dex2oatVeryLargeTest, DontUseVeryLarge) {
RunTest(CompilerFilter::kAssumeVerified, false, false);
RunTest(CompilerFilter::kExtract, false, false);
RunTest(CompilerFilter::kQuicken, false, false);
RunTest(CompilerFilter::kSpeed, false, false);
RunTest(CompilerFilter::kAssumeVerified, false, false, { "--very-large-app-threshold=10000000" });
RunTest(CompilerFilter::kExtract, false, false, { "--very-large-app-threshold=10000000" });
RunTest(CompilerFilter::kQuicken, false, false, { "--very-large-app-threshold=10000000" });
RunTest(CompilerFilter::kSpeed, false, false, { "--very-large-app-threshold=10000000" });
}
TEST_F(Dex2oatVeryLargeTest, UseVeryLarge) {
RunTest(CompilerFilter::kAssumeVerified, true, false, { "--very-large-app-threshold=100" });
RunTest(CompilerFilter::kExtract, true, false, { "--very-large-app-threshold=100" });
RunTest(CompilerFilter::kQuicken, true, true, { "--very-large-app-threshold=100" });
RunTest(CompilerFilter::kSpeed, true, true, { "--very-large-app-threshold=100" });
}
// Regressin test for b/35665292.
TEST_F(Dex2oatVeryLargeTest, SpeedProfileNoProfile) {
// Test that dex2oat doesn't crash with speed-profile but no input profile.
RunTest(CompilerFilter::kSpeedProfile, false, false);
}
class Dex2oatLayoutTest : public Dex2oatTest {
protected:
void CheckFilter(CompilerFilter::Filter input ATTRIBUTE_UNUSED,
CompilerFilter::Filter result ATTRIBUTE_UNUSED) override {
// Ignore, we'll do our own checks.
}
// Emits a profile with a single dex file with the given location and a single class index of 1.
void GenerateProfile(const std::string& test_profile,
const std::string& dex_location,
size_t num_classes,
uint32_t checksum) {
int profile_test_fd = open(test_profile.c_str(),
O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC,
0644);
CHECK_GE(profile_test_fd, 0);
ProfileCompilationInfo info;
std::string profile_key = ProfileCompilationInfo::GetProfileDexFileKey(dex_location);
for (size_t i = 0; i < num_classes; ++i) {
info.AddClassIndex(profile_key, checksum, dex::TypeIndex(1 + i), kMaxMethodIds);
}
bool result = info.Save(profile_test_fd);
close(profile_test_fd);
ASSERT_TRUE(result);
}
void CompileProfileOdex(const std::string& dex_location,
const std::string& odex_location,
const std::string& app_image_file_name,
bool use_fd,
size_t num_profile_classes,
const std::vector<std::string>& extra_args = {},
bool expect_success = true) {
const std::string profile_location = GetScratchDir() + "/primary.prof";
const char* location = dex_location.c_str();
std::string error_msg;
std::vector<std::unique_ptr<const DexFile>> dex_files;
const ArtDexFileLoader dex_file_loader;
ASSERT_TRUE(dex_file_loader.Open(
location, location, /*verify=*/ true, /*verify_checksum=*/ true, &error_msg, &dex_files));
EXPECT_EQ(dex_files.size(), 1U);
std::unique_ptr<const DexFile>& dex_file = dex_files[0];
GenerateProfile(profile_location,
dex_location,
num_profile_classes,
dex_file->GetLocationChecksum());
std::vector<std::string> copy(extra_args);
copy.push_back("--profile-file=" + profile_location);
std::unique_ptr<File> app_image_file;
if (!app_image_file_name.empty()) {
if (use_fd) {
app_image_file.reset(OS::CreateEmptyFile(app_image_file_name.c_str()));
copy.push_back("--app-image-fd=" + std::to_string(app_image_file->Fd()));
} else {
copy.push_back("--app-image-file=" + app_image_file_name);
}
}
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kSpeedProfile,
copy,
expect_success,
use_fd));
if (app_image_file != nullptr) {
ASSERT_EQ(app_image_file->FlushCloseOrErase(), 0) << "Could not flush and close art file";
}
}
uint64_t GetImageObjectSectionSize(const std::string& image_file_name) {
EXPECT_FALSE(image_file_name.empty());
std::unique_ptr<File> file(OS::OpenFileForReading(image_file_name.c_str()));
CHECK(file != nullptr);
ImageHeader image_header;
const bool success = file->ReadFully(&image_header, sizeof(image_header));
CHECK(success);
CHECK(image_header.IsValid());
ReaderMutexLock mu(Thread::Current(), *Locks::mutator_lock_);
return image_header.GetObjectsSection().Size();
}
void RunTest(bool app_image) {
std::string dex_location = GetScratchDir() + "/DexNoOat.jar";
std::string odex_location = GetOdexDir() + "/DexOdexNoOat.odex";
std::string app_image_file = app_image ? (GetOdexDir() + "/DexOdexNoOat.art"): "";
Copy(GetDexSrc2(), dex_location);
uint64_t image_file_empty_profile = 0;
if (app_image) {
CompileProfileOdex(dex_location,
odex_location,
app_image_file,
/*use_fd=*/ false,
/*num_profile_classes=*/ 0);
CheckValidity();
ASSERT_TRUE(success_);
// Don't check the result since CheckResult relies on the class being in the profile.
image_file_empty_profile = GetImageObjectSectionSize(app_image_file);
EXPECT_GT(image_file_empty_profile, 0u);
}
// Small profile.
CompileProfileOdex(dex_location,
odex_location,
app_image_file,
/*use_fd=*/ false,
/*num_profile_classes=*/ 1);
CheckValidity();
ASSERT_TRUE(success_);
CheckResult(dex_location, odex_location, app_image_file);
if (app_image) {
// Test that the profile made a difference by adding more classes.
const uint64_t image_file_small_profile = GetImageObjectSectionSize(app_image_file);
ASSERT_LT(image_file_empty_profile, image_file_small_profile);
}
}
void RunTestVDex() {
std::string dex_location = GetScratchDir() + "/DexNoOat.jar";
std::string odex_location = GetOdexDir() + "/DexOdexNoOat.odex";
std::string vdex_location = GetOdexDir() + "/DexOdexNoOat.vdex";
std::string app_image_file_name = GetOdexDir() + "/DexOdexNoOat.art";
Copy(GetDexSrc2(), dex_location);
std::unique_ptr<File> vdex_file1(OS::CreateEmptyFile(vdex_location.c_str()));
CHECK(vdex_file1 != nullptr) << vdex_location;
ScratchFile vdex_file2;
{
std::string input_vdex = "--input-vdex-fd=-1";
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_file1->Fd());
CompileProfileOdex(dex_location,
odex_location,
app_image_file_name,
/*use_fd=*/ true,
/*num_profile_classes=*/ 1,
{ input_vdex, output_vdex });
EXPECT_GT(vdex_file1->GetLength(), 0u);
}
{
// Test that vdex and dexlayout fail gracefully.
std::string input_vdex = StringPrintf("--input-vdex-fd=%d", vdex_file1->Fd());
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_file2.GetFd());
CompileProfileOdex(dex_location,
odex_location,
app_image_file_name,
/*use_fd=*/ true,
/*num_profile_classes=*/ 1,
{ input_vdex, output_vdex },
/*expect_success=*/ true);
EXPECT_GT(vdex_file2.GetFile()->GetLength(), 0u);
}
ASSERT_EQ(vdex_file1->FlushCloseOrErase(), 0) << "Could not flush and close vdex file";
CheckValidity();
ASSERT_TRUE(success_);
}
void CheckResult(const std::string& dex_location,
const std::string& odex_location,
const std::string& app_image_file_name) {
// Host/target independent checks.
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file.get() != nullptr) << error_msg;
const char* location = dex_location.c_str();
std::vector<std::unique_ptr<const DexFile>> dex_files;
const ArtDexFileLoader dex_file_loader;
ASSERT_TRUE(dex_file_loader.Open(
location, location, /*verify=*/ true, /*verify_checksum=*/ true, &error_msg, &dex_files));
EXPECT_EQ(dex_files.size(), 1U);
std::unique_ptr<const DexFile>& old_dex_file = dex_files[0];
for (const OatDexFile* oat_dex_file : odex_file->GetOatDexFiles()) {
std::unique_ptr<const DexFile> new_dex_file = oat_dex_file->OpenDexFile(&error_msg);
ASSERT_TRUE(new_dex_file != nullptr);
uint32_t class_def_count = new_dex_file->NumClassDefs();
ASSERT_LT(class_def_count, std::numeric_limits<uint16_t>::max());
ASSERT_GE(class_def_count, 2U);
// Make sure the indexes stay the same.
std::string old_class0 = old_dex_file->PrettyType(old_dex_file->GetClassDef(0).class_idx_);
std::string old_class1 = old_dex_file->PrettyType(old_dex_file->GetClassDef(1).class_idx_);
std::string new_class0 = new_dex_file->PrettyType(new_dex_file->GetClassDef(0).class_idx_);
std::string new_class1 = new_dex_file->PrettyType(new_dex_file->GetClassDef(1).class_idx_);
EXPECT_EQ(old_class0, new_class0);
EXPECT_EQ(old_class1, new_class1);
}
EXPECT_EQ(odex_file->GetCompilerFilter(), CompilerFilter::kSpeedProfile);
if (!app_image_file_name.empty()) {
// Go peek at the image header to make sure it was large enough to contain the class.
std::unique_ptr<File> file(OS::OpenFileForReading(app_image_file_name.c_str()));
ImageHeader image_header;
bool success = file->ReadFully(&image_header, sizeof(image_header));
ASSERT_TRUE(success);
ASSERT_TRUE(image_header.IsValid());
EXPECT_GT(image_header.GetObjectsSection().Size(), 0u);
}
}
// Check whether the dex2oat run was really successful.
void CheckValidity() {
if (kIsTargetBuild) {
CheckTargetValidity();
} else {
CheckHostValidity();
}
}
void CheckTargetValidity() {
// TODO: Ignore for now.
