blob: 7c7981e5e7882027eeb1649ef9c2382f65d70fd0 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_VERIFIER_REG_TYPE_H_
#define ART_RUNTIME_VERIFIER_REG_TYPE_H_
#include <stdint.h>
#include <limits>
#include <set>
#include <string>
#include "base/arena_object.h"
#include "base/bit_vector.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/stringpiece.h"
#include "gc_root.h"
#include "handle_scope.h"
#include "object_callbacks.h"
#include "primitive.h"
namespace art {
namespace mirror {
class Class;
} // namespace mirror
class ArenaBitVector;
class ScopedArenaAllocator;
namespace verifier {
class RegTypeCache;
/*
* RegType holds information about the "type" of data held in a register.
*/
class RegType {
public:
virtual bool IsUndefined() const { return false; }
virtual bool IsConflict() const { return false; }
virtual bool IsBoolean() const { return false; }
virtual bool IsByte() const { return false; }
virtual bool IsChar() const { return false; }
virtual bool IsShort() const { return false; }
virtual bool IsInteger() const { return false; }
virtual bool IsLongLo() const { return false; }
virtual bool IsLongHi() const { return false; }
virtual bool IsFloat() const { return false; }
virtual bool IsDouble() const { return false; }
virtual bool IsDoubleLo() const { return false; }
virtual bool IsDoubleHi() const { return false; }
virtual bool IsUnresolvedReference() const { return false; }
virtual bool IsUninitializedReference() const { return false; }
virtual bool IsUninitializedThisReference() const { return false; }
virtual bool IsUnresolvedAndUninitializedReference() const { return false; }
virtual bool IsUnresolvedAndUninitializedThisReference() const {
return false;
}
virtual bool IsUnresolvedMergedReference() const { return false; }
virtual bool IsUnresolvedSuperClass() const { return false; }
virtual bool IsReference() const { return false; }
virtual bool IsPreciseReference() const { return false; }
virtual bool IsPreciseConstant() const { return false; }
virtual bool IsPreciseConstantLo() const { return false; }
virtual bool IsPreciseConstantHi() const { return false; }
virtual bool IsImpreciseConstantLo() const { return false; }
virtual bool IsImpreciseConstantHi() const { return false; }
virtual bool IsImpreciseConstant() const { return false; }
virtual bool IsConstantTypes() const { return false; }
bool IsConstant() const {
return IsImpreciseConstant() || IsPreciseConstant();
}
bool IsConstantLo() const {
return IsImpreciseConstantLo() || IsPreciseConstantLo();
}
bool IsPrecise() const {
return IsPreciseConstantLo() || IsPreciseConstant() ||
IsPreciseConstantHi();
}
bool IsLongConstant() const { return IsConstantLo(); }
bool IsConstantHi() const {
return (IsPreciseConstantHi() || IsImpreciseConstantHi());
}
bool IsLongConstantHigh() const { return IsConstantHi(); }
virtual bool IsUninitializedTypes() const { return false; }
virtual bool IsUnresolvedTypes() const { return false; }
bool IsLowHalf() const {
return (IsLongLo() || IsDoubleLo() || IsPreciseConstantLo() || IsImpreciseConstantLo());
}
bool IsHighHalf() const {
return (IsLongHi() || IsDoubleHi() || IsPreciseConstantHi() || IsImpreciseConstantHi());
}
bool IsLongOrDoubleTypes() const { return IsLowHalf(); }
// Check this is the low half, and that type_h is its matching high-half.
