blob: f3f395707ce00a6aef692f81541a7f38040f05c6 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../../Dalvik.h"
#include "../../CompilerInternals.h"
#include "X86LIR.h"
#include "Codegen.h"
#include <sys/mman.h> /* for protection change */
namespace art {
#define MAX_ASSEMBLER_RETRIES 50
X86EncodingMap EncodingMap[kX86Last] = {
{ kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
{ kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 4 }, "int 3", "" },
{ kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
#define ENCODING_MAP(opname, \
rm8_r8, rm32_r32, \
r8_rm8, r32_rm32, \
ax8_i8, ax32_i32, \
rm8_i8, rm8_i8_modrm, \
rm32_i32, rm32_i32_modrm, \
rm32_i8, rm32_i8_modrm) \
{ kX86 ## opname ## 8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 8AR, kArrayReg, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 8TR, kThreadReg,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | SETS_CCODES, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | SETS_CCODES, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
{ kX86 ## opname ## 8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 8AI, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 8TI, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1r" }, \
\
{ kX86 ## opname ## 16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 16AR, kArrayReg, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 16TR, kThreadReg,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16TI, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI8, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI8, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16TI8, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
\
{ kX86 ## opname ## 32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 32AR, kArrayReg, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 32TR, kThreadReg,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | SETS_CCODES, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | SETS_CCODES, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 32AI, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32TI, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI8, kMemImm, IS_STORE | IS_TERTIARY_OP | SETS_CCODES, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI8, kArrayImm, IS_STORE | IS_QUIN_OP | SETS_CCODES, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32TI8, kThreadImm,IS_STORE | IS_BINARY_OP | SETS_CCODES, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
ENCODING_MAP(Add,
0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
0x80, 0x0 /* RegMem8/imm8 */,
0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
ENCODING_MAP(Or,
0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
0x80, 0x1 /* RegMem8/imm8 */,
0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
ENCODING_MAP(Adc,
0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
0x80, 0x2 /* RegMem8/imm8 */,
0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
ENCODING_MAP(Sbb,
0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
0x80, 0x3 /* RegMem8/imm8 */,
0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
ENCODING_MAP(And,
0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
0x80, 0x4 /* RegMem8/imm8 */,
0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
ENCODING_MAP(Sub,
0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
0x80, 0x5 /* RegMem8/imm8 */,
0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
ENCODING_MAP(Xor,
0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
0x80, 0x6 /* RegMem8/imm8 */,
0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
ENCODING_MAP(Cmp,
0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
0x80, 0x7 /* RegMem8/imm8 */,
0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
#undef ENCODING_MAP
{ kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "" },
{ kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "" },
{ kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "" },
{ kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul32RRI", "" },
{ kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul32RMI", "" },
{ kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul32RAI", "" },
{ kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "" },
{ kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "" },
{ kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "" },
{ kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
{ kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
{ kX86Mov8RR, kRegReg, IS_BINARY_OP, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
{ kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
{ kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
{ kX86Mov8RI, kMovRegImm, IS_BINARY_OP, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
{ kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2r" },
{ kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
{ kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
{ kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
{ kX86Mov16RR, kRegReg, IS_BINARY_OP, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
{ kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
{ kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
{ kX86Mov16RI, kMovRegImm, IS_BINARY_OP, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
{ kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2r" },
{ kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
{ kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
{ kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
{ kX86Mov32RR, kRegReg, IS_BINARY_OP, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
{ kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
{ kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
{ kX86Mov32RI, kMovRegImm, IS_BINARY_OP, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
{ kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2r" },
{ kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
{ kX86Lea32RA, kRegArray, IS_QUIN_OP, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
{ kX86 ## opname ## 8MI, kShiftMemImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "" }, \
{ kX86 ## opname ## 8MC, kShiftMemCl, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "" }, \
{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "" }, \
\
{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI, kShiftMemImm, IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_QUIN_OP | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "" }, \
{ kX86 ## opname ## 16MC, kShiftMemCl, IS_TERTIARY_OP | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "" }, \
{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_QUIN_OP | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "" }, \
\
{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI, kShiftMemImm, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "32RC", "" }, \
{ kX86 ## opname ## 32MC, kShiftMemCl, IS_TERTIARY_OP | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "32MC", "" }, \
{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_QUIN_OP | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "32AC", "" }
SHIFT_ENCODING_MAP(Rol, 0x0),
SHIFT_ENCODING_MAP(Ror, 0x1),
SHIFT_ENCODING_MAP(Rcl, 0x2),
SHIFT_ENCODING_MAP(Rcr, 0x3),
SHIFT_ENCODING_MAP(Sal, 0x4),
SHIFT_ENCODING_MAP(Shl, 0x5),
SHIFT_ENCODING_MAP(Shr, 0x6),
SHIFT_ENCODING_MAP(Sar, 0x7),
#undef SHIFT_ENCODING_MAP
#define UNARY_ENCODING_MAP(opname, modrm, \
reg, reg_kind, reg_flags, \
mem, mem_kind, mem_flags, \
arr, arr_kind, arr_flags, imm) \
{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, "" }, \
{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | mem_flags, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, "" }, \
{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | arr_flags, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, "" }, \
{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, "" }, \
{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | mem_flags, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, "" }, \
{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | arr_flags, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, "" }, \
{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, "" }, \
{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | mem_flags, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, "" }, \
{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | arr_flags, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, "" }
UNARY_ENCODING_MAP(Test, 0x0, RI, kRegImm, IS_BINARY_OP, MI, kMemImm, IS_TERTIARY_OP, AI, kArrayImm, IS_QUIN_OP, 1),
UNARY_ENCODING_MAP(Not, 0x2, R, kReg, IS_UNARY_OP, M, kMem, IS_BINARY_OP, A, kArray, IS_QUAD_OP, 0),
UNARY_ENCODING_MAP(Neg, 0x3, R, kReg, IS_UNARY_OP, M, kMem, IS_BINARY_OP, A, kArray, IS_QUAD_OP, 0),
UNARY_ENCODING_MAP(Mul, 0x4, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
UNARY_ENCODING_MAP(Imul, 0x5, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
UNARY_ENCODING_MAP(Divmod, 0x6, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
UNARY_ENCODING_MAP(Idivmod, 0x7, DaR, kRegRegReg, IS_TERTIARY_OP, DaM, kRegRegMem, IS_QUAD_OP, DaA, kRegRegArray, IS_SEXTUPLE_OP, 0),
#undef UNARY_ENCODING_MAP
#define EXT_0F_ENCODING_MAP(opname, prefix, opcode) \
{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10),
{ kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
{ kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10),
{ kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
{ kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A),
EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A),
EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C),
EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C),
EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D),
EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D),
EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E),
EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E),
EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F),
EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F),
EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58),
EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58),
EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59),
EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59),
EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF2, 0x5A),
EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF3, 0x5A),
EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C),
EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C),
EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E),
EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E),
EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E),
