blob: 40e3f5fbb2f12872467e230c96cdd5eb39f57312 [file] [log] [blame]
* Copyright (C) 2011 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include <pthread.h>
#include <bitset>
#include <deque>
#include <iosfwd>
#include <list>
#include <string>
#include "base/macros.h"
#include "entrypoints/interpreter/interpreter_entrypoints.h"
#include "entrypoints/jni/jni_entrypoints.h"
#include "entrypoints/portable/portable_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "globals.h"
#include "jvalue.h"
#include "locks.h"
#include "offsets.h"
#include "root_visitor.h"
#include "runtime_stats.h"
#include "stack.h"
#include "stack_indirect_reference_table.h"
#include "thread_state.h"
#include "throw_location.h"
#include "UniquePtr.h"
namespace art {
namespace mirror {
class ArtMethod;
class Array;
class Class;
class ClassLoader;
class Object;
template<class T> class ObjectArray;
template<class T> class PrimitiveArray;
typedef PrimitiveArray<int32_t> IntArray;
class StackTraceElement;
class StaticStorageBase;
class Throwable;
} // namespace mirror
class BaseMutex;
class ClassLinker;
class Closure;
class Context;
struct DebugInvokeReq;
class DexFile;
struct JavaVMExt;
struct JNIEnvExt;
class Monitor;
class Runtime;
class ScopedObjectAccess;
class ScopedObjectAccessUnchecked;
class ShadowFrame;
class Thread;
class ThreadList;
// Thread priorities. These must match the Thread.MIN_PRIORITY,
// Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants.
enum ThreadPriority {
kMinThreadPriority = 1,
kNormThreadPriority = 5,
kMaxThreadPriority = 10,
enum ThreadFlag {
kSuspendRequest = 1, // If set implies that suspend_count_ > 0 and the Thread should enter the
// safepoint handler.
kCheckpointRequest = 2 // Request that the thread do some checkpoint work and then continue.
class PACKED(4) Thread {
// Space to throw a StackOverflowError in.
static const size_t kStackOverflowReservedBytes = 16 * KB;
// Creates a new native thread corresponding to the given managed peer.
// Used to implement Thread.start.
static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon);
// Attaches the calling native thread to the runtime, returning the new native peer.
// Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls.
static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_group,
bool create_peer);
// Reset internal state of child thread after fork.
void InitAfterFork();
static Thread* Current() {
// We rely on Thread::Current returning NULL for a detached thread, so it's not obvious
// that we can replace this with a direct %fs access on x86.
if (!is_started_) {
return NULL;
} else {
void* thread = pthread_getspecific(Thread::pthread_key_self_);
return reinterpret_cast<Thread*>(thread);
static Thread* FromManagedThread(const ScopedObjectAccessUnchecked& ts,
mirror::Object* thread_peer)
static Thread* FromManagedThread(const ScopedObjectAccessUnchecked& ts, jobject thread)
// Translates 172 to pAllocArrayFromCode and so on.
static void DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers);
// Dumps a one-line summary of thread state (used for operator<<).
void ShortDump(std::ostream& os) const;
// Dumps the detailed thread state and the thread stack (used for SIGQUIT).
void Dump(std::ostream& os) const
// Dumps the SIGQUIT per-thread header. 'thread' can be NULL for a non-attached thread, in which
// case we use 'tid' to identify the thread, and we'll include as much information as we can.
static void DumpState(std::ostream& os, const Thread* thread, pid_t tid)
ThreadState GetState() const {
return static_cast<ThreadState>(state_and_flags_.as_struct.state);
ThreadState SetState(ThreadState new_state);
int GetSuspendCount() const EXCLUSIVE_LOCKS_REQUIRED(Locks::thread_suspend_count_lock_) {
return suspend_count_;
int GetDebugSuspendCount() const EXCLUSIVE_LOCKS_REQUIRED(Locks::thread_suspend_count_lock_) {
return debug_suspend_count_;
bool IsSuspended() const {
union StateAndFlags state_and_flags = state_and_flags_;
return state_and_flags.as_struct.state != kRunnable &&
(state_and_flags.as_struct.flags & kSuspendRequest) != 0;
void ModifySuspendCount(Thread* self, int delta, bool for_debugger)
bool RequestCheckpoint(Closure* function);
// Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of
// mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero.
void FullSuspendCheck()
// Transition from non-runnable to runnable state acquiring share on mutator_lock_.
