blob: ec0cbe6a600f85bb32483607e9ffdf44bf90b4d3 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Implementation file of the dexlayout utility.
*
* This is a tool to read dex files into an internal representation,
* reorganize the representation, and emit dex files with a better
* file layout.
*/
#include "dexlayout.h"
#include <inttypes.h>
#include <stdio.h>
#include <sys/mman.h> // For the PROT_* and MAP_* constants.
#include <iostream>
#include <memory>
#include <sstream>
#include <vector>
#include "android-base/stringprintf.h"
#include "base/logging.h" // For VLOG_IS_ON.
#include "base/os.h"
#include "base/utils.h"
#include "dex/art_dex_file_loader.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_layout.h"
#include "dex/dex_file_loader.h"
#include "dex/dex_file_types.h"
#include "dex/dex_file_verifier.h"
#include "dex/dex_instruction-inl.h"
#include "dex_ir_builder.h"
#include "dex_verify.h"
#include "dex_visualize.h"
#include "dex_writer.h"
#include "jit/profile_compilation_info.h"
#include "mem_map.h"
namespace art {
using android::base::StringPrintf;
/*
* Flags for use with createAccessFlagStr().
*/
enum AccessFor {
kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX
};
const int kNumFlags = 18;
/*
* Gets 2 little-endian bytes.
*/
static inline uint16_t Get2LE(unsigned char const* src) {
return src[0] | (src[1] << 8);
}
/*
* Converts a type descriptor to human-readable "dotted" form. For
* example, "Ljava/lang/String;" becomes "java.lang.String", and
* "[I" becomes "int[]". Also converts '$' to '.', which means this
* form can't be converted back to a descriptor.
*/
static std::string DescriptorToDotWrapper(const char* descriptor) {
std::string result = DescriptorToDot(descriptor);
size_t found = result.find('$');
while (found != std::string::npos) {
result[found] = '.';
found = result.find('$', found);
}
return result;
}
/*
* Converts the class name portion of a type descriptor to human-readable
* "dotted" form. For example, "Ljava/lang/String;" becomes "String".
*/
static std::string DescriptorClassToDot(const char* str) {
std::string descriptor(str);
// Reduce to just the class name prefix.
size_t last_slash = descriptor.rfind('/');
if (last_slash == std::string::npos) {
last_slash = 0;
}
// Start past the '/' or 'L'.
last_slash++;
// Copy class name over, trimming trailing ';'.
size_t size = descriptor.size() - 1 - last_slash;
std::string result(descriptor.substr(last_slash, size));
// Replace '$' with '.'.
size_t dollar_sign = result.find('$');
while (dollar_sign != std::string::npos) {
result[dollar_sign] = '.';
dollar_sign = result.find('$', dollar_sign);
}
return result;
}
/*
* Returns string representing the boolean value.
*/
static const char* StrBool(bool val) {
return val ? "true" : "false";
}
/*
* Returns a quoted string representing the boolean value.
*/
static const char* QuotedBool(bool val) {
return val ? "\"true\"" : "\"false\"";
}
/*
* Returns a quoted string representing the access flags.
*/
static const char* QuotedVisibility(uint32_t access_flags) {
if (access_flags & kAccPublic) {
return "\"public\"";
} else if (access_flags & kAccProtected) {
return "\"protected\"";
} else if (access_flags & kAccPrivate) {
return "\"private\"";
} else {
return "\"package\"";
}
}
/*
* Counts the number of '1' bits in a word.
*/
static int CountOnes(uint32_t val) {
val = val - ((val >> 1) & 0x55555555);
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
/*
* Creates a new string with human-readable access flags.
*
* In the base language the access_flags fields are type uint16_t; in Dalvik they're uint32_t.