inline bool CheckWidePair(const RegType& type_h) const {
if (IsLowHalf()) {
return ((IsImpreciseConstantLo() && type_h.IsPreciseConstantHi()) ||
(IsImpreciseConstantLo() && type_h.IsImpreciseConstantHi()) ||
(IsPreciseConstantLo() && type_h.IsPreciseConstantHi()) ||
(IsPreciseConstantLo() && type_h.IsImpreciseConstantHi()) ||
(IsDoubleLo() && type_h.IsDoubleHi()) ||
(IsLongLo() && type_h.IsLongHi()));
}
return false;
}
// The high half that corresponds to this low half
const RegType& HighHalf(RegTypeCache* cache) const
SHARED_REQUIRES(Locks::mutator_lock_);
bool IsConstantBoolean() const;
virtual bool IsConstantChar() const { return false; }
virtual bool IsConstantByte() const { return false; }
virtual bool IsConstantShort() const { return false; }
virtual bool IsOne() const { return false; }
virtual bool IsZero() const { return false; }
bool IsReferenceTypes() const {
return IsNonZeroReferenceTypes() || IsZero();
}
virtual bool IsNonZeroReferenceTypes() const { return false; }
bool IsCategory1Types() const {
return IsChar() || IsInteger() || IsFloat() || IsConstant() || IsByte() ||
IsShort() || IsBoolean();
}
bool IsCategory2Types() const {
return IsLowHalf(); // Don't expect explicit testing of high halves
}
bool IsBooleanTypes() const { return IsBoolean() || IsConstantBoolean(); }
bool IsByteTypes() const {
return IsConstantByte() || IsByte() || IsBoolean();
}
bool IsShortTypes() const {
return IsShort() || IsByte() || IsBoolean() || IsConstantShort();
}
bool IsCharTypes() const {
return IsChar() || IsBooleanTypes() || IsConstantChar();
}
bool IsIntegralTypes() const {
return IsInteger() || IsConstant() || IsByte() || IsShort() || IsChar() ||
IsBoolean();
}
// Give the constant value encoded, but this shouldn't be called in the
// general case.
bool IsArrayIndexTypes() const { return IsIntegralTypes(); }
// Float type may be derived from any constant type
bool IsFloatTypes() const { return IsFloat() || IsConstant(); }
bool IsLongTypes() const { return IsLongLo() || IsLongConstant(); }
bool IsLongHighTypes() const {
return (IsLongHi() || IsPreciseConstantHi() || IsImpreciseConstantHi());
}
bool IsDoubleTypes() const { return IsDoubleLo() || IsLongConstant(); }
bool IsDoubleHighTypes() const {
return (IsDoubleHi() || IsPreciseConstantHi() || IsImpreciseConstantHi());
}
virtual bool IsLong() const { return false; }
bool HasClass() const {
bool result = !klass_.IsNull();
DCHECK_EQ(result, HasClassVirtual());
return result;
}
virtual bool HasClassVirtual() const { return false; }
bool IsJavaLangObject() const SHARED_REQUIRES(Locks::mutator_lock_);
bool IsArrayTypes() const SHARED_REQUIRES(Locks::mutator_lock_);
bool IsObjectArrayTypes() const SHARED_REQUIRES(Locks::mutator_lock_);
Primitive::Type GetPrimitiveType() const;
bool IsJavaLangObjectArray() const
SHARED_REQUIRES(Locks::mutator_lock_);
bool IsInstantiableTypes() const SHARED_REQUIRES(Locks::mutator_lock_);
const StringPiece& GetDescriptor() const {
DCHECK(HasClass() ||
(IsUnresolvedTypes() && !IsUnresolvedMergedReference() &&
!IsUnresolvedSuperClass()));
return descriptor_;
}
mirror::Class* GetClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
DCHECK(!IsUnresolvedReference());
DCHECK(!klass_.IsNull()) << Dump();
DCHECK(HasClass());
return klass_.Read();
}
uint16_t GetId() const { return cache_id_; }
const RegType& GetSuperClass(RegTypeCache* cache) const
SHARED_REQUIRES(Locks::mutator_lock_);
virtual std::string Dump() const
SHARED_REQUIRES(Locks::mutator_lock_) = 0;
// Can this type access other?
bool CanAccess(const RegType& other) const
SHARED_REQUIRES(Locks::mutator_lock_);
// Can this type access a member with the given properties?
bool CanAccessMember(mirror::Class* klass, uint32_t access_flags) const
SHARED_REQUIRES(Locks::mutator_lock_);
// Can this type be assigned by src?
// Note: Object and interface types may always be assigned to one another, see
// comment on
// ClassJoin.
bool IsAssignableFrom(const RegType& src) const
SHARED_REQUIRES(Locks::mutator_lock_);
// Can this array type potentially be assigned by src.