}
// On the host, we can get the dex2oat output. Here, look for "dex2oat took."
void CheckHostValidity() {
EXPECT_NE(output_.find("dex2oat took"), std::string::npos) << output_;
}
};
TEST_F(Dex2oatLayoutTest, TestLayout) {
RunTest(/*app_image=*/ false);
}
TEST_F(Dex2oatLayoutTest, TestLayoutAppImage) {
RunTest(/*app_image=*/ true);
}
TEST_F(Dex2oatLayoutTest, TestVdexLayout) {
RunTestVDex();
}
class Dex2oatUnquickenTest : public Dex2oatTest {
protected:
void RunUnquickenMultiDex() {
std::string dex_location = GetScratchDir() + "/UnquickenMultiDex.jar";
std::string odex_location = GetOdexDir() + "/UnquickenMultiDex.odex";
std::string vdex_location = GetOdexDir() + "/UnquickenMultiDex.vdex";
Copy(GetTestDexFileName("MultiDex"), dex_location);
std::unique_ptr<File> vdex_file1(OS::CreateEmptyFile(vdex_location.c_str()));
CHECK(vdex_file1 != nullptr) << vdex_location;
// Quicken the dex file into a vdex file.
{
std::string input_vdex = "--input-vdex-fd=-1";
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_file1->Fd());
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kQuicken,
{ input_vdex, output_vdex },
/* expect_success= */ true,
/* use_fd= */ true));
EXPECT_GT(vdex_file1->GetLength(), 0u);
}
// Unquicken by running the verify compiler filter on the vdex file.
{
std::string input_vdex = StringPrintf("--input-vdex-fd=%d", vdex_file1->Fd());
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_file1->Fd());
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kVerify,
{ input_vdex, output_vdex, kDisableCompactDex },
/* expect_success= */ true,
/* use_fd= */ true));
}
ASSERT_EQ(vdex_file1->FlushCloseOrErase(), 0) << "Could not flush and close vdex file";
CheckResult(dex_location, odex_location);
ASSERT_TRUE(success_);
}
void RunUnquickenMultiDexCDex() {
std::string dex_location = GetScratchDir() + "/UnquickenMultiDex.jar";
std::string odex_location = GetOdexDir() + "/UnquickenMultiDex.odex";
std::string odex_location2 = GetOdexDir() + "/UnquickenMultiDex2.odex";
std::string vdex_location = GetOdexDir() + "/UnquickenMultiDex.vdex";
std::string vdex_location2 = GetOdexDir() + "/UnquickenMultiDex2.vdex";
Copy(GetTestDexFileName("MultiDex"), dex_location);
std::unique_ptr<File> vdex_file1(OS::CreateEmptyFile(vdex_location.c_str()));
std::unique_ptr<File> vdex_file2(OS::CreateEmptyFile(vdex_location2.c_str()));
CHECK(vdex_file1 != nullptr) << vdex_location;
CHECK(vdex_file2 != nullptr) << vdex_location2;
// Quicken the dex file into a vdex file.
{
std::string input_vdex = "--input-vdex-fd=-1";
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_file1->Fd());
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kQuicken,
{ input_vdex, output_vdex, "--compact-dex-level=fast"},
/* expect_success= */ true,
/* use_fd= */ true));
EXPECT_GT(vdex_file1->GetLength(), 0u);
}
// Unquicken by running the verify compiler filter on the vdex file.
{
std::string input_vdex = StringPrintf("--input-vdex-fd=%d", vdex_file1->Fd());
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_file2->Fd());
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location2,
CompilerFilter::kVerify,
{ input_vdex, output_vdex, "--compact-dex-level=none"},
/* expect_success= */ true,
/* use_fd= */ true));
}
ASSERT_EQ(vdex_file1->FlushCloseOrErase(), 0) << "Could not flush and close vdex file";
ASSERT_EQ(vdex_file2->FlushCloseOrErase(), 0) << "Could not flush and close vdex file";
CheckResult(dex_location, odex_location2);
ASSERT_TRUE(success_);
}
void CheckResult(const std::string& dex_location, const std::string& odex_location) {
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file.get() != nullptr) << error_msg;
ASSERT_GE(odex_file->GetOatDexFiles().size(), 1u);
// Iterate over the dex files and ensure there is no quickened instruction.
for (const OatDexFile* oat_dex_file : odex_file->GetOatDexFiles()) {
std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
for (ClassAccessor accessor : dex_file->GetClasses()) {
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
for (const DexInstructionPcPair& inst : method.GetInstructions()) {
ASSERT_FALSE(inst->IsQuickened()) << inst->Opcode() << " " << output_;
}
}
}
}
}
};
TEST_F(Dex2oatUnquickenTest, UnquickenMultiDex) {
RunUnquickenMultiDex();
}
TEST_F(Dex2oatUnquickenTest, UnquickenMultiDexCDex) {
RunUnquickenMultiDexCDex();
}
class Dex2oatWatchdogTest : public Dex2oatTest {
protected:
void RunTest(bool expect_success, const std::vector<std::string>& extra_args = {}) {
std::string dex_location = GetScratchDir() + "/Dex2OatSwapTest.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatSwapTest.odex";
Copy(GetTestDexFileName(), dex_location);
std::vector<std::string> copy(extra_args);
std::string swap_location = GetOdexDir() + "/Dex2OatSwapTest.odex.swap";
copy.push_back("--swap-file=" + swap_location);
copy.push_back("-j512"); // Excessive idle threads just slow down dex2oat.
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kSpeed,
copy,
expect_success));
}
std::string GetTestDexFileName() {
return GetDexSrc1();
}
};
TEST_F(Dex2oatWatchdogTest, TestWatchdogOK) {
// Check with default.
RunTest(true);
// Check with ten minutes.
RunTest(true, { "--watchdog-timeout=600000" });
}
TEST_F(Dex2oatWatchdogTest, TestWatchdogTrigger) {
// This test is frequently interrupted by timeout_dumper on host (x86);
// disable it while we investigate (b/121352534).
TEST_DISABLED_FOR_X86();
// The watchdog is independent of dex2oat and will not delete intermediates. It is possible
// that the compilation succeeds and the file is completely written by the time the watchdog
// kills dex2oat (but the dex2oat threads must have been scheduled pretty badly).
test_accepts_odex_file_on_failure = true;
// Check with ten milliseconds.
RunTest(false, { "--watchdog-timeout=10" });
}
class Dex2oatReturnCodeTest : public Dex2oatTest {
protected:
int RunTest(const std::vector<std::string>& extra_args = {}) {
std::string dex_location = GetScratchDir() + "/Dex2OatSwapTest.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatSwapTest.odex";
Copy(GetTestDexFileName(), dex_location);
std::string error_msg;
return GenerateOdexForTestWithStatus({dex_location},
odex_location,
CompilerFilter::kSpeed,
&error_msg,
extra_args);
}
std::string GetTestDexFileName() {
return GetDexSrc1();
}
};
TEST_F(Dex2oatReturnCodeTest, TestCreateRuntime) {
TEST_DISABLED_FOR_MEMORY_TOOL(); // b/19100793
int status = RunTest({ "--boot-image=/this/does/not/exist/yolo.oat" });
EXPECT_EQ(static_cast<int>(dex2oat::ReturnCode::kCreateRuntime), WEXITSTATUS(status)) << output_;
}
class Dex2oatClassLoaderContextTest : public Dex2oatTest {
protected:
void RunTest(const char* class_loader_context,
const char* expected_classpath_key,
bool expected_success,
bool use_second_source = false,
bool generate_image = false) {
std::string dex_location = GetUsedDexLocation();
std::string odex_location = GetUsedOatLocation();
Copy(use_second_source ? GetDexSrc2() : GetDexSrc1(), dex_location);
std::string error_msg;
std::vector<std::string> extra_args;
if (class_loader_context != nullptr) {
extra_args.push_back(std::string("--class-loader-context=") + class_loader_context);
}
if (generate_image) {
extra_args.push_back(std::string("--app-image-file=") + GetUsedImageLocation());
}
auto check_oat = [expected_classpath_key](const OatFile& oat_file) {
ASSERT_TRUE(expected_classpath_key != nullptr);
const char* classpath = oat_file.GetOatHeader().GetStoreValueByKey(OatHeader::kClassPathKey);
ASSERT_TRUE(classpath != nullptr);
ASSERT_STREQ(expected_classpath_key, classpath);
};
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kQuicken,
extra_args,
expected_success,
/*use_fd*/ false,
check_oat));
}
std::string GetUsedDexLocation() {
return GetScratchDir() + "/Context.jar";
}
std::string GetUsedOatLocation() {
return GetOdexDir() + "/Context.odex";
}
std::string GetUsedImageLocation() {
return GetOdexDir() + "/Context.art";
}
const char* kEmptyClassPathKey = "PCL[]";
};
TEST_F(Dex2oatClassLoaderContextTest, InvalidContext) {
RunTest("Invalid[]", /*expected_classpath_key*/ nullptr, /*expected_success*/ false);
}
TEST_F(Dex2oatClassLoaderContextTest, EmptyContext) {
RunTest("PCL[]", kEmptyClassPathKey, /*expected_success*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, SpecialContext) {
RunTest(OatFile::kSpecialSharedLibrary,
OatFile::kSpecialSharedLibrary,
/*expected_success*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithTheSourceDexFiles) {
std::string context = "PCL[" + GetUsedDexLocation() + "]";
RunTest(context.c_str(), kEmptyClassPathKey, /*expected_success*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithOtherDexFiles) {
std::vector<std::unique_ptr<const DexFile>> dex_files = OpenTestDexFiles("Nested");
std::string context = "PCL[" + dex_files[0]->GetLocation() + "]";
std::string expected_classpath_key = "PCL[" +
dex_files[0]->GetLocation() + "*" + std::to_string(dex_files[0]->GetLocationChecksum()) + "]";
RunTest(context.c_str(), expected_classpath_key.c_str(), true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithStrippedDexFiles) {
std::string stripped_classpath = GetScratchDir() + "/stripped_classpath.jar";
Copy(GetStrippedDexSrc1(), stripped_classpath);
std::string context = "PCL[" + stripped_classpath + "]";
// Expect an empty context because stripped dex files cannot be open.