*/
static char* CreateAccessFlagStr(uint32_t flags, AccessFor for_what) {
static const char* kAccessStrings[kAccessForMAX][kNumFlags] = {
{
"PUBLIC", /* 0x00001 */
"PRIVATE", /* 0x00002 */
"PROTECTED", /* 0x00004 */
"STATIC", /* 0x00008 */
"FINAL", /* 0x00010 */
"?", /* 0x00020 */
"?", /* 0x00040 */
"?", /* 0x00080 */
"?", /* 0x00100 */
"INTERFACE", /* 0x00200 */
"ABSTRACT", /* 0x00400 */
"?", /* 0x00800 */
"SYNTHETIC", /* 0x01000 */
"ANNOTATION", /* 0x02000 */
"ENUM", /* 0x04000 */
"?", /* 0x08000 */
"VERIFIED", /* 0x10000 */
"OPTIMIZED", /* 0x20000 */
}, {
"PUBLIC", /* 0x00001 */
"PRIVATE", /* 0x00002 */
"PROTECTED", /* 0x00004 */
"STATIC", /* 0x00008 */
"FINAL", /* 0x00010 */
"SYNCHRONIZED", /* 0x00020 */
"BRIDGE", /* 0x00040 */
"VARARGS", /* 0x00080 */
"NATIVE", /* 0x00100 */
"?", /* 0x00200 */
"ABSTRACT", /* 0x00400 */
"STRICT", /* 0x00800 */
"SYNTHETIC", /* 0x01000 */
"?", /* 0x02000 */
"?", /* 0x04000 */
"MIRANDA", /* 0x08000 */
"CONSTRUCTOR", /* 0x10000 */
"DECLARED_SYNCHRONIZED", /* 0x20000 */
}, {
"PUBLIC", /* 0x00001 */
"PRIVATE", /* 0x00002 */
"PROTECTED", /* 0x00004 */
"STATIC", /* 0x00008 */
"FINAL", /* 0x00010 */
"?", /* 0x00020 */
"VOLATILE", /* 0x00040 */
"TRANSIENT", /* 0x00080 */
"?", /* 0x00100 */
"?", /* 0x00200 */
"?", /* 0x00400 */
"?", /* 0x00800 */
"SYNTHETIC", /* 0x01000 */
"?", /* 0x02000 */
"ENUM", /* 0x04000 */
"?", /* 0x08000 */
"?", /* 0x10000 */
"?", /* 0x20000 */
},
};
// Allocate enough storage to hold the expected number of strings,
// plus a space between each. We over-allocate, using the longest
// string above as the base metric.
const int kLongest = 21; // The strlen of longest string above.
const int count = CountOnes(flags);
char* str;
char* cp;
cp = str = reinterpret_cast<char*>(malloc(count * (kLongest + 1) + 1));
for (int i = 0; i < kNumFlags; i++) {
if (flags & 0x01) {
const char* accessStr = kAccessStrings[for_what][i];
const int len = strlen(accessStr);
if (cp != str) {
*cp++ = ' ';
}
memcpy(cp, accessStr, len);
cp += len;
}
flags >>= 1;
} // for
*cp = '\0';
return str;
}
static std::string GetSignatureForProtoId(const dex_ir::ProtoId* proto) {
if (proto == nullptr) {
return "<no signature>";
}
std::string result("(");
const dex_ir::TypeList* type_list = proto->Parameters();
if (type_list != nullptr) {
for (const dex_ir::TypeId* type_id : *type_list->GetTypeList()) {
result += type_id->GetStringId()->Data();
}
}
result += ")";
result += proto->ReturnType()->GetStringId()->Data();
return result;
}
/*
* Copies character data from "data" to "out", converting non-ASCII values
* to fprintf format chars or an ASCII filler ('.' or '?').
*
* The output buffer must be able to hold (2*len)+1 bytes. The result is
* NULL-terminated.
*/
static void Asciify(char* out, const unsigned char* data, size_t len) {
while (len--) {
if (*data < 0x20) {
// Could do more here, but we don't need them yet.
switch (*data) {
case '\0':
*out++ = '\\';
*out++ = '0';
break;
case '\n':
*out++ = '\\';
*out++ = 'n';
break;
default:
*out++ = '.';
break;
} // switch
} else if (*data >= 0x80) {
*out++ = '?';
} else {
*out++ = *data;
}
data++;
} // while
*out = '\0';
}
/*
* Dumps a string value with some escape characters.
*/
static void DumpEscapedString(const char* p, FILE* out_file) {
fputs("\"", out_file);
for (; *p; p++) {
switch (*p) {
case '\\':
fputs("\\\\", out_file);
break;
case '\"':
fputs("\\\"", out_file);
break;
case '\t':
fputs("\\t", out_file);
break;
case '\n':
fputs("\\n", out_file);
break;
case '\r':
fputs("\\r", out_file);
break;
default:
putc(*p, out_file);
} // switch
} // for
fputs("\"", out_file);
}
/*
* Dumps a string as an XML attribute value.
*/
static void DumpXmlAttribute(const char* p, FILE* out_file) {
for (; *p; p++) {
switch (*p) {
case '&':
fputs("&amp;", out_file);
break;
case '<':
fputs("&lt;", out_file);
break;
case '>':
fputs("&gt;", out_file);
break;
case '"':
fputs("&quot;", out_file);
break;
case '\t':
fputs("&#x9;", out_file);
break;
case '\n':
fputs("&#xA;", out_file);
break;
case '\r':
fputs("&#xD;", out_file);
break;
default:
putc(*p, out_file);
} // switch
} // for
}
/*
* Helper for dumpInstruction(), which builds the string
* representation for the index in the given instruction.
* Returns a pointer to a buffer of sufficient size.
