blob: 381c7ce0aa818efc4fd82ba0be330992b3feb68b [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_mips.h"
#include <inttypes.h>
#include <string>
#include "dex/compiler_internals.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "mips_lir.h"
namespace art {
static constexpr RegStorage core_regs_arr[] =
{rs_rZERO, rs_rAT, rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rT0, rs_rT1, rs_rT2,
rs_rT3, rs_rT4, rs_rT5, rs_rT6, rs_rT7, rs_rS0, rs_rS1, rs_rS2, rs_rS3, rs_rS4, rs_rS5,
rs_rS6, rs_rS7, rs_rT8, rs_rT9, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rFP, rs_rRA};
static constexpr RegStorage sp_regs_arr[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15};
static constexpr RegStorage dp_regs_arr[] =
{rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7};
static constexpr RegStorage reserved_regs_arr[] =
{rs_rZERO, rs_rAT, rs_rS0, rs_rS1, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rRA};
static constexpr RegStorage core_temps_arr[] =
{rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rT0, rs_rT1, rs_rT2, rs_rT3, rs_rT4,
rs_rT5, rs_rT6, rs_rT7, rs_rT8};
static constexpr RegStorage sp_temps_arr[] =
{rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10,
rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15};
static constexpr RegStorage dp_temps_arr[] =
{rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7};
static constexpr ArrayRef<const RegStorage> empty_pool;
static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
RegLocation MipsMir2Lir::LocCReturn() {
return mips_loc_c_return;
}
RegLocation MipsMir2Lir::LocCReturnRef() {
return mips_loc_c_return;
}
RegLocation MipsMir2Lir::LocCReturnWide() {
return mips_loc_c_return_wide;
}
RegLocation MipsMir2Lir::LocCReturnFloat() {
return mips_loc_c_return_float;
}
RegLocation MipsMir2Lir::LocCReturnDouble() {
return mips_loc_c_return_double;
}
// Return a target-dependent special register.
RegStorage MipsMir2Lir::TargetReg(SpecialTargetRegister reg) {
RegStorage res_reg;
switch (reg) {
case kSelf: res_reg = rs_rMIPS_SELF; break;
case kSuspend: res_reg = rs_rMIPS_SUSPEND; break;
case kLr: res_reg = rs_rMIPS_LR; break;
case kPc: res_reg = rs_rMIPS_PC; break;
case kSp: res_reg = rs_rMIPS_SP; break;
case kArg0: res_reg = rs_rMIPS_ARG0; break;
case kArg1: res_reg = rs_rMIPS_ARG1; break;
case kArg2: res_reg = rs_rMIPS_ARG2; break;
case kArg3: res_reg = rs_rMIPS_ARG3; break;
case kFArg0: res_reg = rs_rMIPS_FARG0; break;
case kFArg1: res_reg = rs_rMIPS_FARG1; break;
case kFArg2: res_reg = rs_rMIPS_FARG2; break;
case kFArg3: res_reg = rs_rMIPS_FARG3; break;
case kRet0: res_reg = rs_rMIPS_RET0; break;
case kRet1: res_reg = rs_rMIPS_RET1; break;
case kInvokeTgt: res_reg = rs_rMIPS_INVOKE_TGT; break;
case kHiddenArg: res_reg = rs_rT0; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = rs_rMIPS_COUNT; break;
default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
RegStorage MipsMir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
// For the 32-bit internal ABI, the first 3 arguments are passed in registers.
switch (arg_num) {
case 0:
return rs_rMIPS_ARG1;
case 1:
return rs_rMIPS_ARG2;
case 2:
return rs_rMIPS_ARG3;
default:
return RegStorage::InvalidReg();
}
}
/*
* Decode the register id.
