blob: 12b180d5ffa5fa7e6d8bea4ef9e4e87c6d2dfd05 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "loop_optimization.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "arch/arm64/instruction_set_features_arm64.h"
#include "arch/instruction_set.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "arch/mips64/instruction_set_features_mips64.h"
#include "arch/x86/instruction_set_features_x86.h"
#include "arch/x86_64/instruction_set_features_x86_64.h"
#include "driver/compiler_options.h"
#include "linear_order.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
namespace art {
// Enables vectorization (SIMDization) in the loop optimizer.
static constexpr bool kEnableVectorization = true;
//
// Static helpers.
//
// Base alignment for arrays/strings guaranteed by the Android runtime.
static uint32_t BaseAlignment() {
return kObjectAlignment;
}
// Hidden offset for arrays/strings guaranteed by the Android runtime.
static uint32_t HiddenOffset(DataType::Type type, bool is_string_char_at) {
return is_string_char_at
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(DataType::Size(type)).Uint32Value();
}
// Remove the instruction from the graph. A bit more elaborate than the usual
// instruction removal, since there may be a cycle in the use structure.
static void RemoveFromCycle(HInstruction* instruction) {
instruction->RemoveAsUserOfAllInputs();
instruction->RemoveEnvironmentUsers();
instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
RemoveEnvironmentUses(instruction);
ResetEnvironmentInputRecords(instruction);
}
// Detect a goto block and sets succ to the single successor.
static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
if (block->GetPredecessors().size() == 1 &&
block->GetSuccessors().size() == 1 &&
block->IsSingleGoto()) {
*succ = block->GetSingleSuccessor();
return true;
}
return false;
}
// Detect an early exit loop.
static bool IsEarlyExit(HLoopInformation* loop_info) {
HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
if (!loop_info->Contains(*successor)) {
return true;
}
}
}
return false;
}
// Forward declaration.
static bool IsZeroExtensionAndGet(HInstruction* instruction,
DataType::Type type,
/*out*/ HInstruction** operand);
// Detect a sign extension in instruction from the given type.
// Returns the promoted operand on success.
static bool IsSignExtensionAndGet(HInstruction* instruction,
DataType::Type type,
/*out*/ HInstruction** operand) {
// Accept any already wider constant that would be handled properly by sign
// extension when represented in the *width* of the given narrower data type
// (the fact that Uint8/Uint16 normally zero extend does not matter here).
int64_t value = 0;
if (IsInt64AndGet(instruction, /*out*/ &value)) {
switch (type) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
if (IsInt<8>(value)) {
*operand = instruction;
return true;
}
return false;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
if (IsInt<16>(value)) {
*operand = instruction;
return true;
}
return false;
default:
return false;
}
}
// An implicit widening conversion of any signed expression sign-extends.
if (instruction->GetType() == type) {
switch (type) {
case DataType::Type::kInt8:
case DataType::Type::kInt16:
*operand = instruction;
return true;
default:
return false;
}
}
// An explicit widening conversion of a signed expression sign-extends.
if (instruction->IsTypeConversion()) {
HInstruction* conv = instruction->InputAt(0);
DataType::Type from = conv->GetType();
switch (instruction->GetType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
if (type == from && (from == DataType::Type::kInt8 ||
from == DataType::Type::kInt16 ||
from == DataType::Type::kInt32)) {
*operand = conv;
return true;
}
return false;
case DataType::Type::kInt16:
return type == DataType::Type::kUint16 &&
from == DataType::Type::kUint16 &&
IsZeroExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
default:
return false;
}
}
return false;
}
// Detect a zero extension in instruction from the given type.
// Returns the promoted operand on success.
static bool IsZeroExtensionAndGet(HInstruction* instruction,
DataType::Type type,
/*out*/ HInstruction** operand) {
// Accept any already wider constant that would be handled properly by zero
// extension when represented in the *width* of the given narrower data type
// (the fact that Int8/Int16 normally sign extend does not matter here).
int64_t value = 0;
if (IsInt64AndGet(instruction, /*out*/ &value)) {
switch (type) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
if (IsUint<8>(value)) {
*operand = instruction;
return true;
}
return false;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
if (IsUint<16>(value)) {
*operand = instruction;
return true;
}
return false;
default:
return false;
}
}
// An implicit widening conversion of any unsigned expression zero-extends.
if (instruction->GetType() == type) {
switch (type) {
case DataType::Type::kUint8:
case DataType::Type::kUint16:
*operand = instruction;
return true;
default:
return false;
}
}
// An explicit widening conversion of an unsigned expression zero-extends.
if (instruction->IsTypeConversion()) {
HInstruction* conv = instruction->InputAt(0);
DataType::Type from = conv->GetType();
switch (instruction->GetType()) {
case DataType::Type::kInt32:
case DataType::Type::kInt64:
if (type == from && from == DataType::Type::kUint16) {
*operand = conv;
return true;
}
return false;
case DataType::Type::kUint16:
return type == DataType::Type::kInt16 &&
from == DataType::Type::kInt16 &&
IsSignExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
default:
return false;
}
}
return false;
}
// Detect situations with same-extension narrower operands.
// Returns true on success and sets is_unsigned accordingly.
static bool IsNarrowerOperands(HInstruction* a,
HInstruction* b,
DataType::Type type,
/*out*/ HInstruction** r,
/*out*/ HInstruction** s,
/*out*/ bool* is_unsigned) {
DCHECK(a != nullptr && b != nullptr);
// Look for a matching sign extension.
DataType::Type stype = HVecOperation::ToSignedType(type);
if (IsSignExtensionAndGet(a, stype, r) && IsSignExtensionAndGet(b, stype, s)) {
*is_unsigned = false;
return true;
}
// Look for a matching zero extension.
DataType::Type utype = HVecOperation::ToUnsignedType(type);
if (IsZeroExtensionAndGet(a, utype, r) && IsZeroExtensionAndGet(b, utype, s)) {
*is_unsigned = true;
return true;
}
return false;
}
// As above, single operand.
static bool IsNarrowerOperand(HInstruction* a,
DataType::Type type,
/*out*/ HInstruction** r,
/*out*/ bool* is_unsigned) {
DCHECK(a != nullptr);
// Look for a matching sign extension.
DataType::Type stype = HVecOperation::ToSignedType(type);
if (IsSignExtensionAndGet(a, stype, r)) {
*is_unsigned = false;
return true;
}
// Look for a matching zero extension.
DataType::Type utype = HVecOperation::ToUnsignedType(type);
if (IsZeroExtensionAndGet(a, utype, r)) {
*is_unsigned = true;
return true;
}
return false;
}
// Compute relative vector length based on type difference.
static uint32_t GetOtherVL(DataType::Type other_type, DataType::Type vector_type, uint32_t vl) {
DCHECK(DataType::IsIntegralType(other_type));
DCHECK(DataType::IsIntegralType(vector_type));
DCHECK_GE(DataType::SizeShift(other_type), DataType::SizeShift(vector_type));
return vl >> (DataType::SizeShift(other_type) - DataType::SizeShift(vector_type));
}
// Detect up to two added operands a and b and an acccumulated constant c.
static bool IsAddConst(HInstruction* instruction,
/*out*/ HInstruction** a,
/*out*/ HInstruction** b,
/*out*/ int64_t* c,
int32_t depth = 8) { // don't search too deep
int64_t value = 0;
// Enter add/sub while still within reasonable depth.
if (depth > 0) {
if (instruction->IsAdd()) {
return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1) &&
IsAddConst(instruction->InputAt(1), a, b, c, depth - 1);
} else if (instruction->IsSub() &&
IsInt64AndGet(instruction->InputAt(1), &value)) {
*c -= value;
return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1);
}
}
// Otherwise, deal with leaf nodes.
if (IsInt64AndGet(instruction, &value)) {
*c += value;
return true;
} else if (*a == nullptr) {
*a = instruction;
return true;
} else if (*b == nullptr) {
*b = instruction;
return true;
}
return false; // too many operands
}
// Detect a + b + c with optional constant c.
static bool IsAddConst2(HGraph* graph,
HInstruction* instruction,
/*out*/ HInstruction** a,
/*out*/ HInstruction** b,
/*out*/ int64_t* c) {
if (IsAddConst(instruction, a, b, c) && *a != nullptr) {
if (*b == nullptr) {
// Constant is usually already present, unless accumulated.
*b = graph->GetConstant(instruction->GetType(), (*c));
*c = 0;
}
return true;
}
return false;
}
// Detect a direct a - b or a hidden a - (-c).
static bool IsSubConst2(HGraph* graph,
HInstruction* instruction,
/*out*/ HInstruction** a,
/*out*/ HInstruction** b) {
int64_t c = 0;
if (instruction->IsSub()) {
*a = instruction->InputAt(0);
*b = instruction->InputAt(1);
return true;
} else if (IsAddConst(instruction, a, b, &c) && *a != nullptr && *b == nullptr) {
// Constant for the hidden subtraction.
*b = graph->GetConstant(instruction->GetType(), -c);
return true;
}
return false;
}
// Detect reductions of the following forms,
// x = x_phi + ..
