blob: fa616620b6205b652db19a1ba5d9c44b42d33315 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_X86_ASSEMBLER_X86_H_
#define ART_COMPILER_UTILS_X86_ASSEMBLER_X86_H_
#include <vector>
#include "base/arena_containers.h"
#include "base/bit_utils.h"
#include "base/macros.h"
#include "constants_x86.h"
#include "globals.h"
#include "managed_register_x86.h"
#include "offsets.h"
#include "utils/array_ref.h"
#include "utils/assembler.h"
namespace art {
namespace x86 {
class Immediate : public ValueObject {
public:
explicit Immediate(int32_t value_in) : value_(value_in) {}
int32_t value() const { return value_; }
bool is_int8() const { return IsInt<8>(value_); }
bool is_uint8() const { return IsUint<8>(value_); }
bool is_int16() const { return IsInt<16>(value_); }
bool is_uint16() const { return IsUint<16>(value_); }
private:
const int32_t value_;
};
class Operand : public ValueObject {
public:
uint8_t mod() const {
return (encoding_at(0) >> 6) & 3;
}
Register rm() const {
return static_cast<Register>(encoding_at(0) & 7);
}
ScaleFactor scale() const {
return static_cast<ScaleFactor>((encoding_at(1) >> 6) & 3);
}
Register index() const {
return static_cast<Register>((encoding_at(1) >> 3) & 7);
}
Register base() const {
return static_cast<Register>(encoding_at(1) & 7);
}
int8_t disp8() const {
CHECK_GE(length_, 2);
return static_cast<int8_t>(encoding_[length_ - 1]);
}
int32_t disp32() const {
CHECK_GE(length_, 5);
int32_t value;
memcpy(&value, &encoding_[length_ - 4], sizeof(value));
return value;
}
bool IsRegister(Register reg) const {
return ((encoding_[0] & 0xF8) == 0xC0) // Addressing mode is register only.
&& ((encoding_[0] & 0x07) == reg); // Register codes match.
}
protected:
// Operand can be sub classed (e.g: Address).
Operand() : length_(0), fixup_(nullptr) { }
void SetModRM(int mod_in, Register rm_in) {
CHECK_EQ(mod_in & ~3, 0);
encoding_[0] = (mod_in << 6) | rm_in;
length_ = 1;
}
void SetSIB(ScaleFactor scale_in, Register index_in, Register base_in) {
CHECK_EQ(length_, 1);
CHECK_EQ(scale_in & ~3, 0);
encoding_[1] = (scale_in << 6) | (index_in << 3) | base_in;
length_ = 2;
}
void SetDisp8(int8_t disp) {
CHECK(length_ == 1 || length_ == 2);
encoding_[length_++] = static_cast<uint8_t>(disp);
}
void SetDisp32(int32_t disp) {
CHECK(length_ == 1 || length_ == 2);
int disp_size = sizeof(disp);
memmove(&encoding_[length_], &disp, disp_size);
length_ += disp_size;
}
AssemblerFixup* GetFixup() const {
return fixup_;
}
void SetFixup(AssemblerFixup* fixup) {
fixup_ = fixup;
}
private:
uint8_t length_;
uint8_t encoding_[6];
// A fixup can be associated with the operand, in order to be applied after the
// code has been generated. This is used for constant area fixups.
AssemblerFixup* fixup_;
explicit Operand(Register reg) : fixup_(nullptr) { SetModRM(3, reg); }
// Get the operand encoding byte at the given index.
uint8_t encoding_at(int index_in) const {
CHECK_GE(index_in, 0);
CHECK_LT(index_in, length_);
return encoding_[index_in];
}
friend class X86Assembler;
};
class Address : public Operand {
public:
Address(Register base_in, int32_t disp) {
Init(base_in, disp);
}
Address(Register base_in, int32_t disp, AssemblerFixup *fixup) {
Init(base_in, disp);
SetFixup(fixup);
}
Address(Register base_in, Offset disp) {
Init(base_in, disp.Int32Value());
}
Address(Register base_in, FrameOffset disp) {
CHECK_EQ(base_in, ESP);
Init(ESP, disp.Int32Value());
}
Address(Register base_in, MemberOffset disp) {
Init(base_in, disp.Int32Value());
}
Address(Register index_in, ScaleFactor scale_in, int32_t disp) {
CHECK_NE(index_in, ESP); // Illegal addressing mode.
