blob: 06b7cca85cae4178cdcde9bf75013a61a74cd88f [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
#define ART_RUNTIME_VERIFIER_REGISTER_LINE_H_
#include <memory>
#include <vector>
#include "dex_instruction.h"
#include "reg_type.h"
#include "safe_map.h"
namespace art {
namespace verifier {
class MethodVerifier;
/*
* Register type categories, for type checking.
*
* The spec says category 1 includes boolean, byte, char, short, int, float, reference, and
* returnAddress. Category 2 includes long and double.
*
* We treat object references separately, so we have "category1nr". We don't support jsr/ret, so
* there is no "returnAddress" type.
*/
enum TypeCategory {
kTypeCategoryUnknown = 0,
kTypeCategory1nr = 1, // boolean, byte, char, short, int, float
kTypeCategory2 = 2, // long, double
kTypeCategoryRef = 3, // object reference
};
// During verification, we associate one of these with every "interesting" instruction. We track
// the status of all registers, and (if the method has any monitor-enter instructions) maintain a
// stack of entered monitors (identified by code unit offset).
class RegisterLine {
public:
static RegisterLine* Create(size_t num_regs, MethodVerifier* verifier) {
void* memory = operator new(sizeof(RegisterLine) + (num_regs * sizeof(uint16_t)));
RegisterLine* rl = new (memory) RegisterLine(num_regs, verifier);
return rl;
}
// Implement category-1 "move" instructions. Copy a 32-bit value from "vsrc" to "vdst".
void CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Implement category-2 "move" instructions. Copy a 64-bit value from "vsrc" to "vdst". This
// copies both halves of the register.
void CopyRegister2(uint32_t vdst, uint32_t vsrc)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Implement "move-result". Copy the category-1 value from the result register to another
// register, and reset the result register.
void CopyResultRegister1(uint32_t vdst, bool is_reference)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Implement "move-result-wide". Copy the category-2 value from the result register to another
// register, and reset the result register.
void CopyResultRegister2(uint32_t vdst)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Set the invisible result register to unknown
void SetResultTypeToUnknown() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Set the type of register N, verifying that the register is valid. If "newType" is the "Lo"
// part of a 64-bit value, register N+1 will be set to "newType+1".
// The register index was validated during the static pass, so we don't need to check it here.
bool SetRegisterType(uint32_t vdst, RegType& new_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool SetRegisterTypeWide(uint32_t vdst, RegType& new_type1, RegType& new_type2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/* Set the type of the "result" register. */
void SetResultRegisterType(RegType& new_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetResultRegisterTypeWide(RegType& new_type1, RegType& new_type2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Get the type of register vsrc.
RegType& GetRegisterType(uint32_t vsrc) const;
bool VerifyRegisterType(uint32_t vsrc, RegType& check_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool VerifyRegisterTypeWide(uint32_t vsrc, RegType& check_type1, RegType& check_type2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CopyFromLine(const RegisterLine* src) {
DCHECK_EQ(num_regs_, src->num_regs_);
memcpy(&line_, &src->line_, num_regs_ * sizeof(uint16_t));
monitors_ = src->monitors_;
reg_to_lock_depths_ = src->reg_to_lock_depths_;
}
std::string Dump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void FillWithGarbage() {
memset(&line_, 0xf1, num_regs_ * sizeof(uint16_t));
while (!monitors_.empty()) {
monitors_.pop_back();
}
reg_to_lock_depths_.clear();
}
/*
* We're creating a new instance of class C at address A. Any registers holding instances
* previously created at address A must be initialized by now. If not, we mark them as "conflict"
* to prevent them from being used (otherwise, MarkRefsAsInitialized would mark the old ones and
* the new ones at the same time).
*/
void MarkUninitRefsAsInvalid(RegType& uninit_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/*
* Update all registers holding "uninit_type" to instead hold the corresponding initialized
* reference type. This is called when an appropriate constructor is invoked -- all copies of
* the reference must be marked as initialized.
*/
void MarkRefsAsInitialized(RegType& uninit_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/*
* Update all registers to be Conflict except vsrc.
*/
void MarkAllRegistersAsConflicts();
void MarkAllRegistersAsConflictsExcept(uint32_t vsrc);
void MarkAllRegistersAsConflictsExceptWide(uint32_t vsrc);
/*
* Check constraints on constructor return. Specifically, make sure that the "this" argument got
* initialized.
* The "this" argument to <init> uses code offset kUninitThisArgAddr, which puts it at the start
* of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it
* somehow didn't get initialized.
*/
bool CheckConstructorReturn() const;
// Compare two register lines. Returns 0 if they match.
// Using this for a sort is unwise, since the value can change based on machine endianness.
int CompareLine(const RegisterLine* line2) const {
DCHECK(monitors_ == line2->monitors_);
// TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_);
return memcmp(&line_, &line2->line_, num_regs_ * sizeof(uint16_t));
}
size_t NumRegs() const {
return num_regs_;
}
/*
* Get the "this" pointer from a non-static method invocation. This returns the RegType so the
* caller can decide whether it needs the reference to be initialized or not. (Can also return
* kRegTypeZero if the reference can only be zero at this point.)
*
* The argument count is in vA, and the first argument is in vC, for both "simple" and "range"
* versions. We just need to make sure vA is >= 1 and then return vC.
*/
RegType& GetInvocationThis(const Instruction* inst, bool is_range)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/*
* Verify types for a simple two-register instruction (e.g. "neg-int").
* "dst_type" is stored into vA, and "src_type" is verified against vB.