// x = x_phi - ..
static bool HasReductionFormat(HInstruction* reduction, HInstruction* phi) {
if (reduction->IsAdd()) {
return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) ||
(reduction->InputAt(0) != phi && reduction->InputAt(1) == phi);
} else if (reduction->IsSub()) {
return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi);
}
return false;
}
// Translates vector operation to reduction kind.
static HVecReduce::ReductionKind GetReductionKind(HVecOperation* reduction) {
if (reduction->IsVecAdd() ||
reduction->IsVecSub() ||
reduction->IsVecSADAccumulate() ||
reduction->IsVecDotProd()) {
return HVecReduce::kSum;
}
LOG(FATAL) << "Unsupported SIMD reduction " << reduction->GetId();
UNREACHABLE();
}
// Test vector restrictions.
static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
return (restrictions & tested) != 0;
}
// Insert an instruction.
static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
DCHECK(block != nullptr);
DCHECK(instruction != nullptr);
block->InsertInstructionBefore(instruction, block->GetLastInstruction());
return instruction;
}
// Check that instructions from the induction sets are fully removed: have no uses
// and no other instructions use them.
static bool CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction*>* iset) {
for (HInstruction* instr : *iset) {
if (instr->GetBlock() != nullptr ||
!instr->GetUses().empty() ||
!instr->GetEnvUses().empty() ||
HasEnvironmentUsedByOthers(instr)) {
return false;
}
}
return true;
}
// Tries to statically evaluate condition of the specified "HIf" for other condition checks.
static void TryToEvaluateIfCondition(HIf* instruction, HGraph* graph) {
HInstruction* cond = instruction->InputAt(0);
// If a condition 'cond' is evaluated in an HIf instruction then in the successors of the
// IF_BLOCK we statically know the value of the condition 'cond' (TRUE in TRUE_SUCC, FALSE in
// FALSE_SUCC). Using that we can replace another evaluation (use) EVAL of the same 'cond'
// with TRUE value (FALSE value) if every path from the ENTRY_BLOCK to EVAL_BLOCK contains the
// edge HIF_BLOCK->TRUE_SUCC (HIF_BLOCK->FALSE_SUCC).
// if (cond) { if(cond) {
// if (cond) {} if (1) {}
// } else { =======> } else {
// if (cond) {} if (0) {}
// } }
if (!cond->IsConstant()) {
HBasicBlock* true_succ = instruction->IfTrueSuccessor();
HBasicBlock* false_succ = instruction->IfFalseSuccessor();
DCHECK_EQ(true_succ->GetPredecessors().size(), 1u);
DCHECK_EQ(false_succ->GetPredecessors().size(), 1u);
const HUseList<HInstruction*>& uses = cond->GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
HInstruction* user = it->GetUser();
size_t index = it->GetIndex();
HBasicBlock* user_block = user->GetBlock();
// Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
++it;
if (true_succ->Dominates(user_block)) {
user->ReplaceInput(graph->GetIntConstant(1), index);
} else if (false_succ->Dominates(user_block)) {
user->ReplaceInput(graph->GetIntConstant(0), index);
}
}
}
}
// Peel the first 'count' iterations of the loop.
static void PeelByCount(HLoopInformation* loop_info, int count) {
for (int i = 0; i < count; i++) {
// Perform peeling.
PeelUnrollSimpleHelper helper(loop_info);
helper.DoPeeling();
}
}
// Returns the narrower type out of instructions a and b types.
static DataType::Type GetNarrowerType(HInstruction* a, HInstruction* b) {
DataType::Type type = a->GetType();
if (DataType::Size(b->GetType()) < DataType::Size(type)) {
type = b->GetType();
}
if (a->IsTypeConversion() &&
DataType::Size(a->InputAt(0)->GetType()) < DataType::Size(type)) {
type = a->InputAt(0)->GetType();
}
if (b->IsTypeConversion() &&
DataType::Size(b->InputAt(0)->GetType()) < DataType::Size(type)) {
type = b->InputAt(0)->GetType();
}
return type;
}
//
// Public methods.
//
HLoopOptimization::HLoopOptimization(HGraph* graph,
const CompilerOptions* compiler_options,
HInductionVarAnalysis* induction_analysis,
OptimizingCompilerStats* stats,
const char* name)
: HOptimization(graph, name, stats),
compiler_options_(compiler_options),
induction_range_(induction_analysis),
loop_allocator_(nullptr),
global_allocator_(graph_->GetAllocator()),
top_loop_(nullptr),
last_loop_(nullptr),
iset_(nullptr),
reductions_(nullptr),
simplified_(false),
vector_length_(0),
vector_refs_(nullptr),
vector_static_peeling_factor_(0),
vector_dynamic_peeling_candidate_(nullptr),
vector_runtime_test_a_(nullptr),
vector_runtime_test_b_(nullptr),
vector_map_(nullptr),
vector_permanent_map_(nullptr),
vector_mode_(kSequential),
vector_preheader_(nullptr),
vector_header_(nullptr),
vector_body_(nullptr),
vector_index_(nullptr),
arch_loop_helper_(ArchNoOptsLoopHelper::Create(compiler_options_ != nullptr
? compiler_options_->GetInstructionSet()
: InstructionSet::kNone,
global_allocator_)) {
}
bool HLoopOptimization::Run() {
// Skip if there is no loop or the graph has try-catch/irreducible loops.
// TODO: make this less of a sledgehammer.
if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
return false;
}
// Phase-local allocator.
ScopedArenaAllocator allocator(graph_->GetArenaStack());
loop_allocator_ = &allocator;
// Perform loop optimizations.
bool didLoopOpt = LocalRun();
if (top_loop_ == nullptr) {
graph_->SetHasLoops(false); // no more loops
}
// Detach.
loop_allocator_ = nullptr;
last_loop_ = top_loop_ = nullptr;
return didLoopOpt;
}
//
// Loop setup and traversal.
//
bool HLoopOptimization::LocalRun() {
bool didLoopOpt = false;
// Build the linear order using the phase-local allocator. This step enables building
// a loop hierarchy that properly reflects the outer-inner and previous-next relation.
ScopedArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
LinearizeGraph(graph_, &linear_order);
// Build the loop hierarchy.
for (HBasicBlock* block : linear_order) {
if (block->IsLoopHeader()) {
AddLoop(block->GetLoopInformation());
}
}
// Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
// temporary data structures using the phase-local allocator. All new HIR
// should use the global allocator.
if (top_loop_ != nullptr) {
ScopedArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
ScopedArenaSafeMap<HInstruction*, HInstruction*> reds(
std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
ScopedArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
ScopedArenaSafeMap<HInstruction*, HInstruction*> map(
std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
ScopedArenaSafeMap<HInstruction*, HInstruction*> perm(
std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
// Attach.
iset_ = &iset;
reductions_ = &reds;
vector_refs_ = &refs;
vector_map_ = &map;
vector_permanent_map_ = &perm;
// Traverse.
didLoopOpt = TraverseLoopsInnerToOuter(top_loop_);
// Detach.
iset_ = nullptr;
reductions_ = nullptr;
vector_refs_ = nullptr;
vector_map_ = nullptr;
vector_permanent_map_ = nullptr;
}
return didLoopOpt;
}
void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
DCHECK(loop_info != nullptr);
LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
if (last_loop_ == nullptr) {
// First loop.
DCHECK(top_loop_ == nullptr);
last_loop_ = top_loop_ = node;
} else if (loop_info->IsIn(*last_loop_->loop_info)) {
// Inner loop.
node->outer = last_loop_;
DCHECK(last_loop_->inner == nullptr);
last_loop_ = last_loop_->inner = node;
} else {
// Subsequent loop.
while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
last_loop_ = last_loop_->outer;
}
node->outer = last_loop_->outer;
node->previous = last_loop_;
DCHECK(last_loop_->next == nullptr);
last_loop_ = last_loop_->next = node;
}
}
void HLoopOptimization::RemoveLoop(LoopNode* node) {
DCHECK(node != nullptr);
DCHECK(node->inner == nullptr);
if (node->previous != nullptr) {
// Within sequence.
node->previous->next = node->next;
if (node->next != nullptr) {
node->next->previous = node->previous;
}
} else {
// First of sequence.
if (node->outer != nullptr) {
node->outer->inner = node->next;
} else {
top_loop_ = node->next;
}
if (node->next != nullptr) {
node->next->outer = node->outer;
node->next->previous = nullptr;
}
}
}
bool HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
bool changed = false;
for ( ; node != nullptr; node = node->next) {
// Visit inner loops first. Recompute induction information for this
// loop if the induction of any inner loop has changed.
if (TraverseLoopsInnerToOuter(node->inner)) {
induction_range_.ReVisit(node->loop_info);
changed = true;
}
// Repeat simplifications in the loop-body until no more changes occur.
// Note that since each simplification consists of eliminating code (without
// introducing new code), this process is always finite.
do {
simplified_ = false;
SimplifyInduction(node);
SimplifyBlocks(node);
changed = simplified_ || changed;
} while (simplified_);
// Optimize inner loop.
if (node->inner == nullptr) {
changed = OptimizeInnerLoop(node) || changed;
}
}
return changed;
}
//
// Optimization.
//
void HLoopOptimization::SimplifyInduction(LoopNode* node) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Scan the phis in the header to find opportunities to simplify an induction
// cycle that is only used outside the loop. Replace these uses, if any, with
// the last value and remove the induction cycle.
// Examples: for (int i = 0; x != null; i++) { .... no i .... }
// for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
// Note that it's ok to have replaced uses after the loop with the last value, without
// being able to remove the cycle. Environment uses (which are the reason we may not be
// able to remove the cycle) within the loop will still hold the right value. We must
// have tried first, however, to replace outside uses.
if (CanRemoveCycle()) {
simplified_ = true;
for (HInstruction* i : *iset_) {
RemoveFromCycle(i);
}
DCHECK(CheckInductionSetFullyRemoved(iset_));
}
}
}
}
void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
// Iterate over all basic blocks in the loop-body.
for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
// Remove dead instructions from the loop-body.
RemoveDeadInstructions(block->GetPhis());
RemoveDeadInstructions(block->GetInstructions());
// Remove trivial control flow blocks from the loop-body.
if (block->GetPredecessors().size() == 1 &&
block->GetSuccessors().size() == 1 &&
block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
simplified_ = true;
block->MergeWith(block->GetSingleSuccessor());
} else if (block->GetSuccessors().size() == 2) {
// Trivial if block can be bypassed to either branch.
HBasicBlock* succ0 = block->GetSuccessors()[0];
HBasicBlock* succ1 = block->GetSuccessors()[1];
HBasicBlock* meet0 = nullptr;
HBasicBlock* meet1 = nullptr;
if (succ0 != succ1 &&
IsGotoBlock(succ0, &meet0) &&
IsGotoBlock(succ1, &meet1) &&
meet0 == meet1 && // meets again
meet0 != block && // no self-loop
meet0->GetPhis().IsEmpty()) { // not used for merging
simplified_ = true;
succ0->DisconnectAndDelete();
if (block->Dominates(meet0)) {
block->RemoveDominatedBlock(meet0);
succ1->AddDominatedBlock(meet0);
meet0->SetDominator(succ1);
}
}
}
}
}
bool HLoopOptimization::TryOptimizeInnerLoopFinite(LoopNode* node) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Ensure loop header logic is finite.
int64_t trip_count = 0;
if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
return false;
}
// Ensure there is only a single loop-body (besides the header).