ThreadState TransitionFromSuspendedToRunnable()
// Transition from runnable into a state where mutator privileges are denied. Releases share of
// mutator lock.
void TransitionFromRunnableToSuspended(ThreadState new_state)
// Wait for a debugger suspension on the thread associated with the given peer. Returns the
// thread on success, else NULL. If the thread should be suspended then request_suspension should
// be true on entry. If the suspension times out then *timeout is set to true.
static Thread* SuspendForDebugger(jobject peer, bool request_suspension, bool* timed_out)
// Once called thread suspension will cause an assertion failure.
#ifndef NDEBUG
const char* StartAssertNoThreadSuspension(const char* cause) {
CHECK(cause != NULL);
const char* previous_cause = last_no_thread_suspension_cause_;
last_no_thread_suspension_cause_ = cause;
return previous_cause;
const char* StartAssertNoThreadSuspension(const char* cause) {
CHECK(cause != NULL);
return NULL;
// End region where no thread suspension is expected.
#ifndef NDEBUG
void EndAssertNoThreadSuspension(const char* old_cause) {
CHECK(old_cause != NULL || no_thread_suspension_ == 1);
CHECK_GT(no_thread_suspension_, 0U);
last_no_thread_suspension_cause_ = old_cause;
void EndAssertNoThreadSuspension(const char*) {
void AssertThreadSuspensionIsAllowable(bool check_locks = true) const;
bool IsDaemon() const {
return daemon_;
bool HoldsLock(mirror::Object*);
* Changes the priority of this thread to match that of the java.lang.Thread object.
* We map a priority value from 1-10 to Linux "nice" values, where lower
* numbers indicate higher priority.
void SetNativePriority(int newPriority);
* Returns the thread priority for the current thread by querying the system.
* This is useful when attaching a thread through JNI.
* Returns a value from 1 to 10 (compatible with java.lang.Thread values).
static int GetNativePriority();
uint32_t GetThinLockId() const {
return thin_lock_id_;
pid_t GetTid() const {
return tid_;
// Returns the java.lang.Thread's name, or NULL if this Thread* doesn't have a peer.
mirror::String* GetThreadName(const ScopedObjectAccessUnchecked& ts) const
// Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code,
// allocation, or locking.
void GetThreadName(std::string& name) const;
// Sets the thread's name.
void SetThreadName(const char* name) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable.
uint64_t GetCpuMicroTime() const;
mirror::Object* GetPeer() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(jpeer_ == NULL);
return opeer_;
bool HasPeer() const {
return jpeer_ != NULL || opeer_ != NULL;
RuntimeStats* GetStats() {
return &stats_;
bool IsStillStarting() const;
bool IsExceptionPending() const {
return exception_ != NULL;
mirror::Throwable* GetException(ThrowLocation* throw_location) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (throw_location != NULL) {
*throw_location = throw_location_;
return exception_;
void AssertNoPendingException() const;
void SetException(const ThrowLocation& throw_location, mirror::Throwable* new_exception)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(new_exception != NULL);
// TODO: DCHECK(!IsExceptionPending());
exception_ = new_exception;
throw_location_ = throw_location;
void ClearException() {
exception_ = NULL;
// Find catch block and perform long jump to appropriate exception handle
void QuickDeliverException() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Context* GetLongJumpContext();
void ReleaseLongJumpContext(Context* context) {
DCHECK(long_jump_context_ == NULL);
long_jump_context_ = context;
mirror::ArtMethod* GetCurrentMethod(uint32_t* dex_pc) const
ThrowLocation GetCurrentLocationForThrow() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetTopOfStack(void* stack, uintptr_t pc) {
mirror::ArtMethod** top_method = reinterpret_cast<mirror::ArtMethod**>(stack);
void SetTopOfShadowStack(ShadowFrame* top) {
bool HasManagedStack() const {
return managed_stack_.GetTopQuickFrame() != NULL || managed_stack_.GetTopShadowFrame() != NULL;
// If 'msg' is NULL, no detail message is set.
void ThrowNewException(const ThrowLocation& throw_location,
const char* exception_class_descriptor, const char* msg)
// If 'msg' is NULL, no detail message is set. An exception must be pending, and will be
// used as the new exception's cause.
void ThrowNewWrappedException(const ThrowLocation& throw_location,
const char* exception_class_descriptor,
const char* msg)
void ThrowNewExceptionF(const ThrowLocation& throw_location,
const char* exception_class_descriptor, const char* fmt, ...)