RunTest(context.c_str(), kEmptyClassPathKey , /*expected_success*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithStrippedDexFilesBackedByOdex) {
std::string stripped_classpath = GetScratchDir() + "/stripped_classpath.jar";
std::string odex_for_classpath = GetOdexDir() + "/stripped_classpath.odex";
Copy(GetDexSrc1(), stripped_classpath);
ASSERT_TRUE(GenerateOdexForTest(stripped_classpath,
odex_for_classpath,
CompilerFilter::kQuicken,
{},
true));
// Strip the dex file
Copy(GetStrippedDexSrc1(), stripped_classpath);
std::string context = "PCL[" + stripped_classpath + "]";
std::string expected_classpath_key;
{
// Open the oat file to get the expected classpath.
OatFileAssistant oat_file_assistant(stripped_classpath.c_str(), kRuntimeISA, false, false);
std::unique_ptr<OatFile> oat_file(oat_file_assistant.GetBestOatFile());
std::vector<std::unique_ptr<const DexFile>> oat_dex_files =
OatFileAssistant::LoadDexFiles(*oat_file, stripped_classpath.c_str());
expected_classpath_key = "PCL[";
for (size_t i = 0; i < oat_dex_files.size(); i++) {
if (i > 0) {
expected_classpath_key + ":";
}
expected_classpath_key += oat_dex_files[i]->GetLocation() + "*" +
std::to_string(oat_dex_files[i]->GetLocationChecksum());
}
expected_classpath_key += "]";
}
RunTest(context.c_str(),
expected_classpath_key.c_str(),
/*expected_success*/ true,
/*use_second_source*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithNotExistentDexFiles) {
std::string context = "PCL[does_not_exists.dex]";
// Expect an empty context because stripped dex files cannot be open.
RunTest(context.c_str(), kEmptyClassPathKey, /*expected_success*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ChainContext) {
std::vector<std::unique_ptr<const DexFile>> dex_files1 = OpenTestDexFiles("Nested");
std::vector<std::unique_ptr<const DexFile>> dex_files2 = OpenTestDexFiles("MultiDex");
std::string context = "PCL[" + GetTestDexFileName("Nested") + "];" +
"DLC[" + GetTestDexFileName("MultiDex") + "]";
std::string expected_classpath_key = "PCL[" + CreateClassPathWithChecksums(dex_files1) + "];" +
"DLC[" + CreateClassPathWithChecksums(dex_files2) + "]";
RunTest(context.c_str(), expected_classpath_key.c_str(), true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithSharedLibrary) {
std::vector<std::unique_ptr<const DexFile>> dex_files1 = OpenTestDexFiles("Nested");
std::vector<std::unique_ptr<const DexFile>> dex_files2 = OpenTestDexFiles("MultiDex");
std::string context = "PCL[" + GetTestDexFileName("Nested") + "]" +
"{PCL[" + GetTestDexFileName("MultiDex") + "]}";
std::string expected_classpath_key = "PCL[" + CreateClassPathWithChecksums(dex_files1) + "]" +
"{PCL[" + CreateClassPathWithChecksums(dex_files2) + "]}";
RunTest(context.c_str(), expected_classpath_key.c_str(), true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithSharedLibraryAndImage) {
std::vector<std::unique_ptr<const DexFile>> dex_files1 = OpenTestDexFiles("Nested");
std::vector<std::unique_ptr<const DexFile>> dex_files2 = OpenTestDexFiles("MultiDex");
std::string context = "PCL[" + GetTestDexFileName("Nested") + "]" +
"{PCL[" + GetTestDexFileName("MultiDex") + "]}";
std::string expected_classpath_key = "PCL[" + CreateClassPathWithChecksums(dex_files1) + "]" +
"{PCL[" + CreateClassPathWithChecksums(dex_files2) + "]}";
RunTest(context.c_str(),
expected_classpath_key.c_str(),
/*expected_success=*/ true,
/*use_second_source=*/ false,
/*generate_image=*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithSameSharedLibrariesAndImage) {
std::vector<std::unique_ptr<const DexFile>> dex_files1 = OpenTestDexFiles("Nested");
std::vector<std::unique_ptr<const DexFile>> dex_files2 = OpenTestDexFiles("MultiDex");
std::string context = "PCL[" + GetTestDexFileName("Nested") + "]" +
"{PCL[" + GetTestDexFileName("MultiDex") + "]" +
"#PCL[" + GetTestDexFileName("MultiDex") + "]}";
std::string expected_classpath_key = "PCL[" + CreateClassPathWithChecksums(dex_files1) + "]" +
"{PCL[" + CreateClassPathWithChecksums(dex_files2) + "]" +
"#PCL[" + CreateClassPathWithChecksums(dex_files2) + "]}";
RunTest(context.c_str(),
expected_classpath_key.c_str(),
/*expected_success=*/ true,
/*use_second_source=*/ false,
/*generate_image=*/ true);
}
TEST_F(Dex2oatClassLoaderContextTest, ContextWithSharedLibrariesDependenciesAndImage) {
std::vector<std::unique_ptr<const DexFile>> dex_files1 = OpenTestDexFiles("Nested");
std::vector<std::unique_ptr<const DexFile>> dex_files2 = OpenTestDexFiles("MultiDex");
std::string context = "PCL[" + GetTestDexFileName("Nested") + "]" +
"{PCL[" + GetTestDexFileName("MultiDex") + "]" +
"{PCL[" + GetTestDexFileName("Nested") + "]}}";
std::string expected_classpath_key = "PCL[" + CreateClassPathWithChecksums(dex_files1) + "]" +
"{PCL[" + CreateClassPathWithChecksums(dex_files2) + "]" +
"{PCL[" + CreateClassPathWithChecksums(dex_files1) + "]}}";
RunTest(context.c_str(),
expected_classpath_key.c_str(),
/*expected_success=*/ true,
/*use_second_source=*/ false,
/*generate_image=*/ true);
}
class Dex2oatDeterminism : public Dex2oatTest {};
TEST_F(Dex2oatDeterminism, UnloadCompile) {
if (!kUseReadBarrier &&
gc::kCollectorTypeDefault != gc::kCollectorTypeCMS &&
gc::kCollectorTypeDefault != gc::kCollectorTypeMS) {
LOG(INFO) << "Test requires determinism support.";
return;
}
Runtime* const runtime = Runtime::Current();
std::string out_dir = GetScratchDir();
const std::string base_oat_name = out_dir + "/base.oat";
const std::string base_vdex_name = out_dir + "/base.vdex";
const std::string unload_oat_name = out_dir + "/unload.oat";
const std::string unload_vdex_name = out_dir + "/unload.vdex";
const std::string no_unload_oat_name = out_dir + "/nounload.oat";
const std::string no_unload_vdex_name = out_dir + "/nounload.vdex";
const std::string app_image_name = out_dir + "/unload.art";
std::string error_msg;
const std::vector<gc::space::ImageSpace*>& spaces = runtime->GetHeap()->GetBootImageSpaces();
ASSERT_GT(spaces.size(), 0u);
const std::string image_location = spaces[0]->GetImageLocation();
// Without passing in an app image, it will unload in between compilations.
const int res = GenerateOdexForTestWithStatus(
GetLibCoreDexFileNames(),
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--force-determinism", "--avoid-storing-invocation"});
ASSERT_EQ(res, 0);
Copy(base_oat_name, unload_oat_name);
Copy(base_vdex_name, unload_vdex_name);
std::unique_ptr<File> unload_oat(OS::OpenFileForReading(unload_oat_name.c_str()));
std::unique_ptr<File> unload_vdex(OS::OpenFileForReading(unload_vdex_name.c_str()));
ASSERT_TRUE(unload_oat != nullptr);
ASSERT_TRUE(unload_vdex != nullptr);
EXPECT_GT(unload_oat->GetLength(), 0u);
EXPECT_GT(unload_vdex->GetLength(), 0u);
// Regenerate with an app image to disable the dex2oat unloading and verify that the output is
// the same.
const int res2 = GenerateOdexForTestWithStatus(
GetLibCoreDexFileNames(),
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--force-determinism", "--avoid-storing-invocation", "--app-image-file=" + app_image_name});
ASSERT_EQ(res2, 0);
Copy(base_oat_name, no_unload_oat_name);
Copy(base_vdex_name, no_unload_vdex_name);
std::unique_ptr<File> no_unload_oat(OS::OpenFileForReading(no_unload_oat_name.c_str()));
std::unique_ptr<File> no_unload_vdex(OS::OpenFileForReading(no_unload_vdex_name.c_str()));
ASSERT_TRUE(no_unload_oat != nullptr);
ASSERT_TRUE(no_unload_vdex != nullptr);
EXPECT_GT(no_unload_oat->GetLength(), 0u);
EXPECT_GT(no_unload_vdex->GetLength(), 0u);
// Verify that both of the files are the same (odex and vdex).
EXPECT_EQ(unload_oat->GetLength(), no_unload_oat->GetLength());
EXPECT_EQ(unload_vdex->GetLength(), no_unload_vdex->GetLength());
EXPECT_EQ(unload_oat->Compare(no_unload_oat.get()), 0)
<< unload_oat_name << " " << no_unload_oat_name;
EXPECT_EQ(unload_vdex->Compare(no_unload_vdex.get()), 0)
<< unload_vdex_name << " " << no_unload_vdex_name;
// App image file.
std::unique_ptr<File> app_image_file(OS::OpenFileForReading(app_image_name.c_str()));
ASSERT_TRUE(app_image_file != nullptr);
EXPECT_GT(app_image_file->GetLength(), 0u);
}
// Test that dexlayout section info is correctly written to the oat file for profile based
// compilation.