*/
static std::unique_ptr<char[]> IndexString(dex_ir::Header* header,
const Instruction* dec_insn,
size_t buf_size) {
std::unique_ptr<char[]> buf(new char[buf_size]);
// Determine index and width of the string.
uint32_t index = 0;
uint32_t secondary_index = dex::kDexNoIndex;
uint32_t width = 4;
switch (Instruction::FormatOf(dec_insn->Opcode())) {
// SOME NOT SUPPORTED:
// case Instruction::k20bc:
case Instruction::k21c:
case Instruction::k35c:
// case Instruction::k35ms:
case Instruction::k3rc:
// case Instruction::k3rms:
// case Instruction::k35mi:
// case Instruction::k3rmi:
index = dec_insn->VRegB();
width = 4;
break;
case Instruction::k31c:
index = dec_insn->VRegB();
width = 8;
break;
case Instruction::k22c:
// case Instruction::k22cs:
index = dec_insn->VRegC();
width = 4;
break;
case Instruction::k45cc:
case Instruction::k4rcc:
index = dec_insn->VRegB();
secondary_index = dec_insn->VRegH();
width = 4;
break;
default:
break;
} // switch
// Determine index type.
size_t outSize = 0;
switch (Instruction::IndexTypeOf(dec_insn->Opcode())) {
case Instruction::kIndexUnknown:
// This function should never get called for this type, but do
// something sensible here, just to help with debugging.
outSize = snprintf(buf.get(), buf_size, "<unknown-index>");
break;
case Instruction::kIndexNone:
// This function should never get called for this type, but do
// something sensible here, just to help with debugging.
outSize = snprintf(buf.get(), buf_size, "<no-index>");
break;
case Instruction::kIndexTypeRef:
if (index < header->GetCollections().TypeIdsSize()) {
const char* tp = header->GetCollections().GetTypeId(index)->GetStringId()->Data();
outSize = snprintf(buf.get(), buf_size, "%s // type@%0*x", tp, width, index);
} else {
outSize = snprintf(buf.get(), buf_size, "<type?> // type@%0*x", width, index);
}
break;
case Instruction::kIndexStringRef:
if (index < header->GetCollections().StringIdsSize()) {
const char* st = header->GetCollections().GetStringId(index)->Data();
outSize = snprintf(buf.get(), buf_size, "\"%s\" // string@%0*x", st, width, index);
} else {
outSize = snprintf(buf.get(), buf_size, "<string?> // string@%0*x", width, index);
}
break;
case Instruction::kIndexMethodRef:
if (index < header->GetCollections().MethodIdsSize()) {
dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
const char* name = method_id->Name()->Data();
std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
const char* back_descriptor = method_id->Class()->GetStringId()->Data();
outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // method@%0*x",
back_descriptor, name, type_descriptor.c_str(), width, index);
} else {
outSize = snprintf(buf.get(), buf_size, "<method?> // method@%0*x", width, index);
}
break;
case Instruction::kIndexFieldRef:
if (index < header->GetCollections().FieldIdsSize()) {
dex_ir::FieldId* field_id = header->GetCollections().GetFieldId(index);
const char* name = field_id->Name()->Data();
const char* type_descriptor = field_id->Type()->GetStringId()->Data();
const char* back_descriptor = field_id->Class()->GetStringId()->Data();
outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // field@%0*x",
back_descriptor, name, type_descriptor, width, index);
} else {
outSize = snprintf(buf.get(), buf_size, "<field?> // field@%0*x", width, index);
}
break;
case Instruction::kIndexVtableOffset:
outSize = snprintf(buf.get(), buf_size, "[%0*x] // vtable #%0*x",
width, index, width, index);
break;
case Instruction::kIndexFieldOffset:
outSize = snprintf(buf.get(), buf_size, "[obj+%0*x]", width, index);
break;
case Instruction::kIndexMethodAndProtoRef: {
std::string method("<method?>");
std::string proto("<proto?>");
if (index < header->GetCollections().MethodIdsSize()) {
dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
const char* name = method_id->Name()->Data();
std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
const char* back_descriptor = method_id->Class()->GetStringId()->Data();
method = StringPrintf("%s.%s:%s", back_descriptor, name, type_descriptor.c_str());
}
if (secondary_index < header->GetCollections().ProtoIdsSize()) {
dex_ir::ProtoId* proto_id = header->GetCollections().GetProtoId(secondary_index);
proto = GetSignatureForProtoId(proto_id);
}
outSize = snprintf(buf.get(), buf_size, "%s, %s // method@%0*x, proto@%0*x",
method.c_str(), proto.c_str(), width, index, width, secondary_index);
}
break;
// SOME NOT SUPPORTED:
// case Instruction::kIndexVaries:
// case Instruction::kIndexInlineMethod:
default:
outSize = snprintf(buf.get(), buf_size, "<?>");
break;
} // switch
// Determine success of string construction.
if (outSize >= buf_size) {
// The buffer wasn't big enough; retry with computed size. Note: snprintf()
// doesn't count/ the '\0' as part of its returned size, so we add explicit
// space for it here.
return IndexString(header, dec_insn, outSize + 1);
}
return buf;
}
/*
* Dumps encoded annotation.
*/
void DexLayout::DumpEncodedAnnotation(dex_ir::EncodedAnnotation* annotation) {
fputs(annotation->GetType()->GetStringId()->Data(), out_file_);
// Display all name=value pairs.
for (auto& subannotation : *annotation->GetAnnotationElements()) {
fputc(' ', out_file_);
fputs(subannotation->GetName()->Data(), out_file_);
fputc('=', out_file_);
DumpEncodedValue(subannotation->GetValue());
}
}
/*
* Dumps encoded value.