HBasicBlock* body = nullptr;
for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
if (it.Current() != header) {
if (body != nullptr) {
return false;
}
body = it.Current();
}
}
CHECK(body != nullptr);
// Ensure there is only a single exit point.
if (header->GetSuccessors().size() != 2) {
return false;
}
HBasicBlock* exit = (header->GetSuccessors()[0] == body)
? header->GetSuccessors()[1]
: header->GetSuccessors()[0];
// Ensure exit can only be reached by exiting loop.
if (exit->GetPredecessors().size() != 1) {
return false;
}
// Detect either an empty loop (no side effects other than plain iteration) or
// a trivial loop (just iterating once). Replace subsequent index uses, if any,
// with the last value and remove the loop, possibly after unrolling its body.
HPhi* main_phi = nullptr;
if (TrySetSimpleLoopHeader(header, &main_phi)) {
bool is_empty = IsEmptyBody(body);
if (reductions_->empty() && // TODO: possible with some effort
(is_empty || trip_count == 1) &&
TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
if (!is_empty) {
// Unroll the loop-body, which sees initial value of the index.
main_phi->ReplaceWith(main_phi->InputAt(0));
preheader->MergeInstructionsWith(body);
}
body->DisconnectAndDelete();
exit->RemovePredecessor(header);
header->RemoveSuccessor(exit);
header->RemoveDominatedBlock(exit);
header->DisconnectAndDelete();
preheader->AddSuccessor(exit);
preheader->AddInstruction(new (global_allocator_) HGoto());
preheader->AddDominatedBlock(exit);
exit->SetDominator(preheader);
RemoveLoop(node); // update hierarchy
return true;
}
}
// Vectorize loop, if possible and valid.
if (kEnableVectorization &&
TrySetSimpleLoopHeader(header, &main_phi) &&
ShouldVectorize(node, body, trip_count) &&
TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
Vectorize(node, body, exit, trip_count);
graph_->SetHasSIMD(true); // flag SIMD usage
MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorized);
return true;
}
return false;
}
bool HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
return TryOptimizeInnerLoopFinite(node) || TryPeelingAndUnrolling(node);
}
//
// Scalar loop peeling and unrolling: generic part methods.
//
bool HLoopOptimization::TryUnrollingForBranchPenaltyReduction(LoopAnalysisInfo* analysis_info,
bool generate_code) {
if (analysis_info->GetNumberOfExits() > 1) {
return false;
}
uint32_t unrolling_factor = arch_loop_helper_->GetScalarUnrollingFactor(analysis_info);
if (unrolling_factor == LoopAnalysisInfo::kNoUnrollingFactor) {
return false;
}
if (generate_code) {
// TODO: support other unrolling factors.
DCHECK_EQ(unrolling_factor, 2u);
// Perform unrolling.
HLoopInformation* loop_info = analysis_info->GetLoopInfo();
PeelUnrollSimpleHelper helper(loop_info);
helper.DoUnrolling();
// Remove the redundant loop check after unrolling.
HIf* copy_hif =
helper.GetBasicBlockMap()->Get(loop_info->GetHeader())->GetLastInstruction()->AsIf();
int32_t constant = loop_info->Contains(*copy_hif->IfTrueSuccessor()) ? 1 : 0;
copy_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
}
return true;
}
bool HLoopOptimization::TryPeelingForLoopInvariantExitsElimination(LoopAnalysisInfo* analysis_info,
bool generate_code) {
HLoopInformation* loop_info = analysis_info->GetLoopInfo();
if (!arch_loop_helper_->IsLoopPeelingEnabled()) {
return false;
}
if (analysis_info->GetNumberOfInvariantExits() == 0) {
return false;
}
if (generate_code) {
// Perform peeling.
PeelUnrollSimpleHelper helper(loop_info);
helper.DoPeeling();
// Statically evaluate loop check after peeling for loop invariant condition.
const SuperblockCloner::HInstructionMap* hir_map = helper.GetInstructionMap();
for (auto entry : *hir_map) {
HInstruction* copy = entry.second;
if (copy->IsIf()) {
TryToEvaluateIfCondition(copy->AsIf(), graph_);
}
}
}
return true;
}
bool HLoopOptimization::TryFullUnrolling(LoopAnalysisInfo* analysis_info, bool generate_code) {
// Fully unroll loops with a known and small trip count.
int64_t trip_count = analysis_info->GetTripCount();
if (!arch_loop_helper_->IsLoopPeelingEnabled() ||
trip_count == LoopAnalysisInfo::kUnknownTripCount ||
!arch_loop_helper_->IsFullUnrollingBeneficial(analysis_info)) {
return false;
}
if (generate_code) {
// Peeling of the N first iterations (where N equals to the trip count) will effectively
// eliminate the loop: after peeling we will have N sequential iterations copied into the loop
// preheader and the original loop. The trip count of this loop will be 0 as the sequential
// iterations are executed first and there are exactly N of them. Thus we can statically
// evaluate the loop exit condition to 'false' and fully eliminate it.
//
// Here is an example of full unrolling of a loop with a trip count 2:
//
// loop_cond_1
// loop_body_1 <- First iteration.
// |
// \ v
// ==\ loop_cond_2
// ==/ loop_body_2 <- Second iteration.
// / |
// <- v <-
// loop_cond \ loop_cond \ <- This cond is always false.
// loop_body _/ loop_body _/
//
HLoopInformation* loop_info = analysis_info->GetLoopInfo();
PeelByCount(loop_info, trip_count);
HIf* loop_hif = loop_info->GetHeader()->GetLastInstruction()->AsIf();
int32_t constant = loop_info->Contains(*loop_hif->IfTrueSuccessor()) ? 0 : 1;
loop_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
}
return true;
}
bool HLoopOptimization::TryPeelingAndUnrolling(LoopNode* node) {
// Don't run peeling/unrolling if compiler_options_ is nullptr (i.e., running under tests)
// as InstructionSet is needed.
if (compiler_options_ == nullptr) {
return false;
}
HLoopInformation* loop_info = node->loop_info;
int64_t trip_count = LoopAnalysis::GetLoopTripCount(loop_info, &induction_range_);
LoopAnalysisInfo analysis_info(loop_info);
LoopAnalysis::CalculateLoopBasicProperties(loop_info, &analysis_info, trip_count);
if (analysis_info.HasInstructionsPreventingScalarOpts() ||
arch_loop_helper_->IsLoopNonBeneficialForScalarOpts(&analysis_info)) {
return false;
}
if (!TryFullUnrolling(&analysis_info, /*generate_code*/ false) &&
!TryPeelingForLoopInvariantExitsElimination(&analysis_info, /*generate_code*/ false) &&
!TryUnrollingForBranchPenaltyReduction(&analysis_info, /*generate_code*/ false)) {
return false;
}
// Run 'IsLoopClonable' the last as it might be time-consuming.
if (!PeelUnrollHelper::IsLoopClonable(loop_info)) {
return false;
}
return TryFullUnrolling(&analysis_info) ||
TryPeelingForLoopInvariantExitsElimination(&analysis_info) ||
TryUnrollingForBranchPenaltyReduction(&analysis_info);
}
//
// Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
// "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
// Intel Press, June, 2004 (http://www.aartbik.com/).
//
bool HLoopOptimization::ShouldVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
// Reset vector bookkeeping.
vector_length_ = 0;
vector_refs_->clear();
vector_static_peeling_factor_ = 0;
vector_dynamic_peeling_candidate_ = nullptr;
vector_runtime_test_a_ =
vector_runtime_test_b_ = nullptr;
// Phis in the loop-body prevent vectorization.
if (!block->GetPhis().IsEmpty()) {
return false;
}
// Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
// occurrence, which allows passing down attributes down the use tree.
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
return false; // failure to vectorize a left-hand-side
}
}
// Prepare alignment analysis:
// (1) find desired alignment (SIMD vector size in bytes).
// (2) initialize static loop peeling votes (peeling factor that will
// make one particular reference aligned), never to exceed (1).
// (3) variable to record how many references share same alignment.
// (4) variable to record suitable candidate for dynamic loop peeling.
uint32_t desired_alignment = GetVectorSizeInBytes();
DCHECK_LE(desired_alignment, 16u);
uint32_t peeling_votes[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
uint32_t max_num_same_alignment = 0;
const ArrayReference* peeling_candidate = nullptr;
// Data dependence analysis. Find each pair of references with same type, where
// at least one is a write. Each such pair denotes a possible data dependence.
// This analysis exploits the property that differently typed arrays cannot be
// aliased, as well as the property that references either point to the same
// array or to two completely disjoint arrays, i.e., no partial aliasing.
// Other than a few simply heuristics, no detailed subscript analysis is done.
// The scan over references also prepares finding a suitable alignment strategy.
for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
uint32_t num_same_alignment = 0;
// Scan over all next references.
for (auto j = i; ++j != vector_refs_->end(); ) {
if (i->type == j->type && (i->lhs || j->lhs)) {
// Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
HInstruction* a = i->base;
HInstruction* b = j->base;
HInstruction* x = i->offset;
HInstruction* y = j->offset;
if (a == b) {
// Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
// Conservatively assume a loop-carried data dependence otherwise, and reject.
if (x != y) {
return false;
}
// Count the number of references that have the same alignment (since
// base and offset are the same) and where at least one is a write, so
// e.g. a[i] = a[i] + b[i] counts a[i] but not b[i]).
num_same_alignment++;
} else {
// Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
// Conservatively assume a potential loop-carried data dependence otherwise, avoided by
// generating an explicit a != b disambiguation runtime test on the two references.
if (x != y) {
// To avoid excessive overhead, we only accept one a != b test.
if (vector_runtime_test_a_ == nullptr) {
// First test found.
vector_runtime_test_a_ = a;
vector_runtime_test_b_ = b;
} else if ((vector_runtime_test_a_ != a || vector_runtime_test_b_ != b) &&
(vector_runtime_test_a_ != b || vector_runtime_test_b_ != a)) {
return false; // second test would be needed
}
}
}
}
}
// Update information for finding suitable alignment strategy:
// (1) update votes for static loop peeling,
// (2) update suitable candidate for dynamic loop peeling.