// This function is necessary as array types are valid even if their components types are not,
// e.g., when they component type could not be resolved. The function will return true iff the
// types are assignable. It will return false otherwise. In case of return=false, soft_error
// will be set to true iff the assignment test failure should be treated as a soft-error, i.e.,
// when both array types have the same 'depth' and the 'final' component types may be assignable
// (both are reference types).
bool CanAssignArray(const RegType& src, RegTypeCache& reg_types,
Handle<mirror::ClassLoader> class_loader, bool* soft_error) const
SHARED_REQUIRES(Locks::mutator_lock_);
// Can this type be assigned by src? Variant of IsAssignableFrom that doesn't
// allow assignment to
// an interface from an Object.
bool IsStrictlyAssignableFrom(const RegType& src) const
SHARED_REQUIRES(Locks::mutator_lock_);
// Are these RegTypes the same?
bool Equals(const RegType& other) const { return GetId() == other.GetId(); }
// Compute the merge of this register from one edge (path) with incoming_type
// from another.
const RegType& Merge(const RegType& incoming_type, RegTypeCache* reg_types) const
SHARED_REQUIRES(Locks::mutator_lock_);
// Same as above, but also handles the case where incoming_type == this.
const RegType& SafeMerge(const RegType& incoming_type, RegTypeCache* reg_types) const
SHARED_REQUIRES(Locks::mutator_lock_) {
if (Equals(incoming_type)) {
return *this;
}
return Merge(incoming_type, reg_types);
}
/*
* A basic Join operation on classes. For a pair of types S and T the Join, written S v T = J, is
* S <: J, T <: J and for-all U such that S <: U, T <: U then J <: U. That is J is the parent of
* S and T such that there isn't a parent of both S and T that isn't also the parent of J (ie J
* is the deepest (lowest upper bound) parent of S and T).
*
* This operation applies for regular classes and arrays, however, for interface types there
* needn't be a partial ordering on the types. We could solve the problem of a lack of a partial
* order by introducing sets of types, however, the only operation permissible on an interface is
* invoke-interface. In the tradition of Java verifiers [1] we defer the verification of interface
* types until an invoke-interface call on the interface typed reference at runtime and allow
* the perversion of Object being assignable to an interface type (note, however, that we don't
* allow assignment of Object or Interface to any concrete class and are therefore type safe).
*
* [1] Java bytecode verification: algorithms and formalizations, Xavier Leroy
*/
static mirror::Class* ClassJoin(mirror::Class* s, mirror::Class* t)
SHARED_REQUIRES(Locks::mutator_lock_);
virtual ~RegType() {}
void VisitRoots(RootVisitor* visitor, const RootInfo& root_info) const
SHARED_REQUIRES(Locks::mutator_lock_);
static void* operator new(size_t size) noexcept {
return ::operator new(size);
}
static void* operator new(size_t size, ArenaAllocator* arena) = delete;
static void* operator new(size_t size, ScopedArenaAllocator* arena);
protected:
RegType(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: descriptor_(descriptor),
klass_(klass),
cache_id_(cache_id) {
if (kIsDebugBuild) {
CheckInvariants();
}
}
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
const StringPiece descriptor_;
mutable GcRoot<mirror::Class> klass_; // Non-const only due to moving classes.
const uint16_t cache_id_;
friend class RegTypeCache;
private:
static bool AssignableFrom(const RegType& lhs, const RegType& rhs, bool strict)
SHARED_REQUIRES(Locks::mutator_lock_);
DISALLOW_COPY_AND_ASSIGN(RegType);
};
// Bottom type.
class ConflictType FINAL : public RegType {
public:
bool IsConflict() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
// Get the singleton Conflict instance.
static const ConflictType* GetInstance() PURE;
// Create the singleton instance.
static const ConflictType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
// Destroy the singleton instance.
static void Destroy();
private:
ConflictType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: RegType(klass, descriptor, cache_id) {}
static const ConflictType* instance_;
};
// A variant of the bottom type used to specify an undefined value in the
// incoming registers.