__attribute__((format(printf, 4, 5)))
void ThrowNewExceptionV(const ThrowLocation& throw_location,
const char* exception_class_descriptor, const char* fmt, va_list ap)
// OutOfMemoryError is special, because we need to pre-allocate an instance.
// Only the GC should call this.
void ThrowOutOfMemoryError(const char* msg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void Startup();
static void FinishStartup();
static void Shutdown();
// JNI methods
JNIEnvExt* GetJniEnv() const {
return jni_env_;
// Convert a jobject into a Object*
mirror::Object* DecodeJObject(jobject obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Implements java.lang.Thread.interrupted.
bool Interrupted();
// Implements java.lang.Thread.isInterrupted.
bool IsInterrupted();
void Interrupt();
void Notify();
mirror::ClassLoader* GetClassLoaderOverride() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return class_loader_override_;
void SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
class_loader_override_ = class_loader_override;
// Create the internal representation of a stack trace, that is more time
// and space efficient to compute than the StackTraceElement[]
jobject CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const
// Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a
// StackTraceElement[]. If output_array is NULL, a new array is created, otherwise as many
// frames as will fit are written into the given array. If stack_depth is non-NULL, it's updated
// with the number of valid frames in the returned array.
static jobjectArray InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
jobjectArray output_array = NULL, int* stack_depth = NULL);
void VisitRoots(RootVisitor* visitor, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void VerifyRoots(VerifyRootVisitor* visitor, void* arg)
void VerifyStack() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Offsets of various members of native Thread class, used by compiled code.
static ThreadOffset SelfOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, self_));
static ThreadOffset ExceptionOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, exception_));
static ThreadOffset PeerOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, opeer_));
static ThreadOffset ThinLockIdOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, thin_lock_id_));
static ThreadOffset CardTableOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, card_table_));
static ThreadOffset ThreadFlagsOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, state_and_flags_));
// Size of stack less any space reserved for stack overflow
size_t GetStackSize() const {
return stack_size_ - (stack_end_ - stack_begin_);
byte* GetStackEnd() const {
return stack_end_;
// Set the stack end to that to be used during a stack overflow
void SetStackEndForStackOverflow() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Set the stack end to that to be used during regular execution
void ResetDefaultStackEnd() {
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
// to throw a StackOverflowError.
stack_end_ = stack_begin_ + kStackOverflowReservedBytes;
bool IsHandlingStackOverflow() const {
return stack_end_ == stack_begin_;
static ThreadOffset StackEndOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, stack_end_));
static ThreadOffset JniEnvOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, jni_env_));
static ThreadOffset TopOfManagedStackOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, managed_stack_) +
static ThreadOffset TopOfManagedStackPcOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, managed_stack_) +
const ManagedStack* GetManagedStack() const {
return &managed_stack_;
// Linked list recording fragments of managed stack.
void PushManagedStackFragment(ManagedStack* fragment) {
void PopManagedStackFragment(const ManagedStack& fragment) {
ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
return managed_stack_.PushShadowFrame(new_top_frame);
ShadowFrame* PopShadowFrame() {
return managed_stack_.PopShadowFrame();
static ThreadOffset TopShadowFrameOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, managed_stack_) +
// Number of references allocated in JNI ShadowFrames on this thread
size_t NumJniShadowFrameReferences() const {
return managed_stack_.NumJniShadowFrameReferences();
// Number of references in SIRTs on this thread
size_t NumSirtReferences();
// Number of references allocated in SIRTs & JNI shadow frames on this thread
size_t NumStackReferences() {
return NumSirtReferences() + NumJniShadowFrameReferences();
// Is the given obj in this thread's stack indirect reference table?