SetModRM(0, ESP);
SetSIB(scale_in, index_in, EBP);
SetDisp32(disp);
}
Address(Register base_in, Register index_in, ScaleFactor scale_in, int32_t disp) {
Init(base_in, index_in, scale_in, disp);
}
Address(Register base_in,
Register index_in,
ScaleFactor scale_in,
int32_t disp, AssemblerFixup *fixup) {
Init(base_in, index_in, scale_in, disp);
SetFixup(fixup);
}
static Address Absolute(uintptr_t addr) {
Address result;
result.SetModRM(0, EBP);
result.SetDisp32(addr);
return result;
}
static Address Absolute(ThreadOffset<4> addr) {
return Absolute(addr.Int32Value());
}
private:
Address() {}
void Init(Register base_in, int32_t disp) {
if (disp == 0 && base_in != EBP) {
SetModRM(0, base_in);
if (base_in == ESP) SetSIB(TIMES_1, ESP, base_in);
} else if (disp >= -128 && disp <= 127) {
SetModRM(1, base_in);
if (base_in == ESP) SetSIB(TIMES_1, ESP, base_in);
SetDisp8(disp);
} else {
SetModRM(2, base_in);
if (base_in == ESP) SetSIB(TIMES_1, ESP, base_in);
SetDisp32(disp);
}
}
void Init(Register base_in, Register index_in, ScaleFactor scale_in, int32_t disp) {
CHECK_NE(index_in, ESP); // Illegal addressing mode.
if (disp == 0 && base_in != EBP) {
SetModRM(0, ESP);
SetSIB(scale_in, index_in, base_in);
} else if (disp >= -128 && disp <= 127) {
SetModRM(1, ESP);
SetSIB(scale_in, index_in, base_in);
SetDisp8(disp);
} else {
SetModRM(2, ESP);
SetSIB(scale_in, index_in, base_in);
SetDisp32(disp);
}
}
};
// This is equivalent to the Label class, used in a slightly different context. We
// inherit the functionality of the Label class, but prevent unintended
// derived-to-base conversions by making the base class private.
class NearLabel : private Label {
public:
NearLabel() : Label() {}
// Expose the Label routines that we need.
using Label::Position;
using Label::LinkPosition;
using Label::IsBound;
using Label::IsUnused;
using Label::IsLinked;
private:
using Label::BindTo;
using Label::LinkTo;
friend class x86::X86Assembler;
DISALLOW_COPY_AND_ASSIGN(NearLabel);
};
/**
* Class to handle constant area values.
*/
class ConstantArea {
public:
explicit ConstantArea(ArenaAllocator* arena) : buffer_(arena->Adapter(kArenaAllocAssembler)) {}
// Add a double to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddDouble(double v);
// Add a float to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddFloat(float v);
// Add an int32_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt32(int32_t v);
// Add an int32_t to the end of the constant area, returning the offset into
// the constant area where the literal resides.
size_t AppendInt32(int32_t v);
// Add an int64_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt64(int64_t v);
bool IsEmpty() const {
return buffer_.size() == 0;
}
size_t GetSize() const {
return buffer_.size() * elem_size_;
}
ArrayRef<const int32_t> GetBuffer() const {
return ArrayRef<const int32_t>(buffer_);
}
private:
static constexpr size_t elem_size_ = sizeof(int32_t);
ArenaVector<int32_t> buffer_;
};
class X86Assembler FINAL : public Assembler {
public:
explicit X86Assembler(ArenaAllocator* arena) : Assembler(arena), constant_area_(arena) {}
virtual ~X86Assembler() {}
/*
* Emit Machine Instructions.