// Merging with UndefinedType yields ConflictType which is the true bottom.
class UndefinedType FINAL : public RegType {
public:
bool IsUndefined() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
// Get the singleton Undefined instance.
static const UndefinedType* GetInstance() PURE;
// Create the singleton instance.
static const UndefinedType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
// Destroy the singleton instance.
static void Destroy();
private:
UndefinedType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: RegType(klass, descriptor, cache_id) {}
static const UndefinedType* instance_;
};
class PrimitiveType : public RegType {
public:
PrimitiveType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_);
bool HasClassVirtual() const OVERRIDE { return true; }
};
class Cat1Type : public PrimitiveType {
public:
Cat1Type(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_);
};
class IntegerType : public Cat1Type {
public:
bool IsInteger() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
static const IntegerType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const IntegerType* GetInstance() PURE;
static void Destroy();
private:
IntegerType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat1Type(klass, descriptor, cache_id) {}
static const IntegerType* instance_;
};
class BooleanType FINAL : public Cat1Type {
public:
bool IsBoolean() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
static const BooleanType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const BooleanType* GetInstance() PURE;
static void Destroy();
private:
BooleanType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat1Type(klass, descriptor, cache_id) {}
static const BooleanType* instance_;
};
class ByteType FINAL : public Cat1Type {
public:
bool IsByte() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
static const ByteType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const ByteType* GetInstance() PURE;
static void Destroy();
private:
ByteType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat1Type(klass, descriptor, cache_id) {}
static const ByteType* instance_;
};
class ShortType FINAL : public Cat1Type {
public:
bool IsShort() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
static const ShortType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const ShortType* GetInstance() PURE;
static void Destroy();
private:
ShortType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat1Type(klass, descriptor, cache_id) {}
static const ShortType* instance_;
};
class CharType FINAL : public Cat1Type {
public:
bool IsChar() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
static const CharType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const CharType* GetInstance() PURE;
static void Destroy();
private:
CharType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat1Type(klass, descriptor, cache_id) {}
static const CharType* instance_;
};
class FloatType FINAL : public Cat1Type {
public:
bool IsFloat() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
static const FloatType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const FloatType* GetInstance() PURE;
static void Destroy();
private:
FloatType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat1Type(klass, descriptor, cache_id) {}
static const FloatType* instance_;
};
class Cat2Type : public PrimitiveType {
public:
Cat2Type(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_);
};
class LongLoType FINAL : public Cat2Type {
public:
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
bool IsLongLo() const OVERRIDE { return true; }
bool IsLong() const OVERRIDE { return true; }
static const LongLoType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const LongLoType* GetInstance() PURE;
static void Destroy();
private:
LongLoType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat2Type(klass, descriptor, cache_id) {}
static const LongLoType* instance_;
};
class LongHiType FINAL : public Cat2Type {
public:
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
bool IsLongHi() const OVERRIDE { return true; }
static const LongHiType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const LongHiType* GetInstance() PURE;
static void Destroy();
private:
LongHiType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat2Type(klass, descriptor, cache_id) {}
static const LongHiType* instance_;
};
class DoubleLoType FINAL : public Cat2Type {
public:
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
bool IsDoubleLo() const OVERRIDE { return true; }
bool IsDouble() const OVERRIDE { return true; }
static const DoubleLoType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const DoubleLoType* GetInstance() PURE;
static void Destroy();
private:
DoubleLoType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat2Type(klass, descriptor, cache_id) {}
static const DoubleLoType* instance_;
};
class DoubleHiType FINAL : public Cat2Type {
public:
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
virtual bool IsDoubleHi() const OVERRIDE { return true; }
static const DoubleHiType* CreateInstance(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
static const DoubleHiType* GetInstance() PURE;
static void Destroy();
private:
DoubleHiType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: Cat2Type(klass, descriptor, cache_id) {}
static const DoubleHiType* instance_;
};
class ConstantType : public RegType {
public:
ConstantType(uint32_t constant, uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: RegType(nullptr, "", cache_id), constant_(constant) {
}
// If this is a 32-bit constant, what is the value? This value may be
// imprecise in which case
// the value represents part of the integer range of values that may be held
// in the register.