EXT_0F_ENCODING_MAP(Movdrx, 0x66, 0x7E),
{ kX86Set8R, kRegCond, IS_BINARY_OP, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
{ kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
{ kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF),
EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF),
EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6),
EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7),
EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE),
EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF),
#undef EXT_0F_ENCODING_MAP
{ kX86Jcc, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc", "!1c" },
{ kX86Jmp, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp", "" },
{ kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "" },
{ kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "" },
{ kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "" },
{ kX86Ret, kNullary,NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
};
static size_t computeSize(X86EncodingMap* entry, int displacement, bool has_sib) {
size_t size = 0;
if (entry->skeleton.prefix1 > 0) {
++size;
if (entry->skeleton.prefix2 > 0) {
++size;
}
}
++size; // opcode
if (entry->skeleton.opcode == 0x0F) {
++size;
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
++size;
}
}
++size; // modrm
if (has_sib) {
++size;
}
if (displacement != 0) {
if (entry->opcode != kX86Lea32RA) {
DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0);
}
size += IS_SIMM8(displacement) ? 1 : 4;
}
size += entry->skeleton.immediate_bytes;
return size;
}
int oatGetInsnSize(LIR* lir) {
X86EncodingMap* entry = &EncodingMap[lir->opcode];
switch (entry->kind) {
case kData:
return 4; // 4 bytes of data
case kNop:
return lir->operands[0]; // length of nop is sole operand
case kNullary:
return 1; // 1 byte of opcode
case kReg: // lir operands - 0: reg
return computeSize(entry, 0, false);
case kMem: { // lir operands - 0: base, 1: disp
int base = lir->operands[0];
// SP requires a special extra SIB byte
return computeSize(entry, lir->operands[1], false) + (base == rSP ? 1 : 0);
}
case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
return computeSize(entry, lir->operands[3], true);
case kMemReg: { // lir operands - 0: base, 1: disp, 2: reg
int base = lir->operands[0];
// SP requires a special extra SIB byte
return computeSize(entry, lir->operands[1], false) + (base == rSP ? 1 : 0);
}
case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
return computeSize(entry, lir->operands[3], true);
case kThreadReg: // lir operands - 0: disp, 1: reg
return computeSize(entry, lir->operands[0], false);
case kRegReg:
return computeSize(entry, 0, false);
case kRegMem: { // lir operands - 0: reg, 1: base, 2: disp
int base = lir->operands[1];
return computeSize(entry, lir->operands[2], false) + (base == rSP ? 1 : 0);
}
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
return computeSize(entry, lir->operands[4], true);
case kRegThread: // lir operands - 0: reg, 1: disp
return computeSize(entry, lir->operands[1], false);
case kRegImm: { // lir operands - 0: reg, 1: immediate
int reg = lir->operands[0];
// AX opcodes don't require the modrm byte.
return computeSize(entry, 0, false) - (reg == rAX ? 1 : 0);
}
case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
return computeSize(entry, lir->operands[1], false);
case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
return computeSize(entry, lir->operands[3], true);
case kThreadImm: // lir operands - 0: disp, 1: imm
return computeSize(entry, lir->operands[0], false);
case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
return computeSize(entry, 0, false);
case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
CHECK_NE(lir->operands[1], static_cast<int>(rSP)); // TODO: add extra SIB byte
return computeSize(entry, lir->operands[2], false);
case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
return computeSize(entry, lir->operands[4], true);
case kMovRegImm: // lir operands - 0: reg, 1: immediate
return 1 + entry->skeleton.immediate_bytes;
case kShiftRegImm: // lir operands - 0: reg, 1: immediate
// Shift by immediate one has a shorter opcode.
return computeSize(entry, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
// Shift by immediate one has a shorter opcode.
return computeSize(entry, lir->operands[1], false) - (lir->operands[2] == 1 ? 1 : 0);
case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
// Shift by immediate one has a shorter opcode.
return computeSize(entry, lir->operands[3], true) - (lir->operands[4] == 1 ? 1 : 0);
case kShiftRegCl:
return computeSize(entry, 0, false);
case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
return computeSize(entry, lir->operands[1], false);
case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
return computeSize(entry, lir->operands[3], true);
case kRegCond: // lir operands - 0: reg, 1: cond
return computeSize(entry, 0, false);
case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
CHECK_NE(lir->operands[0], static_cast<int>(rSP)); // TODO: add extra SIB byte
return computeSize(entry, lir->operands[1], false);
case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
return computeSize(entry, lir->operands[3], true);
case kJcc: case kJmp:
// Jumps only return the short form length, the correct length will be assigned to LIR
// flags.size during assembly.