bool SirtContains(jobject obj) const;
void SirtVisitRoots(RootVisitor* visitor, void* arg);
void PushSirt(StackIndirectReferenceTable* sirt) {
top_sirt_ = sirt;
StackIndirectReferenceTable* PopSirt() {
StackIndirectReferenceTable* sirt = top_sirt_;
DCHECK(sirt != NULL);
top_sirt_ = top_sirt_->GetLink();
return sirt;
static ThreadOffset TopSirtOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, top_sirt_));
DebugInvokeReq* GetInvokeReq() {
return debug_invoke_req_;
void SetDeoptimizationShadowFrame(ShadowFrame* sf);
void SetDeoptimizationReturnValue(const JValue& ret_val);
ShadowFrame* GetAndClearDeoptimizationShadowFrame(JValue* ret_val);
std::deque<instrumentation::InstrumentationStackFrame>* GetInstrumentationStack() {
return instrumentation_stack_;
std::vector<mirror::ArtMethod*>* GetStackTraceSample() const {
return stack_trace_sample_;
void SetStackTraceSample(std::vector<mirror::ArtMethod*>* sample) {
stack_trace_sample_ = sample;
uint64_t GetTraceClockBase() const {
return trace_clock_base_;
void SetTraceClockBase(uint64_t clock_base) {
trace_clock_base_ = clock_base;
BaseMutex* GetHeldMutex(LockLevel level) const {
return held_mutexes_[level];
void SetHeldMutex(LockLevel level, BaseMutex* mutex) {
held_mutexes_[level] = mutex;
void RunCheckpointFunction();
bool ReadFlag(ThreadFlag flag) const {
return (state_and_flags_.as_struct.flags & flag) != 0;
bool TestAllFlags() const {
return (state_and_flags_.as_struct.flags != 0);
void AtomicSetFlag(ThreadFlag flag);
void AtomicClearFlag(ThreadFlag flag);
// We have no control over the size of 'bool', but want our boolean fields
// to be 4-byte quantities.
typedef uint32_t bool32_t;
explicit Thread(bool daemon);
~Thread() LOCKS_EXCLUDED(Locks::mutator_lock_,
void Destroy();
friend class ThreadList; // For ~Thread and Destroy.
void CreatePeer(const char* name, bool as_daemon, jobject thread_group);
friend class Runtime; // For CreatePeer.
// Avoid use, callers should use SetState. Used only by SignalCatcher::HandleSigQuit, ~Thread and
// Dbg::Disconnected.
ThreadState SetStateUnsafe(ThreadState new_state) {
ThreadState old_state = GetState();
state_and_flags_.as_struct.state = new_state;
return old_state;
friend class SignalCatcher; // For SetStateUnsafe.
friend class Dbg; // F or SetStateUnsafe.
void VerifyStackImpl() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void DumpState(std::ostream& os) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void DumpStack(std::ostream& os) const
// Out-of-line conveniences for debugging in gdb.
static Thread* CurrentFromGdb(); // Like Thread::Current.
// Like Thread::Dump(std::cerr).
void DumpFromGdb() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void* CreateCallback(void* arg);
void HandleUncaughtExceptions(ScopedObjectAccess& soa)
void RemoveFromThreadGroup(ScopedObjectAccess& soa) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void Init(ThreadList*, JavaVMExt*) EXCLUSIVE_LOCKS_REQUIRED(Locks::runtime_shutdown_lock_);
void InitCardTable();
void InitCpu();
void InitTlsEntryPoints();
void InitTid();
void InitPthreadKeySelf();
void InitStackHwm();
void SetUpAlternateSignalStack();
void TearDownAlternateSignalStack();
void NotifyLocked(Thread* self) EXCLUSIVE_LOCKS_REQUIRED(wait_mutex_);
static void ThreadExitCallback(void* arg);
// Has Thread::Startup been called?
static bool is_started_;
// TLS key used to retrieve the Thread*.
static pthread_key_t pthread_key_self_;
// Used to notify threads that they should attempt to resume, they will suspend again if
// their suspend count is > 0.
static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_);
// --- Frequently accessed fields first for short offsets ---
// 32 bits of atomically changed state and flags. Keeping as 32 bits allows and atomic CAS to
// change from being Suspended to Runnable without a suspend request occurring.
union StateAndFlags {
struct PACKED(4) {
// Bitfield of flag values. Must be changed atomically so that flag values aren't lost. See
// ThreadFlags for bit field meanings.
volatile uint16_t flags;
// Holds the ThreadState. May be changed non-atomically between Suspended (ie not Runnable)
// transitions. Changing to Runnable requires that the suspend_request be part of the atomic
// operation. If a thread is suspended and a suspend_request is present, a thread may not
// change to Runnable as a GC or other operation is in progress.
volatile uint16_t state;
} as_struct;
volatile int32_t as_int;
union StateAndFlags state_and_flags_;
COMPILE_ASSERT(sizeof(union StateAndFlags) == sizeof(int32_t),
// A non-zero value is used to tell the current thread to enter a safe point
// at the next poll.
int suspend_count_ GUARDED_BY(Locks::thread_suspend_count_lock_);
// The biased card table, see CardTable for details
byte* card_table_;
// The pending exception or NULL.
mirror::Throwable* exception_;
// The end of this thread's stack. This is the lowest safely-addressable address on the stack.