TEST_F(Dex2oatTest, LayoutSections) {
using Hotness = ProfileCompilationInfo::MethodHotness;
std::unique_ptr<const DexFile> dex(OpenTestDexFile("ManyMethods"));
ScratchFile profile_file;
// We can only layout method indices with code items, figure out which ones have this property
// first.
std::vector<uint16_t> methods;
{
const dex::TypeId* type_id = dex->FindTypeId("LManyMethods;");
dex::TypeIndex type_idx = dex->GetIndexForTypeId(*type_id);
ClassAccessor accessor(*dex, *dex->FindClassDef(type_idx));
std::set<size_t> code_item_offsets;
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
const uint16_t method_idx = method.GetIndex();
const size_t code_item_offset = method.GetCodeItemOffset();
if (code_item_offsets.insert(code_item_offset).second) {
// Unique code item, add the method index.
methods.push_back(method_idx);
}
}
}
ASSERT_GE(methods.size(), 8u);
std::vector<uint16_t> hot_methods = {methods[1], methods[3], methods[5]};
std::vector<uint16_t> startup_methods = {methods[1], methods[2], methods[7]};
std::vector<uint16_t> post_methods = {methods[0], methods[2], methods[6]};
// Here, we build the profile from the method lists.
ProfileCompilationInfo info;
info.AddMethodsForDex(
static_cast<Hotness::Flag>(Hotness::kFlagHot | Hotness::kFlagStartup),
dex.get(),
hot_methods.begin(),
hot_methods.end());
info.AddMethodsForDex(
Hotness::kFlagStartup,
dex.get(),
startup_methods.begin(),
startup_methods.end());
info.AddMethodsForDex(
Hotness::kFlagPostStartup,
dex.get(),
post_methods.begin(),
post_methods.end());
for (uint16_t id : hot_methods) {
EXPECT_TRUE(info.GetMethodHotness(MethodReference(dex.get(), id)).IsHot());
EXPECT_TRUE(info.GetMethodHotness(MethodReference(dex.get(), id)).IsStartup());
}
for (uint16_t id : startup_methods) {
EXPECT_TRUE(info.GetMethodHotness(MethodReference(dex.get(), id)).IsStartup());
}
for (uint16_t id : post_methods) {
EXPECT_TRUE(info.GetMethodHotness(MethodReference(dex.get(), id)).IsPostStartup());
}
// Save the profile since we want to use it with dex2oat to produce an oat file.
ASSERT_TRUE(info.Save(profile_file.GetFd()));
// Generate a profile based odex.
const std::string dir = GetScratchDir();
const std::string oat_filename = dir + "/base.oat";
const std::string vdex_filename = dir + "/base.vdex";
std::string error_msg;
const int res = GenerateOdexForTestWithStatus(
{dex->GetLocation()},
oat_filename,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--profile-file=" + profile_file.GetFilename()});
EXPECT_EQ(res, 0);
// Open our generated oat file.
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
oat_filename.c_str(),
oat_filename.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex->GetLocation().c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
std::vector<const OatDexFile*> oat_dex_files = odex_file->GetOatDexFiles();
ASSERT_EQ(oat_dex_files.size(), 1u);
// Check that the code sections match what we expect.
for (const OatDexFile* oat_dex : oat_dex_files) {
const DexLayoutSections* const sections = oat_dex->GetDexLayoutSections();
// Testing of logging the sections.
ASSERT_TRUE(sections != nullptr);
LOG(INFO) << *sections;
// Load the sections into temporary variables for convenience.
const DexLayoutSection& code_section =
sections->sections_[static_cast<size_t>(DexLayoutSections::SectionType::kSectionTypeCode)];
const DexLayoutSection::Subsection& section_hot_code =
code_section.parts_[static_cast<size_t>(LayoutType::kLayoutTypeHot)];
const DexLayoutSection::Subsection& section_sometimes_used =
code_section.parts_[static_cast<size_t>(LayoutType::kLayoutTypeSometimesUsed)];
const DexLayoutSection::Subsection& section_startup_only =
code_section.parts_[static_cast<size_t>(LayoutType::kLayoutTypeStartupOnly)];
const DexLayoutSection::Subsection& section_unused =
code_section.parts_[static_cast<size_t>(LayoutType::kLayoutTypeUnused)];
// All the sections should be non-empty.
EXPECT_GT(section_hot_code.Size(), 0u);
EXPECT_GT(section_sometimes_used.Size(), 0u);
EXPECT_GT(section_startup_only.Size(), 0u);
EXPECT_GT(section_unused.Size(), 0u);
// Open the dex file since we need to peek at the code items to verify the layout matches what
// we expect.
std::unique_ptr<const DexFile> dex_file(oat_dex->OpenDexFile(&error_msg));
ASSERT_TRUE(dex_file != nullptr) << error_msg;
const dex::TypeId* type_id = dex_file->FindTypeId("LManyMethods;");
ASSERT_TRUE(type_id != nullptr);
dex::TypeIndex type_idx = dex_file->GetIndexForTypeId(*type_id);
const dex::ClassDef* class_def = dex_file->FindClassDef(type_idx);
ASSERT_TRUE(class_def != nullptr);
// Count how many code items are for each category, there should be at least one per category.
size_t hot_count = 0;
size_t post_startup_count = 0;
size_t startup_count = 0;
size_t unused_count = 0;
// Visit all of the methdos of the main class and cross reference the method indices to their
// corresponding code item offsets to verify the layout.
ClassAccessor accessor(*dex_file, *class_def);
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
const size_t method_idx = method.GetIndex();
const size_t code_item_offset = method.GetCodeItemOffset();
const bool is_hot = ContainsElement(hot_methods, method_idx);
const bool is_startup = ContainsElement(startup_methods, method_idx);
const bool is_post_startup = ContainsElement(post_methods, method_idx);
if (is_hot) {
// Hot is highest precedence, check that the hot methods are in the hot section.
EXPECT_TRUE(section_hot_code.Contains(code_item_offset));
++hot_count;
} else if (is_post_startup) {
// Post startup is sometimes used section.
EXPECT_TRUE(section_sometimes_used.Contains(code_item_offset));
++post_startup_count;
} else if (is_startup) {
// Startup at this point means not hot or post startup, these must be startup only then.
EXPECT_TRUE(section_startup_only.Contains(code_item_offset));
++startup_count;
} else {
if (section_unused.Contains(code_item_offset)) {
// If no flags are set, the method should be unused ...
++unused_count;
} else {
// or this method is part of the last code item and the end is 4 byte aligned.
for (const ClassAccessor::Method& method2 : accessor.GetMethods()) {
EXPECT_LE(method2.GetCodeItemOffset(), code_item_offset);
}
uint32_t code_item_size = dex_file->FindCodeItemOffset(*class_def, method_idx);
EXPECT_EQ((code_item_offset + code_item_size) % 4, 0u);
}
}
}
EXPECT_GT(hot_count, 0u);
EXPECT_GT(post_startup_count, 0u);
EXPECT_GT(startup_count, 0u);
EXPECT_GT(unused_count, 0u);
}
}
// Test that generating compact dex works.
TEST_F(Dex2oatTest, GenerateCompactDex) {
// Generate a compact dex based odex.
const std::string dir = GetScratchDir();
const std::string oat_filename = dir + "/base.oat";
const std::string vdex_filename = dir + "/base.vdex";
const std::string dex_location = GetTestDexFileName("MultiDex");
std::string error_msg;
const int res = GenerateOdexForTestWithStatus(
{ dex_location },
oat_filename,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--compact-dex-level=fast"});
EXPECT_EQ(res, 0);
// Open our generated oat file.
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
oat_filename.c_str(),
oat_filename.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
std::vector<const OatDexFile*> oat_dex_files = odex_file->GetOatDexFiles();
ASSERT_GT(oat_dex_files.size(), 1u);
// Check that each dex is a compact dex file.
std::vector<std::unique_ptr<const CompactDexFile>> compact_dex_files;
for (const OatDexFile* oat_dex : oat_dex_files) {
std::unique_ptr<const DexFile> dex_file(oat_dex->OpenDexFile(&error_msg));
ASSERT_TRUE(dex_file != nullptr) << error_msg;
ASSERT_TRUE(dex_file->IsCompactDexFile());
compact_dex_files.push_back(
std::unique_ptr<const CompactDexFile>(dex_file.release()->AsCompactDexFile()));
}
for (const std::unique_ptr<const CompactDexFile>& dex_file : compact_dex_files) {
// Test that every code item is in the owned section.
const CompactDexFile::Header& header = dex_file->GetHeader();
EXPECT_LE(header.OwnedDataBegin(), header.OwnedDataEnd());
EXPECT_LE(header.OwnedDataBegin(), header.data_size_);
EXPECT_LE(header.OwnedDataEnd(), header.data_size_);
for (ClassAccessor accessor : dex_file->GetClasses()) {
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
if (method.GetCodeItemOffset() != 0u) {
ASSERT_GE(method.GetCodeItemOffset(), header.OwnedDataBegin());
ASSERT_LT(method.GetCodeItemOffset(), header.OwnedDataEnd());
}
}
}
// Test that the owned sections don't overlap.
for (const std::unique_ptr<const CompactDexFile>& other_dex : compact_dex_files) {
if (dex_file != other_dex) {
ASSERT_TRUE(
(dex_file->GetHeader().OwnedDataBegin() >= other_dex->GetHeader().OwnedDataEnd()) ||
(dex_file->GetHeader().OwnedDataEnd() <= other_dex->GetHeader().OwnedDataBegin()));
}
}
}
}
class Dex2oatVerifierAbort : public Dex2oatTest {};
TEST_F(Dex2oatVerifierAbort, HardFail) {
// Use VerifierDeps as it has hard-failing classes.