*/
void DexLayout::DumpEncodedValue(const dex_ir::EncodedValue* data) {
switch (data->Type()) {
case DexFile::kDexAnnotationByte:
fprintf(out_file_, "%" PRId8, data->GetByte());
break;
case DexFile::kDexAnnotationShort:
fprintf(out_file_, "%" PRId16, data->GetShort());
break;
case DexFile::kDexAnnotationChar:
fprintf(out_file_, "%" PRIu16, data->GetChar());
break;
case DexFile::kDexAnnotationInt:
fprintf(out_file_, "%" PRId32, data->GetInt());
break;
case DexFile::kDexAnnotationLong:
fprintf(out_file_, "%" PRId64, data->GetLong());
break;
case DexFile::kDexAnnotationFloat: {
fprintf(out_file_, "%g", data->GetFloat());
break;
}
case DexFile::kDexAnnotationDouble: {
fprintf(out_file_, "%g", data->GetDouble());
break;
}
case DexFile::kDexAnnotationString: {
dex_ir::StringId* string_id = data->GetStringId();
if (options_.output_format_ == kOutputPlain) {
DumpEscapedString(string_id->Data(), out_file_);
} else {
DumpXmlAttribute(string_id->Data(), out_file_);
}
break;
}
case DexFile::kDexAnnotationType: {
dex_ir::TypeId* type_id = data->GetTypeId();
fputs(type_id->GetStringId()->Data(), out_file_);
break;
}
case DexFile::kDexAnnotationField:
case DexFile::kDexAnnotationEnum: {
dex_ir::FieldId* field_id = data->GetFieldId();
fputs(field_id->Name()->Data(), out_file_);
break;
}
case DexFile::kDexAnnotationMethod: {
dex_ir::MethodId* method_id = data->GetMethodId();
fputs(method_id->Name()->Data(), out_file_);
break;
}
case DexFile::kDexAnnotationArray: {
fputc('{', out_file_);
// Display all elements.
for (auto& value : *data->GetEncodedArray()->GetEncodedValues()) {
fputc(' ', out_file_);
DumpEncodedValue(value.get());
}
fputs(" }", out_file_);
break;
}
case DexFile::kDexAnnotationAnnotation: {
DumpEncodedAnnotation(data->GetEncodedAnnotation());
break;
}
case DexFile::kDexAnnotationNull:
fputs("null", out_file_);
break;
case DexFile::kDexAnnotationBoolean:
fputs(StrBool(data->GetBoolean()), out_file_);
break;
default:
fputs("????", out_file_);
break;
} // switch
}
/*
* Dumps the file header.
*/
void DexLayout::DumpFileHeader() {
char sanitized[8 * 2 + 1];
dex_ir::Collections& collections = header_->GetCollections();
fprintf(out_file_, "DEX file header:\n");
Asciify(sanitized, header_->Magic(), 8);
fprintf(out_file_, "magic : '%s'\n", sanitized);
fprintf(out_file_, "checksum : %08x\n", header_->Checksum());
fprintf(out_file_, "signature : %02x%02x...%02x%02x\n",
header_->Signature()[0], header_->Signature()[1],
header_->Signature()[DexFile::kSha1DigestSize - 2],
header_->Signature()[DexFile::kSha1DigestSize - 1]);
fprintf(out_file_, "file_size : %d\n", header_->FileSize());
fprintf(out_file_, "header_size : %d\n", header_->HeaderSize());
fprintf(out_file_, "link_size : %d\n", header_->LinkSize());
fprintf(out_file_, "link_off : %d (0x%06x)\n",
header_->LinkOffset(), header_->LinkOffset());
fprintf(out_file_, "string_ids_size : %d\n", collections.StringIdsSize());
fprintf(out_file_, "string_ids_off : %d (0x%06x)\n",
collections.StringIdsOffset(), collections.StringIdsOffset());
fprintf(out_file_, "type_ids_size : %d\n", collections.TypeIdsSize());
fprintf(out_file_, "type_ids_off : %d (0x%06x)\n",
collections.TypeIdsOffset(), collections.TypeIdsOffset());
fprintf(out_file_, "proto_ids_size : %d\n", collections.ProtoIdsSize());
fprintf(out_file_, "proto_ids_off : %d (0x%06x)\n",
collections.ProtoIdsOffset(), collections.ProtoIdsOffset());
fprintf(out_file_, "field_ids_size : %d\n", collections.FieldIdsSize());
fprintf(out_file_, "field_ids_off : %d (0x%06x)\n",
collections.FieldIdsOffset(), collections.FieldIdsOffset());
fprintf(out_file_, "method_ids_size : %d\n", collections.MethodIdsSize());
fprintf(out_file_, "method_ids_off : %d (0x%06x)\n",
collections.MethodIdsOffset(), collections.MethodIdsOffset());
fprintf(out_file_, "class_defs_size : %d\n", collections.ClassDefsSize());
fprintf(out_file_, "class_defs_off : %d (0x%06x)\n",
collections.ClassDefsOffset(), collections.ClassDefsOffset());
fprintf(out_file_, "data_size : %d\n", header_->DataSize());
fprintf(out_file_, "data_off : %d (0x%06x)\n\n",
header_->DataOffset(), header_->DataOffset());
}
/*
* Dumps a class_def_item.