*/
uint64_t MipsMir2Lir::GetRegMaskCommon(RegStorage reg) {
uint64_t seed;
int shift;
int reg_id = reg.GetRegNum();
/* Each double register is equal to a pair of single-precision FP registers */
if (reg.IsDouble()) {
seed = 0x3;
reg_id = reg_id << 1;
} else {
seed = 1;
}
/* FP register starts at bit position 32 */
shift = reg.IsFloat() ? kMipsFPReg0 : 0;
/* Expand the double register id into single offset */
shift += reg_id;
return (seed << shift);
}
uint64_t MipsMir2Lir::GetPCUseDefEncoding() {
return ENCODE_MIPS_REG_PC;
}
void MipsMir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
DCHECK_EQ(cu_->instruction_set, kMips);
DCHECK(!lir->flags.use_def_invalid);
// Mips-specific resource map setup here.
if (flags & REG_DEF_SP) {
lir->u.m.def_mask |= ENCODE_MIPS_REG_SP;
}
if (flags & REG_USE_SP) {
lir->u.m.use_mask |= ENCODE_MIPS_REG_SP;
}
if (flags & REG_DEF_LR) {
lir->u.m.def_mask |= ENCODE_MIPS_REG_LR;
}
if (flags & REG_DEF_HI) {
lir->u.m.def_mask |= ENCODE_MIPS_REG_HI;
}
if (flags & REG_DEF_LO) {
lir->u.m.def_mask |= ENCODE_MIPS_REG_LO;
}
if (flags & REG_USE_HI) {
lir->u.m.use_mask |= ENCODE_MIPS_REG_HI;
}
if (flags & REG_USE_LO) {
lir->u.m.use_mask |= ENCODE_MIPS_REG_LO;
}
}
/* For dumping instructions */
#define MIPS_REG_COUNT 32
static const char *mips_reg_name[MIPS_REG_COUNT] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string MipsMir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
std::string buf;
int i;
const char *fmt_end = &fmt[strlen(fmt)];
char tbuf[256];
char nc;
while (fmt < fmt_end) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmt_end);
nc = *fmt++;
if (nc == '!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmt_end);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4u);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'b':
strcpy(tbuf, "0000");
for (i = 3; i >= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 's':
snprintf(tbuf, arraysize(tbuf), "$f%d", RegStorage::RegNum(operand));
break;
case 'S':
DCHECK_EQ(RegStorage::RegNum(operand) & 1, 0);
snprintf(tbuf, arraysize(tbuf), "$f%d", RegStorage::RegNum(operand));
break;
case 'h':
snprintf(tbuf, arraysize(tbuf), "%04x", operand);
break;
case 'M':
case 'd':
snprintf(tbuf, arraysize(tbuf), "%d", operand);
break;
case 'D':
snprintf(tbuf, arraysize(tbuf), "%d", operand+1);
break;
case 'E':
snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
break;
case 'F':
snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
break;
case 't':
snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 + (operand << 1),
lir->target);
break;
case 'T':
snprintf(tbuf, arraysize(tbuf), "0x%08x", operand << 2);
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) & ~3) +
(offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc;
snprintf(tbuf, arraysize(tbuf), "%p", reinterpret_cast<void*>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'r':
DCHECK(operand >= 0 && operand < MIPS_REG_COUNT);
strcpy(tbuf, mips_reg_name[operand]);
break;
case 'N':
// Placeholder for delay slot handling
strcpy(tbuf, "; nop");
break;
default:
strcpy(tbuf, "DecodeError");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
// FIXME: need to redo resource maps for MIPS - fix this at that time
void MipsMir2Lir::DumpResourceMask(LIR *mips_lir, uint64_t mask, const char *prefix) {