std::unique_ptr<const DexFile> dex(OpenTestDexFile("VerifierDeps"));
std::string out_dir = GetScratchDir();
const std::string base_oat_name = out_dir + "/base.oat";
std::string error_msg;
const int res_fail = GenerateOdexForTestWithStatus(
{dex->GetLocation()},
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--abort-on-hard-verifier-error"});
EXPECT_NE(0, res_fail);
const int res_no_fail = GenerateOdexForTestWithStatus(
{dex->GetLocation()},
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--no-abort-on-hard-verifier-error"});
EXPECT_EQ(0, res_no_fail);
}
TEST_F(Dex2oatVerifierAbort, SoftFail) {
// Use VerifierDepsMulti as it has hard-failing classes.
std::unique_ptr<const DexFile> dex(OpenTestDexFile("VerifierDepsMulti"));
std::string out_dir = GetScratchDir();
const std::string base_oat_name = out_dir + "/base.oat";
std::string error_msg;
const int res_fail = GenerateOdexForTestWithStatus(
{dex->GetLocation()},
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--abort-on-soft-verifier-error"});
EXPECT_NE(0, res_fail);
const int res_no_fail = GenerateOdexForTestWithStatus(
{dex->GetLocation()},
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{"--no-abort-on-soft-verifier-error"});
EXPECT_EQ(0, res_no_fail);
}
class Dex2oatDedupeCode : public Dex2oatTest {};
TEST_F(Dex2oatDedupeCode, DedupeTest) {
// Use MyClassNatives. It has lots of native methods that will produce deduplicate-able code.
std::unique_ptr<const DexFile> dex(OpenTestDexFile("MyClassNatives"));
std::string out_dir = GetScratchDir();
const std::string base_oat_name = out_dir + "/base.oat";
size_t no_dedupe_size = 0;
ASSERT_TRUE(GenerateOdexForTest(dex->GetLocation(),
base_oat_name,
CompilerFilter::Filter::kSpeed,
{ "--deduplicate-code=false" },
true, // expect_success
false, // use_fd
[&no_dedupe_size](const OatFile& o) {
no_dedupe_size = o.Size();
}));
size_t dedupe_size = 0;
ASSERT_TRUE(GenerateOdexForTest(dex->GetLocation(),
base_oat_name,
CompilerFilter::Filter::kSpeed,
{ "--deduplicate-code=true" },
true, // expect_success
false, // use_fd
[&dedupe_size](const OatFile& o) {
dedupe_size = o.Size();
}));
EXPECT_LT(dedupe_size, no_dedupe_size);
}
TEST_F(Dex2oatTest, UncompressedTest) {
std::unique_ptr<const DexFile> dex(OpenTestDexFile("MainUncompressed"));
std::string out_dir = GetScratchDir();
const std::string base_oat_name = out_dir + "/base.oat";
ASSERT_TRUE(GenerateOdexForTest(dex->GetLocation(),
base_oat_name,
CompilerFilter::Filter::kQuicken,
{ },
true, // expect_success
false, // use_fd
[](const OatFile& o) {
CHECK(!o.ContainsDexCode());
}));
}
TEST_F(Dex2oatTest, EmptyUncompressedDexTest) {
std::string out_dir = GetScratchDir();
const std::string base_oat_name = out_dir + "/base.oat";
std::string error_msg;
int status = GenerateOdexForTestWithStatus(
{ GetTestDexFileName("MainEmptyUncompressed") },
base_oat_name,
CompilerFilter::Filter::kQuicken,
&error_msg,
{ },
/*use_fd*/ false);
// Expect to fail with code 1 and not SIGSEGV or SIGABRT.
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(WEXITSTATUS(status), 1) << error_msg;
}
// Dex file that has duplicate methods have different code items and debug info.
static const char kDuplicateMethodInputDex[] =
"ZGV4CjAzOQDEy8VPdj4qHpgPYFWtLCtOykfFP4kB8tGYDAAAcAAAAHhWNBIAAAAAAAAAANALAABI"
"AAAAcAAAAA4AAACQAQAABQAAAMgBAAANAAAABAIAABkAAABsAgAABAAAADQDAADgCAAAuAMAADgI"
"AABCCAAASggAAE8IAABcCAAAaggAAHkIAACICAAAlggAAKQIAACyCAAAwAgAAM4IAADcCAAA6ggA"
"APgIAAD7CAAA/wgAABcJAAAuCQAARQkAAFQJAAB4CQAAmAkAALsJAADSCQAA5gkAAPoJAAAVCgAA"
"KQoAADsKAABCCgAASgoAAFIKAABbCgAAZAoAAGwKAAB0CgAAfAoAAIQKAACMCgAAlAoAAJwKAACk"
"CgAArQoAALcKAADACgAAwwoAAMcKAADcCgAA6QoAAPEKAAD3CgAA/QoAAAMLAAAJCwAAEAsAABcL"
"AAAdCwAAIwsAACkLAAAvCwAANQsAADsLAABBCwAARwsAAE0LAABSCwAAWwsAAF4LAABoCwAAbwsA"
"ABEAAAASAAAAEwAAABQAAAAVAAAAFgAAABcAAAAYAAAAGQAAABoAAAAbAAAAHAAAAC4AAAAwAAAA"
"DwAAAAkAAAAAAAAAEAAAAAoAAACoBwAALgAAAAwAAAAAAAAALwAAAAwAAACoBwAALwAAAAwAAACw"
"BwAAAgAJADUAAAACAAkANgAAAAIACQA3AAAAAgAJADgAAAACAAkAOQAAAAIACQA6AAAAAgAJADsA"
"AAACAAkAPAAAAAIACQA9AAAAAgAJAD4AAAACAAkAPwAAAAIACQBAAAAACwAHAEIAAAAAAAIAAQAA"
"AAAAAwAeAAAAAQACAAEAAAABAAMAHgAAAAIAAgAAAAAAAgACAAEAAAADAAIAAQAAAAMAAgAfAAAA"
"AwACACAAAAADAAIAIQAAAAMAAgAiAAAAAwACACMAAAADAAIAJAAAAAMAAgAlAAAAAwACACYAAAAD"
"AAIAJwAAAAMAAgAoAAAAAwACACkAAAADAAIAKgAAAAMABAA0AAAABwADAEMAAAAIAAIAAQAAAAoA"
"AgABAAAACgABADIAAAAKAAAARQAAAAAAAAAAAAAACAAAAAAAAAAdAAAAaAcAALYHAAAAAAAAAQAA"
"AAAAAAAIAAAAAAAAAB0AAAB4BwAAxAcAAAAAAAACAAAAAAAAAAgAAAAAAAAAHQAAAIgHAADSBwAA"
"AAAAAAMAAAAAAAAACAAAAAAAAAAdAAAAmAcAAPoHAAAAAAAAAAAAAAEAAAAAAAAArAYAADEAAAAa"
"AAMAaQAAABoABABpAAEAGgAHAGkABAAaAAgAaQAFABoACQBpAAYAGgAKAGkABwAaAAsAaQAIABoA"
"DABpAAkAGgANAGkACgAaAA4AaQALABoABQBpAAIAGgAGAGkAAwAOAAAAAQABAAEAAACSBgAABAAA"
"AHAQFQAAAA4ABAABAAIAAACWBgAAFwAAAGIADAAiAQoAcBAWAAEAGgICAG4gFwAhAG4gFwAxAG4Q"
"GAABAAwBbiAUABAADgAAAAEAAQABAAAAngYAAAQAAABwEBUAAAAOAAIAAQACAAAAogYAAAYAAABi"
"AAwAbiAUABAADgABAAEAAQAAAKgGAAAEAAAAcBAVAAAADgABAAEAAQAAALsGAAAEAAAAcBAVAAAA"
"DgABAAAAAQAAAL8GAAAGAAAAYgAAAHEQAwAAAA4AAQAAAAEAAADEBgAABgAAAGIAAQBxEAMAAAAO"
"AAEAAAABAAAA8QYAAAYAAABiAAIAcRABAAAADgABAAAAAQAAAPYGAAAGAAAAYgADAHEQAwAAAA4A"
"AQAAAAEAAADJBgAABgAAAGIABABxEAMAAAAOAAEAAAABAAAAzgYAAAYAAABiAAEAcRADAAAADgAB"
"AAAAAQAAANMGAAAGAAAAYgAGAHEQAwAAAA4AAQAAAAEAAADYBgAABgAAAGIABwBxEAMAAAAOAAEA"
"AAABAAAA3QYAAAYAAABiAAgAcRABAAAADgABAAAAAQAAAOIGAAAGAAAAYgAJAHEQAwAAAA4AAQAA"
"AAEAAADnBgAABgAAAGIACgBxEAMAAAAOAAEAAAABAAAA7AYAAAYAAABiAAsAcRABAAAADgABAAEA"
"AAAAAPsGAAAlAAAAcQAHAAAAcQAIAAAAcQALAAAAcQAMAAAAcQANAAAAcQAOAAAAcQAPAAAAcQAQ"
"AAAAcQARAAAAcQASAAAAcQAJAAAAcQAKAAAADgAnAA4AKQFFDgEWDwAhAA4AIwFFDloAEgAOABMA"
"DktLS0tLS0tLS0tLABEADgAuAA5aADIADloANgAOWgA6AA5aAD4ADloAQgAOWgBGAA5aAEoADloA"
"TgAOWgBSAA5aAFYADloAWgAOWgBeATQOPDw8PDw8PDw8PDw8AAIEAUYYAwIFAjEECEEXLAIFAjEE"
"CEEXKwIFAjEECEEXLQIGAUYcAxgAGAEYAgAAAAIAAAAMBwAAEgcAAAIAAAAMBwAAGwcAAAIAAAAM"
"BwAAJAcAAAEAAAAtBwAAPAcAAAAAAAAAAAAAAAAAAEgHAAAAAAAAAAAAAAAAAABUBwAAAAAAAAAA"
"AAAAAAAAYAcAAAAAAAAAAAAAAAAAAAEAAAAJAAAAAQAAAA0AAAACAACAgASsCAEIxAgAAAIAAoCA"
"BIQJAQicCQwAAgAACQEJAQkBCQEJAQkBCQEJAQkBCQEJAQkEiIAEuAcBgIAEuAkAAA4ABoCABNAJ"
"AQnoCQAJhAoACaAKAAm8CgAJ2AoACfQKAAmQCwAJrAsACcgLAAnkCwAJgAwACZwMAAm4DAg8Y2xp"
"bml0PgAGPGluaXQ+AANBQUEAC0hlbGxvIFdvcmxkAAxIZWxsbyBXb3JsZDEADUhlbGxvIFdvcmxk"
"MTAADUhlbGxvIFdvcmxkMTEADEhlbGxvIFdvcmxkMgAMSGVsbG8gV29ybGQzAAxIZWxsbyBXb3Js"
"ZDQADEhlbGxvIFdvcmxkNQAMSGVsbG8gV29ybGQ2AAxIZWxsbyBXb3JsZDcADEhlbGxvIFdvcmxk"
"OAAMSGVsbG8gV29ybGQ5AAFMAAJMTAAWTE1hbnlNZXRob2RzJFByaW50ZXIyOwAVTE1hbnlNZXRo"
"b2RzJFByaW50ZXI7ABVMTWFueU1ldGhvZHMkU3RyaW5nczsADUxNYW55TWV0aG9kczsAIkxkYWx2"