*/
void DexLayout::DumpClassDef(int idx) {
// General class information.
dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
fprintf(out_file_, "Class #%d header:\n", idx);
fprintf(out_file_, "class_idx : %d\n", class_def->ClassType()->GetIndex());
fprintf(out_file_, "access_flags : %d (0x%04x)\n",
class_def->GetAccessFlags(), class_def->GetAccessFlags());
uint32_t superclass_idx = class_def->Superclass() == nullptr ?
DexFile::kDexNoIndex16 : class_def->Superclass()->GetIndex();
fprintf(out_file_, "superclass_idx : %d\n", superclass_idx);
fprintf(out_file_, "interfaces_off : %d (0x%06x)\n",
class_def->InterfacesOffset(), class_def->InterfacesOffset());
uint32_t source_file_offset = 0xffffffffU;
if (class_def->SourceFile() != nullptr) {
source_file_offset = class_def->SourceFile()->GetIndex();
}
fprintf(out_file_, "source_file_idx : %d\n", source_file_offset);
uint32_t annotations_offset = 0;
if (class_def->Annotations() != nullptr) {
annotations_offset = class_def->Annotations()->GetOffset();
}
fprintf(out_file_, "annotations_off : %d (0x%06x)\n",
annotations_offset, annotations_offset);
if (class_def->GetClassData() == nullptr) {
fprintf(out_file_, "class_data_off : %d (0x%06x)\n", 0, 0);
} else {
fprintf(out_file_, "class_data_off : %d (0x%06x)\n",
class_def->GetClassData()->GetOffset(), class_def->GetClassData()->GetOffset());
}
// Fields and methods.
dex_ir::ClassData* class_data = class_def->GetClassData();
if (class_data != nullptr && class_data->StaticFields() != nullptr) {
fprintf(out_file_, "static_fields_size : %zu\n", class_data->StaticFields()->size());
} else {
fprintf(out_file_, "static_fields_size : 0\n");
}
if (class_data != nullptr && class_data->InstanceFields() != nullptr) {
fprintf(out_file_, "instance_fields_size: %zu\n", class_data->InstanceFields()->size());
} else {
fprintf(out_file_, "instance_fields_size: 0\n");
}
if (class_data != nullptr && class_data->DirectMethods() != nullptr) {
fprintf(out_file_, "direct_methods_size : %zu\n", class_data->DirectMethods()->size());
} else {
fprintf(out_file_, "direct_methods_size : 0\n");
}
if (class_data != nullptr && class_data->VirtualMethods() != nullptr) {
fprintf(out_file_, "virtual_methods_size: %zu\n", class_data->VirtualMethods()->size());
} else {
fprintf(out_file_, "virtual_methods_size: 0\n");
}
fprintf(out_file_, "\n");
}
/**
* Dumps an annotation set item.
*/
void DexLayout::DumpAnnotationSetItem(dex_ir::AnnotationSetItem* set_item) {
if (set_item == nullptr || set_item->GetItems()->size() == 0) {
fputs(" empty-annotation-set\n", out_file_);
return;
}
for (dex_ir::AnnotationItem* annotation : *set_item->GetItems()) {
if (annotation == nullptr) {
continue;
}
fputs(" ", out_file_);
switch (annotation->GetVisibility()) {
case DexFile::kDexVisibilityBuild: fputs("VISIBILITY_BUILD ", out_file_); break;
case DexFile::kDexVisibilityRuntime: fputs("VISIBILITY_RUNTIME ", out_file_); break;
case DexFile::kDexVisibilitySystem: fputs("VISIBILITY_SYSTEM ", out_file_); break;
default: fputs("VISIBILITY_UNKNOWN ", out_file_); break;
} // switch
DumpEncodedAnnotation(annotation->GetAnnotation());
fputc('\n', out_file_);
}
}
/*
* Dumps class annotations.