Alignment alignment = ComputeAlignment(i->offset, i->type, i->is_string_char_at);
if (alignment.Base() >= desired_alignment) {
// If the array/string object has a known, sufficient alignment, use the
// initial offset to compute the static loop peeling vote (this always
// works, since elements have natural alignment).
uint32_t offset = alignment.Offset() & (desired_alignment - 1u);
uint32_t vote = (offset == 0)
? 0
: ((desired_alignment - offset) >> DataType::SizeShift(i->type));
DCHECK_LT(vote, 16u);
++peeling_votes[vote];
} else if (BaseAlignment() >= desired_alignment &&
num_same_alignment > max_num_same_alignment) {
// Otherwise, if the array/string object has a known, sufficient alignment
// for just the base but with an unknown offset, record the candidate with
// the most occurrences for dynamic loop peeling (again, the peeling always
// works, since elements have natural alignment).
max_num_same_alignment = num_same_alignment;
peeling_candidate = &(*i);
}
} // for i
// Find a suitable alignment strategy.
SetAlignmentStrategy(peeling_votes, peeling_candidate);
// Does vectorization seem profitable?
if (!IsVectorizationProfitable(trip_count)) {
return false;
}
// Success!
return true;
}
void HLoopOptimization::Vectorize(LoopNode* node,
HBasicBlock* block,
HBasicBlock* exit,
int64_t trip_count) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Pick a loop unrolling factor for the vector loop.
uint32_t unroll = arch_loop_helper_->GetSIMDUnrollingFactor(
block, trip_count, MaxNumberPeeled(), vector_length_);
uint32_t chunk = vector_length_ * unroll;
DCHECK(trip_count == 0 || (trip_count >= MaxNumberPeeled() + chunk));
// A cleanup loop is needed, at least, for any unknown trip count or
// for a known trip count with remainder iterations after vectorization.
bool needs_cleanup = trip_count == 0 ||
((trip_count - vector_static_peeling_factor_) % chunk) != 0;
// Adjust vector bookkeeping.
HPhi* main_phi = nullptr;
bool is_simple_loop_header = TrySetSimpleLoopHeader(header, &main_phi); // refills sets
DCHECK(is_simple_loop_header);
vector_header_ = header;
vector_body_ = block;
// Loop induction type.
DataType::Type induc_type = main_phi->GetType();
DCHECK(induc_type == DataType::Type::kInt32 || induc_type == DataType::Type::kInt64)
<< induc_type;
// Generate the trip count for static or dynamic loop peeling, if needed:
// ptc = <peeling factor>;
HInstruction* ptc = nullptr;
if (vector_static_peeling_factor_ != 0) {
// Static loop peeling for SIMD alignment (using the most suitable
// fixed peeling factor found during prior alignment analysis).
DCHECK(vector_dynamic_peeling_candidate_ == nullptr);
ptc = graph_->GetConstant(induc_type, vector_static_peeling_factor_);
} else if (vector_dynamic_peeling_candidate_ != nullptr) {
// Dynamic loop peeling for SIMD alignment (using the most suitable
// candidate found during prior alignment analysis):
// rem = offset % ALIGN; // adjusted as #elements
// ptc = rem == 0 ? 0 : (ALIGN - rem);
uint32_t shift = DataType::SizeShift(vector_dynamic_peeling_candidate_->type);
uint32_t align = GetVectorSizeInBytes() >> shift;
uint32_t hidden_offset = HiddenOffset(vector_dynamic_peeling_candidate_->type,
vector_dynamic_peeling_candidate_->is_string_char_at);
HInstruction* adjusted_offset = graph_->GetConstant(induc_type, hidden_offset >> shift);
HInstruction* offset = Insert(preheader, new (global_allocator_) HAdd(
induc_type, vector_dynamic_peeling_candidate_->offset, adjusted_offset));
HInstruction* rem = Insert(preheader, new (global_allocator_) HAnd(
induc_type, offset, graph_->GetConstant(induc_type, align - 1u)));
HInstruction* sub = Insert(preheader, new (global_allocator_) HSub(
induc_type, graph_->GetConstant(induc_type, align), rem));
HInstruction* cond = Insert(preheader, new (global_allocator_) HEqual(
rem, graph_->GetConstant(induc_type, 0)));
ptc = Insert(preheader, new (global_allocator_) HSelect(
cond, graph_->GetConstant(induc_type, 0), sub, kNoDexPc));
needs_cleanup = true; // don't know the exact amount
}
// Generate loop control:
// stc = <trip-count>;
// ptc = min(stc, ptc);
// vtc = stc - (stc - ptc) % chunk;
// i = 0;
HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
HInstruction* vtc = stc;
if (needs_cleanup) {
DCHECK(IsPowerOfTwo(chunk));
HInstruction* diff = stc;
if (ptc != nullptr) {
if (trip_count == 0) {
HInstruction* cond = Insert(preheader, new (global_allocator_) HAboveOrEqual(stc, ptc));
ptc = Insert(preheader, new (global_allocator_) HSelect(cond, ptc, stc, kNoDexPc));
}
diff = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, ptc));
}
HInstruction* rem = Insert(
preheader, new (global_allocator_) HAnd(induc_type,
diff,
graph_->GetConstant(induc_type, chunk - 1)));
vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
}
vector_index_ = graph_->GetConstant(induc_type, 0);
// Generate runtime disambiguation test:
// vtc = a != b ? vtc : 0;
if (vector_runtime_test_a_ != nullptr) {
HInstruction* rt = Insert(
preheader,
new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
vtc = Insert(preheader,
new (global_allocator_)
HSelect(rt, vtc, graph_->GetConstant(induc_type, 0), kNoDexPc));
needs_cleanup = true;
}
// Generate alignment peeling loop, if needed:
// for ( ; i < ptc; i += 1)
// <loop-body>
//
// NOTE: The alignment forced by the peeling loop is preserved even if data is
// moved around during suspend checks, since all analysis was based on
// nothing more than the Android runtime alignment conventions.
if (ptc != nullptr) {
vector_mode_ = kSequential;
GenerateNewLoop(node,
block,
graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
vector_index_,
ptc,
graph_->GetConstant(induc_type, 1),
LoopAnalysisInfo::kNoUnrollingFactor);
}
// Generate vector loop, possibly further unrolled:
// for ( ; i < vtc; i += chunk)
// <vectorized-loop-body>
vector_mode_ = kVector;
GenerateNewLoop(node,
block,
graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
vector_index_,
vtc,
graph_->GetConstant(induc_type, vector_length_), // increment per unroll
unroll);
HLoopInformation* vloop = vector_header_->GetLoopInformation();
// Generate cleanup loop, if needed:
// for ( ; i < stc; i += 1)
// <loop-body>
if (needs_cleanup) {
vector_mode_ = kSequential;
GenerateNewLoop(node,
block,
graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
vector_index_,
stc,
graph_->GetConstant(induc_type, 1),
LoopAnalysisInfo::kNoUnrollingFactor);
}
// Link reductions to their final uses.
for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
if (i->first->IsPhi()) {
HInstruction* phi = i->first;
HInstruction* repl = ReduceAndExtractIfNeeded(i->second);
// Deal with regular uses.
for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
induction_range_.Replace(use.GetUser(), phi, repl); // update induction use
}
phi->ReplaceWith(repl);
}
}
// Remove the original loop by disconnecting the body block
// and removing all instructions from the header.
block->DisconnectAndDelete();
while (!header->GetFirstInstruction()->IsGoto()) {
header->RemoveInstruction(header->GetFirstInstruction());
}
// Update loop hierarchy: the old header now resides in the same outer loop
// as the old preheader. Note that we don't bother putting sequential
// loops back in the hierarchy at this point.
header->SetLoopInformation(preheader->GetLoopInformation()); // outward
node->loop_info = vloop;
}
void HLoopOptimization::GenerateNewLoop(LoopNode* node,
HBasicBlock* block,
HBasicBlock* new_preheader,
HInstruction* lo,
HInstruction* hi,
HInstruction* step,
uint32_t unroll) {
DCHECK(unroll == 1 || vector_mode_ == kVector);
DataType::Type induc_type = lo->GetType();
// Prepare new loop.
vector_preheader_ = new_preheader,
vector_header_ = vector_preheader_->GetSingleSuccessor();
vector_body_ = vector_header_->GetSuccessors()[1];
HPhi* phi = new (global_allocator_) HPhi(global_allocator_,
kNoRegNumber,
0,
HPhi::ToPhiType(induc_type));
// Generate header and prepare body.
// for (i = lo; i < hi; i += step)
// <loop-body>
HInstruction* cond = new (global_allocator_) HAboveOrEqual(phi, hi);
vector_header_->AddPhi(phi);
vector_header_->AddInstruction(cond);
vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
vector_index_ = phi;
vector_permanent_map_->clear(); // preserved over unrolling
for (uint32_t u = 0; u < unroll; u++) {
// Generate instruction map.
vector_map_->clear();
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
DCHECK(vectorized_def);
}
// Generate body from the instruction map, but in original program order.
HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
auto i = vector_map_->find(it.Current());
if (i != vector_map_->end() && !i->second->IsInBlock()) {
Insert(vector_body_, i->second);
// Deal with instructions that need an environment, such as the scalar intrinsics.
if (i->second->NeedsEnvironment()) {
i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
}
}
}
// Generate the induction.
vector_index_ = new (global_allocator_) HAdd(induc_type, vector_index_, step);
Insert(vector_body_, vector_index_);
}
// Finalize phi inputs for the reductions (if any).
for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
if (!i->first->IsPhi()) {
DCHECK(i->second->IsPhi());
GenerateVecReductionPhiInputs(i->second->AsPhi(), i->first);
}
}
// Finalize phi inputs for the loop index.
phi->AddInput(lo);
phi->AddInput(vector_index_);
vector_index_ = phi;
}
bool HLoopOptimization::VectorizeDef(LoopNode* node,
HInstruction* instruction,
bool generate_code) {
// Accept a left-hand-side array base[index] for
// (1) supported vector type,
// (2) loop-invariant base,
// (3) unit stride index,
// (4) vectorizable right-hand-side value.
uint64_t restrictions = kNone;
if (instruction->IsArraySet()) {
DataType::Type type = instruction->AsArraySet()->GetComponentType();
HInstruction* base = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
HInstruction* value = instruction->InputAt(2);
HInstruction* offset = nullptr;
// For narrow types, explicit type conversion may have been
// optimized way, so set the no hi bits restriction here.
if (DataType::Size(type) <= 2) {
restrictions |= kNoHiBits;
}
if (TrySetVectorType(type, &restrictions) &&
node->loop_info->IsDefinedOutOfTheLoop(base) &&
induction_range_.IsUnitStride(instruction, index, graph_, &offset) &&
VectorizeUse(node, value, generate_code, type, restrictions)) {
if (generate_code) {
GenerateVecSub(index, offset);
GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), offset, type);
} else {
vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
}
return true;
}
return false;
}
// Accept a left-hand-side reduction for
// (1) supported vector type,
// (2) vectorizable right-hand-side value.
auto redit = reductions_->find(instruction);
if (redit != reductions_->end()) {
DataType::Type type = instruction->GetType();
// Recognize SAD idiom or direct reduction.
if (VectorizeSADIdiom(node, instruction, generate_code, type, restrictions) ||
VectorizeDotProdIdiom(node, instruction, generate_code, type, restrictions) ||
(TrySetVectorType(type, &restrictions) &&
VectorizeUse(node, instruction, generate_code, type, restrictions))) {
if (generate_code) {
HInstruction* new_red = vector_map_->Get(instruction);
vector_permanent_map_->Put(new_red, vector_map_->Get(redit->second));
vector_permanent_map_->Overwrite(redit->second, new_red);
}
return true;
}
return false;
}
// Branch back okay.
if (instruction->IsGoto()) {
return true;
}
// Otherwise accept only expressions with no effects outside the immediate loop-body.
// Note that actual uses are inspected during right-hand-side tree traversal.
return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
}
bool HLoopOptimization::VectorizeUse(LoopNode* node,
HInstruction* instruction,
bool generate_code,
DataType::Type type,
uint64_t restrictions) {
// Accept anything for which code has already been generated.
if (generate_code) {
if (vector_map_->find(instruction) != vector_map_->end()) {
return true;
}
}
// Continue the right-hand-side tree traversal, passing in proper
// types and vector restrictions along the way. During code generation,
// all new nodes are drawn from the global allocator.
if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
// Accept invariant use, using scalar expansion.
if (generate_code) {
GenerateVecInv(instruction, type);
}
return true;
} else if (instruction->IsArrayGet()) {
// Deal with vector restrictions.
bool is_string_char_at = instruction->AsArrayGet()->IsStringCharAt();
if (is_string_char_at && HasVectorRestrictions(restrictions, kNoStringCharAt)) {
return false;
}
// Accept a right-hand-side array base[index] for
// (1) matching vector type (exact match or signed/unsigned integral type of the same size),
// (2) loop-invariant base,
// (3) unit stride index,
// (4) vectorizable right-hand-side value.
HInstruction* base = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
HInstruction* offset = nullptr;
if (HVecOperation::ToSignedType(type) == HVecOperation::ToSignedType(instruction->GetType()) &&
node->loop_info->IsDefinedOutOfTheLoop(base) &&
induction_range_.IsUnitStride(instruction, index, graph_, &offset)) {
if (generate_code) {
GenerateVecSub(index, offset);
GenerateVecMem(instruction, vector_map_->Get(index), nullptr, offset, type);
} else {
vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false, is_string_char_at));
}
return true;
}
} else if (instruction->IsPhi()) {
// Accept particular phi operations.
if (reductions_->find(instruction) != reductions_->end()) {
// Deal with vector restrictions.
if (HasVectorRestrictions(restrictions, kNoReduction)) {
return false;
}
// Accept a reduction.
if (generate_code) {
GenerateVecReductionPhi(instruction->AsPhi());
}
return true;
}
// TODO: accept right-hand-side induction?
return false;
} else if (instruction->IsTypeConversion()) {
// Accept particular type conversions.
HTypeConversion* conversion = instruction->AsTypeConversion();
HInstruction* opa = conversion->InputAt(0);
DataType::Type from = conversion->GetInputType();
DataType::Type to = conversion->GetResultType();
if (DataType::IsIntegralType(from) && DataType::IsIntegralType(to)) {
uint32_t size_vec = DataType::Size(type);
uint32_t size_from = DataType::Size(from);
uint32_t size_to = DataType::Size(to);
// Accept an integral conversion
// (1a) narrowing into vector type, "wider" operations cannot bring in higher order bits, or
// (1b) widening from at least vector type, and
// (2) vectorizable operand.
if ((size_to < size_from &&
size_to == size_vec &&
VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) ||
(size_to >= size_from &&
size_from >= size_vec &&
VectorizeUse(node, opa, generate_code, type, restrictions))) {
if (generate_code) {
if (vector_mode_ == kVector) {
vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through
} else {
GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
}
}
return true;
}
} else if (to == DataType::Type::kFloat32 && from == DataType::Type::kInt32) {
DCHECK_EQ(to, type);
// Accept int to float conversion for
// (1) supported int,
// (2) vectorizable operand.
if (TrySetVectorType(from, &restrictions) &&
VectorizeUse(node, opa, generate_code, from, restrictions)) {
if (generate_code) {
GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
}
return true;
}
}
return false;
} else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
// Accept unary operator for vectorizable operand.
HInstruction* opa = instruction->InputAt(0);
if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
if (generate_code) {
GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
}
return true;
}
} else if (instruction->IsAdd() || instruction->IsSub() ||
instruction->IsMul() || instruction->IsDiv() ||
instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
// Deal with vector restrictions.
if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
(instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
return false;
}
// Accept binary operator for vectorizable operands.
HInstruction* opa = instruction->InputAt(0);
HInstruction* opb = instruction->InputAt(1);
if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
VectorizeUse(node, opb, generate_code, type, restrictions)) {
if (generate_code) {
GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
}
return true;
}
} else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
// Recognize halving add idiom.
if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
return true;
}
// Deal with vector restrictions.
HInstruction* opa = instruction->InputAt(0);
HInstruction* opb = instruction->InputAt(1);
HInstruction* r = opa;
bool is_unsigned = false;
if ((HasVectorRestrictions(restrictions, kNoShift)) ||
(instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
return false; // unsupported instruction
} else if (HasVectorRestrictions(restrictions, kNoHiBits)) {
// Shifts right need extra care to account for higher order bits.
// TODO: less likely shr/unsigned and ushr/signed can by flipping signess.
if (instruction->IsShr() &&
(!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
return false; // reject, unless all operands are sign-extension narrower
} else if (instruction->IsUShr() &&
(!IsNarrowerOperand(opa, type, &r, &is_unsigned) || !is_unsigned)) {
return false; // reject, unless all operands are zero-extension narrower
}
}
// Accept shift operator for vectorizable/invariant operands.
// TODO: accept symbolic, albeit loop invariant shift factors.
DCHECK(r != nullptr);
if (generate_code && vector_mode_ != kVector) { // de-idiom
r = opa;
}
int64_t distance = 0;
if (VectorizeUse(node, r, generate_code, type, restrictions) &&
IsInt64AndGet(opb, /*out*/ &distance)) {
// Restrict shift distance to packed data type width.
int64_t max_distance = DataType::Size(type) * 8;
if (0 <= distance && distance < max_distance) {
if (generate_code) {
GenerateVecOp(instruction, vector_map_->Get(r), opb, type);
}
return true;
}
}
} else if (instruction->IsAbs()) {
// Deal with vector restrictions.
HInstruction* opa = instruction->InputAt(0);
HInstruction* r = opa;
bool is_unsigned = false;
if (HasVectorRestrictions(restrictions, kNoAbs)) {
return false;
} else if (HasVectorRestrictions(restrictions, kNoHiBits) &&
(!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
return false; // reject, unless operand is sign-extension narrower
}
// Accept ABS(x) for vectorizable operand.
DCHECK(r != nullptr);
if (generate_code && vector_mode_ != kVector) { // de-idiom
r = opa;
}
if (VectorizeUse(node, r, generate_code, type, restrictions)) {
if (generate_code) {
GenerateVecOp(instruction,
vector_map_->Get(r),
nullptr,
HVecOperation::ToProperType(type, is_unsigned));
}
return true;
}
}
return false;
}
uint32_t HLoopOptimization::GetVectorSizeInBytes() {
switch (compiler_options_->GetInstructionSet()) {
case InstructionSet::kArm:
case InstructionSet::kThumb2:
return 8; // 64-bit SIMD
default:
return 16; // 128-bit SIMD
}
}
bool HLoopOptimization::TrySetVectorType(DataType::Type type, uint64_t* restrictions) {
const InstructionSetFeatures* features = compiler_options_->GetInstructionSetFeatures();
switch (compiler_options_->GetInstructionSet()) {
case InstructionSet::kArm:
case InstructionSet::kThumb2:
// Allow vectorization for all ARM devices, because Android assumes that
// ARM 32-bit always supports advanced SIMD (64-bit SIMD).
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
*restrictions |= kNoDiv | kNoReduction | kNoDotProd;
return TrySetVectorLength(8);
case DataType::Type::kUint16:
case DataType::Type::kInt16:
*restrictions |= kNoDiv | kNoStringCharAt | kNoReduction | kNoDotProd;
return TrySetVectorLength(4);
case DataType::Type::kInt32:
*restrictions |= kNoDiv | kNoWideSAD;
return TrySetVectorLength(2);
default:
break;
}
return false;
case InstructionSet::kArm64:
// Allow vectorization for all ARM devices, because Android assumes that
// ARMv8 AArch64 always supports advanced SIMD (128-bit SIMD).
