blob: 730a271737167f0a34a61b1fd610e41a2ffa5210 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <inttypes.h>
#include "codegen_x86.h"
#include "dex/compiler_internals.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "mirror/array.h"
#include "mirror/string.h"
#include "x86_lir.h"
namespace art {
static constexpr RegStorage core_regs_arr_32[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
};
static constexpr RegStorage core_regs_arr_64[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
};
static constexpr RegStorage core_regs_arr_64q[] = {
rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
};
static constexpr RegStorage sp_regs_arr_32[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
};
static constexpr RegStorage sp_regs_arr_64[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
};
static constexpr RegStorage dp_regs_arr_32[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
};
static constexpr RegStorage dp_regs_arr_64[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
};
static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
static constexpr RegStorage core_temps_arr_64[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
rs_r8, rs_r9, rs_r10, rs_r11
};
static constexpr RegStorage core_temps_arr_64q[] = {
rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
rs_r8q, rs_r9q, rs_r10q, rs_r11q
};
static constexpr RegStorage sp_temps_arr_32[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
};
static constexpr RegStorage sp_temps_arr_64[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
};
static constexpr RegStorage dp_temps_arr_32[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
};
static constexpr RegStorage dp_temps_arr_64[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
};
static constexpr RegStorage xp_temps_arr_32[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
};
static constexpr RegStorage xp_temps_arr_64[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
};
static constexpr ArrayRef<const RegStorage> empty_pool;
static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
RegStorage rs_rX86_SP;
X86NativeRegisterPool rX86_ARG0;
X86NativeRegisterPool rX86_ARG1;
X86NativeRegisterPool rX86_ARG2;
X86NativeRegisterPool rX86_ARG3;
X86NativeRegisterPool rX86_ARG4;
X86NativeRegisterPool rX86_ARG5;
X86NativeRegisterPool rX86_FARG0;
X86NativeRegisterPool rX86_FARG1;
X86NativeRegisterPool rX86_FARG2;
X86NativeRegisterPool rX86_FARG3;
X86NativeRegisterPool rX86_FARG4;
X86NativeRegisterPool rX86_FARG5;
X86NativeRegisterPool rX86_FARG6;
X86NativeRegisterPool rX86_FARG7;
X86NativeRegisterPool rX86_RET0;
X86NativeRegisterPool rX86_RET1;
X86NativeRegisterPool rX86_INVOKE_TGT;
X86NativeRegisterPool rX86_COUNT;
RegStorage rs_rX86_ARG0;
RegStorage rs_rX86_ARG1;
RegStorage rs_rX86_ARG2;
RegStorage rs_rX86_ARG3;
RegStorage rs_rX86_ARG4;
RegStorage rs_rX86_ARG5;
RegStorage rs_rX86_FARG0;
RegStorage rs_rX86_FARG1;
RegStorage rs_rX86_FARG2;
RegStorage rs_rX86_FARG3;
RegStorage rs_rX86_FARG4;
RegStorage rs_rX86_FARG5;
RegStorage rs_rX86_FARG6;
RegStorage rs_rX86_FARG7;
RegStorage rs_rX86_RET0;
RegStorage rs_rX86_RET1;
RegStorage rs_rX86_INVOKE_TGT;
RegStorage rs_rX86_COUNT;
RegLocation X86Mir2Lir::LocCReturn() {
return x86_loc_c_return;
}
RegLocation X86Mir2Lir::LocCReturnRef() {
// FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
return x86_loc_c_return;
}
RegLocation X86Mir2Lir::LocCReturnWide() {
return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
}
RegLocation X86Mir2Lir::LocCReturnFloat() {
return x86_loc_c_return_float;
}
RegLocation X86Mir2Lir::LocCReturnDouble() {
return x86_loc_c_return_double;
}
// Return a target-dependent special register.
RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
RegStorage res_reg = RegStorage::InvalidReg();
switch (reg) {
case kSelf: res_reg = RegStorage::InvalidReg(); break;
case kSuspend: res_reg = RegStorage::InvalidReg(); break;
case kLr: res_reg = RegStorage::InvalidReg(); break;
case kPc: res_reg = RegStorage::InvalidReg(); break;
case kSp: res_reg = rs_rX86_SP; break;
case kArg0: res_reg = rs_rX86_ARG0; break;
case kArg1: res_reg = rs_rX86_ARG1; break;
case kArg2: res_reg = rs_rX86_ARG2; break;
case kArg3: res_reg = rs_rX86_ARG3; break;
case kArg4: res_reg = rs_rX86_ARG4; break;
case kArg5: res_reg = rs_rX86_ARG5; break;
case kFArg0: res_reg = rs_rX86_FARG0; break;
case kFArg1: res_reg = rs_rX86_FARG1; break;
case kFArg2: res_reg = rs_rX86_FARG2; break;
case kFArg3: res_reg = rs_rX86_FARG3; break;
case kFArg4: res_reg = rs_rX86_FARG4; break;
case kFArg5: res_reg = rs_rX86_FARG5; break;
case kFArg6: res_reg = rs_rX86_FARG6; break;
case kFArg7: res_reg = rs_rX86_FARG7; break;
case kRet0: res_reg = rs_rX86_RET0; break;
case kRet1: res_reg = rs_rX86_RET1; break;
case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
case kHiddenArg: res_reg = rs_rAX; break;
case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
case kCount: res_reg = rs_rX86_COUNT; break;
default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
/*
* Decode the register id.