*/
void call(Register reg);
void call(const Address& address);
void call(Label* label);
void call(const ExternalLabel& label);
void pushl(Register reg);
void pushl(const Address& address);
void pushl(const Immediate& imm);
void popl(Register reg);
void popl(const Address& address);
void movl(Register dst, const Immediate& src);
void movl(Register dst, Register src);
void movl(Register dst, const Address& src);
void movl(const Address& dst, Register src);
void movl(const Address& dst, const Immediate& imm);
void movl(const Address& dst, Label* lbl);
void movntl(const Address& dst, Register src);
void bswapl(Register dst);
void bsfl(Register dst, Register src);
void bsfl(Register dst, const Address& src);
void bsrl(Register dst, Register src);
void bsrl(Register dst, const Address& src);
void popcntl(Register dst, Register src);
void popcntl(Register dst, const Address& src);
void rorl(Register reg, const Immediate& imm);
void rorl(Register operand, Register shifter);
void roll(Register reg, const Immediate& imm);
void roll(Register operand, Register shifter);
void movzxb(Register dst, ByteRegister src);
void movzxb(Register dst, const Address& src);
void movsxb(Register dst, ByteRegister src);
void movsxb(Register dst, const Address& src);
void movb(Register dst, const Address& src);
void movb(const Address& dst, ByteRegister src);
void movb(const Address& dst, const Immediate& imm);
void movzxw(Register dst, Register src);
void movzxw(Register dst, const Address& src);
void movsxw(Register dst, Register src);
void movsxw(Register dst, const Address& src);
void movw(Register dst, const Address& src);
void movw(const Address& dst, Register src);
void movw(const Address& dst, const Immediate& imm);
void leal(Register dst, const Address& src);
void cmovl(Condition condition, Register dst, Register src);
void cmovl(Condition condition, Register dst, const Address& src);
void setb(Condition condition, Register dst);
void movaps(XmmRegister dst, XmmRegister src);
void movss(XmmRegister dst, const Address& src);
void movss(const Address& dst, XmmRegister src);
void movss(XmmRegister dst, XmmRegister src);
void movd(XmmRegister dst, Register src);
void movd(Register dst, XmmRegister src);
void addss(XmmRegister dst, XmmRegister src);
void addss(XmmRegister dst, const Address& src);
void subss(XmmRegister dst, XmmRegister src);
void subss(XmmRegister dst, const Address& src);
void mulss(XmmRegister dst, XmmRegister src);
void mulss(XmmRegister dst, const Address& src);
void divss(XmmRegister dst, XmmRegister src);
void divss(XmmRegister dst, const Address& src);
void movsd(XmmRegister dst, const Address& src);
void movsd(const Address& dst, XmmRegister src);
void movsd(XmmRegister dst, XmmRegister src);
void psrlq(XmmRegister reg, const Immediate& shift_count);
void punpckldq(XmmRegister dst, XmmRegister src);
void movhpd(XmmRegister dst, const Address& src);
void movhpd(const Address& dst, XmmRegister src);
void psrldq(XmmRegister reg, const Immediate& shift_count);
void addsd(XmmRegister dst, XmmRegister src);
void addsd(XmmRegister dst, const Address& src);
void subsd(XmmRegister dst, XmmRegister src);
void subsd(XmmRegister dst, const Address& src);
void mulsd(XmmRegister dst, XmmRegister src);
void mulsd(XmmRegister dst, const Address& src);
void divsd(XmmRegister dst, XmmRegister src);
void divsd(XmmRegister dst, const Address& src);
void cvtsi2ss(XmmRegister dst, Register src);
void cvtsi2sd(XmmRegister dst, Register src);
void cvtss2si(Register dst, XmmRegister src);
void cvtss2sd(XmmRegister dst, XmmRegister src);
void cvtsd2si(Register dst, XmmRegister src);
void cvtsd2ss(XmmRegister dst, XmmRegister src);
void cvttss2si(Register dst, XmmRegister src);
void cvttsd2si(Register dst, XmmRegister src);
void cvtdq2pd(XmmRegister dst, XmmRegister src);
void comiss(XmmRegister a, XmmRegister b);
void comisd(XmmRegister a, XmmRegister b);
void ucomiss(XmmRegister a, XmmRegister b);
void ucomiss(XmmRegister a, const Address& b);
void ucomisd(XmmRegister a, XmmRegister b);
void ucomisd(XmmRegister a, const Address& b);
void roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm);
void roundss(XmmRegister dst, XmmRegister src, const Immediate& imm);
void sqrtsd(XmmRegister dst, XmmRegister src);
void sqrtss(XmmRegister dst, XmmRegister src);
void xorpd(XmmRegister dst, const Address& src);
void xorpd(XmmRegister dst, XmmRegister src);
void xorps(XmmRegister dst, const Address& src);
void xorps(XmmRegister dst, XmmRegister src);
void andpd(XmmRegister dst, XmmRegister src);