return 2;
case kCall:
switch(lir->opcode) {
case kX86CallR: return 2; // opcode modrm
case kX86CallM: // lir operands - 0: base, 1: disp
return computeSize(entry, lir->operands[1], false);
case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
return computeSize(entry, lir->operands[3], true);
default:
break;
}
break;
default:
break;
}
UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
return 0;
}
static uint8_t modrmForDisp(int disp) {
if (disp == 0) {
return 0;
} else if (IS_SIMM8(disp)) {
return 1;
} else {
return 2;
}
}
static void emitDisp(CompilationUnit* cUnit, int disp) {
if (disp == 0) {
return;
} else if (IS_SIMM8(disp)) {
cUnit->codeBuffer.push_back(disp & 0xFF);
} else {
cUnit->codeBuffer.push_back(disp & 0xFF);
cUnit->codeBuffer.push_back((disp >> 8) & 0xFF);
cUnit->codeBuffer.push_back((disp >> 16) & 0xFF);
cUnit->codeBuffer.push_back((disp >> 24) & 0xFF);
}
}
static void emitOpReg(CompilationUnit* cUnit, const X86EncodingMap* entry, uint8_t reg) {
if (entry->skeleton.prefix1 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (FPREG(reg)) {
reg = reg & FP_REG_MASK;
}
DCHECK_LT(reg, 8);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
cUnit->codeBuffer.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
static void emitOpMem(CompilationUnit* cUnit, const X86EncodingMap* entry, uint8_t base, int disp) {
if (entry->skeleton.prefix1 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
DCHECK_LT(entry->skeleton.modrm_opcode, 8);
DCHECK_LT(base, 8);
uint8_t modrm = (modrmForDisp(disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
cUnit->codeBuffer.push_back(modrm);
emitDisp(cUnit, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
static void emitMemReg(CompilationUnit* cUnit, const X86EncodingMap* entry,
uint8_t base, int disp, uint8_t reg) {
if (entry->skeleton.prefix1 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (FPREG(reg)) {
reg = reg & FP_REG_MASK;
}
DCHECK_LT(reg, 8);
DCHECK_LT(base, 8);
uint8_t modrm = (modrmForDisp(disp) << 6) | (reg << 3) | base;
cUnit->codeBuffer.push_back(modrm);
if (base == rSP) {
// Special SIB for SP base
cUnit->codeBuffer.push_back(0 << 6 | (rSP << 3) | rSP);
}
emitDisp(cUnit, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
static void emitRegMem(CompilationUnit* cUnit, const X86EncodingMap* entry,
uint8_t reg, uint8_t base, int disp) {
// Opcode will flip operands.
emitMemReg(cUnit, entry, base, disp, reg);
}
static void emitRegArray(CompilationUnit* cUnit, const X86EncodingMap* entry, uint8_t reg,
uint8_t base, uint8_t index, int scale, int disp) {
if (entry->skeleton.prefix1 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (FPREG(reg)) {
reg = reg & FP_REG_MASK;
}
DCHECK_LT(reg, 8);
uint8_t modrm = (modrmForDisp(disp) << 6) | (reg << 3) | rSP;
cUnit->codeBuffer.push_back(modrm);
DCHECK_LT(scale, 4);
DCHECK_LT(index, 8);
DCHECK_LT(base, 8);
uint8_t sib = (scale << 6) | (index << 3) | base;
cUnit->codeBuffer.push_back(sib);
emitDisp(cUnit, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
static void emitRegReg(CompilationUnit* cUnit, const X86EncodingMap* entry,
uint8_t reg1, uint8_t reg2) {
if (entry->skeleton.prefix1 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (FPREG(reg1)) {
reg1 = reg1 & FP_REG_MASK;
}
if (FPREG(reg2)) {
reg2 = reg2 & FP_REG_MASK;
}
DCHECK_LT(reg1, 8);
DCHECK_LT(reg2, 8);
uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
cUnit->codeBuffer.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
static void emitRegImm(CompilationUnit* cUnit, const X86EncodingMap* entry,
uint8_t reg, int imm) {
if (entry->skeleton.prefix1 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
if (reg == rAX && entry->skeleton.ax_opcode != 0) {
cUnit->codeBuffer.push_back(entry->skeleton.ax_opcode);
} else {
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
cUnit->codeBuffer.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
cUnit->codeBuffer.push_back(modrm);
}
switch (entry->skeleton.immediate_bytes) {
case 1:
DCHECK(IS_SIMM8(imm));
cUnit->codeBuffer.push_back(imm & 0xFF);
break;
case 2:
DCHECK(IS_SIMM16(imm));
cUnit->codeBuffer.push_back(imm & 0xFF);
cUnit->codeBuffer.push_back((imm >> 8) & 0xFF);
break;
case 4:
cUnit->codeBuffer.push_back(imm & 0xFF);
cUnit->codeBuffer.push_back((imm >> 8) & 0xFF);
cUnit->codeBuffer.push_back((imm >> 16) & 0xFF);
cUnit->codeBuffer.push_back((imm >> 24) & 0xFF);
break;
default:
LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
<< ") for instruction: " << entry->name;
break;
}
}
void emitUnimplemented(CompilationUnit* cUnit, LIR* lir) {
for (int i = 0; i < oatGetInsnSize(lir); ++i) {
cUnit->codeBuffer.push_back(0xCC); // push breakpoint instruction - int 3
}
}
/*
* Assemble the LIR into binary instruction format. Note that we may
* discover that pc-relative displacements may not fit the selected
* instruction. In those cases we will try to substitute a new code
* sequence or request that the trace be shortened and retried.