*/
ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
/* Double registers in x86 are just a single FP register. This is always just a single bit. */
return ResourceMask::Bit(
/* FP register starts at bit position 16 */
((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
}
ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
/*
* FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
* able to clean up some of the x86/Arm_Mips differences
*/
LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
return kEncodeNone;
}
void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
ResourceMask* use_mask, ResourceMask* def_mask) {
DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
DCHECK(!lir->flags.use_def_invalid);
// X86-specific resource map setup here.
if (flags & REG_USE_SP) {
use_mask->SetBit(kX86RegSP);
}
if (flags & REG_DEF_SP) {
def_mask->SetBit(kX86RegSP);
}
if (flags & REG_DEFA) {
SetupRegMask(def_mask, rs_rAX.GetReg());
}
if (flags & REG_DEFD) {
SetupRegMask(def_mask, rs_rDX.GetReg());
}
if (flags & REG_USEA) {
SetupRegMask(use_mask, rs_rAX.GetReg());
}
if (flags & REG_USEC) {
SetupRegMask(use_mask, rs_rCX.GetReg());
}
if (flags & REG_USED) {
SetupRegMask(use_mask, rs_rDX.GetReg());
}
if (flags & REG_USEB) {
SetupRegMask(use_mask, rs_rBX.GetReg());
}
// Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
if (lir->opcode == kX86RepneScasw) {
SetupRegMask(use_mask, rs_rAX.GetReg());
SetupRegMask(use_mask, rs_rCX.GetReg());
SetupRegMask(use_mask, rs_rDI.GetReg());
SetupRegMask(def_mask, rs_rDI.GetReg());
}
if (flags & USE_FP_STACK) {
use_mask->SetBit(kX86FPStack);
def_mask->SetBit(kX86FPStack);
}
}
/* For dumping instructions */
static const char* x86RegName[] = {
"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};
static const char* x86CondName[] = {
"O",
"NO",
"B/NAE/C",
"NB/AE/NC",
"Z/EQ",
"NZ/NE",
"BE/NA",
"NBE/A",
"S",
"NS",
"P/PE",
"NP/PO",
"L/NGE",
"NL/GE",
"LE/NG",
"NLE/G"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.cc.
*/
std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
std::string buf;
size_t i = 0;
size_t fmt_len = strlen(fmt);
while (i < fmt_len) {
if (fmt[i] != '!') {
buf += fmt[i];
i++;
} else {
i++;
DCHECK_LT(i, fmt_len);
char operand_number_ch = fmt[i];
i++;
if (operand_number_ch == '!') {
buf += "!";
} else {
int operand_number = operand_number_ch - '0';
DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
DCHECK_LT(i, fmt_len);
int operand = lir->operands[operand_number];
switch (fmt[i]) {
case 'c':
DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
buf += x86CondName[operand];
break;
case 'd':
buf += StringPrintf("%d", operand);
break;
case 'q': {
int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
static_cast<uint32_t>(lir->operands[operand_number+1]));
buf +=StringPrintf("%" PRId64, value);
}
case 'p': {
EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
buf += StringPrintf("0x%08x", tab_rec->offset);
break;
}
case 'r':
if (RegStorage::IsFloat(operand)) {
int fp_reg = RegStorage::RegNum(operand);
buf += StringPrintf("xmm%d", fp_reg);
} else {
int reg_num = RegStorage::RegNum(operand);
DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
buf += x86RegName[reg_num];
}
break;
case 't':
buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
lir->target);
break;
default:
buf += StringPrintf("DecodeError '%c'", fmt[i]);
break;
}
i++;
}
}
}
return buf;
}
void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
char buf[256];
buf[0] = 0;
if (mask.Equals(kEncodeAll)) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kX86RegEnd; i++) {
if (mask.HasBit(i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask.HasBit(ResourceMask::kCCode)) {
strcat(buf, "cc ");
}
/* Memory bits */
if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
(DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
}
if (mask.HasBit(ResourceMask::kLiteral)) {
strcat(buf, "lit ");
}
if (mask.HasBit(ResourceMask::kHeapRef)) {
strcat(buf, "heap ");
}
if (mask.HasBit(ResourceMask::kMustNotAlias)) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
void X86Mir2Lir::AdjustSpillMask() {
// Adjustment for LR spilling, x86 has no LR so nothing to do here
core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
num_core_spills_++;
}
RegStorage X86Mir2Lir::AllocateByteRegister() {
RegStorage reg = AllocTypedTemp(false, kCoreReg);
if (!cu_->target64) {
DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
}
return reg;
}
bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
}
/* Clobber all regs that might be used by an external C call */
void X86Mir2Lir::ClobberCallerSave() {
Clobber(rs_rAX);
Clobber(rs_rCX);
Clobber(rs_rDX);
Clobber(rs_rBX);
Clobber(rs_fr0);
Clobber(rs_fr1);
Clobber(rs_fr2);
Clobber(rs_fr3);
Clobber(rs_fr4);
Clobber(rs_fr5);
Clobber(rs_fr6);
Clobber(rs_fr7);
if (cu_->target64) {
Clobber(rs_r8);
Clobber(rs_r9);
Clobber(rs_r10);
Clobber(rs_r11);
Clobber(rs_fr8);
Clobber(rs_fr9);
Clobber(rs_fr10);
Clobber(rs_fr11);
Clobber(rs_fr12);
Clobber(rs_fr13);
Clobber(rs_fr14);
Clobber(rs_fr15);
}
}
RegLocation X86Mir2Lir::GetReturnWideAlt() {
RegLocation res = LocCReturnWide();
DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
Clobber(rs_rAX);
Clobber(rs_rDX);
MarkInUse(rs_rAX);
MarkInUse(rs_rDX);
MarkWide(res.reg);
return res;
}
RegLocation X86Mir2Lir::GetReturnAlt() {
RegLocation res = LocCReturn();
res.reg.SetReg(rs_rDX.GetReg());
Clobber(rs_rDX);
MarkInUse(rs_rDX);
return res;
}
/* To be used when explicitly managing register use */
void X86Mir2Lir::LockCallTemps() {
LockTemp(rs_rX86_ARG0);
LockTemp(rs_rX86_ARG1);
LockTemp(rs_rX86_ARG2);
LockTemp(rs_rX86_ARG3);
if (cu_->target64) {
LockTemp(rs_rX86_ARG4);
LockTemp(rs_rX86_ARG5);
LockTemp(rs_rX86_FARG0);
LockTemp(rs_rX86_FARG1);
LockTemp(rs_rX86_FARG2);
LockTemp(rs_rX86_FARG3);
LockTemp(rs_rX86_FARG4);
LockTemp(rs_rX86_FARG5);
LockTemp(rs_rX86_FARG6);
LockTemp(rs_rX86_FARG7);
}
}
/* To be used when explicitly managing register use */
void X86Mir2Lir::FreeCallTemps() {
FreeTemp(rs_rX86_ARG0);
FreeTemp(rs_rX86_ARG1);
FreeTemp(rs_rX86_ARG2);
FreeTemp(rs_rX86_ARG3);
if (cu_->target64) {
FreeTemp(rs_rX86_ARG4);
FreeTemp(rs_rX86_ARG5);
FreeTemp(rs_rX86_FARG0);
FreeTemp(rs_rX86_FARG1);
FreeTemp(rs_rX86_FARG2);
FreeTemp(rs_rX86_FARG3);
FreeTemp(rs_rX86_FARG4);
FreeTemp(rs_rX86_FARG5);
FreeTemp(rs_rX86_FARG6);
FreeTemp(rs_rX86_FARG7);
}
}
bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
switch (opcode) {
case kX86LockCmpxchgMR:
case kX86LockCmpxchgAR:
case kX86LockCmpxchg64M:
case kX86LockCmpxchg64A:
case kX86XchgMR:
case kX86Mfence:
// Atomic memory instructions provide full barrier.
return true;
default:
break;
}
// Conservative if cannot prove it provides full barrier.
return false;
}
bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
#if ANDROID_SMP != 0
// Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
LIR* mem_barrier = last_lir_insn_;
bool ret = false;
/*
* According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
* (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
* to ensure is that there is a scheduling barrier in place.