void andpd(XmmRegister dst, const Address& src);
void andps(XmmRegister dst, XmmRegister src);
void andps(XmmRegister dst, const Address& src);
void orpd(XmmRegister dst, XmmRegister src);
void orps(XmmRegister dst, XmmRegister src);
void flds(const Address& src);
void fstps(const Address& dst);
void fsts(const Address& dst);
void fldl(const Address& src);
void fstpl(const Address& dst);
void fstl(const Address& dst);
void fstsw();
void fucompp();
void fnstcw(const Address& dst);
void fldcw(const Address& src);
void fistpl(const Address& dst);
void fistps(const Address& dst);
void fildl(const Address& src);
void filds(const Address& src);
void fincstp();
void ffree(const Immediate& index);
void fsin();
void fcos();
void fptan();
void fprem();
void xchgl(Register dst, Register src);
void xchgl(Register reg, const Address& address);
void cmpb(const Address& address, const Immediate& imm);
void cmpw(const Address& address, const Immediate& imm);
void cmpl(Register reg, const Immediate& imm);
void cmpl(Register reg0, Register reg1);
void cmpl(Register reg, const Address& address);
void cmpl(const Address& address, Register reg);
void cmpl(const Address& address, const Immediate& imm);
void testl(Register reg1, Register reg2);
void testl(Register reg, const Immediate& imm);
void testl(Register reg1, const Address& address);
void andl(Register dst, const Immediate& imm);
void andl(Register dst, Register src);
void andl(Register dst, const Address& address);
void orl(Register dst, const Immediate& imm);
void orl(Register dst, Register src);
void orl(Register dst, const Address& address);
void xorl(Register dst, Register src);
void xorl(Register dst, const Immediate& imm);
void xorl(Register dst, const Address& address);
void addl(Register dst, Register src);
void addl(Register reg, const Immediate& imm);
void addl(Register reg, const Address& address);
void addl(const Address& address, Register reg);
void addl(const Address& address, const Immediate& imm);
void adcl(Register dst, Register src);
void adcl(Register reg, const Immediate& imm);
void adcl(Register dst, const Address& address);
void subl(Register dst, Register src);
void subl(Register reg, const Immediate& imm);
void subl(Register reg, const Address& address);
void subl(const Address& address, Register src);
void cdq();
void idivl(Register reg);
void imull(Register dst, Register src);
void imull(Register reg, const Immediate& imm);
void imull(Register dst, Register src, const Immediate& imm);
void imull(Register reg, const Address& address);
void imull(Register reg);
void imull(const Address& address);
void mull(Register reg);
void mull(const Address& address);
void sbbl(Register dst, Register src);
void sbbl(Register reg, const Immediate& imm);
void sbbl(Register reg, const Address& address);
void sbbl(const Address& address, Register src);
void incl(Register reg);
void incl(const Address& address);
void decl(Register reg);
void decl(const Address& address);
void shll(Register reg, const Immediate& imm);
void shll(Register operand, Register shifter);
void shll(const Address& address, const Immediate& imm);
void shll(const Address& address, Register shifter);
void shrl(Register reg, const Immediate& imm);
void shrl(Register operand, Register shifter);
void shrl(const Address& address, const Immediate& imm);
void shrl(const Address& address, Register shifter);
void sarl(Register reg, const Immediate& imm);
void sarl(Register operand, Register shifter);
void sarl(const Address& address, const Immediate& imm);
void sarl(const Address& address, Register shifter);
void shld(Register dst, Register src, Register shifter);
void shld(Register dst, Register src, const Immediate& imm);
void shrd(Register dst, Register src, Register shifter);
void shrd(Register dst, Register src, const Immediate& imm);
void negl(Register reg);
void notl(Register reg);
void enter(const Immediate& imm);
void leave();
void ret();
void ret(const Immediate& imm);
void nop();
void int3();
void hlt();
void j(Condition condition, Label* label);
void j(Condition condition, NearLabel* label);
void jecxz(NearLabel* label);
void jmp(Register reg);
void jmp(const Address& address);
void jmp(Label* label);
void jmp(NearLabel* label);
void repne_scasw();
void repe_cmpsw();
void repe_cmpsl();
void rep_movsw();
X86Assembler* lock();
void cmpxchgl(const Address& address, Register reg);
void cmpxchg8b(const Address& address);
void mfence();
X86Assembler* fs();
X86Assembler* gs();
//
// Macros for High-level operations.