*/
void CheckUnaryOp(const Instruction* inst, RegType& dst_type,
RegType& src_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckUnaryOpWide(const Instruction* inst,
RegType& dst_type1, RegType& dst_type2,
RegType& src_type1, RegType& src_type2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckUnaryOpToWide(const Instruction* inst,
RegType& dst_type1, RegType& dst_type2,
RegType& src_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckUnaryOpFromWide(const Instruction* inst,
RegType& dst_type,
RegType& src_type1, RegType& src_type2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/*
* Verify types for a simple three-register instruction (e.g. "add-int").
* "dst_type" is stored into vA, and "src_type1"/"src_type2" are verified
* against vB/vC.
*/
void CheckBinaryOp(const Instruction* inst,
RegType& dst_type, RegType& src_type1, RegType& src_type2,
bool check_boolean_op)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckBinaryOpWide(const Instruction* inst,
RegType& dst_type1, RegType& dst_type2,
RegType& src_type1_1, RegType& src_type1_2,
RegType& src_type2_1, RegType& src_type2_2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckBinaryOpWideShift(const Instruction* inst,
RegType& long_lo_type, RegType& long_hi_type,
RegType& int_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/*
* Verify types for a binary "2addr" operation. "src_type1"/"src_type2"
* are verified against vA/vB, then "dst_type" is stored into vA.
*/
void CheckBinaryOp2addr(const Instruction* inst,
RegType& dst_type,
RegType& src_type1, RegType& src_type2,
bool check_boolean_op)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckBinaryOp2addrWide(const Instruction* inst,
RegType& dst_type1, RegType& dst_type2,
RegType& src_type1_1, RegType& src_type1_2,
RegType& src_type2_1, RegType& src_type2_2)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckBinaryOp2addrWideShift(const Instruction* inst,
RegType& long_lo_type, RegType& long_hi_type,
RegType& int_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
/*
* Verify types for A two-register instruction with a literal constant (e.g. "add-int/lit8").
* "dst_type" is stored into vA, and "src_type" is verified against vB.
*
* If "check_boolean_op" is set, we use the constant value in vC.
*/
void CheckLiteralOp(const Instruction* inst,
RegType& dst_type, RegType& src_type,
bool check_boolean_op, bool is_lit16)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx.
void PushMonitor(uint32_t reg_idx, int32_t insn_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked
void PopMonitor(uint32_t reg_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Stack of currently held monitors and where they were locked
size_t MonitorStackDepth() const {
return monitors_.size();
}
// We expect no monitors to be held at certain points, such a method returns. Verify the stack
// is empty, failing and returning false if not.
bool VerifyMonitorStackEmpty() const;
bool MergeRegisters(const RegisterLine* incoming_line)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t GetMaxNonZeroReferenceReg(size_t max_ref_reg) {
size_t i = static_cast<int>(max_ref_reg) < 0 ? 0 : max_ref_reg;
for (; i < num_regs_; i++) {
if (GetRegisterType(i).IsNonZeroReferenceTypes()) {
max_ref_reg = i;
}
}
return max_ref_reg;
}
// Write a bit at each register location that holds a reference
void WriteReferenceBitMap(std::vector<uint8_t>& data, size_t max_bytes);
size_t GetMonitorEnterCount() {
return monitors_.size();
}
uint32_t GetMonitorEnterDexPc(size_t i) {
return monitors_[i];
}
private:
void CopyRegToLockDepth(size_t dst, size_t src) {
auto it = reg_to_lock_depths_.find(src);
if (it != reg_to_lock_depths_.end()) {
reg_to_lock_depths_.Put(dst, it->second);
}
}
bool IsSetLockDepth(size_t reg, size_t depth) {
auto it = reg_to_lock_depths_.find(reg);
if (it != reg_to_lock_depths_.end()) {
return (it->second & (1 << depth)) != 0;
} else {
return false;
}
}
void SetRegToLockDepth(size_t reg, size_t depth) {
CHECK_LT(depth, 32u);
DCHECK(!IsSetLockDepth(reg, depth));
auto it = reg_to_lock_depths_.find(reg);
if (it == reg_to_lock_depths_.end()) {
reg_to_lock_depths_.Put(reg, 1 << depth);
} else {
it->second |= (1 << depth);
}
}
void ClearRegToLockDepth(size_t reg, size_t depth) {
CHECK_LT(depth, 32u);
DCHECK(IsSetLockDepth(reg, depth));
auto it = reg_to_lock_depths_.find(reg);
DCHECK(it != reg_to_lock_depths_.end());
uint32_t depths = it->second ^ (1 << depth);
if (depths != 0) {
it->second = depths;
} else {
reg_to_lock_depths_.erase(it);
}
}
void ClearAllRegToLockDepths(size_t reg) {
reg_to_lock_depths_.erase(reg);
}
RegisterLine(size_t num_regs, MethodVerifier* verifier)
: verifier_(verifier), num_regs_(num_regs) {
memset(&line_, 0, num_regs_ * sizeof(uint16_t));
SetResultTypeToUnknown();
}
// Storage for the result register's type, valid after an invocation
uint16_t result_[2];
// Back link to the verifier
MethodVerifier* verifier_;
// Length of reg_types_
const uint32_t num_regs_;
// A stack of monitor enter locations
std::vector<uint32_t, TrackingAllocator<uint32_t, kAllocatorTagVerifier>> monitors_;
// A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor
// stack we verify that monitor-enter/exit are correctly nested. That is, if there was a
// monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5
AllocationTrackingSafeMap<uint32_t, uint32_t, kAllocatorTagVerifier> reg_to_lock_depths_;
// An array of RegType Ids associated with each dex register.
uint16_t line_[0];
};
std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs);
} // namespace verifier
} // namespace art
#endif // ART_RUNTIME_VERIFIER_REGISTER_LINE_H_