blob: f9b25c844c05edfe5e4382a26f397fc3f8beaae1 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the X86 ISA */
#include "x86_lir.h"
#include "codegen_x86.h"
#include "../codegen_util.h"
#include "../ralloc_util.h"
namespace art {
void X86Codegen::GenSpecialCase(CompilationUnit* cu, BasicBlock* bb, MIR* mir,
SpecialCaseHandler special_case)
{
// TODO
}
/*
* The sparse table in the literal pool is an array of <key,displacement>
* pairs.
*/
void X86Codegen::GenSparseSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
{
const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
if (cu->verbose) {
DumpSparseSwitchTable(table);
}
int entries = table[1];
const int* keys = reinterpret_cast<const int*>(&table[2]);
const int* targets = &keys[entries];
rl_src = LoadValue(cu, rl_src, kCoreReg);
for (int i = 0; i < entries; i++) {
int key = keys[i];
BasicBlock* case_block = FindBlock(cu, cu->current_dalvik_offset + targets[i]);
LIR* label_list = cu->block_label_list;
OpCmpImmBranch(cu, kCondEq, rl_src.low_reg, key,
&label_list[case_block->id]);
}
}
/*
* Code pattern will look something like:
*
* mov r_val, ..
* call 0
* pop r_start_of_method
* sub r_start_of_method, ..
* mov r_key_reg, r_val
* sub r_key_reg, low_key
* cmp r_key_reg, size-1 ; bound check
* ja done
* mov r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
* add r_start_of_method, r_disp
* jmp r_start_of_method
* done:
*/
void X86Codegen::GenPackedSwitch(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
{
const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
if (cu->verbose) {
DumpPackedSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tab_rec =
static_cast<SwitchTable *>(NewMem(cu, sizeof(SwitchTable), true, kAllocData));
tab_rec->table = table;
tab_rec->vaddr = cu->current_dalvik_offset;
int size = table[1];
tab_rec->targets = static_cast<LIR**>(NewMem(cu, size * sizeof(LIR*), true, kAllocLIR));
InsertGrowableList(cu, &cu->switch_tables, reinterpret_cast<uintptr_t>(tab_rec));
// Get the switch value
rl_src = LoadValue(cu, rl_src, kCoreReg);
int start_of_method_reg = AllocTemp(cu);
// Materialize a pointer to the switch table
//NewLIR0(cu, kX86Bkpt);
NewLIR1(cu, kX86StartOfMethod, start_of_method_reg);
int low_key = s4FromSwitchData(&table[2]);
int keyReg;
// Remove the bias, if necessary
if (low_key == 0) {
keyReg = rl_src.low_reg;
} else {
keyReg = AllocTemp(cu);
OpRegRegImm(cu, kOpSub, keyReg, rl_src.low_reg, low_key);
}
// Bounds check - if < 0 or >= size continue following switch
OpRegImm(cu, kOpCmp, keyReg, size-1);
LIR* branch_over = OpCondBranch(cu, kCondHi, NULL);
// Load the displacement from the switch table
int disp_reg = AllocTemp(cu);
NewLIR5(cu, kX86PcRelLoadRA, disp_reg, start_of_method_reg, keyReg, 2,
reinterpret_cast<uintptr_t>(tab_rec));
// Add displacement to start of method
OpRegReg(cu, kOpAdd, start_of_method_reg, disp_reg);
// ..and go!
LIR* switch_branch = NewLIR1(cu, kX86JmpR, start_of_method_reg);
tab_rec->anchor = switch_branch;
/* branch_over target here */
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
branch_over->target = target;
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void X86Codegen::GenFillArrayData(CompilationUnit* cu, uint32_t table_offset, RegLocation rl_src)
{
const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset;
// Add the table to the list - we'll process it later
FillArrayData *tab_rec =
static_cast<FillArrayData*>(NewMem(cu, sizeof(FillArrayData), true, kAllocData));
tab_rec->table = table;
tab_rec->vaddr = cu->current_dalvik_offset;
uint16_t width = tab_rec->table[1];
uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
tab_rec->size = (size * width) + 8;
InsertGrowableList(cu, &cu->fill_array_data, reinterpret_cast<uintptr_t>(tab_rec));
// Making a call - use explicit registers
FlushAllRegs(cu); /* Everything to home location */
LoadValueDirectFixed(cu, rl_src, rX86_ARG0);
// Materialize a pointer to the fill data image
NewLIR1(cu, kX86StartOfMethod, rX86_ARG2);
NewLIR2(cu, kX86PcRelAdr, rX86_ARG1, reinterpret_cast<uintptr_t>(tab_rec));
NewLIR2(cu, kX86Add32RR, rX86_ARG1, rX86_ARG2);
CallRuntimeHelperRegReg(cu, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode), rX86_ARG0,
rX86_ARG1, true);
}
void X86Codegen::GenMonitorEnter(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
{
FlushAllRegs(cu);
LoadValueDirectFixed(cu, rl_src, rCX); // Get obj
LockCallTemps(cu); // Prepare for explicit register usage
GenNullCheck(cu, rl_src.s_reg_low, rCX, opt_flags);
// If lock is unheld, try to grab it quickly with compare and exchange
// TODO: copy and clear hash state?