"aWsvYW5ub3RhdGlvbi9FbmNsb3NpbmdDbGFzczsAHkxkYWx2aWsvYW5ub3RhdGlvbi9Jbm5lckNs"
"YXNzOwAhTGRhbHZpay9hbm5vdGF0aW9uL01lbWJlckNsYXNzZXM7ABVMamF2YS9pby9QcmludFN0"
"cmVhbTsAEkxqYXZhL2xhbmcvT2JqZWN0OwASTGphdmEvbGFuZy9TdHJpbmc7ABlMamF2YS9sYW5n"
"L1N0cmluZ0J1aWxkZXI7ABJMamF2YS9sYW5nL1N5c3RlbTsAEE1hbnlNZXRob2RzLmphdmEABVBy"
"aW50AAZQcmludDAABlByaW50MQAHUHJpbnQxMAAHUHJpbnQxMQAGUHJpbnQyAAZQcmludDMABlBy"
"aW50NAAGUHJpbnQ1AAZQcmludDYABlByaW50NwAGUHJpbnQ4AAZQcmludDkAB1ByaW50ZXIACFBy"
"aW50ZXIyAAdTdHJpbmdzAAFWAAJWTAATW0xqYXZhL2xhbmcvU3RyaW5nOwALYWNjZXNzRmxhZ3MA"
"BmFwcGVuZAAEYXJncwAEbWFpbgAEbXNnMAAEbXNnMQAFbXNnMTAABW1zZzExAARtc2cyAARtc2cz"
"AARtc2c0AARtc2c1AARtc2c2AARtc2c3AARtc2c4AARtc2c5AARuYW1lAANvdXQAB3ByaW50bG4A"
"AXMACHRvU3RyaW5nAAV2YWx1ZQBffn5EOHsibWluLWFwaSI6MTAwMDAsInNoYS0xIjoiZmViODZj"
"MDA2ZWZhY2YxZDc5ODRiODVlMTc5MGZlZjdhNzY3YWViYyIsInZlcnNpb24iOiJ2MS4xLjUtZGV2"
"In0AEAAAAAAAAAABAAAAAAAAAAEAAABIAAAAcAAAAAIAAAAOAAAAkAEAAAMAAAAFAAAAyAEAAAQA"
"AAANAAAABAIAAAUAAAAZAAAAbAIAAAYAAAAEAAAANAMAAAEgAAAUAAAAuAMAAAMgAAAUAAAAkgYA"
"AAQgAAAFAAAADAcAAAMQAAAEAAAAOQcAAAYgAAAEAAAAaAcAAAEQAAACAAAAqAcAAAAgAAAEAAAA"
"tgcAAAIgAABIAAAAOAgAAAAQAAABAAAA0AsAAAAAAAA=";
static void WriteBase64ToFile(const char* base64, File* file) {
// Decode base64.
CHECK(base64 != nullptr);
size_t length;
std::unique_ptr<uint8_t[]> bytes(DecodeBase64(base64, &length));
CHECK(bytes != nullptr);
if (!file->WriteFully(bytes.get(), length)) {
PLOG(FATAL) << "Failed to write base64 as file";
}
}
TEST_F(Dex2oatTest, CompactDexGenerationFailure) {
ScratchFile temp_dex;
WriteBase64ToFile(kDuplicateMethodInputDex, temp_dex.GetFile());
std::string out_dir = GetScratchDir();
const std::string oat_filename = out_dir + "/base.oat";
// The dex won't pass the method verifier, only use the verify filter.
ASSERT_TRUE(GenerateOdexForTest(temp_dex.GetFilename(),
oat_filename,
CompilerFilter::Filter::kVerify,
{ },
true, // expect_success
false, // use_fd
[](const OatFile& o) {
CHECK(o.ContainsDexCode());
}));
// Open our generated oat file.
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
oat_filename.c_str(),
oat_filename.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
temp_dex.GetFilename().c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
std::vector<const OatDexFile*> oat_dex_files = odex_file->GetOatDexFiles();
ASSERT_EQ(oat_dex_files.size(), 1u);
// The dexes should have failed to convert to compact dex.
for (const OatDexFile* oat_dex : oat_dex_files) {
std::unique_ptr<const DexFile> dex_file(oat_dex->OpenDexFile(&error_msg));
ASSERT_TRUE(dex_file != nullptr) << error_msg;
ASSERT_TRUE(!dex_file->IsCompactDexFile());
}
}
TEST_F(Dex2oatTest, CompactDexGenerationFailureMultiDex) {
// Create a multidex file with only one dex that gets rejected for cdex conversion.
ScratchFile apk_file;
{
FILE* file = fdopen(DupCloexec(apk_file.GetFd()), "w+b");
ZipWriter writer(file);
// Add vdex to zip.
writer.StartEntry("classes.dex", ZipWriter::kCompress);
size_t length = 0u;
std::unique_ptr<uint8_t[]> bytes(DecodeBase64(kDuplicateMethodInputDex, &length));
ASSERT_GE(writer.WriteBytes(&bytes[0], length), 0);
writer.FinishEntry();
writer.StartEntry("classes2.dex", ZipWriter::kCompress);
std::unique_ptr<const DexFile> dex(OpenTestDexFile("ManyMethods"));
ASSERT_GE(writer.WriteBytes(dex->Begin(), dex->Size()), 0);
writer.FinishEntry();
writer.Finish();
ASSERT_EQ(apk_file.GetFile()->Flush(), 0);
}
const std::string& dex_location = apk_file.GetFilename();
const std::string odex_location = GetOdexDir() + "/output.odex";
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kQuicken,
{ "--compact-dex-level=fast" },
true));
}
TEST_F(Dex2oatTest, StderrLoggerOutput) {
std::string dex_location = GetScratchDir() + "/Dex2OatStderrLoggerTest.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatStderrLoggerTest.odex";
// Test file doesn't matter.
Copy(GetDexSrc1(), dex_location);
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kQuicken,
{ "--runtime-arg", "-Xuse-stderr-logger" },
true));
// Look for some random part of dex2oat logging. With the stderr logger this should be captured,
// even on device.
EXPECT_NE(std::string::npos, output_.find("dex2oat took"));
}
TEST_F(Dex2oatTest, VerifyCompilationReason) {
std::string dex_location = GetScratchDir() + "/Dex2OatCompilationReason.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatCompilationReason.odex";
// Test file doesn't matter.
Copy(GetDexSrc1(), dex_location);
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kVerify,
{ "--compilation-reason=install" },
true));
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
ASSERT_STREQ("install", odex_file->GetCompilationReason());
}
TEST_F(Dex2oatTest, VerifyNoCompilationReason) {
std::string dex_location = GetScratchDir() + "/Dex2OatNoCompilationReason.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatNoCompilationReason.odex";
// Test file doesn't matter.
Copy(GetDexSrc1(), dex_location);
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kVerify,
{},
true));
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
ASSERT_EQ(nullptr, odex_file->GetCompilationReason());
}
TEST_F(Dex2oatTest, DontExtract) {
std::unique_ptr<const DexFile> dex(OpenTestDexFile("ManyMethods"));
std::string error_msg;
const std::string out_dir = GetScratchDir();
const std::string dex_location = dex->GetLocation();
const std::string odex_location = out_dir + "/base.oat";
const std::string vdex_location = out_dir + "/base.vdex";
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::Filter::kVerify,
{ "--copy-dex-files=false" },
true, // expect_success
false, // use_fd
[](const OatFile&) {}));
{
// Check the vdex doesn't have dex.
std::unique_ptr<VdexFile> vdex(VdexFile::Open(vdex_location.c_str(),
/*writable=*/ false,
/*low_4gb=*/ false,
/*unquicken=*/ false,
&error_msg));
ASSERT_TRUE(vdex != nullptr);
EXPECT_FALSE(vdex->HasDexSection()) << output_;
}
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
dex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr) << dex_location;
std::vector<const OatDexFile*> oat_dex_files = odex_file->GetOatDexFiles();
ASSERT_EQ(oat_dex_files.size(), 1u);
// Verify that the oat file can still open the dex files.
for (const OatDexFile* oat_dex : oat_dex_files) {
std::unique_ptr<const DexFile> dex_file(oat_dex->OpenDexFile(&error_msg));
ASSERT_TRUE(dex_file != nullptr) << error_msg;
}
// Create a dm file and use it to verify.
// Add produced artifacts to a zip file that doesn't contain the classes.dex.