int32_t ConstantValue() const {
DCHECK(IsConstantTypes());
return constant_;
}
int32_t ConstantValueLo() const {
DCHECK(IsConstantLo());
return constant_;
}
int32_t ConstantValueHi() const {
if (IsConstantHi() || IsPreciseConstantHi() || IsImpreciseConstantHi()) {
return constant_;
} else {
DCHECK(false);
return 0;
}
}
bool IsZero() const OVERRIDE {
return IsPreciseConstant() && ConstantValue() == 0;
}
bool IsOne() const OVERRIDE {
return IsPreciseConstant() && ConstantValue() == 1;
}
bool IsConstantChar() const OVERRIDE {
return IsConstant() && ConstantValue() >= 0 &&
ConstantValue() <= std::numeric_limits<uint16_t>::max();
}
bool IsConstantByte() const OVERRIDE {
return IsConstant() &&
ConstantValue() >= std::numeric_limits<int8_t>::min() &&
ConstantValue() <= std::numeric_limits<int8_t>::max();
}
bool IsConstantShort() const OVERRIDE {
return IsConstant() &&
ConstantValue() >= std::numeric_limits<int16_t>::min() &&
ConstantValue() <= std::numeric_limits<int16_t>::max();
}
virtual bool IsConstantTypes() const OVERRIDE { return true; }
private:
const uint32_t constant_;
};
class PreciseConstType FINAL : public ConstantType {
public:
PreciseConstType(uint32_t constant, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: ConstantType(constant, cache_id) {}
bool IsPreciseConstant() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
class PreciseConstLoType FINAL : public ConstantType {
public:
PreciseConstLoType(uint32_t constant, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: ConstantType(constant, cache_id) {}
bool IsPreciseConstantLo() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
class PreciseConstHiType FINAL : public ConstantType {
public:
PreciseConstHiType(uint32_t constant, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: ConstantType(constant, cache_id) {}
bool IsPreciseConstantHi() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
class ImpreciseConstType FINAL : public ConstantType {
public:
ImpreciseConstType(uint32_t constat, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: ConstantType(constat, cache_id) {
}
bool IsImpreciseConstant() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
class ImpreciseConstLoType FINAL : public ConstantType {
public:
ImpreciseConstLoType(uint32_t constant, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: ConstantType(constant, cache_id) {}
bool IsImpreciseConstantLo() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
class ImpreciseConstHiType FINAL : public ConstantType {
public:
ImpreciseConstHiType(uint32_t constant, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: ConstantType(constant, cache_id) {}
bool IsImpreciseConstantHi() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
// Common parent of all uninitialized types. Uninitialized types are created by
// "new" dex
// instructions and must be passed to a constructor.
class UninitializedType : public RegType {
public:
UninitializedType(mirror::Class* klass, const StringPiece& descriptor,
uint32_t allocation_pc, uint16_t cache_id)
: RegType(klass, descriptor, cache_id), allocation_pc_(allocation_pc) {}
bool IsUninitializedTypes() const OVERRIDE;
bool IsNonZeroReferenceTypes() const OVERRIDE;
uint32_t GetAllocationPc() const {
DCHECK(IsUninitializedTypes());
return allocation_pc_;
}
private:
const uint32_t allocation_pc_;
};
// Similar to ReferenceType but not yet having been passed to a constructor.
class UninitializedReferenceType FINAL : public UninitializedType {
public:
UninitializedReferenceType(mirror::Class* klass,
const StringPiece& descriptor,
uint32_t allocation_pc, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: UninitializedType(klass, descriptor, allocation_pc, cache_id) {}
bool IsUninitializedReference() const OVERRIDE { return true; }
bool HasClassVirtual() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
// Similar to UnresolvedReferenceType but not yet having been passed to a
// constructor.
class UnresolvedUninitializedRefType FINAL : public UninitializedType {
public:
UnresolvedUninitializedRefType(const StringPiece& descriptor,
uint32_t allocation_pc, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: UninitializedType(nullptr, descriptor, allocation_pc, cache_id) {
if (kIsDebugBuild) {
CheckInvariants();
}
}
bool IsUnresolvedAndUninitializedReference() const OVERRIDE { return true; }
bool IsUnresolvedTypes() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
private:
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
};
// Similar to UninitializedReferenceType but special case for the this argument
// of a constructor.
class UninitializedThisReferenceType FINAL : public UninitializedType {
public:
UninitializedThisReferenceType(mirror::Class* klass,
const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: UninitializedType(klass, descriptor, 0, cache_id) {
if (kIsDebugBuild) {
CheckInvariants();
}
}
virtual bool IsUninitializedThisReference() const OVERRIDE { return true; }
bool HasClassVirtual() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
private:
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
};
class UnresolvedUninitializedThisRefType FINAL : public UninitializedType {
public:
UnresolvedUninitializedThisRefType(const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: UninitializedType(nullptr, descriptor, 0, cache_id) {
if (kIsDebugBuild) {
CheckInvariants();
}
}
bool IsUnresolvedAndUninitializedThisReference() const OVERRIDE { return true; }
bool IsUnresolvedTypes() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
private:
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
};
// A type of register holding a reference to an Object of type GetClass or a
// sub-class.