NewLIR2(cu, kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
NewLIR2(cu, kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
NewLIR2(cu, kX86Xor32RR, rAX, rAX);
NewLIR3(cu, kX86LockCmpxchgMR, rCX, mirror::Object::MonitorOffset().Int32Value(), rDX);
LIR* branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondEq);
// If lock is held, go the expensive route - artLockObjectFromCode(self, obj);
CallRuntimeHelperReg(cu, ENTRYPOINT_OFFSET(pLockObjectFromCode), rCX, true);
branch->target = NewLIR0(cu, kPseudoTargetLabel);
}
void X86Codegen::GenMonitorExit(CompilationUnit* cu, int opt_flags, RegLocation rl_src)
{
FlushAllRegs(cu);
LoadValueDirectFixed(cu, rl_src, rAX); // Get obj
LockCallTemps(cu); // Prepare for explicit register usage
GenNullCheck(cu, rl_src.s_reg_low, rAX, opt_flags);
// If lock is held by the current thread, clear it to quickly release it
// TODO: clear hash state?
NewLIR2(cu, kX86Mov32RT, rDX, Thread::ThinLockIdOffset().Int32Value());
NewLIR2(cu, kX86Sal32RI, rDX, LW_LOCK_OWNER_SHIFT);
NewLIR3(cu, kX86Mov32RM, rCX, rAX, mirror::Object::MonitorOffset().Int32Value());
OpRegReg(cu, kOpSub, rCX, rDX);
LIR* branch = NewLIR2(cu, kX86Jcc8, 0, kX86CondNe);
NewLIR3(cu, kX86Mov32MR, rAX, mirror::Object::MonitorOffset().Int32Value(), rCX);
LIR* branch2 = NewLIR1(cu, kX86Jmp8, 0);
branch->target = NewLIR0(cu, kPseudoTargetLabel);
// Otherwise, go the expensive route - UnlockObjectFromCode(obj);
CallRuntimeHelperReg(cu, ENTRYPOINT_OFFSET(pUnlockObjectFromCode), rAX, true);
branch2->target = NewLIR0(cu, kPseudoTargetLabel);
}
void X86Codegen::GenMoveException(CompilationUnit* cu, RegLocation rl_dest)
{
int ex_offset = Thread::ExceptionOffset().Int32Value();
RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true);
NewLIR2(cu, kX86Mov32RT, rl_result.low_reg, ex_offset);
NewLIR2(cu, kX86Mov32TI, ex_offset, 0);
StoreValue(cu, rl_dest, rl_result);
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
void X86Codegen::MarkGCCard(CompilationUnit* cu, int val_reg, int tgt_addr_reg)
{
int reg_card_base = AllocTemp(cu);
int reg_card_no = AllocTemp(cu);
LIR* branch_over = OpCmpImmBranch(cu, kCondEq, val_reg, 0, NULL);
NewLIR2(cu, kX86Mov32RT, reg_card_base, Thread::CardTableOffset().Int32Value());
OpRegRegImm(cu, kOpLsr, reg_card_no, tgt_addr_reg, CardTable::kCardShift);
StoreBaseIndexed(cu, reg_card_base, reg_card_no, reg_card_base, 0,
kUnsignedByte);
LIR* target = NewLIR0(cu, kPseudoTargetLabel);
branch_over->target = target;
FreeTemp(cu, reg_card_base);
FreeTemp(cu, reg_card_no);
}
void X86Codegen::GenEntrySequence(CompilationUnit* cu, RegLocation* ArgLocs, RegLocation rl_method)
{
/*
* On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register
* allocation mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with no spare temps.
*/
LockTemp(cu, rX86_ARG0);
LockTemp(cu, rX86_ARG1);
LockTemp(cu, rX86_ARG2);
/* Build frame, return address already on stack */
OpRegImm(cu, kOpSub, rX86_SP, cu->frame_size - 4);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skip_overflow_check = ((cu->attrs & METHOD_IS_LEAF) &&
(static_cast<size_t>(cu->frame_size) <
Thread::kStackOverflowReservedBytes));
NewLIR0(cu, kPseudoMethodEntry);
/* Spill core callee saves */
SpillCoreRegs(cu);
/* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
DCHECK_EQ(cu->num_fp_spills, 0);
if (!skip_overflow_check) {
// cmp rX86_SP, fs:[stack_end_]; jcc throw_launchpad
LIR* tgt = RawLIR(cu, 0, kPseudoThrowTarget, kThrowStackOverflow, 0, 0, 0, 0);
OpRegThreadMem(cu, kOpCmp, rX86_SP, Thread::StackEndOffset().Int32Value());
OpCondBranch(cu, kCondUlt, tgt);
// Remember branch target - will process later
InsertGrowableList(cu, &cu->throw_launchpads, reinterpret_cast<uintptr_t>(tgt));
}
FlushIns(cu, ArgLocs, rl_method);
FreeTemp(cu, rX86_ARG0);
FreeTemp(cu, rX86_ARG1);
FreeTemp(cu, rX86_ARG2);
}
void X86Codegen::GenExitSequence(CompilationUnit* cu) {
/*
* In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(cu, rX86_RET0);
LockTemp(cu, rX86_RET1);
NewLIR0(cu, kPseudoMethodExit);
UnSpillCoreRegs(cu);
/* Remove frame except for return address */
OpRegImm(cu, kOpAdd, rX86_SP, cu->frame_size - 4);
NewLIR0(cu, kX86Ret);
}
} // namespace art