*/
if (barrier_kind == kStoreLoad) {
// If no LIR exists already that can be used a barrier, then generate an mfence.
if (mem_barrier == nullptr) {
mem_barrier = NewLIR0(kX86Mfence);
ret = true;
}
// If last instruction does not provide full barrier, then insert an mfence.
if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
mem_barrier = NewLIR0(kX86Mfence);
ret = true;
}
}
// Now ensure that a scheduling barrier is in place.
if (mem_barrier == nullptr) {
GenBarrier();
} else {
// Mark as a scheduling barrier.
DCHECK(!mem_barrier->flags.use_def_invalid);
mem_barrier->u.m.def_mask = &kEncodeAll;
}
return ret;
#else
return false;
#endif
}
void X86Mir2Lir::CompilerInitializeRegAlloc() {
if (cu_->target64) {
reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
dp_regs_64, reserved_regs_64, reserved_regs_64q,
core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
} else {
reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
dp_regs_32, reserved_regs_32, empty_pool,
core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
}
// Target-specific adjustments.
// Add in XMM registers.
const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
for (RegStorage reg : *xp_temps) {
RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
reginfo_map_.Put(reg.GetReg(), info);
info->SetIsTemp(true);
}
// Alias single precision xmm to double xmms.
// TODO: as needed, add larger vector sizes - alias all to the largest.
GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
int sp_reg_num = info->GetReg().GetRegNum();
RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
// 128-bit xmm vector register's master storage should refer to itself.
DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
// Redirect 32-bit vector's master storage to 128-bit vector.
info->SetMaster(xp_reg_info);
RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Redirect 64-bit vector's master storage to 128-bit vector.
dp_reg_info->SetMaster(xp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
}
if (cu_->target64) {
// Alias 32bit W registers to corresponding 64bit X registers.
GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
int x_reg_num = info->GetReg().GetRegNum();
RegStorage x_reg = RegStorage::Solo64(x_reg_num);
RegisterInfo* x_reg_info = GetRegInfo(x_reg);
// 64bit X register's master storage should refer to itself.
DCHECK_EQ(x_reg_info, x_reg_info->Master());
// Redirect 32bit W master storage to 64bit X.
info->SetMaster(x_reg_info);
// 32bit W should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
}
}
// Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
// TODO: adjust for x86/hard float calling convention.
reg_pool_->next_core_reg_ = 2;
reg_pool_->next_sp_reg_ = 2;
reg_pool_->next_dp_reg_ = 1;
}
void X86Mir2Lir::SpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
// Spill mask not including fake return address register
uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
offset += GetInstructionSetPointerSize(cu_->instruction_set);
}
}
}
void X86Mir2Lir::UnSpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
// Spill mask not including fake return address register
uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
offset += GetInstructionSetPointerSize(cu_->instruction_set);
}
}
}
bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
}
bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
return true;
}
RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
// X86_64 can handle any size.
if (cu_->target64) {
if (size == kReference) {
return kRefReg;
}
return kCoreReg;
}
if (UNLIKELY(is_volatile)) {
// On x86, atomic 64-bit load/store requires an fp register.
// Smaller aligned load/store is atomic for both core and fp registers.
if (size == k64 || size == kDouble) {
return kFPReg;
}
}
return RegClassBySize(size);
}
X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena),
base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
method_address_insns_(arena, 100, kGrowableArrayMisc),
class_type_address_insns_(arena, 100, kGrowableArrayMisc),
call_method_insns_(arena, 100, kGrowableArrayMisc),
stack_decrement_(nullptr), stack_increment_(nullptr),
const_vectors_(nullptr) {
store_method_addr_used_ = false;
if (kIsDebugBuild) {
for (int i = 0; i < kX86Last; i++) {
if (X86Mir2Lir::EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
}
}
}
if (cu_->target64) {
rs_rX86_SP = rs_rX86_SP_64;
rs_rX86_ARG0 = rs_rDI;
rs_rX86_ARG1 = rs_rSI;
rs_rX86_ARG2 = rs_rDX;
rs_rX86_ARG3 = rs_rCX;
rs_rX86_ARG4 = rs_r8;
rs_rX86_ARG5 = rs_r9;
rs_rX86_FARG0 = rs_fr0;
rs_rX86_FARG1 = rs_fr1;
rs_rX86_FARG2 = rs_fr2;
rs_rX86_FARG3 = rs_fr3;
rs_rX86_FARG4 = rs_fr4;
rs_rX86_FARG5 = rs_fr5;
rs_rX86_FARG6 = rs_fr6;
rs_rX86_FARG7 = rs_fr7;
rX86_ARG0 = rDI;
rX86_ARG1 = rSI;
rX86_ARG2 = rDX;
rX86_ARG3 = rCX;
rX86_ARG4 = r8;
rX86_ARG5 = r9;
rX86_FARG0 = fr0;
rX86_FARG1 = fr1;
rX86_FARG2 = fr2;
rX86_FARG3 = fr3;
rX86_FARG4 = fr4;
rX86_FARG5 = fr5;
rX86_FARG6 = fr6;
rX86_FARG7 = fr7;
rs_rX86_INVOKE_TGT = rs_rDI;
} else {
rs_rX86_SP = rs_rX86_SP_32;
rs_rX86_ARG0 = rs_rAX;
rs_rX86_ARG1 = rs_rCX;
rs_rX86_ARG2 = rs_rDX;
rs_rX86_ARG3 = rs_rBX;
rs_rX86_ARG4 = RegStorage::InvalidReg();
rs_rX86_ARG5 = RegStorage::InvalidReg();
rs_rX86_FARG0 = rs_rAX;
rs_rX86_FARG1 = rs_rCX;
rs_rX86_FARG2 = rs_rDX;
rs_rX86_FARG3 = rs_rBX;
rs_rX86_FARG4 = RegStorage::InvalidReg();
rs_rX86_FARG5 = RegStorage::InvalidReg();
rs_rX86_FARG6 = RegStorage::InvalidReg();
rs_rX86_FARG7 = RegStorage::InvalidReg();
rX86_ARG0 = rAX;
rX86_ARG1 = rCX;
rX86_ARG2 = rDX;
rX86_ARG3 = rBX;
rX86_FARG0 = rAX;
rX86_FARG1 = rCX;
rX86_FARG2 = rDX;
rX86_FARG3 = rBX;
rs_rX86_INVOKE_TGT = rs_rAX;
// TODO(64): Initialize with invalid reg
// rX86_ARG4 = RegStorage::InvalidReg();
// rX86_ARG5 = RegStorage::InvalidReg();
}
rs_rX86_RET0 = rs_rAX;
rs_rX86_RET1 = rs_rDX;
rs_rX86_COUNT = rs_rCX;
rX86_RET0 = rAX;
rX86_RET1 = rDX;
rX86_INVOKE_TGT = rAX;
rX86_COUNT = rCX;
}
Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new X86Mir2Lir(cu, mir_graph, arena);
}
// Not used in x86
RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
LOG(FATAL) << "Unexpected use of LoadHelper in x86";
return RegStorage::InvalidReg();
}
// Not used in x86
RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
LOG(FATAL) << "Unexpected use of LoadHelper in x86";
return RegStorage::InvalidReg();
}
LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
return nullptr;
}
uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].flags;
}
const char* X86Mir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].name;
}
const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return X86Mir2Lir::EncodingMap[opcode].fmt;
}
void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
// Can we do this directly to memory?
rl_dest = UpdateLocWide(rl_dest);
if ((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp)) {
int32_t val_lo = Low32Bits(value);
int32_t val_hi = High32Bits(value);
int r_base = TargetReg(kSp).GetReg();
int displacement = SRegOffset(rl_dest.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
return;
}
// Just use the standard code to do the generation.
Mir2Lir::GenConstWide(rl_dest, value);
}
// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
LOG(INFO) << "location: " << loc.location << ','
<< (loc.wide ? " w" : " ")
<< (loc.defined ? " D" : " ")
<< (loc.is_const ? " c" : " ")
<< (loc.fp ? " F" : " ")
<< (loc.core ? " C" : " ")
<< (loc.ref ? " r" : " ")
<< (loc.high_word ? " h" : " ")
<< (loc.home ? " H" : " ")
<< ", low: " << static_cast<int>(loc.reg.GetLowReg())
<< ", high: " << static_cast<int>(loc.reg.GetHighReg())
<< ", s_reg: " << loc.s_reg_low
<< ", orig: " << loc.orig_sreg;
}
void X86Mir2Lir::Materialize() {
// A good place to put the analysis before starting.
AnalyzeMIR();
// Now continue with regular code generation.
Mir2Lir::Materialize();
}
void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg) {
/*
* For x86, just generate a 32 bit move immediate instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
int target_method_idx = target_method.dex_method_index;
const DexFile* target_dex_file = target_method.dex_file;
const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
// Generate the move instruction with the unique pointer and save index, dex_file, and type.
LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
static_cast<int>(target_method_id_ptr), target_method_idx,
WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
AppendLIR(move);
method_address_insns_.Insert(move);
}
void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
/*
* For x86, just generate a 32 bit move immediate instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
// Generate the move instruction with the unique pointer and save index and type.
LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
static_cast<int>(ptr), type_idx);
AppendLIR(move);
class_type_address_insns_.Insert(move);
}
LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
/*
* For x86, just generate a 32 bit call relative instruction, that will be filled
* in at 'link time'. For now, put a unique value based on target to ensure that
* code deduplication works.
*/
int target_method_idx = target_method.dex_method_index;
const DexFile* target_dex_file = target_method.dex_file;
const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
// Generate the call instruction with the unique pointer and save index, dex_file, and type.
LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
AppendLIR(call);
call_method_insns_.Insert(call);
return call;
}
/*
* @brief Enter a 32 bit quantity into a buffer
* @param buf buffer.
* @param data Data value.
*/
static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
buf.push_back(data & 0xff);
buf.push_back((data >> 8) & 0xff);
buf.push_back((data >> 16) & 0xff);
buf.push_back((data >> 24) & 0xff);
}
void X86Mir2Lir::InstallLiteralPools() {
// These are handled differently for x86.
DCHECK(code_literal_list_ == nullptr);
DCHECK(method_literal_list_ == nullptr);
DCHECK(class_literal_list_ == nullptr);
// Align to 16 byte boundary. We have implicit knowledge that the start of the method is
// on a 4 byte boundary. How can I check this if it changes (other than aligned loads
// will fail at runtime)?
if (const_vectors_ != nullptr) {
int align_size = (16-4) - (code_buffer_.size() & 0xF);
if (align_size < 0) {
align_size += 16;
}
while (align_size > 0) {
code_buffer_.push_back(0);
align_size--;
}
for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
PushWord(code_buffer_, p->operands[0]);
PushWord(code_buffer_, p->operands[1]);
PushWord(code_buffer_, p->operands[2]);
PushWord(code_buffer_, p->operands[3]);
}
}
// Handle the fixups for methods.
for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
LIR* p = method_address_insns_.Get(i);
DCHECK_EQ(p->opcode, kX86Mov32RI);
uint32_t target_method_idx = p->operands[2];
const DexFile* target_dex_file =
reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
cu_->method_idx, cu_->invoke_type,
target_method_idx, target_dex_file,
static_cast<InvokeType>(p->operands[4]),
patch_offset);
}
// Handle the fixups for class types.
for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
LIR* p = class_type_address_insns_.Get(i);
DCHECK_EQ(p->opcode, kX86Mov32RI);
uint32_t target_method_idx = p->operands[2];
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
cu_->method_idx, target_method_idx, patch_offset);
}
// And now the PC-relative calls to methods.
for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
LIR* p = call_method_insns_.Get(i);
DCHECK_EQ(p->opcode, kX86CallI);
uint32_t target_method_idx = p->operands[1];
const DexFile* target_dex_file =
reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
// The offset to patch is the last 4 bytes of the instruction.
int patch_offset = p->offset + p->flags.size - 4;
cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
cu_->method_idx, cu_->invoke_type,
target_method_idx, target_dex_file,
static_cast<InvokeType>(p->operands[3]),
patch_offset, -4 /* offset */);
}
// And do the normal processing.