*/
void DexLayout::DumpClassAnnotations(int idx) {
dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
dex_ir::AnnotationsDirectoryItem* annotations_directory = class_def->Annotations();
if (annotations_directory == nullptr) {
return; // none
}
fprintf(out_file_, "Class #%d annotations:\n", idx);
dex_ir::AnnotationSetItem* class_set_item = annotations_directory->GetClassAnnotation();
dex_ir::FieldAnnotationVector* fields = annotations_directory->GetFieldAnnotations();
dex_ir::MethodAnnotationVector* methods = annotations_directory->GetMethodAnnotations();
dex_ir::ParameterAnnotationVector* parameters = annotations_directory->GetParameterAnnotations();
// Annotations on the class itself.
if (class_set_item != nullptr) {
fprintf(out_file_, "Annotations on class\n");
DumpAnnotationSetItem(class_set_item);
}
// Annotations on fields.
if (fields != nullptr) {
for (auto& field : *fields) {
const dex_ir::FieldId* field_id = field->GetFieldId();
const uint32_t field_idx = field_id->GetIndex();
const char* field_name = field_id->Name()->Data();
fprintf(out_file_, "Annotations on field #%u '%s'\n", field_idx, field_name);
DumpAnnotationSetItem(field->GetAnnotationSetItem());
}
}
// Annotations on methods.
if (methods != nullptr) {
for (auto& method : *methods) {
const dex_ir::MethodId* method_id = method->GetMethodId();
const uint32_t method_idx = method_id->GetIndex();
const char* method_name = method_id->Name()->Data();
fprintf(out_file_, "Annotations on method #%u '%s'\n", method_idx, method_name);
DumpAnnotationSetItem(method->GetAnnotationSetItem());
}
}
// Annotations on method parameters.
if (parameters != nullptr) {
for (auto& parameter : *parameters) {
const dex_ir::MethodId* method_id = parameter->GetMethodId();
const uint32_t method_idx = method_id->GetIndex();
const char* method_name = method_id->Name()->Data();
fprintf(out_file_, "Annotations on method #%u '%s' parameters\n", method_idx, method_name);
uint32_t j = 0;
for (dex_ir::AnnotationSetItem* annotation : *parameter->GetAnnotations()->GetItems()) {
fprintf(out_file_, "#%u\n", j);
DumpAnnotationSetItem(annotation);
++j;
}
}
}
fputc('\n', out_file_);
}
/*
* Dumps an interface that a class declares to implement.
*/
void DexLayout::DumpInterface(const dex_ir::TypeId* type_item, int i) {
const char* interface_name = type_item->GetStringId()->Data();
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " #%d : '%s'\n", i, interface_name);
} else {
std::string dot(DescriptorToDotWrapper(interface_name));
fprintf(out_file_, "<implements name=\"%s\">\n</implements>\n", dot.c_str());
}
}
/*
* Dumps the catches table associated with the code.
*/
void DexLayout::DumpCatches(const dex_ir::CodeItem* code) {
const uint16_t tries_size = code->TriesSize();
// No catch table.
if (tries_size == 0) {
fprintf(out_file_, " catches : (none)\n");
return;
}
// Dump all table entries.
fprintf(out_file_, " catches : %d\n", tries_size);
std::vector<std::unique_ptr<const dex_ir::TryItem>>* tries = code->Tries();
for (uint32_t i = 0; i < tries_size; i++) {
const dex_ir::TryItem* try_item = (*tries)[i].get();
const uint32_t start = try_item->StartAddr();
const uint32_t end = start + try_item->InsnCount();
fprintf(out_file_, " 0x%04x - 0x%04x\n", start, end);
for (auto& handler : *try_item->GetHandlers()->GetHandlers()) {
const dex_ir::TypeId* type_id = handler->GetTypeId();
const char* descriptor = (type_id == nullptr) ? "<any>" : type_id->GetStringId()->Data();
fprintf(out_file_, " %s -> 0x%04x\n", descriptor, handler->GetAddress());
} // for
} // for
}
/*
* Dumps a single instruction.
*/
void DexLayout::DumpInstruction(const dex_ir::CodeItem* code,
uint32_t code_offset,
uint32_t insn_idx,
uint32_t insn_width,
const Instruction* dec_insn) {
// Address of instruction (expressed as byte offset).
fprintf(out_file_, "%06x:", code_offset + 0x10 + insn_idx * 2);
// Dump (part of) raw bytes.
const uint16_t* insns = code->Insns();
for (uint32_t i = 0; i < 8; i++) {
if (i < insn_width) {
if (i == 7) {
fprintf(out_file_, " ... ");
} else {
// Print 16-bit value in little-endian order.
const uint8_t* bytePtr = (const uint8_t*) &insns[insn_idx + i];
fprintf(out_file_, " %02x%02x", bytePtr[0], bytePtr[1]);
}
} else {
fputs(" ", out_file_);
}
} // for
// Dump pseudo-instruction or opcode.
if (dec_insn->Opcode() == Instruction::NOP) {
const uint16_t instr = Get2LE((const uint8_t*) &insns[insn_idx]);
if (instr == Instruction::kPackedSwitchSignature) {
fprintf(out_file_, "|%04x: packed-switch-data (%d units)", insn_idx, insn_width);
} else if (instr == Instruction::kSparseSwitchSignature) {
fprintf(out_file_, "|%04x: sparse-switch-data (%d units)", insn_idx, insn_width);
} else if (instr == Instruction::kArrayDataSignature) {
fprintf(out_file_, "|%04x: array-data (%d units)", insn_idx, insn_width);
} else {
fprintf(out_file_, "|%04x: nop // spacer", insn_idx);
}
} else {
fprintf(out_file_, "|%04x: %s", insn_idx, dec_insn->Name());
}
// Set up additional argument.
std::unique_ptr<char[]> index_buf;
if (Instruction::IndexTypeOf(dec_insn->Opcode()) != Instruction::kIndexNone) {
index_buf = IndexString(header_, dec_insn, 200);
}
// Dump the instruction.