char buf[256];
buf[0] = 0;
if (mask == ENCODE_ALL) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kMipsRegEnd; i++) {
if (mask & (1ULL << i)) {
snprintf(num, arraysize(num), "%d ", i);
strcat(buf, num);
}
}
if (mask & ENCODE_CCODE) {
strcat(buf, "cc ");
}
if (mask & ENCODE_FP_STATUS) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (mips_lir && (mask & ENCODE_DALVIK_REG)) {
snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
DECODE_ALIAS_INFO_REG(mips_lir->flags.alias_info),
DECODE_ALIAS_INFO_WIDE(mips_lir->flags.alias_info) ? "(+1)" : "");
}
if (mask & ENCODE_LITERAL) {
strcat(buf, "lit ");
}
if (mask & ENCODE_HEAP_REF) {
strcat(buf, "heap ");
}
if (mask & ENCODE_MUST_NOT_ALIAS) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
/*
* TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void MipsMir2Lir::AdjustSpillMask() {
core_spill_mask_ |= (1 << rs_rRA.GetRegNum());
num_core_spills_++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void MipsMir2Lir::MarkPreservedSingle(int s_reg, RegStorage reg) {
LOG(FATAL) << "No support yet for promoted FP regs";
}
void MipsMir2Lir::MarkPreservedDouble(int s_reg, RegStorage reg) {
LOG(FATAL) << "No support yet for promoted FP regs";
}
/* Clobber all regs that might be used by an external C call */
void MipsMir2Lir::ClobberCallerSave() {
Clobber(rs_rZERO);
Clobber(rs_rAT);
Clobber(rs_rV0);
Clobber(rs_rV1);
Clobber(rs_rA0);
Clobber(rs_rA1);
Clobber(rs_rA2);
Clobber(rs_rA3);
Clobber(rs_rT0);
Clobber(rs_rT1);
Clobber(rs_rT2);
Clobber(rs_rT3);
Clobber(rs_rT4);
Clobber(rs_rT5);
Clobber(rs_rT6);
Clobber(rs_rT7);
Clobber(rs_rT8);
Clobber(rs_rT9);
Clobber(rs_rK0);
Clobber(rs_rK1);
Clobber(rs_rGP);
Clobber(rs_rFP);
Clobber(rs_rRA);
Clobber(rs_rF0);
Clobber(rs_rF1);
Clobber(rs_rF2);
Clobber(rs_rF3);
Clobber(rs_rF4);
Clobber(rs_rF5);
Clobber(rs_rF6);
Clobber(rs_rF7);
Clobber(rs_rF8);
Clobber(rs_rF9);
Clobber(rs_rF10);
Clobber(rs_rF11);
Clobber(rs_rF12);
Clobber(rs_rF13);
Clobber(rs_rF14);
Clobber(rs_rF15);
Clobber(rs_rD0);
Clobber(rs_rD1);
Clobber(rs_rD2);
Clobber(rs_rD3);
Clobber(rs_rD4);
Clobber(rs_rD5);
Clobber(rs_rD6);
Clobber(rs_rD7);
}
RegLocation MipsMir2Lir::GetReturnWideAlt() {
UNIMPLEMENTED(FATAL) << "No GetReturnWideAlt for MIPS";
RegLocation res = LocCReturnWide();
return res;
}
RegLocation MipsMir2Lir::GetReturnAlt() {
UNIMPLEMENTED(FATAL) << "No GetReturnAlt for MIPS";
RegLocation res = LocCReturn();
return res;
}
/* To be used when explicitly managing register use */
void MipsMir2Lir::LockCallTemps() {
LockTemp(rs_rMIPS_ARG0);
LockTemp(rs_rMIPS_ARG1);
LockTemp(rs_rMIPS_ARG2);
LockTemp(rs_rMIPS_ARG3);
}
/* To be used when explicitly managing register use */
void MipsMir2Lir::FreeCallTemps() {
FreeTemp(rs_rMIPS_ARG0);
FreeTemp(rs_rMIPS_ARG1);
FreeTemp(rs_rMIPS_ARG2);
FreeTemp(rs_rMIPS_ARG3);
}
bool MipsMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
#if ANDROID_SMP != 0
NewLIR1(kMipsSync, 0 /* Only stype currently supported */);
return true;
#else
return false;
#endif
}
void MipsMir2Lir::CompilerInitializeRegAlloc() {
reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, empty_pool /* core64 */, sp_regs,
dp_regs, reserved_regs, empty_pool /* reserved64 */,
core_temps, empty_pool /* core64_temps */, sp_temps,
dp_temps);
// Target-specific adjustments.
