blob: ebab184ad83ee3c45125979874027b43532d84de [file] [log] [blame]
* Copyright (C) 2011 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include <pthread.h>
#include <bitset>
#include <iosfwd>
#include <list>
#include <string>
#include "dex_file.h"
#include "globals.h"
#include "jni_internal.h"
#include "logging.h"
#include "macros.h"
#include "mutex.h"
#include "mem_map.h"
#include "offsets.h"
#include "runtime_stats.h"
#include "UniquePtr.h"
namespace art {
class Array;
class Class;
class ClassLinker;
class ClassLoader;
class Context;
class Method;
class Monitor;
class Object;
class Runtime;
class Thread;
class ThreadList;
class Throwable;
class StackTraceElement;
class StaticStorageBase;
template<class T> class ObjectArray;
template<class T> class PrimitiveArray;
typedef PrimitiveArray<int32_t> IntArray;
// Stack allocated indirect reference table, allocated within the bridge frame
// between managed and native code.
class StackIndirectReferenceTable {
// Number of references contained within this SIRT
size_t NumberOfReferences() {
return number_of_references_;
// Link to previous SIRT or NULL
StackIndirectReferenceTable* Link() {
return link_;
Object** References() {
return references_;
// Offset of length within SIRT, used by generated code
static size_t NumberOfReferencesOffset() {
return OFFSETOF_MEMBER(StackIndirectReferenceTable, number_of_references_);
// Offset of link within SIRT, used by generated code
static size_t LinkOffset() {
return OFFSETOF_MEMBER(StackIndirectReferenceTable, link_);
StackIndirectReferenceTable() {}
size_t number_of_references_;
StackIndirectReferenceTable* link_;
// Fake array, really allocated and filled in by jni_compiler.
Object* references_[0];
struct NativeToManagedRecord {
NativeToManagedRecord* link_;
void* last_top_of_managed_stack_;
uintptr_t last_top_of_managed_stack_pc_;
// Iterator over managed frames up to the first native-to-managed transition
class PACKED Frame {
Frame() : sp_(NULL) {}
Method* GetMethod() const {
return (sp_ != NULL) ? *sp_ : NULL;
bool HasNext() const {
return NextMethod() != NULL;
void Next();
uintptr_t GetReturnPC() const;
uintptr_t LoadCalleeSave(int num) const;
Method** GetSP() const {
return sp_;
// TODO: this is here for testing, remove when we have exception unit tests
// that use the real stack
void SetSP(Method** sp) {
sp_ = sp;
// Is this a frame for a real method (native or with dex code)
bool HasMethod() const;
Method* NextMethod() const;
friend class Thread;
Method** sp_;
class PACKED Thread {
/* thread priorities, from java.lang.Thread */
enum Priority {
kMinPriority = 1,
kNormPriority = 5,
kMaxPriority = 10,
enum State {
// These match up with JDWP values.
kTerminated = 0, // TERMINATED
kRunnable = 1, // RUNNABLE or running now
kTimedWaiting = 2, // TIMED_WAITING in Object.wait()
kBlocked = 3, // BLOCKED on a monitor
kWaiting = 4, // WAITING in Object.wait()
// Non-JDWP states.
kInitializing = 5, // allocated, not yet running --- TODO: unnecessary?
kStarting = 6, // native thread started, not yet ready to run managed code
kNative = 7, // off in a JNI native method
kVmWait = 8, // waiting on a VM resource
kSuspended = 9, // suspended, usually by GC or debugger
// Space to throw a StackOverflowError in.