//
// NOTE: pDecInsn->DumpString(pDexFile) differs too much from original.
//
switch (Instruction::FormatOf(dec_insn->Opcode())) {
case Instruction::k10x: // op
break;
case Instruction::k12x: // op vA, vB
fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
break;
case Instruction::k11n: // op vA, #+B
fprintf(out_file_, " v%d, #int %d // #%x",
dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint8_t)dec_insn->VRegB());
break;
case Instruction::k11x: // op vAA
fprintf(out_file_, " v%d", dec_insn->VRegA());
break;
case Instruction::k10t: // op +AA
case Instruction::k20t: { // op +AAAA
const int32_t targ = (int32_t) dec_insn->VRegA();
fprintf(out_file_, " %04x // %c%04x",
insn_idx + targ,
(targ < 0) ? '-' : '+',
(targ < 0) ? -targ : targ);
break;
}
case Instruction::k22x: // op vAA, vBBBB
fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
break;
case Instruction::k21t: { // op vAA, +BBBB
const int32_t targ = (int32_t) dec_insn->VRegB();
fprintf(out_file_, " v%d, %04x // %c%04x", dec_insn->VRegA(),
insn_idx + targ,
(targ < 0) ? '-' : '+',
(targ < 0) ? -targ : targ);
break;
}
case Instruction::k21s: // op vAA, #+BBBB
fprintf(out_file_, " v%d, #int %d // #%x",
dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint16_t)dec_insn->VRegB());
break;
case Instruction::k21h: // op vAA, #+BBBB0000[00000000]
// The printed format varies a bit based on the actual opcode.
if (dec_insn->Opcode() == Instruction::CONST_HIGH16) {
const int32_t value = dec_insn->VRegB() << 16;
fprintf(out_file_, " v%d, #int %d // #%x",
dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
} else {
const int64_t value = ((int64_t) dec_insn->VRegB()) << 48;
fprintf(out_file_, " v%d, #long %" PRId64 " // #%x",
dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
}
break;
case Instruction::k21c: // op vAA, thing@BBBB
case Instruction::k31c: // op vAA, thing@BBBBBBBB
fprintf(out_file_, " v%d, %s", dec_insn->VRegA(), index_buf.get());
break;
case Instruction::k23x: // op vAA, vBB, vCC
fprintf(out_file_, " v%d, v%d, v%d",
dec_insn->VRegA(), dec_insn->VRegB(), dec_insn->VRegC());
break;
case Instruction::k22b: // op vAA, vBB, #+CC
fprintf(out_file_, " v%d, v%d, #int %d // #%02x",
dec_insn->VRegA(), dec_insn->VRegB(),
(int32_t) dec_insn->VRegC(), (uint8_t) dec_insn->VRegC());
break;
case Instruction::k22t: { // op vA, vB, +CCCC
const int32_t targ = (int32_t) dec_insn->VRegC();
fprintf(out_file_, " v%d, v%d, %04x // %c%04x",
dec_insn->VRegA(), dec_insn->VRegB(),
insn_idx + targ,
(targ < 0) ? '-' : '+',
(targ < 0) ? -targ : targ);
break;
}
case Instruction::k22s: // op vA, vB, #+CCCC
fprintf(out_file_, " v%d, v%d, #int %d // #%04x",
dec_insn->VRegA(), dec_insn->VRegB(),
(int32_t) dec_insn->VRegC(), (uint16_t) dec_insn->VRegC());
break;
case Instruction::k22c: // op vA, vB, thing@CCCC
// NOT SUPPORTED:
// case Instruction::k22cs: // [opt] op vA, vB, field offset CCCC
fprintf(out_file_, " v%d, v%d, %s",
dec_insn->VRegA(), dec_insn->VRegB(), index_buf.get());
break;
case Instruction::k30t:
fprintf(out_file_, " #%08x", dec_insn->VRegA());
break;
case Instruction::k31i: { // op vAA, #+BBBBBBBB
// This is often, but not always, a float.