// Alias single precision floats to appropriate half of overlapping double.
GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
int sp_reg_num = info->GetReg().GetRegNum();
int dp_reg_num = sp_reg_num >> 1;
RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num);
RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
// Double precision register's master storage should refer to itself.
DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
// Redirect single precision's master storage to master.
info->SetMaster(dp_reg_info);
// Singles should show a single 32-bit mask bit, at first referring to the low half.
DCHECK_EQ(info->StorageMask(), 0x1U);
if (sp_reg_num & 1) {
// For odd singles, change to user the high word of the backing double.
info->SetStorageMask(0x2);
}
}
// Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
// TODO: adjust when we roll to hard float calling convention.
reg_pool_->next_core_reg_ = 2;
reg_pool_->next_sp_reg_ = 2;
reg_pool_->next_dp_reg_ = 1;
}
/*
* In the Arm code a it is typical to use the link register
* to hold the target address. However, for Mips we must
* ensure that all branch instructions can be restarted if
* there is a trap in the shadow. Allocate a temp register.
*/
RegStorage MipsMir2Lir::LoadHelper(ThreadOffset<4> offset) {
// NOTE: native pointer.
LoadWordDisp(rs_rMIPS_SELF, offset.Int32Value(), rs_rT9);
return rs_rT9;
}
RegStorage MipsMir2Lir::LoadHelper(ThreadOffset<8> offset) {
UNIMPLEMENTED(FATAL) << "Should not be called.";
return RegStorage::InvalidReg();
}
LIR* MipsMir2Lir::CheckSuspendUsingLoad() {
RegStorage tmp = AllocTemp();
// NOTE: native pointer.
LoadWordDisp(rs_rMIPS_SELF, Thread::ThreadSuspendTriggerOffset<4>().Int32Value(), tmp);
LIR *inst = LoadWordDisp(tmp, 0, tmp);
FreeTemp(tmp);
return inst;
}
void MipsMir2Lir::SpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
uint32_t mask = core_spill_mask_;
int offset = num_core_spills_ * 4;
OpRegImm(kOpSub, rs_rSP, offset);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= 4;
Store32Disp(rs_rMIPS_SP, offset, RegStorage::Solo32(reg));
}
}
}
void MipsMir2Lir::UnSpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
uint32_t mask = core_spill_mask_;
int offset = frame_size_;
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= 4;
Load32Disp(rs_rMIPS_SP, offset, RegStorage::Solo32(reg));
}
}
OpRegImm(kOpAdd, rs_rSP, frame_size_);
}
bool MipsMir2Lir::IsUnconditionalBranch(LIR* lir) {
return (lir->opcode == kMipsB);
}
bool MipsMir2Lir::SupportsVolatileLoadStore(OpSize size) {
// No support for 64-bit atomic load/store on mips.
return size != k64 && size != kDouble;
}
RegisterClass MipsMir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
// No support for 64-bit atomic load/store on mips.
DCHECK(size != k64 && size != kDouble);
// TODO: Verify that both core and fp registers are suitable for smaller sizes.
return RegClassBySize(size);
}
MipsMir2Lir::MipsMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena) {
for (int i = 0; i < kMipsLast; i++) {
if (MipsMir2Lir::EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << MipsMir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(MipsMir2Lir::EncodingMap[i].opcode);
}
}
}
Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new MipsMir2Lir(cu, mir_graph, arena);
}
uint64_t MipsMir2Lir::GetTargetInstFlags(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return MipsMir2Lir::EncodingMap[opcode].flags;
}
const char* MipsMir2Lir::GetTargetInstName(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return MipsMir2Lir::EncodingMap[opcode].name;
}
const char* MipsMir2Lir::GetTargetInstFmt(int opcode) {
DCHECK(!IsPseudoLirOp(opcode));
return MipsMir2Lir::EncodingMap[opcode].fmt;
}
} // namespace art