Mir2Lir::InstallLiteralPools();
}
/*
* Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
ClobberCallerSave();
LockCallTemps(); // Using fixed registers
// EAX: 16 bit character being searched.
// ECX: count: number of words to be searched.
// EDI: String being searched.
// EDX: temporary during execution.
// EBX: temporary during execution.
RegLocation rl_obj = info->args[0];
RegLocation rl_char = info->args[1];
RegLocation rl_start; // Note: only present in III flavor or IndexOf.
uint32_t char_value =
rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
if (char_value > 0xFFFF) {
// We have to punt to the real String.indexOf.
return false;
}
// Okay, we are commited to inlining this.
RegLocation rl_return = GetReturn(kCoreReg);
RegLocation rl_dest = InlineTarget(info);
// Is the string non-NULL?
LoadValueDirectFixed(rl_obj, rs_rDX);
GenNullCheck(rs_rDX, info->opt_flags);
info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
// Does the character fit in 16 bits?
LIR* slowpath_branch = nullptr;
if (rl_char.is_const) {
// We need the value in EAX.
LoadConstantNoClobber(rs_rAX, char_value);
} else {
// Character is not a constant; compare at runtime.
LoadValueDirectFixed(rl_char, rs_rAX);
slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
}
// From here down, we know that we are looking for a char that fits in 16 bits.
// Location of reference to data array within the String object.
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array.
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_.
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
// Character is in EAX.
// Object pointer is in EDX.
// We need to preserve EDI, but have no spare registers, so push it on the stack.
// We have to remember that all stack addresses after this are offset by sizeof(EDI).
NewLIR1(kX86Push32R, rs_rDI.GetReg());
// Compute the number of words to search in to rCX.
Load32Disp(rs_rDX, count_offset, rs_rCX);
LIR *length_compare = nullptr;
int start_value = 0;
bool is_index_on_stack = false;
if (zero_based) {
// We have to handle an empty string. Use special instruction JECXZ.
length_compare = NewLIR0(kX86Jecxz8);
} else {
rl_start = info->args[2];
// We have to offset by the start index.
if (rl_start.is_const) {
start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
start_value = std::max(start_value, 0);
// Is the start > count?
length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
if (start_value != 0) {
OpRegImm(kOpSub, rs_rCX, start_value);
}
} else {
// Runtime start index.
rl_start = UpdateLocTyped(rl_start, kCoreReg);
if (rl_start.location == kLocPhysReg) {
// Handle "start index < 0" case.
OpRegReg(kOpXor, rs_rBX, rs_rBX);
OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
// The length of the string should be greater than the start index.
length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
OpRegReg(kOpSub, rs_rCX, rl_start.reg);
if (rl_start.reg == rs_rDI) {
// The special case. We will use EDI further, so lets put start index to stack.
NewLIR1(kX86Push32R, rs_rDI.GetReg());
is_index_on_stack = true;
}
} else {
// Load the start index from stack, remembering that we pushed EDI.
int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
{
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
Load32Disp(rs_rX86_SP, displacement, rs_rBX);
}
OpRegReg(kOpXor, rs_rDI, rs_rDI);
OpRegReg(kOpCmp, rs_rBX, rs_rDI);
OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
OpRegReg(kOpSub, rs_rCX, rs_rBX);
// Put the start index to stack.
NewLIR1(kX86Push32R, rs_rBX.GetReg());
is_index_on_stack = true;
}
}
}
DCHECK(length_compare != nullptr);
// ECX now contains the count in words to be searched.
// Load the address of the string into EBX.
// The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
Load32Disp(rs_rDX, value_offset, rs_rDI);
Load32Disp(rs_rDX, offset_offset, rs_rBX);
OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
// Now compute into EDI where the search will start.
if (zero_based || rl_start.is_const) {
if (start_value == 0) {
OpRegCopy(rs_rDI, rs_rBX);
} else {
NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
}
} else {
if (is_index_on_stack == true) {
// Load the start index from stack.
NewLIR1(kX86Pop32R, rs_rDX.GetReg());
OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
} else {
OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
}
}
// EDI now contains the start of the string to be searched.
// We are all prepared to do the search for the character.
NewLIR0(kX86RepneScasw);
// Did we find a match?
LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
// yes, we matched. Compute the index of the result.
// index = ((curr_ptr - orig_ptr) / 2) - 1.
OpRegReg(kOpSub, rs_rDI, rs_rBX);
OpRegImm(kOpAsr, rs_rDI, 1);
NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
LIR *all_done = NewLIR1(kX86Jmp8, 0);
// Failed to match; return -1.
LIR *not_found = NewLIR0(kPseudoTargetLabel);
length_compare->target = not_found;
failed_branch->target = not_found;
LoadConstantNoClobber(rl_return.reg, -1);
// And join up at the end.
all_done->target = NewLIR0(kPseudoTargetLabel);
// Restore EDI from the stack.
NewLIR1(kX86Pop32R, rs_rDI.GetReg());
// Out of line code returns here.
if (slowpath_branch != nullptr) {
LIR *return_point = NewLIR0(kPseudoTargetLabel);
AddIntrinsicSlowPath(info, slowpath_branch, return_point);
}
StoreValue(rl_dest, rl_return);
return true;
}
/*
* @brief Enter an 'advance LOC' into the FDE buffer
* @param buf FDE buffer.
* @param increment Amount by which to increase the current location.
*/
static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
if (increment < 64) {
// Encoding in opcode.
buf.push_back(0x1 << 6 | increment);
} else if (increment < 256) {
// Single byte delta.
buf.push_back(0x02);
buf.push_back(increment);
} else if (increment < 256 * 256) {
// Two byte delta.
buf.push_back(0x03);
buf.push_back(increment & 0xff);
buf.push_back((increment >> 8) & 0xff);
} else {
// Four byte delta.
buf.push_back(0x04);
PushWord(buf, increment);
}
}
std::vector<uint8_t>* X86CFIInitialization() {
return X86Mir2Lir::ReturnCommonCallFrameInformation();
}
std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
// Length of the CIE (except for this field).