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
*restrictions |= kNoDiv;
return TrySetVectorLength(16);
case DataType::Type::kUint16:
case DataType::Type::kInt16:
*restrictions |= kNoDiv;
return TrySetVectorLength(8);
case DataType::Type::kInt32:
*restrictions |= kNoDiv;
return TrySetVectorLength(4);
case DataType::Type::kInt64:
*restrictions |= kNoDiv | kNoMul;
return TrySetVectorLength(2);
case DataType::Type::kFloat32:
*restrictions |= kNoReduction;
return TrySetVectorLength(4);
case DataType::Type::kFloat64:
*restrictions |= kNoReduction;
return TrySetVectorLength(2);
default:
return false;
}
case InstructionSet::kX86:
case InstructionSet::kX86_64:
// Allow vectorization for SSE4.1-enabled X86 devices only (128-bit SIMD).
if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
*restrictions |= kNoMul |
kNoDiv |
kNoShift |
kNoAbs |
kNoSignedHAdd |
kNoUnroundedHAdd |
kNoSAD |
kNoDotProd;
return TrySetVectorLength(16);
case DataType::Type::kUint16:
case DataType::Type::kInt16:
*restrictions |= kNoDiv |
kNoAbs |
kNoSignedHAdd |
kNoUnroundedHAdd |
kNoSAD|
kNoDotProd;
return TrySetVectorLength(8);
case DataType::Type::kInt32:
*restrictions |= kNoDiv | kNoSAD;
return TrySetVectorLength(4);
case DataType::Type::kInt64:
*restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoSAD;
return TrySetVectorLength(2);
case DataType::Type::kFloat32:
*restrictions |= kNoReduction;
return TrySetVectorLength(4);
case DataType::Type::kFloat64:
*restrictions |= kNoReduction;
return TrySetVectorLength(2);
default:
break;
} // switch type
}
return false;
case InstructionSet::kMips:
if (features->AsMipsInstructionSetFeatures()->HasMsa()) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
*restrictions |= kNoDiv | kNoDotProd;
return TrySetVectorLength(16);
case DataType::Type::kUint16:
case DataType::Type::kInt16:
*restrictions |= kNoDiv | kNoStringCharAt | kNoDotProd;
return TrySetVectorLength(8);
case DataType::Type::kInt32:
*restrictions |= kNoDiv;
return TrySetVectorLength(4);
case DataType::Type::kInt64:
*restrictions |= kNoDiv;
return TrySetVectorLength(2);
case DataType::Type::kFloat32:
*restrictions |= kNoReduction;
return TrySetVectorLength(4);
case DataType::Type::kFloat64:
*restrictions |= kNoReduction;
return TrySetVectorLength(2);
default:
break;
} // switch type
}
return false;
case InstructionSet::kMips64:
if (features->AsMips64InstructionSetFeatures()->HasMsa()) {
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
*restrictions |= kNoDiv | kNoDotProd;
return TrySetVectorLength(16);
case DataType::Type::kUint16:
case DataType::Type::kInt16:
*restrictions |= kNoDiv | kNoStringCharAt | kNoDotProd;
return TrySetVectorLength(8);
case DataType::Type::kInt32:
*restrictions |= kNoDiv;
return TrySetVectorLength(4);
case DataType::Type::kInt64:
*restrictions |= kNoDiv;
return TrySetVectorLength(2);
case DataType::Type::kFloat32:
*restrictions |= kNoReduction;
return TrySetVectorLength(4);
case DataType::Type::kFloat64:
*restrictions |= kNoReduction;
return TrySetVectorLength(2);
default:
break;
} // switch type
}
return false;
default:
return false;
} // switch instruction set
}
bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
DCHECK(IsPowerOfTwo(length) && length >= 2u);
// First time set?
if (vector_length_ == 0) {
vector_length_ = length;
}
// Different types are acceptable within a loop-body, as long as all the corresponding vector
// lengths match exactly to obtain a uniform traversal through the vector iteration space
// (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
return vector_length_ == length;
}
void HLoopOptimization::GenerateVecInv(HInstruction* org, DataType::Type type) {
if (vector_map_->find(org) == vector_map_->end()) {
// In scalar code, just use a self pass-through for scalar invariants
// (viz. expression remains itself).
if (vector_mode_ == kSequential) {
vector_map_->Put(org, org);
return;
}
// In vector code, explicit scalar expansion is needed.
HInstruction* vector = nullptr;
auto it = vector_permanent_map_->find(org);
if (it != vector_permanent_map_->end()) {
vector = it->second; // reuse during unrolling
} else {
// Generates ReplicateScalar( (optional_type_conv) org ).
HInstruction* input = org;
DataType::Type input_type = input->GetType();
if (type != input_type && (type == DataType::Type::kInt64 ||
input_type == DataType::Type::kInt64)) {
input = Insert(vector_preheader_,
new (global_allocator_) HTypeConversion(type, input, kNoDexPc));
}
vector = new (global_allocator_)
HVecReplicateScalar(global_allocator_, input, type, vector_length_, kNoDexPc);
vector_permanent_map_->Put(org, Insert(vector_preheader_, vector));
}
vector_map_->Put(org, vector);
}
}
void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
if (vector_map_->find(org) == vector_map_->end()) {
HInstruction* subscript = vector_index_;
int64_t value = 0;
if (!IsInt64AndGet(offset, &value) || value != 0) {
subscript = new (global_allocator_) HAdd(DataType::Type::kInt32, subscript, offset);
if (org->IsPhi()) {
Insert(vector_body_, subscript); // lacks layout placeholder
}
}
vector_map_->Put(org, subscript);
}
}
void HLoopOptimization::GenerateVecMem(HInstruction* org,
HInstruction* opa,
HInstruction* opb,
HInstruction* offset,
DataType::Type type) {
uint32_t dex_pc = org->GetDexPc();
HInstruction* vector = nullptr;
if (vector_mode_ == kVector) {
// Vector store or load.
bool is_string_char_at = false;
HInstruction* base = org->InputAt(0);
if (opb != nullptr) {
vector = new (global_allocator_) HVecStore(
global_allocator_, base, opa, opb, type, org->GetSideEffects(), vector_length_, dex_pc);
} else {
is_string_char_at = org->AsArrayGet()->IsStringCharAt();
vector = new (global_allocator_) HVecLoad(global_allocator_,
base,
opa,
type,
org->GetSideEffects(),
vector_length_,
is_string_char_at,
dex_pc);
}
// Known (forced/adjusted/original) alignment?
if (vector_dynamic_peeling_candidate_ != nullptr) {
if (vector_dynamic_peeling_candidate_->offset == offset && // TODO: diffs too?
DataType::Size(vector_dynamic_peeling_candidate_->type) == DataType::Size(type) &&
vector_dynamic_peeling_candidate_->is_string_char_at == is_string_char_at) {
vector->AsVecMemoryOperation()->SetAlignment( // forced
Alignment(GetVectorSizeInBytes(), 0));
}
} else {
vector->AsVecMemoryOperation()->SetAlignment( // adjusted/original
ComputeAlignment(offset, type, is_string_char_at, vector_static_peeling_factor_));
}
} else {
// Scalar store or load.
DCHECK(vector_mode_ == kSequential);
if (opb != nullptr) {
DataType::Type component_type = org->AsArraySet()->GetComponentType();
vector = new (global_allocator_) HArraySet(
org->InputAt(0), opa, opb, component_type, org->GetSideEffects(), dex_pc);
} else {
bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
vector = new (global_allocator_) HArrayGet(
org->InputAt(0), opa, org->GetType(), org->GetSideEffects(), dex_pc, is_string_char_at);
}
}
vector_map_->Put(org, vector);
}
void HLoopOptimization::GenerateVecReductionPhi(HPhi* phi) {
DCHECK(reductions_->find(phi) != reductions_->end());
DCHECK(reductions_->Get(phi->InputAt(1)) == phi);
HInstruction* vector = nullptr;
if (vector_mode_ == kSequential) {
HPhi* new_phi = new (global_allocator_) HPhi(
global_allocator_, kNoRegNumber, 0, phi->GetType());
vector_header_->AddPhi(new_phi);
vector = new_phi;
} else {
// Link vector reduction back to prior unrolled update, or a first phi.
auto it = vector_permanent_map_->find(phi);
if (it != vector_permanent_map_->end()) {
vector = it->second;
} else {
HPhi* new_phi = new (global_allocator_) HPhi(
global_allocator_, kNoRegNumber, 0, HVecOperation::kSIMDType);
vector_header_->AddPhi(new_phi);
vector = new_phi;
}
}
vector_map_->Put(phi, vector);
}
void HLoopOptimization::GenerateVecReductionPhiInputs(HPhi* phi, HInstruction* reduction) {
HInstruction* new_phi = vector_map_->Get(phi);
HInstruction* new_init = reductions_->Get(phi);
HInstruction* new_red = vector_map_->Get(reduction);
// Link unrolled vector loop back to new phi.
for (; !new_phi->IsPhi(); new_phi = vector_permanent_map_->Get(new_phi)) {
DCHECK(new_phi->IsVecOperation());
}
// Prepare the new initialization.
if (vector_mode_ == kVector) {
// Generate a [initial, 0, .., 0] vector for add or
// a [initial, initial, .., initial] vector for min/max.
HVecOperation* red_vector = new_red->AsVecOperation();
HVecReduce::ReductionKind kind = GetReductionKind(red_vector);
uint32_t vector_length = red_vector->GetVectorLength();
DataType::Type type = red_vector->GetPackedType();
if (kind == HVecReduce::ReductionKind::kSum) {
new_init = Insert(vector_preheader_,
new (global_allocator_) HVecSetScalars(global_allocator_,
&new_init,
type,
vector_length,
1,
kNoDexPc));
} else {
new_init = Insert(vector_preheader_,
new (global_allocator_) HVecReplicateScalar(global_allocator_,
new_init,
type,
vector_length,
kNoDexPc));
}
} else {
new_init = ReduceAndExtractIfNeeded(new_init);
}
// Set the phi inputs.