// We leave extra space so there's room for the code that throws StackOverflowError.
byte* stack_end_;
// The top of the managed stack often manipulated directly by compiler generated code.
ManagedStack managed_stack_;
// Every thread may have an associated JNI environment
JNIEnvExt* jni_env_;
// Initialized to "this". On certain architectures (such as x86) reading
// off of Thread::Current is easy but getting the address of Thread::Current
// is hard. This field can be read off of Thread::Current to give the address.
Thread* self_;
// Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread
// start up, until the thread is registered and the local opeer_ is used.
mirror::Object* opeer_;
jobject jpeer_;
// The "lowest addressable byte" of the stack
byte* stack_begin_;
// Size of the stack
size_t stack_size_;
// Pointer to previous stack trace captured by sampling profiler.
std::vector<mirror::ArtMethod*>* stack_trace_sample_;
// The clock base used for tracing.
uint64_t trace_clock_base_;
// Thin lock thread id. This is a small integer used by the thin lock implementation.
// This is not to be confused with the native thread's tid, nor is it the value returned
// by java.lang.Thread.getId --- this is a distinct value, used only for locking. One
// important difference between this id and the ids visible to managed code is that these
// ones get reused (to ensure that they fit in the number of bits available).
uint32_t thin_lock_id_;
// System thread id.
pid_t tid_;
ThrowLocation throw_location_;
// Guards the 'interrupted_' and 'wait_monitor_' members.
mutable Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER;
ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_);
// Pointer to the monitor lock we're currently waiting on (or NULL).
Monitor* wait_monitor_ GUARDED_BY(wait_mutex_);
// Thread "interrupted" status; stays raised until queried or thrown.
bool32_t interrupted_ GUARDED_BY(wait_mutex_);
// The next thread in the wait set this thread is part of.
Thread* wait_next_;
// If we're blocked in MonitorEnter, this is the object we're trying to lock.
mirror::Object* monitor_enter_object_;
friend class Monitor;
friend class MonitorInfo;
// Top of linked list of stack indirect reference tables or NULL for none
StackIndirectReferenceTable* top_sirt_;
Runtime* runtime_;
RuntimeStats stats_;
// Needed to get the right ClassLoader in JNI_OnLoad, but also
// useful for testing.
mirror::ClassLoader* class_loader_override_;
// Thread local, lazily allocated, long jump context. Used to deliver exceptions.
Context* long_jump_context_;
// A boolean telling us whether we're recursively throwing OOME.
bool32_t throwing_OutOfMemoryError_;
// How much of 'suspend_count_' is by request of the debugger, used to set things right
// when the debugger detaches. Must be <= suspend_count_.
int debug_suspend_count_ GUARDED_BY(Locks::thread_suspend_count_lock_);
// JDWP invoke-during-breakpoint support.
DebugInvokeReq* debug_invoke_req_;
// Shadow frame that is used temporarily during the deoptimization of a method.
ShadowFrame* deoptimization_shadow_frame_;
JValue deoptimization_return_value_;
// Additional stack used by method instrumentation to store method and return pc values.
// Stored as a pointer since std::deque is not PACKED.
std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack_;
// A cached copy of the java.lang.Thread's name.
std::string* name_;
// Is the thread a daemon?
const bool32_t daemon_;
// A cached pthread_t for the pthread underlying this Thread*.
pthread_t pthread_self_;
// Support for Mutex lock hierarchy bug detection.
BaseMutex* held_mutexes_[kLockLevelCount];
// A positive value implies we're in a region where thread suspension isn't expected.
uint32_t no_thread_suspension_;
// Cause for last suspension.
const char* last_no_thread_suspension_cause_;
// Pending checkpoint functions.
Closure* checkpoint_function_;
// Entrypoint function pointers
// TODO: move this near the top, since changing its offset requires all oats to be recompiled!
InterpreterEntryPoints interpreter_entrypoints_;
JniEntryPoints jni_entrypoints_;
PortableEntryPoints portable_entrypoints_;
QuickEntryPoints quick_entrypoints_;
// How many times has our pthread key's destructor been called?
uint32_t thread_exit_check_count_;
friend class ScopedThreadStateChange;
std::ostream& operator<<(std::ostream& os, const Thread& thread);
std::ostream& operator<<(std::ostream& os, const ThreadState& state);
} // namespace art