//
void AddImmediate(Register reg, const Immediate& imm);
void LoadLongConstant(XmmRegister dst, int64_t value);
void LoadDoubleConstant(XmmRegister dst, double value);
void LockCmpxchgl(const Address& address, Register reg) {
lock()->cmpxchgl(address, reg);
}
void LockCmpxchg8b(const Address& address) {
lock()->cmpxchg8b(address);
}
//
// Misc. functionality
//
int PreferredLoopAlignment() { return 16; }
void Align(int alignment, int offset);
void Bind(Label* label) OVERRIDE;
void Jump(Label* label) OVERRIDE {
jmp(label);
}
void Bind(NearLabel* label);
//
// Overridden common assembler high-level functionality
//
// Emit code that will create an activation on the stack
void BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
// Emit code that will remove an activation from the stack
void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs)
OVERRIDE;
void IncreaseFrameSize(size_t adjust) OVERRIDE;
void DecreaseFrameSize(size_t adjust) OVERRIDE;
// Store routines
void Store(FrameOffset offs, ManagedRegister src, size_t size) OVERRIDE;
void StoreRef(FrameOffset dest, ManagedRegister src) OVERRIDE;
void StoreRawPtr(FrameOffset dest, ManagedRegister src) OVERRIDE;
void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister scratch) OVERRIDE;
void StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, ManagedRegister scratch)
OVERRIDE;
void StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs,
ManagedRegister scratch) OVERRIDE;
void StoreStackPointerToThread32(ThreadOffset<4> thr_offs) OVERRIDE;
void StoreSpanning(FrameOffset dest, ManagedRegister src, FrameOffset in_off,
ManagedRegister scratch) OVERRIDE;
// Load routines
void Load(ManagedRegister dest, FrameOffset src, size_t size) OVERRIDE;
void LoadFromThread32(ManagedRegister dest, ThreadOffset<4> src, size_t size) OVERRIDE;
void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs,
bool unpoison_reference) OVERRIDE;
void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) OVERRIDE;
void LoadRawPtrFromThread32(ManagedRegister dest, ThreadOffset<4> offs) OVERRIDE;
// Copying routines
void Move(ManagedRegister dest, ManagedRegister src, size_t size) OVERRIDE;
void CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs,
ManagedRegister scratch) OVERRIDE;
void CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister scratch)
OVERRIDE;
void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister scratch) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister scratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister scratch,
size_t size) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister scratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset,
ManagedRegister scratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
ManagedRegister scratch, size_t size) OVERRIDE;
void MemoryBarrier(ManagedRegister) OVERRIDE;
// Sign extension
void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Zero extension
void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Exploit fast access in managed code to Thread::Current()
void GetCurrentThread(ManagedRegister tr) OVERRIDE;
void GetCurrentThread(FrameOffset dest_offset, ManagedRegister scratch) OVERRIDE;
// Set up out_reg to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed. in_reg holds a possibly stale reference
// that can be used to avoid loading the handle scope entry to see if the value is
// null.
void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset,
ManagedRegister in_reg, bool null_allowed) OVERRIDE;
// Set up out_off to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed.
void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset,
ManagedRegister scratch, bool null_allowed) OVERRIDE;
// src holds a handle scope entry (Object**) load this into dst
void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
// know that src may not be null.
void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
// Call to address held at [base+offset]
void Call(ManagedRegister base, Offset offset, ManagedRegister scratch) OVERRIDE;
void Call(FrameOffset base, Offset offset, ManagedRegister scratch) OVERRIDE;
void CallFromThread32(ThreadOffset<4> offset, ManagedRegister scratch) OVERRIDE;
// Generate code to check if Thread::Current()->exception_ is non-null
// and branch to a ExceptionSlowPath if it is.
void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) OVERRIDE;
//
// Heap poisoning.