*/
AssemblerStatus oatAssembleInstructions(CompilationUnit *cUnit,
intptr_t startAddr) {
LIR *lir;
AssemblerStatus res = kSuccess; // Assume success
for (lir = (LIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
if (lir->opcode < 0) {
continue;
}
if (lir->flags.isNop) {
continue;
}
if (lir->flags.pcRelFixup) {
UNIMPLEMENTED(WARNING) << "PC relative fix up";
}
/*
* If one of the pc-relative instructions expanded we'll have
* to make another pass. Don't bother to fully assemble the
* instruction.
*/
if (res != kSuccess) {
continue;
}
const X86EncodingMap *entry = &EncodingMap[lir->opcode];
size_t starting_cbuf_size = cUnit->codeBuffer.size();
switch(entry->kind) {
case kData: // 4 bytes of data
cUnit->codeBuffer.push_back(lir->operands[0]);
break;
case kNullary: // 1 byte of opcode
DCHECK_EQ(0, entry->skeleton.prefix1);
DCHECK_EQ(0, entry->skeleton.prefix2);
cUnit->codeBuffer.push_back(entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
break;
case kReg: // lir operands - 0: reg
emitOpReg(cUnit, entry, lir->operands[0]);
break;
case kMem: // lir operands - 0: base, 1: disp
emitOpMem(cUnit, entry, lir->operands[0], lir->operands[1]);
break;
case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
emitMemReg(cUnit, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
emitRegMem(cUnit, entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
emitRegArray(cUnit, entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kRegReg: // lir operands - 0: reg1, 1: reg2
emitRegReg(cUnit, entry, lir->operands[0], lir->operands[1]);
break;
case kRegImm: // lir operands - 0: reg, 1: immediate
emitRegImm(cUnit, entry, lir->operands[0], lir->operands[1]);
break;
default:
UNIMPLEMENTED(WARNING) << "Unimplemented encoding for: " << entry->name;
emitUnimplemented(cUnit, lir);
break;
}
CHECK_EQ(static_cast<size_t>(oatGetInsnSize(lir)),
cUnit->codeBuffer.size() - starting_cbuf_size);
}
return res;
}
/*
* Target-dependent offset assignment.
* independent.
*/
int oatAssignInsnOffsets(CompilationUnit* cUnit)
{
LIR* x86LIR;
int offset = 0;
for (x86LIR = (LIR *) cUnit->firstLIRInsn;
x86LIR;
x86LIR = NEXT_LIR(x86LIR)) {
x86LIR->offset = offset;
if (x86LIR->opcode >= 0) {
if (!x86LIR->flags.isNop) {
offset += x86LIR->flags.size;
}
} else if (x86LIR->opcode == kPseudoPseudoAlign4) {
if (offset & 0x2) {
offset += 2;
x86LIR->operands[0] = 1;
} else {
x86LIR->operands[0] = 0;
}
}
/* Pseudo opcodes don't consume space */
}
return offset;
}
} // namespace art