ScratchFile dm_file;
{
std::unique_ptr<File> vdex_file(OS::OpenFileForReading(vdex_location.c_str()));
ASSERT_TRUE(vdex_file != nullptr);
ASSERT_GT(vdex_file->GetLength(), 0u);
FILE* file = fdopen(DupCloexec(dm_file.GetFd()), "w+b");
ZipWriter writer(file);
auto write_all_bytes = [&](File* file) {
std::unique_ptr<uint8_t[]> bytes(new uint8_t[file->GetLength()]);
ASSERT_TRUE(file->ReadFully(&bytes[0], file->GetLength()));
ASSERT_GE(writer.WriteBytes(&bytes[0], file->GetLength()), 0);
};
// Add vdex to zip.
writer.StartEntry(VdexFile::kVdexNameInDmFile, ZipWriter::kCompress);
write_all_bytes(vdex_file.get());
writer.FinishEntry();
writer.Finish();
ASSERT_EQ(dm_file.GetFile()->Flush(), 0);
}
auto generate_and_check = [&](CompilerFilter::Filter filter) {
output_.clear();
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
filter,
{ "--dump-timings",
"--dm-file=" + dm_file.GetFilename(),
// Pass -Xuse-stderr-logger have dex2oat output in output_ on
// target.
"--runtime-arg",
"-Xuse-stderr-logger" },
true, // expect_success
false, // use_fd
[](const OatFile& o) {
CHECK(o.ContainsDexCode());
}));
// Check the output for "Fast verify", this is printed from --dump-timings.
std::istringstream iss(output_);
std::string line;
bool found_fast_verify = false;
const std::string kFastVerifyString = "Fast Verify";
while (std::getline(iss, line) && !found_fast_verify) {
found_fast_verify = found_fast_verify || line.find(kFastVerifyString) != std::string::npos;
}
EXPECT_TRUE(found_fast_verify) << "Expected to find " << kFastVerifyString << "\n" << output_;
};
// Generate a quickened dex by using the input dm file to verify.
generate_and_check(CompilerFilter::Filter::kQuicken);
// Use verify compiler filter to sanity check that FastVerify works for that filter too.
generate_and_check(CompilerFilter::Filter::kVerify);
}
// Test that dex files with quickened opcodes aren't dequickened.
TEST_F(Dex2oatTest, QuickenedInput) {
std::string error_msg;
ScratchFile temp_dex;
MutateDexFile(temp_dex.GetFile(), GetTestDexFileName("ManyMethods"), [] (DexFile* dex) {
bool mutated_successfully = false;
// Change the dex instructions to make an opcode that spans past the end of the code item.
for (ClassAccessor accessor : dex->GetClasses()) {
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
CodeItemInstructionAccessor instructions = method.GetInstructions();
// Make a quickened instruction that doesn't run past the end of the code item.
if (instructions.InsnsSizeInCodeUnits() > 2) {
const_cast<Instruction&>(instructions.InstructionAt(0)).SetOpcode(
Instruction::IGET_BYTE_QUICK);
mutated_successfully = true;
}
}
}
CHECK(mutated_successfully)
<< "Failed to find candidate code item with only one code unit in last instruction.";
});
const std::string& dex_location = temp_dex.GetFilename();
std::string odex_location = GetOdexDir() + "/quickened.odex";
std::string vdex_location = GetOdexDir() + "/quickened.vdex";
std::unique_ptr<File> vdex_output(OS::CreateEmptyFile(vdex_location.c_str()));
// Quicken the dex
{
std::string input_vdex = "--input-vdex-fd=-1";
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_output->Fd());
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kQuicken,
// Disable cdex since we want to compare against the original
// dex file after unquickening.
{ input_vdex, output_vdex, kDisableCompactDex },
/* expect_success= */ true,
/* use_fd= */ true));
}
// Unquicken by running the verify compiler filter on the vdex file and verify it matches.
std::string odex_location2 = GetOdexDir() + "/unquickened.odex";
std::string vdex_location2 = GetOdexDir() + "/unquickened.vdex";
std::unique_ptr<File> vdex_unquickened(OS::CreateEmptyFile(vdex_location2.c_str()));
{
std::string input_vdex = StringPrintf("--input-vdex-fd=%d", vdex_output->Fd());
std::string output_vdex = StringPrintf("--output-vdex-fd=%d", vdex_unquickened->Fd());
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location2,
CompilerFilter::kVerify,
// Disable cdex to avoid needing to write out the shared
// section.
{ input_vdex, output_vdex, kDisableCompactDex },
/* expect_success= */ true,
/* use_fd= */ true));
}
ASSERT_EQ(vdex_unquickened->Flush(), 0) << "Could not flush and close vdex file";
ASSERT_TRUE(success_);
{
// Check that hte vdex has one dex and compare it to the original one.
std::unique_ptr<VdexFile> vdex(VdexFile::Open(vdex_location2.c_str(),
/*writable*/ false,
/*low_4gb*/ false,
/*unquicken*/ false,
&error_msg));
std::vector<std::unique_ptr<const DexFile>> dex_files;
bool result = vdex->OpenAllDexFiles(&dex_files, &error_msg);
ASSERT_TRUE(result) << error_msg;
ASSERT_EQ(dex_files.size(), 1u) << error_msg;
ScratchFile temp;
ASSERT_TRUE(temp.GetFile()->WriteFully(dex_files[0]->Begin(), dex_files[0]->Size()));
ASSERT_EQ(temp.GetFile()->Flush(), 0) << "Could not flush extracted dex";
EXPECT_EQ(temp.GetFile()->Compare(temp_dex.GetFile()), 0);
}
ASSERT_EQ(vdex_output->FlushCloseOrErase(), 0) << "Could not flush and close";
ASSERT_EQ(vdex_unquickened->FlushCloseOrErase(), 0) << "Could not flush and close";
}
// Test that compact dex generation with invalid dex files doesn't crash dex2oat. b/75970654
TEST_F(Dex2oatTest, CompactDexInvalidSource) {
ScratchFile invalid_dex;
{
FILE* file = fdopen(DupCloexec(invalid_dex.GetFd()), "w+b");
ZipWriter writer(file);
writer.StartEntry("classes.dex", ZipWriter::kAlign32);
DexFile::Header header = {};
StandardDexFile::WriteMagic(header.magic_);
StandardDexFile::WriteCurrentVersion(header.magic_);
header.file_size_ = 4 * KB;
header.data_size_ = 4 * KB;
header.data_off_ = 10 * MB;
header.map_off_ = 10 * MB;
header.class_defs_off_ = 10 * MB;
header.class_defs_size_ = 10000;
ASSERT_GE(writer.WriteBytes(&header, sizeof(header)), 0);
writer.FinishEntry();
writer.Finish();
ASSERT_EQ(invalid_dex.GetFile()->Flush(), 0);
}
const std::string& dex_location = invalid_dex.GetFilename();
const std::string odex_location = GetOdexDir() + "/output.odex";
std::string error_msg;
int status = GenerateOdexForTestWithStatus(
{dex_location},
odex_location,
CompilerFilter::kQuicken,
&error_msg,
{ "--compact-dex-level=fast" });
ASSERT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) != 0) << status << " " << output_;
}
// Test that dex2oat with a CompactDex file in the APK fails.
TEST_F(Dex2oatTest, CompactDexInZip) {
CompactDexFile::Header header = {};
CompactDexFile::WriteMagic(header.magic_);
CompactDexFile::WriteCurrentVersion(header.magic_);
header.file_size_ = sizeof(CompactDexFile::Header);
header.data_off_ = 10 * MB;
header.map_off_ = 10 * MB;
header.class_defs_off_ = 10 * MB;
header.class_defs_size_ = 10000;
// Create a zip containing the invalid dex.
ScratchFile invalid_dex_zip;
{
FILE* file = fdopen(DupCloexec(invalid_dex_zip.GetFd()), "w+b");
ZipWriter writer(file);
writer.StartEntry("classes.dex", ZipWriter::kCompress);
ASSERT_GE(writer.WriteBytes(&header, sizeof(header)), 0);
writer.FinishEntry();
writer.Finish();
ASSERT_EQ(invalid_dex_zip.GetFile()->Flush(), 0);
}
// Create the dex file directly.
ScratchFile invalid_dex;
{
ASSERT_GE(invalid_dex.GetFile()->WriteFully(&header, sizeof(header)), 0);
ASSERT_EQ(invalid_dex.GetFile()->Flush(), 0);
}
std::string error_msg;
int status = 0u;
status = GenerateOdexForTestWithStatus(
{ invalid_dex_zip.GetFilename() },
GetOdexDir() + "/output_apk.odex",
CompilerFilter::kQuicken,
&error_msg,
{ "--compact-dex-level=fast" });
ASSERT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) != 0) << status << " " << output_;
status = GenerateOdexForTestWithStatus(
{ invalid_dex.GetFilename() },
GetOdexDir() + "/output.odex",
CompilerFilter::kQuicken,
&error_msg,
{ "--compact-dex-level=fast" });
ASSERT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) != 0) << status << " " << output_;
}
TEST_F(Dex2oatTest, AppImageNoProfile) {
ScratchFile app_image_file;
const std::string out_dir = GetScratchDir();
const std::string odex_location = out_dir + "/base.odex";
ASSERT_TRUE(GenerateOdexForTest(GetTestDexFileName("ManyMethods"),
odex_location,
CompilerFilter::Filter::kSpeedProfile,
{ "--app-image-fd=" + std::to_string(app_image_file.GetFd()) },
true, // expect_success
false, // use_fd
[](const OatFile&) {}));
// Open our generated oat file.
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
odex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
ImageHeader header = {};
ASSERT_TRUE(app_image_file.GetFile()->PreadFully(
reinterpret_cast<void*>(&header),
sizeof(header),
/*offset*/ 0u)) << app_image_file.GetFile()->GetLength();
EXPECT_GT(header.GetImageSection(ImageHeader::kSectionObjects).Size(), 0u);
EXPECT_EQ(header.GetImageSection(ImageHeader::kSectionArtMethods).Size(), 0u);
EXPECT_EQ(header.GetImageSection(ImageHeader::kSectionArtFields).Size(), 0u);
}
TEST_F(Dex2oatTest, AppImageResolveStrings) {
using Hotness = ProfileCompilationInfo::MethodHotness;
// Create a profile with the startup method marked.