static const size_t kStackOverflowReservedBytes = 3 * KB;
static const size_t kDefaultStackSize = 64 * KB;
// Runtime support function pointers
void (*pDebugMe)(Method*, uint32_t);
void* (*pMemcpy)(void*, const void*, size_t);
uint64_t (*pShlLong)(uint64_t, uint32_t);
uint64_t (*pShrLong)(uint64_t, uint32_t);
uint64_t (*pUshrLong)(uint64_t, uint32_t);
float (*pI2f)(int);
int (*pF2iz)(float);
float (*pD2f)(double);
double (*pF2d)(float);
double (*pI2d)(int);
int (*pD2iz)(double);
float (*pL2f)(long);
double (*pL2d)(long);
long long (*pF2l)(float);
long long (*pD2l)(double);
float (*pFadd)(float, float);
float (*pFsub)(float, float);
float (*pFdiv)(float, float);
float (*pFmul)(float, float);
float (*pFmodf)(float, float);
double (*pDadd)(double, double);
double (*pDsub)(double, double);
double (*pDdiv)(double, double);
double (*pDmul)(double, double);
double (*pFmod)(double, double);
int (*pIdivmod)(int, int);
int (*pIdiv)(int, int);
long long (*pLmul)(long long, long long);
long long (*pLdivmod)(long long, long long);
void* (*pAllocObjectFromCode)(uint32_t, void*);
void* (*pArrayAllocFromCode)(uint32_t, void*, int32_t);
void* (*pCheckAndArrayAllocFromCode)(uint32_t, void*, int32_t);
uint32_t (*pGet32Static)(uint32_t, const Method*);
void (*pSet32Static)(uint32_t, const Method*, uint32_t);
uint64_t (*pGet64Static)(uint32_t, const Method*);
void (*pSet64Static)(uint32_t, const Method*, uint64_t);
Object* (*pGetObjStatic)(uint32_t, const Method*);
void (*pSetObjStatic)(uint32_t, const Method*, Object*);
void (*pCanPutArrayElementFromCode)(void*, void*);
uint32_t (*pInstanceofNonTrivialFromCode) (const Object*, const Class*);
void (*pCheckCastFromCode) (void*, void*);
Method* (*pFindInterfaceMethodInCache)(Class*, uint32_t, const Method*, struct DvmDex*);
void (*pUnlockObjectFromCode)(void*, void*);
void (*pLockObjectFromCode)(Thread*, Object*);
void (*pDeliverException)(void*);
void (*pHandleFillArrayDataFromCode)(void*, void*);
Class* (*pInitializeTypeFromCode)(uint32_t, Method*);
void (*pResolveMethodFromCode)(Method*, uint32_t);
void (*pInvokeInterfaceTrampoline)(void*, void*, void*, void*);
void* (*pInitializeStaticStorage)(uint32_t, void*);
Field* (*pFindInstanceFieldFromCode)(uint32_t, const Method*);
void (*pCheckSuspendFromCode)(Thread*);
void (*pTestSuspendFromCode)();
void (*pThrowStackOverflowFromCode)(void*);
void (*pThrowNullPointerFromCode)();
void (*pThrowArrayBoundsFromCode)(int32_t, int32_t);
void (*pThrowDivZeroFromCode)();
void (*pThrowVerificationErrorFromCode)(int32_t, int32_t);
void (*pThrowNegArraySizeFromCode)(int32_t);
void (*pThrowRuntimeExceptionFromCode)(int32_t);
void (*pThrowInternalErrorFromCode)(int32_t);
void (*pThrowNoSuchMethodFromCode)(int32_t);
void (*pThrowAbstractMethodErrorFromCode)(Method* method, Thread* thread, Method** sp);
void* (*pFindNativeMethod)(Thread* thread);
Object* (*pDecodeJObjectInThread)(Thread* thread, jobject obj);
class StackVisitor {
virtual ~StackVisitor() {}
virtual void VisitFrame(const Frame& frame, uintptr_t pc) = 0;
// Creates a new thread.
static void Create(Object* peer, size_t stack_size);
// Creates a new thread from the calling thread.
static Thread* Attach(const Runtime* runtime, const char* name, bool as_daemon);
static Thread* Current() {
void* thread = pthread_getspecific(Thread::pthread_key_self_);
return reinterpret_cast<Thread*>(thread);
static Thread* FromManagedThread(JNIEnv* env, jobject thread);
static uint32_t LockOwnerFromThreadLock(Object* thread_lock);
void Dump(std::ostream& os) const;
State GetState() const {
return state_;
State SetState(State new_state);
bool IsDaemon();
void WaitUntilSuspended();
bool HoldsLock(Object*);
* Changes the priority of this thread to match that of the java.lang.Thread object.
* We map a priority value from 1-10 to Linux "nice" values, where lower
* numbers indicate higher priority.
void SetNativePriority(int newPriority);
* Returns the thread priority for the current thread by querying the system.
* This is useful when attaching a thread through JNI.
* Returns a value from 1 to 10 (compatible with java.lang.Thread values).
static int GetNativePriority();
bool CanAccessDirectReferences() const {
// TODO: when we have a moving collector, we'll need: return state_ == kRunnable;
return true;
uint32_t GetThinLockId() const {
return thin_lock_id_;
pid_t GetTid() const {
return tid_;
pthread_t GetImpl() const {
return pthread_;
Object* GetPeer() const {
return peer_;
RuntimeStats* GetStats() {
return &stats_;
// Returns the Method* for the current method.