PushWord(*cfi_info, 16);
// CIE id.
PushWord(*cfi_info, 0xFFFFFFFFU);
// Version: 3.
cfi_info->push_back(0x03);
// Augmentation: empty string.
cfi_info->push_back(0x0);
// Code alignment: 1.
cfi_info->push_back(0x01);
// Data alignment: -4.
cfi_info->push_back(0x7C);
// Return address register (R8).
cfi_info->push_back(0x08);
// Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
cfi_info->push_back(0x0C);
cfi_info->push_back(0x04);
cfi_info->push_back(0x04);
// Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
cfi_info->push_back(0x2 << 6 | 0x08);
cfi_info->push_back(0x01);
// And 2 Noops to align to 4 byte boundary.
cfi_info->push_back(0x0);
cfi_info->push_back(0x0);
DCHECK_EQ(cfi_info->size() & 3, 0U);
return cfi_info;
}
static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
uint8_t buffer[12];
uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
for (uint8_t *p = buffer; p < ptr; p++) {
buf.push_back(*p);
}
}
std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
// Generate the FDE for the method.
DCHECK_NE(data_offset_, 0U);
// Length (will be filled in later in this routine).
PushWord(*cfi_info, 0);
// CIE_pointer (can be filled in by linker); might be left at 0 if there is only
// one CIE for the whole debug_frame section.
PushWord(*cfi_info, 0);
// 'initial_location' (filled in by linker).
PushWord(*cfi_info, 0);
// 'address_range' (number of bytes in the method).
PushWord(*cfi_info, data_offset_);
// The instructions in the FDE.
if (stack_decrement_ != nullptr) {
// Advance LOC to just past the stack decrement.
uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
AdvanceLoc(*cfi_info, pc);
// Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
cfi_info->push_back(0x0e);
EncodeUnsignedLeb128(*cfi_info, frame_size_);
// We continue with that stack until the epilogue.
if (stack_increment_ != nullptr) {
uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
AdvanceLoc(*cfi_info, new_pc - pc);
// We probably have code snippets after the epilogue, so save the
// current state: DW_CFA_remember_state.
cfi_info->push_back(0x0a);
// We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
// PC on the stack now.
cfi_info->push_back(0x0e);
EncodeUnsignedLeb128(*cfi_info, 4);
// Everything after that is the same as before the epilogue.
// Stack bump was followed by RET instruction.
LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
if (post_ret_insn != nullptr) {
pc = new_pc;
new_pc = post_ret_insn->offset;
AdvanceLoc(*cfi_info, new_pc - pc);
// Restore the state: DW_CFA_restore_state.
cfi_info->push_back(0x0b);
}
}
}
// Padding to a multiple of 4
while ((cfi_info->size() & 3) != 0) {
// DW_CFA_nop is encoded as 0.
cfi_info->push_back(0);
}
// Set the length of the FDE inside the generated bytes.
uint32_t length = cfi_info->size() - 4;
(*cfi_info)[0] = length;
(*cfi_info)[1] = length >> 8;
(*cfi_info)[2] = length >> 16;
(*cfi_info)[3] = length >> 24;
return cfi_info;
}
void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpConstVector:
GenConst128(bb, mir);
break;
case kMirOpMoveVector:
GenMoveVector(bb, mir);
break;
case kMirOpPackedMultiply:
GenMultiplyVector(bb, mir);
break;
case kMirOpPackedAddition:
GenAddVector(bb, mir);
break;
case kMirOpPackedSubtract:
GenSubtractVector(bb, mir);
break;
case kMirOpPackedShiftLeft:
GenShiftLeftVector(bb, mir);
break;
case kMirOpPackedSignedShiftRight:
GenSignedShiftRightVector(bb, mir);
break;
case kMirOpPackedUnsignedShiftRight:
GenUnsignedShiftRightVector(bb, mir);
break;
case kMirOpPackedAnd:
GenAndVector(bb, mir);
break;
case kMirOpPackedOr:
GenOrVector(bb, mir);
break;
case kMirOpPackedXor:
GenXorVector(bb, mir);
break;
case kMirOpPackedAddReduce:
GenAddReduceVector(bb, mir);
break;
case kMirOpPackedReduce:
GenReduceVector(bb, mir);
break;
case kMirOpPackedSet:
GenSetVector(bb, mir);
break;
default:
break;
}
}
void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
int type_size = mir->dalvikInsn.vA;
// We support 128 bit vectors.
DCHECK_EQ(type_size & 0xFFFF, 128);
RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
uint32_t *args = mir->dalvikInsn.arg;
int reg = rs_dest.GetReg();
// Check for all 0 case.
if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
NewLIR2(kX86XorpsRR, reg, reg);
return;
}
// Okay, load it from the constant vector area.
LIR *data_target = ScanVectorLiteral(mir);
if (data_target == nullptr) {
data_target = AddVectorLiteral(mir);
}
// Address the start of the method.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
if (rl_method.wide) {
rl_method = LoadValueWide(rl_method, kCoreReg);
} else {
rl_method = LoadValue(rl_method, kCoreReg);
}
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that will force
// 4 byte offset. We will fix this up in the assembler later to have the right
// value.
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
load->flags.fixup = kFixupLoad;
load->target = data_target;
}
void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
}
void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PmulldRR;
break;
case kSignedHalf:
opcode = kX86PmullwRR;
break;
case kSingle:
opcode = kX86MulpsRR;
break;
case kDouble:
opcode = kX86MulpdRR;
break;
default:
LOG(FATAL) << "Unsupported vector multiply " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PadddRR;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PaddwRR;
break;
case kUnsignedByte:
case kSignedByte:
opcode = kX86PaddbRR;
break;
case kSingle:
opcode = kX86AddpsRR;
break;
case kDouble:
opcode = kX86AddpdRR;
break;
default:
LOG(FATAL) << "Unsupported vector addition " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PsubdRR;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsubwRR;
break;
case kUnsignedByte:
case kSignedByte:
opcode = kX86PsubbRR;
break;
case kSingle:
opcode = kX86SubpsRR;
break;
case kDouble:
opcode = kX86SubpdRR;
break;
default:
LOG(FATAL) << "Unsupported vector subtraction " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
int imm = mir->dalvikInsn.vC;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PslldRI;
break;
case k64:
opcode = kX86PsllqRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsllwRI;
break;
default:
LOG(FATAL) << "Unsupported vector shift left " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
int imm = mir->dalvikInsn.vC;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PsradRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsrawRI;
break;
default:
LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
int imm = mir->dalvikInsn.vC;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PsrldRI;
break;
case k64:
opcode = kX86PsrlqRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PsrlwRI;
break;
default:
LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
// We only support 128 bit registers.