//
// Poison a heap reference contained in `reg`.
void PoisonHeapReference(Register reg) { negl(reg); }
// Unpoison a heap reference contained in `reg`.
void UnpoisonHeapReference(Register reg) { negl(reg); }
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybeUnpoisonHeapReference(Register reg) {
if (kPoisonHeapReferences) {
UnpoisonHeapReference(reg);
}
}
// Add a double to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddDouble(double v) { return constant_area_.AddDouble(v); }
// Add a float to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddFloat(float v) { return constant_area_.AddFloat(v); }
// Add an int32_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt32(int32_t v) {
return constant_area_.AddInt32(v);
}
// Add an int32_t to the end of the constant area, returning the offset into
// the constant area where the literal resides.
size_t AppendInt32(int32_t v) {
return constant_area_.AppendInt32(v);
}
// Add an int64_t to the constant area, returning the offset into
// the constant area where the literal resides.
size_t AddInt64(int64_t v) { return constant_area_.AddInt64(v); }
// Add the contents of the constant area to the assembler buffer.
void AddConstantArea();
// Is the constant area empty? Return true if there are no literals in the constant area.
bool IsConstantAreaEmpty() const { return constant_area_.IsEmpty(); }
// Return the current size of the constant area.
size_t ConstantAreaSize() const { return constant_area_.GetSize(); }
private:
inline void EmitUint8(uint8_t value);
inline void EmitInt32(int32_t value);
inline void EmitRegisterOperand(int rm, int reg);
inline void EmitXmmRegisterOperand(int rm, XmmRegister reg);
inline void EmitFixup(AssemblerFixup* fixup);
inline void EmitOperandSizeOverride();
void EmitOperand(int rm, const Operand& operand);
void EmitImmediate(const Immediate& imm);
void EmitComplex(int rm, const Operand& operand, const Immediate& immediate);
void EmitLabel(Label* label, int instruction_size);
void EmitLabelLink(Label* label);
void EmitLabelLink(NearLabel* label);
void EmitGenericShift(int rm, const Operand& operand, const Immediate& imm);
void EmitGenericShift(int rm, const Operand& operand, Register shifter);
ConstantArea constant_area_;
DISALLOW_COPY_AND_ASSIGN(X86Assembler);
};
inline void X86Assembler::EmitUint8(uint8_t value) {
buffer_.Emit<uint8_t>(value);
}
inline void X86Assembler::EmitInt32(int32_t value) {
buffer_.Emit<int32_t>(value);
}
inline void X86Assembler::EmitRegisterOperand(int rm, int reg) {
CHECK_GE(rm, 0);
CHECK_LT(rm, 8);
buffer_.Emit<uint8_t>(0xC0 + (rm << 3) + reg);
}
inline void X86Assembler::EmitXmmRegisterOperand(int rm, XmmRegister reg) {
EmitRegisterOperand(rm, static_cast<Register>(reg));
}
inline void X86Assembler::EmitFixup(AssemblerFixup* fixup) {
buffer_.EmitFixup(fixup);
}
inline void X86Assembler::EmitOperandSizeOverride() {
EmitUint8(0x66);
}
// Slowpath entered when Thread::Current()->_exception is non-null
class X86ExceptionSlowPath FINAL : public SlowPath {
public:
explicit X86ExceptionSlowPath(size_t stack_adjust) : stack_adjust_(stack_adjust) {}
virtual void Emit(Assembler *sp_asm) OVERRIDE;
private:
const size_t stack_adjust_;
};
} // namespace x86
} // namespace art
#endif // ART_COMPILER_UTILS_X86_ASSEMBLER_X86_H_