// This is used by the JNI implementation for logging and diagnostic purposes.
const Method* GetCurrentMethod() const {
return top_of_managed_stack_.GetMethod();
bool IsExceptionPending() const {
return exception_ != NULL;
Throwable* GetException() const {
return exception_;
void SetException(Throwable* new_exception) {
CHECK(new_exception != NULL);
// TODO: CHECK(exception_ == NULL);
exception_ = new_exception; // TODO
void ClearException() {
exception_ = NULL;
// Find catch block and perform long jump to appropriate exception handle
void DeliverException();
Context* GetLongJumpContext();
Frame GetTopOfStack() const {
return top_of_managed_stack_;
// TODO: this is here for testing, remove when we have exception unit tests
// that use the real stack
void SetTopOfStack(void* stack, uintptr_t pc) {
top_of_managed_stack_pc_ = pc;
void SetTopOfStackPC(uintptr_t pc) {
top_of_managed_stack_pc_ = pc;
void ThrowNewException(const char* exception_class_descriptor, const char* fmt, ...)
__attribute__ ((format(printf, 3, 4)));
void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap);
// This exception is special, because we need to pre-allocate an instance.
void ThrowOutOfMemoryError();
Frame FindExceptionHandler(void* throw_pc, void** handler_pc);
void* FindExceptionHandlerInMethod(const Method* method,
void* throw_pc,
const DexFile& dex_file,
ClassLinker* class_linker);
void SetName(const char* name);
static void Startup();
static void FinishStartup();
static void Shutdown();
// JNI methods
JNIEnvExt* GetJniEnv() const {
return jni_env_;
// Number of references allocated in SIRTs on this thread
size_t NumSirtReferences();
// Is the given obj in this thread's stack indirect reference table?
bool SirtContains(jobject obj);
// Pop the top SIRT
void PopSirt();
// Convert a jobject into a Object*
Object* DecodeJObject(jobject obj);
// Implements java.lang.Thread.interrupted.
bool Interrupted() {
MutexLock mu(*wait_mutex_);
bool interrupted = interrupted_;
interrupted_ = false;
return interrupted;
// Implements java.lang.Thread.isInterrupted.
bool IsInterrupted() {
MutexLock mu(*wait_mutex_);
return interrupted_;
void Interrupt() {
MutexLock mu(*wait_mutex_);
if (interrupted_) {
interrupted_ = true;
void Notify() {
MutexLock mu(*wait_mutex_);
// Linked list recording transitions from native to managed code
void PushNativeToManagedRecord(NativeToManagedRecord* record) {
record->last_top_of_managed_stack_ = reinterpret_cast<void*>(top_of_managed_stack_.GetSP());
record->last_top_of_managed_stack_pc_ = top_of_managed_stack_pc_;
record->link_ = native_to_managed_record_;
native_to_managed_record_ = record;
void PopNativeToManagedRecord(const NativeToManagedRecord& record) {
native_to_managed_record_ = record.link_;
top_of_managed_stack_pc_ = record.last_top_of_managed_stack_pc_;
const ClassLoader* GetClassLoaderOverride() {
// TODO: need to place the class_loader_override_ in a handle
// DCHECK(CanAccessDirectReferences());
return class_loader_override_;
void SetClassLoaderOverride(const ClassLoader* class_loader_override) {
class_loader_override_ = class_loader_override;
// Create the internal representation of a stack trace, that is more time
// and space efficient to compute than the StackTraceElement[]
jobject CreateInternalStackTrace(JNIEnv* env) const;
// Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a
// StackTraceElement[]. If output_array is NULL, a new array is created, otherwise as many
// frames as will fit are written into the given array. If stack_depth is non-NULL, it's updated
// with the number of valid frames in the returned array.
static jobjectArray InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
jobjectArray output_array = NULL, int* stack_depth = NULL);
void VisitRoots(Heap::RootVisitor* visitor, void* arg) const;
// Offsets of various members of native Thread class, used by compiled code.
static ThreadOffset SelfOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, self_));
static ThreadOffset ExceptionOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, exception_));
static ThreadOffset ThinLockIdOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, thin_lock_id_));
static ThreadOffset CardTableOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, card_table_));
static ThreadOffset SuspendCountOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, suspend_count_));
static ThreadOffset StateOffset() {
return ThreadOffset(OFFSETOF_VOLATILE_MEMBER(Thread, state_));
// Size of stack less any space reserved for stack overflow
size_t GetStackSize() {
return stack_size_ - (stack_end_ - stack_base_);
// Set the stack end to that to be used during a stack overflow
void SetStackEndForStackOverflow() {
// During stack overflow we allow use of the full stack
CHECK(stack_end_ != stack_base_) << "Need to increase: kStackOverflowReservedBytes ("
<< kStackOverflowReservedBytes << ")";
stack_end_ = stack_base_;
// Set the stack end to that to be used during regular execution
void ResetDefaultStackEnd() {
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
// to throw a StackOverflowError.