DCHECK(new_phi->IsPhi());
new_phi->AsPhi()->AddInput(new_init);
new_phi->AsPhi()->AddInput(new_red);
// New feed value for next phi (safe mutation in iteration).
reductions_->find(phi)->second = new_phi;
}
HInstruction* HLoopOptimization::ReduceAndExtractIfNeeded(HInstruction* instruction) {
if (instruction->IsPhi()) {
HInstruction* input = instruction->InputAt(1);
if (HVecOperation::ReturnsSIMDValue(input)) {
DCHECK(!input->IsPhi());
HVecOperation* input_vector = input->AsVecOperation();
uint32_t vector_length = input_vector->GetVectorLength();
DataType::Type type = input_vector->GetPackedType();
HVecReduce::ReductionKind kind = GetReductionKind(input_vector);
HBasicBlock* exit = instruction->GetBlock()->GetSuccessors()[0];
// Generate a vector reduction and scalar extract
// x = REDUCE( [x_1, .., x_n] )
// y = x_1
// along the exit of the defining loop.
HInstruction* reduce = new (global_allocator_) HVecReduce(
global_allocator_, instruction, type, vector_length, kind, kNoDexPc);
exit->InsertInstructionBefore(reduce, exit->GetFirstInstruction());
instruction = new (global_allocator_) HVecExtractScalar(
global_allocator_, reduce, type, vector_length, 0, kNoDexPc);
exit->InsertInstructionAfter(instruction, reduce);
}
}
return instruction;
}
#define GENERATE_VEC(x, y) \
if (vector_mode_ == kVector) { \
vector = (x); \
} else { \
DCHECK(vector_mode_ == kSequential); \
vector = (y); \
} \
break;
void HLoopOptimization::GenerateVecOp(HInstruction* org,
HInstruction* opa,
HInstruction* opb,
DataType::Type type) {
uint32_t dex_pc = org->GetDexPc();
HInstruction* vector = nullptr;
DataType::Type org_type = org->GetType();
switch (org->GetKind()) {
case HInstruction::kNeg:
DCHECK(opb == nullptr);
GENERATE_VEC(
new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_, dex_pc),
new (global_allocator_) HNeg(org_type, opa, dex_pc));
case HInstruction::kNot:
DCHECK(opb == nullptr);
GENERATE_VEC(
new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
new (global_allocator_) HNot(org_type, opa, dex_pc));
case HInstruction::kBooleanNot:
DCHECK(opb == nullptr);
GENERATE_VEC(
new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
new (global_allocator_) HBooleanNot(opa, dex_pc));
case HInstruction::kTypeConversion:
DCHECK(opb == nullptr);
GENERATE_VEC(
new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_, dex_pc),
new (global_allocator_) HTypeConversion(org_type, opa, dex_pc));
case HInstruction::kAdd:
GENERATE_VEC(
new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HAdd(org_type, opa, opb, dex_pc));
case HInstruction::kSub:
GENERATE_VEC(
new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HSub(org_type, opa, opb, dex_pc));
case HInstruction::kMul:
GENERATE_VEC(
new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HMul(org_type, opa, opb, dex_pc));
case HInstruction::kDiv:
GENERATE_VEC(
new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HDiv(org_type, opa, opb, dex_pc));
case HInstruction::kAnd:
GENERATE_VEC(
new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HAnd(org_type, opa, opb, dex_pc));
case HInstruction::kOr:
GENERATE_VEC(
new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HOr(org_type, opa, opb, dex_pc));
case HInstruction::kXor:
GENERATE_VEC(
new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HXor(org_type, opa, opb, dex_pc));
case HInstruction::kShl:
GENERATE_VEC(
new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HShl(org_type, opa, opb, dex_pc));
case HInstruction::kShr:
GENERATE_VEC(
new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HShr(org_type, opa, opb, dex_pc));
case HInstruction::kUShr:
GENERATE_VEC(
new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
new (global_allocator_) HUShr(org_type, opa, opb, dex_pc));
case HInstruction::kAbs:
DCHECK(opb == nullptr);
GENERATE_VEC(
new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_, dex_pc),
new (global_allocator_) HAbs(org_type, opa, dex_pc));
default:
break;
} // switch
CHECK(vector != nullptr) << "Unsupported SIMD operator";
vector_map_->Put(org, vector);
}
#undef GENERATE_VEC
//
// Vectorization idioms.
//
// Method recognizes the following idioms:
// rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
// truncated halving add (a + b) >> 1 for unsigned/signed operands a, b
// Provided that the operands are promoted to a wider form to do the arithmetic and
// then cast back to narrower form, the idioms can be mapped into efficient SIMD
// implementation that operates directly in narrower form (plus one extra bit).
// TODO: current version recognizes implicit byte/short/char widening only;
// explicit widening from int to long could be added later.
bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
HInstruction* instruction,
bool generate_code,
DataType::Type type,
uint64_t restrictions) {
// Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
// (note whether the sign bit in wider precision is shifted in has no effect
// on the narrow precision computed by the idiom).
if ((instruction->IsShr() ||
instruction->IsUShr()) &&
IsInt64Value(instruction->InputAt(1), 1)) {
// Test for (a + b + c) >> 1 for optional constant c.
HInstruction* a = nullptr;
HInstruction* b = nullptr;
int64_t c = 0;
if (IsAddConst2(graph_, instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) {
// Accept c == 1 (rounded) or c == 0 (not rounded).
bool is_rounded = false;
if (c == 1) {
is_rounded = true;
} else if (c != 0) {
return false;
}
// Accept consistent zero or sign extension on operands a and b.
HInstruction* r = nullptr;
HInstruction* s = nullptr;
bool is_unsigned = false;
if (!IsNarrowerOperands(a, b, type, &r, &s, &is_unsigned)) {
return false;
}
// Deal with vector restrictions.
if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
(!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
return false;
}
// Accept recognized halving add for vectorizable operands. Vectorized code uses the
// shorthand idiomatic operation. Sequential code uses the original scalar expressions.
DCHECK(r != nullptr && s != nullptr);
if (generate_code && vector_mode_ != kVector) { // de-idiom
r = instruction->InputAt(0);
s = instruction->InputAt(1);
}
if (VectorizeUse(node, r, generate_code, type, restrictions) &&
VectorizeUse(node, s, generate_code, type, restrictions)) {
if (generate_code) {
if (vector_mode_ == kVector) {
vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
global_allocator_,
vector_map_->Get(r),
vector_map_->Get(s),
HVecOperation::ToProperType(type, is_unsigned),
vector_length_,
is_rounded,
kNoDexPc));
MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
} else {
GenerateVecOp(instruction, vector_map_->Get(r), vector_map_->Get(s), type);
}
}
return true;
}
}
}
return false;
}
// Method recognizes the following idiom:
// q += ABS(a - b) for signed operands a, b
// Provided that the operands have the same type or are promoted to a wider form.
// Since this may involve a vector length change, the idiom is handled by going directly
// to a sad-accumulate node (rather than relying combining finer grained nodes later).
// TODO: unsigned SAD too?
bool HLoopOptimization::VectorizeSADIdiom(LoopNode* node,
HInstruction* instruction,
bool generate_code,
DataType::Type reduction_type,
uint64_t restrictions) {
// Filter integral "q += ABS(a - b);" reduction, where ABS and SUB
// are done in the same precision (either int or long).
if (!instruction->IsAdd() ||
(reduction_type != DataType::Type::kInt32 && reduction_type != DataType::Type::kInt64)) {
return false;
}
HInstruction* q = instruction->InputAt(0);
HInstruction* v = instruction->InputAt(1);
HInstruction* a = nullptr;
HInstruction* b = nullptr;
if (v->IsAbs() &&
v->GetType() == reduction_type &&
IsSubConst2(graph_, v->InputAt(0), /*out*/ &a, /*out*/ &b)) {
DCHECK(a != nullptr && b != nullptr);
} else {
return false;
}
// Accept same-type or consistent sign extension for narrower-type on operands a and b.
// The same-type or narrower operands are called r (a or lower) and s (b or lower).
// We inspect the operands carefully to pick the most suited type.
HInstruction* r = a;
HInstruction* s = b;
bool is_unsigned = false;
DataType::Type sub_type = GetNarrowerType(a, b);
if (reduction_type != sub_type &&
(!IsNarrowerOperands(a, b, sub_type, &r, &s, &is_unsigned) || is_unsigned)) {
return false;
}
// Try same/narrower type and deal with vector restrictions.
if (!TrySetVectorType(sub_type, &restrictions) ||
HasVectorRestrictions(restrictions, kNoSAD) ||
(reduction_type != sub_type && HasVectorRestrictions(restrictions, kNoWideSAD))) {
return false;
}
// Accept SAD idiom for vectorizable operands. Vectorized code uses the shorthand
// idiomatic operation. Sequential code uses the original scalar expressions.
DCHECK(r != nullptr && s != nullptr);
if (generate_code && vector_mode_ != kVector) { // de-idiom
r = s = v->InputAt(0);
}
if (VectorizeUse(node, q, generate_code, sub_type, restrictions) &&
VectorizeUse(node, r, generate_code, sub_type, restrictions) &&
VectorizeUse(node, s, generate_code, sub_type, restrictions)) {
if (generate_code) {
if (vector_mode_ == kVector) {
vector_map_->Put(instruction, new (global_allocator_) HVecSADAccumulate(
global_allocator_,
vector_map_->Get(q),
vector_map_->Get(r),
vector_map_->Get(s),
HVecOperation::ToProperType(reduction_type, is_unsigned),
GetOtherVL(reduction_type, sub_type, vector_length_),
kNoDexPc));
MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
} else {
GenerateVecOp(v, vector_map_->Get(r), nullptr, reduction_type);
GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
}
}
return true;
}
return false;
}
// Method recognises the following dot product idiom:
// q += a * b for operands a, b whose type is narrower than the reduction one.
// Provided that the operands have the same type or are promoted to a wider form.