class ReferenceType FINAL : public RegType {
public:
ReferenceType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id) SHARED_REQUIRES(Locks::mutator_lock_)
: RegType(klass, descriptor, cache_id) {}
bool IsReference() const OVERRIDE { return true; }
bool IsNonZeroReferenceTypes() const OVERRIDE { return true; }
bool HasClassVirtual() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
// A type of register holding a reference to an Object of type GetClass and only
// an object of that
// type.
class PreciseReferenceType FINAL : public RegType {
public:
PreciseReferenceType(mirror::Class* klass, const StringPiece& descriptor,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
bool IsPreciseReference() const OVERRIDE { return true; }
bool IsNonZeroReferenceTypes() const OVERRIDE { return true; }
bool HasClassVirtual() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
};
// Common parent of unresolved types.
class UnresolvedType : public RegType {
public:
UnresolvedType(const StringPiece& descriptor, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: RegType(nullptr, descriptor, cache_id) {}
bool IsNonZeroReferenceTypes() const OVERRIDE;
};
// Similar to ReferenceType except the Class couldn't be loaded. Assignability
// and other tests made
// of this type must be conservative.
class UnresolvedReferenceType FINAL : public UnresolvedType {
public:
UnresolvedReferenceType(const StringPiece& descriptor, uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: UnresolvedType(descriptor, cache_id) {
if (kIsDebugBuild) {
CheckInvariants();
}
}
bool IsUnresolvedReference() const OVERRIDE { return true; }
bool IsUnresolvedTypes() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
private:
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
};
// Type representing the super-class of an unresolved type.
class UnresolvedSuperClass FINAL : public UnresolvedType {
public:
UnresolvedSuperClass(uint16_t child_id, RegTypeCache* reg_type_cache,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_)
: UnresolvedType("", cache_id),
unresolved_child_id_(child_id),
reg_type_cache_(reg_type_cache) {
if (kIsDebugBuild) {
CheckInvariants();
}
}
bool IsUnresolvedSuperClass() const OVERRIDE { return true; }
bool IsUnresolvedTypes() const OVERRIDE { return true; }
uint16_t GetUnresolvedSuperClassChildId() const {
DCHECK(IsUnresolvedSuperClass());
return static_cast<uint16_t>(unresolved_child_id_ & 0xFFFF);
}
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
private:
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
const uint16_t unresolved_child_id_;
const RegTypeCache* const reg_type_cache_;
};
// A merge of unresolved (and resolved) types. If the types were resolved this may be
// Conflict or another known ReferenceType.
class UnresolvedMergedType FINAL : public UnresolvedType {
public:
// Note: the constructor will copy the unresolved BitVector, not use it directly.
UnresolvedMergedType(const RegType& resolved,
const BitVector& unresolved,
const RegTypeCache* reg_type_cache,
uint16_t cache_id)
SHARED_REQUIRES(Locks::mutator_lock_);
// The resolved part. See description below.
const RegType& GetResolvedPart() const {
return resolved_part_;
}
// The unresolved part.
const BitVector& GetUnresolvedTypes() const {
return unresolved_types_;
}
bool IsUnresolvedMergedReference() const OVERRIDE { return true; }
bool IsUnresolvedTypes() const OVERRIDE { return true; }
std::string Dump() const OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
private:
void CheckInvariants() const SHARED_REQUIRES(Locks::mutator_lock_);
const RegTypeCache* const reg_type_cache_;
// The original implementation of merged types was a binary tree. Collection of the flattened
// types ("leaves") can be expensive, so we store the expanded list now, as two components:
// 1) A resolved component. We use Zero when there is no resolved component, as that will be
// an identity merge.
// 2) A bitvector of the unresolved reference types. A bitvector was chosen with the assumption
// that there should not be too many types in flight in practice. (We also bias the index
// against the index of Zero, which is one of the later default entries in any cache.)
const RegType& resolved_part_;
const BitVector unresolved_types_;
};
std::ostream& operator<<(std::ostream& os, const RegType& rhs)
SHARED_REQUIRES(Locks::mutator_lock_);
} // namespace verifier
} // namespace art
#endif // ART_RUNTIME_VERIFIER_REG_TYPE_H_