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
}
void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
int imm = mir->dalvikInsn.vC;
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PhadddRR;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PhaddwRR;
break;
default:
LOG(FATAL) << "Unsupported vector add reduce " << opsize;
break;
}
NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
}
void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
int index = mir->dalvikInsn.arg[0];
int opcode = 0;
switch (opsize) {
case k32:
opcode = kX86PextrdRRI;
break;
case kSignedHalf:
case kUnsignedHalf:
opcode = kX86PextrwRRI;
break;
case kUnsignedByte:
case kSignedByte:
opcode = kX86PextrbRRI;
break;
default:
LOG(FATAL) << "Unsupported vector reduce " << opsize;
break;
}
// We need to extract to a GPR.
RegStorage temp = AllocTemp();
NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
// Assume that the destination VR is in the def for the mir.
RegLocation rl_dest = mir_graph_->GetDest(mir);
RegLocation rl_temp =
{kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
StoreValue(rl_dest, rl_temp);
}
void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
int op_low = 0, op_high = 0;
switch (opsize) {
case k32:
op_low = kX86PshufdRRI;
break;
case kSignedHalf:
case kUnsignedHalf:
// Handles low quadword.
op_low = kX86PshuflwRRI;
// Handles upper quadword.
op_high = kX86PshufdRRI;
break;
default:
LOG(FATAL) << "Unsupported vector set " << opsize;
break;
}
// Load the value from the VR into a GPR.
RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
rl_src = LoadValue(rl_src, kCoreReg);
// Load the value into the XMM register.
NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
// Now shuffle the value across the destination.
NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
// And then repeat as needed.
if (op_high != 0) {
NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
}
}
LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
args[2] == p->operands[2] && args[3] == p->operands[3]) {
return p;
}
}
return nullptr;
}
LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
new_value->operands[0] = args[0];
new_value->operands[1] = args[1];
new_value->operands[2] = args[2];
new_value->operands[3] = args[3];
new_value->next = const_vectors_;
if (const_vectors_ == nullptr) {
estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
}
estimated_native_code_size_ += 16; // Space for one vector.
const_vectors_ = new_value;
return new_value;
}
// ------------ ABI support: mapping of args to physical registers -------------
RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
RegStorage result = RegStorage::InvalidReg();
if (is_double_or_float) {
if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
if (result.Valid()) {
result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
}
}
} else {
if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
result = coreArgMappingToPhysicalReg[cur_core_reg_++];
if (result.Valid()) {
result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
}
}
}
return result;
}
RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
DCHECK(IsInitialized());
auto res = mapping_.find(in_position);
return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
}
void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
DCHECK(mapper != nullptr);
max_mapped_in_ = -1;
is_there_stack_mapped_ = false;
for (int in_position = 0; in_position < count; in_position++) {
RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
if (reg.Valid()) {
mapping_[in_position] = reg;
max_mapped_in_ = std::max(max_mapped_in_, in_position);
if (reg.Is64BitSolo()) {
// We covered 2 args, so skip the next one
in_position++;
}
} else {
is_there_stack_mapped_ = true;
}
}
initialized_ = true;
}
RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
if (!cu_->target64) {
return GetCoreArgMappingToPhysicalReg(arg_num);
}
if (!in_to_reg_storage_mapping_.IsInitialized()) {
int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
InToRegStorageX86_64Mapper mapper;
in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
}
return in_to_reg_storage_mapping_.Get(arg_num);
}
RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
// For the 32-bit internal ABI, the first 3 arguments are passed in registers.
// Not used for 64-bit, TODO: Move X86_32 to the same framework
switch (core_arg_num) {
case 0:
return rs_rX86_ARG1;
case 1:
return rs_rX86_ARG2;
case 2:
return rs_rX86_ARG3;
default:
return RegStorage::InvalidReg();
}
}
// ---------End of ABI support: mapping of args to physical registers -------------
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform initial
* assignment of promoted arguments.
*
* ArgLocs is an array of location records describing the incoming arguments
* with one location record per word of argument.
*/
void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
/*
* Dummy up a RegLocation for the incoming Method*
* It will attempt to keep kArg0 live (or copy it to home location
* if promoted).
*/
RegLocation rl_src = rl_method;
rl_src.location = kLocPhysReg;
rl_src.reg = TargetReg(kArg0);
rl_src.home = false;
MarkLive(rl_src);
StoreValue(rl_method, rl_src);
// If Method* has been promoted, explicitly flush
if (rl_method.location == kLocPhysReg) {
StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
}
if (cu_->num_ins == 0) {
return;
}
int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
/*
* Copy incoming arguments to their proper home locations.
* NOTE: an older version of dx had an issue in which
* it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. To account for this,
* we only copy to the corresponding promoted physical register
* if it matches the type of the SSA name for the incoming
* argument. It is also possible that long and double arguments
* end up half-promoted. In those cases, we must flush the promoted
* half to memory as well.
*/
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
for (int i = 0; i < cu_->num_ins; i++) {
// get reg corresponding to input
RegStorage reg = GetArgMappingToPhysicalReg(i);
RegLocation* t_loc = &ArgLocs[i];
if (reg.Valid()) {
// If arriving in register.
// We have already updated the arg location with promoted info
// so we can be based on it.
if (t_loc->location == kLocPhysReg) {
// Just copy it.