ScratchFile profile_file;
ScratchFile temp_dex;
const std::string& dex_location = temp_dex.GetFilename();
std::vector<uint16_t> methods;
std::vector<dex::TypeIndex> classes;
{
MutateDexFile(temp_dex.GetFile(), GetTestDexFileName("StringLiterals"), [&] (DexFile* dex) {
bool mutated_successfully = false;
// Change the dex instructions to make an opcode that spans past the end of the code item.
for (ClassAccessor accessor : dex->GetClasses()) {
if (accessor.GetDescriptor() == std::string("LStringLiterals$StartupClass;")) {
classes.push_back(accessor.GetClassIdx());
}
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
std::string method_name(dex->GetMethodName(dex->GetMethodId(method.GetIndex())));
CodeItemInstructionAccessor instructions = method.GetInstructions();
if (method_name == "startUpMethod2") {
// Make an instruction that runs past the end of the code item and verify that it
// doesn't cause dex2oat to crash.
ASSERT_TRUE(instructions.begin() != instructions.end());
DexInstructionIterator last_instruction = instructions.begin();
for (auto dex_it = instructions.begin(); dex_it != instructions.end(); ++dex_it) {
last_instruction = dex_it;
}
ASSERT_EQ(last_instruction->SizeInCodeUnits(), 1u);
// Set the opcode to something that will go past the end of the code item.
const_cast<Instruction&>(last_instruction.Inst()).SetOpcode(
Instruction::CONST_STRING_JUMBO);
mutated_successfully = true;
// Test that the safe iterator doesn't go past the end.
SafeDexInstructionIterator it2(instructions.begin(), instructions.end());
while (!it2.IsErrorState()) {
++it2;
}
EXPECT_TRUE(it2 == last_instruction);
EXPECT_TRUE(it2 < instructions.end());
methods.push_back(method.GetIndex());
mutated_successfully = true;
} else if (method_name == "startUpMethod") {
methods.push_back(method.GetIndex());
}
}
}
CHECK(mutated_successfully)
<< "Failed to find candidate code item with only one code unit in last instruction.";
});
}
std::unique_ptr<const DexFile> dex_file(OpenDexFile(temp_dex.GetFilename().c_str()));
{
ASSERT_GT(classes.size(), 0u);
ASSERT_GT(methods.size(), 0u);
// Here, we build the profile from the method lists.
ProfileCompilationInfo info;
info.AddClassesForDex(dex_file.get(), classes.begin(), classes.end());
info.AddMethodsForDex(Hotness::kFlagStartup, dex_file.get(), methods.begin(), methods.end());
// Save the profile since we want to use it with dex2oat to produce an oat file.
ASSERT_TRUE(info.Save(profile_file.GetFd()));
}
const std::string out_dir = GetScratchDir();
const std::string odex_location = out_dir + "/base.odex";
const std::string app_image_location = out_dir + "/base.art";
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::Filter::kSpeedProfile,
{ "--app-image-file=" + app_image_location,
"--resolve-startup-const-strings=true",
"--profile-file=" + profile_file.GetFilename()},
/* expect_success= */ true,
/* use_fd= */ false,
[](const OatFile&) {}));
// Open our generated oat file.
std::string error_msg;
std::unique_ptr<OatFile> odex_file(OatFile::Open(/*zip_fd=*/ -1,
odex_location.c_str(),
odex_location.c_str(),
/*executable=*/ false,
/*low_4gb=*/ false,
odex_location.c_str(),
/*reservation=*/ nullptr,
&error_msg));
ASSERT_TRUE(odex_file != nullptr);
// Check the strings in the app image intern table only contain the "startup" strigs.
{
ScopedObjectAccess soa(Thread::Current());
std::unique_ptr<gc::space::ImageSpace> space =
gc::space::ImageSpace::CreateFromAppImage(app_image_location.c_str(),
odex_file.get(),
&error_msg);
ASSERT_TRUE(space != nullptr) << error_msg;
std::set<std::string> seen;
InternTable intern_table;
intern_table.AddImageStringsToTable(space.get(), [&](InternTable::UnorderedSet& interns)
REQUIRES_SHARED(Locks::mutator_lock_) {
for (const GcRoot<mirror::String>& str : interns) {
seen.insert(str.Read()->ToModifiedUtf8());
}
});
// Ensure that the dex cache has a preresolved string array.
std::set<std::string> preresolved_seen;
bool saw_dexcache = false;
space->GetLiveBitmap()->VisitAllMarked(
[&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
if (obj->IsDexCache<kVerifyNone>()) {
ObjPtr<mirror::DexCache> dex_cache = obj->AsDexCache();
GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
ASSERT_EQ(dex_file->NumStringIds(), dex_cache->NumPreResolvedStrings());
for (size_t i = 0; i < dex_cache->NumPreResolvedStrings(); ++i) {
ObjPtr<mirror::String> string = preresolved_strings[i].Read<kWithoutReadBarrier>();
if (string != nullptr) {
preresolved_seen.insert(string->ToModifiedUtf8());
}
}
saw_dexcache = true;
}
});
ASSERT_TRUE(saw_dexcache);
// Everything in the preresolved array should also be in the intern table.
for (const std::string& str : preresolved_seen) {
EXPECT_TRUE(seen.find(str) != seen.end());
}
// Normal methods
EXPECT_TRUE(preresolved_seen.find("Loading ") != preresolved_seen.end());
EXPECT_TRUE(preresolved_seen.find("Starting up") != preresolved_seen.end());
EXPECT_TRUE(preresolved_seen.find("abcd.apk") != preresolved_seen.end());
EXPECT_TRUE(seen.find("Unexpected error") == seen.end());
EXPECT_TRUE(seen.find("Shutting down!") == seen.end());
EXPECT_TRUE(preresolved_seen.find("Unexpected error") == preresolved_seen.end());
EXPECT_TRUE(preresolved_seen.find("Shutting down!") == preresolved_seen.end());
// Classes initializers
EXPECT_TRUE(preresolved_seen.find("Startup init") != preresolved_seen.end());
EXPECT_TRUE(seen.find("Other class init") == seen.end());
EXPECT_TRUE(preresolved_seen.find("Other class init") == preresolved_seen.end());
// Expect the sets match.
EXPECT_GE(seen.size(), preresolved_seen.size());
// Verify what strings are marked as boot image.
std::set<std::string> boot_image_strings;
std::set<std::string> app_image_strings;
MutexLock mu(Thread::Current(), *Locks::intern_table_lock_);
intern_table.VisitInterns([&](const GcRoot<mirror::String>& root)
REQUIRES_SHARED(Locks::mutator_lock_) {
boot_image_strings.insert(root.Read()->ToModifiedUtf8());
}, /*visit_boot_images=*/true, /*visit_non_boot_images=*/false);
intern_table.VisitInterns([&](const GcRoot<mirror::String>& root)
REQUIRES_SHARED(Locks::mutator_lock_) {
app_image_strings.insert(root.Read()->ToModifiedUtf8());
}, /*visit_boot_images=*/false, /*visit_non_boot_images=*/true);
EXPECT_EQ(boot_image_strings.size(), 0u);
EXPECT_TRUE(app_image_strings == seen);
}
}
TEST_F(Dex2oatClassLoaderContextTest, StoredClassLoaderContext) {
std::vector<std::unique_ptr<const DexFile>> dex_files = OpenTestDexFiles("MultiDex");
const std::string out_dir = GetScratchDir();
const std::string odex_location = out_dir + "/base.odex";
const std::string valid_context = "PCL[" + dex_files[0]->GetLocation() + "]";
const std::string stored_context = "PCL[/system/not_real_lib.jar]";
std::string expected_stored_context = "PCL[";
size_t index = 1;
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
const bool is_first = index == 1u;
if (!is_first) {
expected_stored_context += ":";
}
expected_stored_context += "/system/not_real_lib.jar";
if (!is_first) {
expected_stored_context += "!classes" + std::to_string(index) + ".dex";
}
expected_stored_context += "*" + std::to_string(dex_file->GetLocationChecksum());
++index;
}
expected_stored_context += + "]";
// The class path should not be valid and should fail being stored.
EXPECT_TRUE(GenerateOdexForTest(GetTestDexFileName("ManyMethods"),
odex_location,
CompilerFilter::Filter::kQuicken,
{ "--class-loader-context=" + stored_context },
true, // expect_success
false, // use_fd
[&](const OatFile& oat_file) {
EXPECT_NE(oat_file.GetClassLoaderContext(), stored_context) << output_;
EXPECT_NE(oat_file.GetClassLoaderContext(), valid_context) << output_;
}));
// The stored context should match what we expect even though it's invalid.
EXPECT_TRUE(GenerateOdexForTest(GetTestDexFileName("ManyMethods"),
odex_location,
CompilerFilter::Filter::kQuicken,
{ "--class-loader-context=" + valid_context,
"--stored-class-loader-context=" + stored_context },
true, // expect_success
false, // use_fd
[&](const OatFile& oat_file) {
EXPECT_EQ(oat_file.GetClassLoaderContext(), expected_stored_context) << output_;
}));
}
class Dex2oatISAFeaturesRuntimeDetectionTest : public Dex2oatTest {
protected:
void RunTest(const std::vector<std::string>& extra_args = {}) {
std::string dex_location = GetScratchDir() + "/Dex2OatSwapTest.jar";
std::string odex_location = GetOdexDir() + "/Dex2OatSwapTest.odex";
Copy(GetTestDexFileName(), dex_location);
ASSERT_TRUE(GenerateOdexForTest(dex_location,
odex_location,
CompilerFilter::kSpeed,
extra_args));
}
std::string GetTestDexFileName() {
return GetDexSrc1();
}
};
TEST_F(Dex2oatISAFeaturesRuntimeDetectionTest, TestCurrentRuntimeFeaturesAsDex2OatArguments) {
std::vector<std::string> argv;
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv);
auto option_pos =
std::find(std::begin(argv), std::end(argv), "--instruction-set-features=runtime");
if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
EXPECT_TRUE(kIsTargetBuild);
EXPECT_NE(option_pos, std::end(argv));
} else {
EXPECT_EQ(option_pos, std::end(argv));
}
RunTest();
}
} // namespace art