// Since this may involve a vector length change, the idiom is handled by going directly
// to a dot product node (rather than relying combining finer grained nodes later).
bool HLoopOptimization::VectorizeDotProdIdiom(LoopNode* node,
HInstruction* instruction,
bool generate_code,
DataType::Type reduction_type,
uint64_t restrictions) {
if (!instruction->IsAdd() || (reduction_type != DataType::Type::kInt32)) {
return false;
}
HInstruction* q = instruction->InputAt(0);
HInstruction* v = instruction->InputAt(1);
if (!v->IsMul() || v->GetType() != reduction_type) {
return false;
}
HInstruction* a = v->InputAt(0);
HInstruction* b = v->InputAt(1);
HInstruction* r = a;
HInstruction* s = b;
DataType::Type op_type = GetNarrowerType(a, b);
bool is_unsigned = false;
if (!IsNarrowerOperands(a, b, op_type, &r, &s, &is_unsigned)) {
return false;
}
op_type = HVecOperation::ToProperType(op_type, is_unsigned);
if (!TrySetVectorType(op_type, &restrictions) ||
HasVectorRestrictions(restrictions, kNoDotProd)) {
return false;
}
DCHECK(r != nullptr && s != nullptr);
// Accept dot product idiom for vectorizable operands. Vectorized code uses the shorthand
// idiomatic operation. Sequential code uses the original scalar expressions.
if (generate_code && vector_mode_ != kVector) { // de-idiom
r = a;
s = b;
}
if (VectorizeUse(node, q, generate_code, op_type, restrictions) &&
VectorizeUse(node, r, generate_code, op_type, restrictions) &&
VectorizeUse(node, s, generate_code, op_type, restrictions)) {
if (generate_code) {
if (vector_mode_ == kVector) {
vector_map_->Put(instruction, new (global_allocator_) HVecDotProd(
global_allocator_,
vector_map_->Get(q),
vector_map_->Get(r),
vector_map_->Get(s),
reduction_type,
is_unsigned,
GetOtherVL(reduction_type, op_type, vector_length_),
kNoDexPc));
MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
} else {
GenerateVecOp(v, vector_map_->Get(r), vector_map_->Get(s), reduction_type);
GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
}
}
return true;
}
return false;
}
//
// Vectorization heuristics.
//
Alignment HLoopOptimization::ComputeAlignment(HInstruction* offset,
DataType::Type type,
bool is_string_char_at,
uint32_t peeling) {
// Combine the alignment and hidden offset that is guaranteed by
// the Android runtime with a known starting index adjusted as bytes.
int64_t value = 0;
if (IsInt64AndGet(offset, /*out*/ &value)) {
uint32_t start_offset =
HiddenOffset(type, is_string_char_at) + (value + peeling) * DataType::Size(type);
return Alignment(BaseAlignment(), start_offset & (BaseAlignment() - 1u));
}
// Otherwise, the Android runtime guarantees at least natural alignment.
return Alignment(DataType::Size(type), 0);
}
void HLoopOptimization::SetAlignmentStrategy(uint32_t peeling_votes[],
const ArrayReference* peeling_candidate) {
// Current heuristic: pick the best static loop peeling factor, if any,
// or otherwise use dynamic loop peeling on suggested peeling candidate.
uint32_t max_vote = 0;
for (int32_t i = 0; i < 16; i++) {
if (peeling_votes[i] > max_vote) {
max_vote = peeling_votes[i];
vector_static_peeling_factor_ = i;
}
}
if (max_vote == 0) {
vector_dynamic_peeling_candidate_ = peeling_candidate;
}
}
uint32_t HLoopOptimization::MaxNumberPeeled() {
if (vector_dynamic_peeling_candidate_ != nullptr) {
return vector_length_ - 1u; // worst-case
}
return vector_static_peeling_factor_; // known exactly
}
bool HLoopOptimization::IsVectorizationProfitable(int64_t trip_count) {
// Current heuristic: non-empty body with sufficient number of iterations (if known).
// TODO: refine by looking at e.g. operation count, alignment, etc.
// TODO: trip count is really unsigned entity, provided the guarding test
// is satisfied; deal with this more carefully later
uint32_t max_peel = MaxNumberPeeled();
if (vector_length_ == 0) {
return false; // nothing found
} else if (trip_count < 0) {
return false; // guard against non-taken/large
} else if ((0 < trip_count) && (trip_count < (vector_length_ + max_peel))) {
return false; // insufficient iterations
}
return true;
}
//
// Helpers.
//
bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
// Start with empty phi induction.
iset_->clear();
// Special case Phis that have equivalent in a debuggable setup. Our graph checker isn't
// smart enough to follow strongly connected components (and it's probably not worth
// it to make it so). See b/33775412.
if (graph_->IsDebuggable() && phi->HasEquivalentPhi()) {
return false;
}
// Lookup phi induction cycle.
ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
if (set != nullptr) {
for (HInstruction* i : *set) {
// Check that, other than instructions that are no longer in the graph (removed earlier)
// each instruction is removable and, when restrict uses are requested, other than for phi,
// all uses are contained within the cycle.
if (!i->IsInBlock()) {
continue;
} else if (!i->IsRemovable()) {
return false;
} else if (i != phi && restrict_uses) {
// Deal with regular uses.
for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
if (set->find(use.GetUser()) == set->end()) {
return false;
}
}
}
iset_->insert(i); // copy
}
return true;
}
return false;
}
bool HLoopOptimization::TrySetPhiReduction(HPhi* phi) {
DCHECK(iset_->empty());
// Only unclassified phi cycles are candidates for reductions.
if (induction_range_.IsClassified(phi)) {
return false;
}
// Accept operations like x = x + .., provided that the phi and the reduction are
// used exactly once inside the loop, and by each other.
HInputsRef inputs = phi->GetInputs();
if (inputs.size() == 2) {
HInstruction* reduction = inputs[1];
if (HasReductionFormat(reduction, phi)) {
HLoopInformation* loop_info = phi->GetBlock()->GetLoopInformation();
uint32_t use_count = 0;
bool single_use_inside_loop =
// Reduction update only used by phi.
reduction->GetUses().HasExactlyOneElement() &&
!reduction->HasEnvironmentUses() &&
// Reduction update is only use of phi inside the loop.
IsOnlyUsedAfterLoop(loop_info, phi, /*collect_loop_uses*/ true, &use_count) &&
iset_->size() == 1;
iset_->clear(); // leave the way you found it
if (single_use_inside_loop) {
// Link reduction back, and start recording feed value.
reductions_->Put(reduction, phi);
reductions_->Put(phi, phi->InputAt(0));
return true;
}
}
}
return false;
}
bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block, /*out*/ HPhi** main_phi) {
// Start with empty phi induction and reductions.
iset_->clear();
reductions_->clear();
// Scan the phis to find the following (the induction structure has already
// been optimized, so we don't need to worry about trivial cases):
// (1) optional reductions in loop,
// (2) the main induction, used in loop control.
HPhi* phi = nullptr;
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
if (TrySetPhiReduction(it.Current()->AsPhi())) {
continue;
} else if (phi == nullptr) {
// Found the first candidate for main induction.
phi = it.Current()->AsPhi();
} else {
return false;
}
}
// Then test for a typical loopheader:
// s: SuspendCheck
// c: Condition(phi, bound)
// i: If(c)
if (phi != nullptr && TrySetPhiInduction(phi, /*restrict_uses*/ false)) {
HInstruction* s = block->GetFirstInstruction();
if (s != nullptr && s->IsSuspendCheck()) {
HInstruction* c = s->GetNext();
if (c != nullptr &&
c->IsCondition() &&
c->GetUses().HasExactlyOneElement() && // only used for termination
!c->HasEnvironmentUses()) { // unlikely, but not impossible
HInstruction* i = c->GetNext();
if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
iset_->insert(c);
iset_->insert(s);
*main_phi = phi;
return true;
}
}
}
}
return false;
}
bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
if (!block->GetPhis().IsEmpty()) {
return false;
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
return false;
}
}
return true;
}
bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
HInstruction* instruction) {
// Deal with regular uses.
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
return true;
}
}
return false;
}
bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
HInstruction* instruction,
bool collect_loop_uses,
/*out*/ uint32_t* use_count) {
// Deal with regular uses.
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
HInstruction* user = use.GetUser();
if (iset_->find(user) == iset_->end()) { // not excluded?
HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
// If collect_loop_uses is set, simply keep adding those uses to the set.
// Otherwise, reject uses inside the loop that were not already in the set.
if (collect_loop_uses) {
iset_->insert(user);
continue;
}
return false;
}
++*use_count;
}
}
return true;
}
bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
HInstruction* instruction,
HBasicBlock* block) {
// Try to replace outside uses with the last value.
if (induction_range_.CanGenerateLastValue(instruction)) {
HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
// Deal with regular uses.
const HUseList<HInstruction*>& uses = instruction->GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end;) {
HInstruction* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment before replacing
if (iset_->find(user) == iset_->end()) { // not excluded?
if (kIsDebugBuild) {
// We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
}
user->ReplaceInput(replacement, index);
induction_range_.Replace(user, instruction, replacement); // update induction
}
}
// Deal with environment uses.
const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
HEnvironment* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment before replacing
if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
// Only update environment uses after the loop.
HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
user->RemoveAsUserOfInput(index);
user->SetRawEnvAt(index, replacement);
replacement->AddEnvUseAt(user, index);
}
}
}
return true;
}
return false;
}
bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
HInstruction* instruction,
HBasicBlock* block,
bool collect_loop_uses) {
// Assigning the last value is always successful if there are no uses.
// Otherwise, it succeeds in a no early-exit loop by generating the
// proper last value assignment.
uint32_t use_count = 0;
return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
(use_count == 0 ||
(!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
}
void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
HInstruction* instruction = i.Current();
if (instruction->IsDeadAndRemovable()) {
simplified_ = true;
instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
}
}
}
bool HLoopOptimization::CanRemoveCycle() {
for (HInstruction* i : *iset_) {
// We can never remove instructions that have environment
// uses when we compile 'debuggable'.
if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
return false;
}
// A deoptimization should never have an environment input removed.
for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
if (use.GetUser()->GetHolder()->IsDeoptimize()) {
return false;
}
}
}
return true;
}
} // namespace art