stack_end_ = stack_base_ + kStackOverflowReservedBytes;
static ThreadOffset StackEndOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, stack_end_));
static ThreadOffset JniEnvOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, jni_env_));
static ThreadOffset TopOfManagedStackOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, top_of_managed_stack_) +
static ThreadOffset TopOfManagedStackPcOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, top_of_managed_stack_pc_));
static ThreadOffset TopSirtOffset() {
return ThreadOffset(OFFSETOF_MEMBER(Thread, top_sirt_));
void WalkStack(StackVisitor* visitor) const;
friend class ThreadList; // For ~Thread.
void CreatePeer(const char* name, bool as_daemon);
friend class Runtime; // For CreatePeer.
void DumpState(std::ostream& os) const;
void DumpStack(std::ostream& os) const;
void Attach(const Runtime* runtime);
static void* CreateCallback(void* arg);
void InitCpu();
void InitFunctionPointers();
void InitStackHwm();
void NotifyLocked() {
if (wait_monitor_ != NULL) {
static void ThreadExitCallback(void* arg);
void WalkStackUntilUpCall(StackVisitor* visitor, bool include_upcall) const;
// Thin lock thread id. This is a small integer used by the thin lock implementation.
// This is not to be confused with the native thread's tid, nor is it the value returned
// by java.lang.Thread.getId --- this is a distinct value, used only for locking. One
// important difference between this id and the ids visible to managed code is that these
// ones get reused (to ensure that they fit in the number of bits available).
uint32_t thin_lock_id_;
// System thread id.
pid_t tid_;
// Native thread handle.
pthread_t pthread_;
// Our managed peer (an instance of java.lang.Thread).
Object* peer_;
// The top_of_managed_stack_ and top_of_managed_stack_pc_ fields are accessed from
// compiled code, so we keep them early in the structure to (a) avoid having to keep
// fixing the assembler offsets and (b) improve the chances that these will still be aligned.
// Top of the managed stack, written out prior to the state transition from
// kRunnable to kNative. Uses include to give the starting point for scanning
// a managed stack when a thread is in native code.
Frame top_of_managed_stack_;
// PC corresponding to the call out of the top_of_managed_stack_ frame
uintptr_t top_of_managed_stack_pc_;
// Guards the 'interrupted_' and 'wait_monitor_' members.
mutable Mutex* wait_mutex_;
ConditionVariable* wait_cond_;
// Pointer to the monitor lock we're currently waiting on (or NULL), guarded by wait_mutex_.
Monitor* wait_monitor_;
// Thread "interrupted" status; stays raised until queried or thrown, guarded by wait_mutex_.
uint32_t interrupted_;
// The next thread in the wait set this thread is part of.
Thread* wait_next_;
// If we're blocked in MonitorEnter, this is the object we're trying to lock.
Object* monitor_enter_object_;
friend class Monitor;
RuntimeStats stats_;
// FIXME: placeholder for the gc cardTable
uint32_t card_table_;
// The end of this thread's stack. This is the lowest safely-addressable address on the stack.
// We leave extra space so there's room for the code that throws StackOverflowError.
byte* stack_end_;
// Size of the stack
size_t stack_size_;
// The "lowest addressable byte" of the stack
byte* stack_base_;
// A linked list (of stack allocated records) recording transitions from
// native to managed code.
NativeToManagedRecord* native_to_managed_record_;
// Top of linked list of stack indirect reference tables or NULL for none
StackIndirectReferenceTable* top_sirt_;
// Every thread may have an associated JNI environment
JNIEnvExt* jni_env_;
volatile State state_;
// Initialized to "this". On certain architectures (such as x86) reading
// off of Thread::Current is easy but getting the address of Thread::Current
// is hard. This field can be read off of Thread::Current to give the address.
Thread* self_;
Runtime* runtime_;
// The pending exception or NULL.
Throwable* exception_;
// A non-zero value is used to tell the current thread to enter a safe point
// at the next poll.
int suspend_count_;
// Needed to get the right ClassLoader in JNI_OnLoad, but also
// useful for testing.
const ClassLoader* class_loader_override_;
// Thread local, lazily allocated, long jump context. Used to deliver exceptions.
Context* long_jump_context_;
// TLS key used to retrieve the VM thread object.
static pthread_key_t pthread_key_self_;
std::ostream& operator<<(std::ostream& os, const Thread& thread);
std::ostream& operator<<(std::ostream& os, const Thread::State& state);
class ScopedThreadStateChange {
ScopedThreadStateChange(Thread* thread, Thread::State new_state) : thread_(thread) {
old_thread_state_ = thread_->SetState(new_state);
~ScopedThreadStateChange() {
Thread* thread_;
Thread::State old_thread_state_;
} // namespace art
#endif // ART_SRC_THREAD_H_