OpRegCopy(t_loc->reg, reg);
} else {
// Needs flush.
if (t_loc->ref) {
StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
} else {
StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
kNotVolatile);
}
}
} else {
// If arriving in frame & promoted.
if (t_loc->location == kLocPhysReg) {
if (t_loc->ref) {
LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
} else {
LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
t_loc->wide ? k64 : k32, kNotVolatile);
}
}
}
if (t_loc->wide) {
// Increment i to skip the next one.
i++;
}
}
}
/*
* Load up to 5 arguments, the first three of which will be in
* kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
if (!cu_->target64) {
return Mir2Lir::GenDalvikArgsNoRange(info,
call_state, pcrLabel, next_call_insn,
target_method,
vtable_idx, direct_code,
direct_method, type, skip_this);
}
return GenDalvikArgsRange(info,
call_state, pcrLabel, next_call_insn,
target_method,
vtable_idx, direct_code,
direct_method, type, skip_this);
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
*
*/
int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
InvokeType type, bool skip_this) {
if (!cu_->target64) {
return Mir2Lir::GenDalvikArgsRange(info, call_state,
pcrLabel, next_call_insn,
target_method,
vtable_idx, direct_code, direct_method,
type, skip_this);
}
/* If no arguments, just return */
if (info->num_arg_words == 0)
return call_state;
const int start_index = skip_this ? 1 : 0;
InToRegStorageX86_64Mapper mapper;
InToRegStorageMapping in_to_reg_storage_mapping;
in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
// Fisrt of all, check whether it make sense to use bulk copying
// Optimization is aplicable only for range case
// TODO: make a constant instead of 2
if (info->is_range && regs_left_to_pass_via_stack >= 2) {
// Scan the rest of the args - if in phys_reg flush to memory
for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
RegLocation loc = info->args[next_arg];
if (loc.wide) {
loc = UpdateLocWide(loc);
if (loc.location == kLocPhysReg) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
}
next_arg += 2;
} else {
loc = UpdateLoc(loc);
if (loc.location == kLocPhysReg) {
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
}
next_arg++;
}
}
// Logic below assumes that Method pointer is at offset zero from SP.
DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
// The rest can be copied together
int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
int current_src_offset = start_offset;
int current_dest_offset = outs_offset;
// Only davik regs are accessed in this loop; no next_call_insn() calls.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
while (regs_left_to_pass_via_stack > 0) {
// This is based on the knowledge that the stack itself is 16-byte aligned.
bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
size_t bytes_to_move;
/*
* The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
* a 128-bit move because we won't get the chance to try to aligned. If there are more than
* 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
* We do this because we could potentially do a smaller move to align.
*/
if (regs_left_to_pass_via_stack == 4 ||
(regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
// Moving 128-bits via xmm register.
bytes_to_move = sizeof(uint32_t) * 4;
// Allocate a free xmm temp. Since we are working through the calling sequence,
// we expect to have an xmm temporary available. AllocTempDouble will abort if
// there are no free registers.
RegStorage temp = AllocTempDouble();
LIR* ld1 = nullptr;
LIR* ld2 = nullptr;
LIR* st1 = nullptr;
LIR* st2 = nullptr;
/*
* The logic is similar for both loads and stores. If we have 16-byte alignment,
* do an aligned move. If we have 8-byte alignment, then do the move in two
* parts. This approach prevents possible cache line splits. Finally, fall back
* to doing an unaligned move. In most cases we likely won't split the cache
* line but we cannot prove it and thus take a conservative approach.
*/
bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (src_is_16b_aligned) {
ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
} else if (src_is_8b_aligned) {
ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
kMovHi128FP);
} else {
ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
}
if (dest_is_16b_aligned) {
st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
} else if (dest_is_8b_aligned) {
st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
temp, kMovHi128FP);
} else {
st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
}
// TODO If we could keep track of aliasing information for memory accesses that are wider
// than 64-bit, we wouldn't need to set up a barrier.
if (ld1 != nullptr) {
if (ld2 != nullptr) {
// For 64-bit load we can actually set up the aliasing information.
AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
} else {
// Set barrier for 128-bit load.
ld1->u.m.def_mask = &kEncodeAll;
}
}
if (st1 != nullptr) {
if (st2 != nullptr) {
// For 64-bit store we can actually set up the aliasing information.
AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
} else {
// Set barrier for 128-bit store.
st1->u.m.def_mask = &kEncodeAll;
}
}
// Free the temporary used for the data movement.
FreeTemp(temp);
} else {
// Moving 32-bits via general purpose register.
bytes_to_move = sizeof(uint32_t);
// Instead of allocating a new temp, simply reuse one of the registers being used
// for argument passing.
RegStorage temp = TargetReg(kArg3);
// Now load the argument VR and store to the outs.
Load32Disp(TargetReg(kSp), current_src_offset, temp);
Store32Disp(TargetReg(kSp), current_dest_offset, temp);
}
current_src_offset += bytes_to_move;
current_dest_offset += bytes_to_move;
regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
}
DCHECK_EQ(regs_left_to_pass_via_stack, 0);
}
// Now handle rest not registers if they are
if (in_to_reg_storage_mapping.IsThereStackMapped()) {
RegStorage regSingle = TargetReg(kArg2);
RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
for (int i = start_index;
i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
RegLocation rl_arg = info->args[i];
rl_arg = UpdateRawLoc(rl_arg);
RegStorage reg = in_to_reg_storage_mapping.Get(i);
if (!reg.Valid()) {
int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
{
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (rl_arg.wide) {
if (rl_arg.location == kLocPhysReg) {
StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
} else {
LoadValueDirectWideFixed(rl_arg, regWide);
StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
}
} else {
if (rl_arg.location == kLocPhysReg) {
StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
} else {
LoadValueDirectFixed(rl_arg, regSingle);
StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32, kNotVolatile);
}
}
}
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
if (rl_arg.wide) {
i++;
}
}
}
// Finish with mapped registers
for (int i = start_index; i <= last_mapped_in; i++) {
RegLocation rl_arg = info->args[i];
rl_arg = UpdateRawLoc(rl_arg);
RegStorage reg = in_to_reg_storage_mapping.Get(i);
if (reg.Valid()) {
if (rl_arg.wide) {
LoadValueDirectWideFixed(rl_arg, reg);
} else {
LoadValueDirectFixed(rl_arg, reg);
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
if (rl_arg.wide) {
i++;
}
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
if (pcrLabel) {
if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
*pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
} else {
*pcrLabel = nullptr;
// In lieu of generating a check for kArg1 being null, we need to
// perform a load when doing implicit checks.
RegStorage tmp = AllocTemp();
Load32Disp(TargetReg(kArg1), 0, tmp);
MarkPossibleNullPointerException(info->opt_flags);
FreeTemp(tmp);
}
}
return call_state;
}
} // namespace art