union {
float f;
uint32_t i;
} conv;
conv.i = dec_insn->VRegB();
fprintf(out_file_, " v%d, #float %g // #%08x",
dec_insn->VRegA(), conv.f, dec_insn->VRegB());
break;
}
case Instruction::k31t: // op vAA, offset +BBBBBBBB
fprintf(out_file_, " v%d, %08x // +%08x",
dec_insn->VRegA(), insn_idx + dec_insn->VRegB(), dec_insn->VRegB());
break;
case Instruction::k32x: // op vAAAA, vBBBB
fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
break;
case Instruction::k35c: // op {vC, vD, vE, vF, vG}, thing@BBBB
case Instruction::k45cc: { // op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH
// NOT SUPPORTED:
// case Instruction::k35ms: // [opt] invoke-virtual+super
// case Instruction::k35mi: // [opt] inline invoke
uint32_t arg[Instruction::kMaxVarArgRegs];
dec_insn->GetVarArgs(arg);
fputs(" {", out_file_);
for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
if (i == 0) {
fprintf(out_file_, "v%d", arg[i]);
} else {
fprintf(out_file_, ", v%d", arg[i]);
}
} // for
fprintf(out_file_, "}, %s", index_buf.get());
break;
}
case Instruction::k3rc: // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
case Instruction::k4rcc: // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH
// NOT SUPPORTED:
// case Instruction::k3rms: // [opt] invoke-virtual+super/range
// case Instruction::k3rmi: // [opt] execute-inline/range
{
// This doesn't match the "dx" output when some of the args are
// 64-bit values -- dx only shows the first register.
fputs(" {", out_file_);
for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
if (i == 0) {
fprintf(out_file_, "v%d", dec_insn->VRegC() + i);
} else {
fprintf(out_file_, ", v%d", dec_insn->VRegC() + i);
}
} // for
fprintf(out_file_, "}, %s", index_buf.get());
}
break;
case Instruction::k51l: { // op vAA, #+BBBBBBBBBBBBBBBB
// This is often, but not always, a double.
union {
double d;
uint64_t j;
} conv;
conv.j = dec_insn->WideVRegB();
fprintf(out_file_, " v%d, #double %g // #%016" PRIx64,
dec_insn->VRegA(), conv.d, dec_insn->WideVRegB());
break;
}
// NOT SUPPORTED:
// case Instruction::k00x: // unknown op or breakpoint
// break;
default:
fprintf(out_file_, " ???");
break;
} // switch
fputc('\n', out_file_);
}
/*
* Dumps a bytecode disassembly.
*/
void DexLayout::DumpBytecodes(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset) {
dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
const char* name = method_id->Name()->Data();
std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
const char* back_descriptor = method_id->Class()->GetStringId()->Data();
// Generate header.
std::string dot(DescriptorToDotWrapper(back_descriptor));
fprintf(out_file_, "%06x: |[%06x] %s.%s:%s\n",
code_offset, code_offset, dot.c_str(), name, type_descriptor.c_str());
// Iterate over all instructions.
for (const DexInstructionPcPair& inst : code->Instructions()) {
const uint32_t insn_width = inst->SizeInCodeUnits();
if (insn_width == 0) {
LOG(WARNING) << "GLITCH: zero-width instruction at idx=0x" << std::hex << inst.DexPc();
break;
}
DumpInstruction(code, code_offset, inst.DexPc(), insn_width, &inst.Inst());
} // for
}
/*
* Callback for dumping each positions table entry.
*/
static bool DumpPositionsCb(void* context, const DexFile::PositionInfo& entry) {
FILE* out_file = reinterpret_cast<FILE*>(context);
fprintf(out_file, " 0x%04x line=%d\n", entry.address_, entry.line_);
return false;
}
/*
* Callback for dumping locals table entry.
*/
static void DumpLocalsCb(void* context, const DexFile::LocalInfo& entry) {
const char* signature = entry.signature_ != nullptr ? entry.signature_ : "";
FILE* out_file = reinterpret_cast<FILE*>(context);
fprintf(out_file, " 0x%04x - 0x%04x reg=%d %s %s %s\n",
entry.start_address_, entry.end_address_, entry.reg_,
entry.name_, entry.descriptor_, signature);
}
/*
* Lookup functions.
*/
static const char* StringDataByIdx(uint32_t idx, dex_ir::Collections& collections) {
dex_ir::StringId* string_id = collections.GetStringIdOrNullPtr(idx);
if (string_id == nullptr) {
return nullptr;
}
return string_id->Data();
}
static const char* StringDataByTypeIdx(uint16_t idx, dex_ir::Collections& collections) {
dex_ir::TypeId* type_id = collections.GetTypeIdOrNullPtr(idx);
if (type_id == nullptr) {
return nullptr;
}
dex_ir::StringId* string_id = type_id->GetStringId();
if (string_id == nullptr) {
return nullptr;
}
return string_id->Data();
}
/*
* Dumps code of a method.
*/
void DexLayout::DumpCode(uint32_t idx,
const dex_ir::CodeItem* code,
uint32_t code_offset,
const char* declaring_class_descriptor,
const char* method_name,
bool is_static,
const dex_ir::ProtoId* proto) {
fprintf(out_file_, " registers : %d\n", code->RegistersSize());
fprintf(out_file_, " ins : %d\n", code->InsSize());
fprintf(out_file_, " outs : %d\n", code->OutsSize());
fprintf(out_file_, " insns size : %d 16-bit code units\n",
code->InsnsSize());
// Bytecode disassembly, if requested.
if (options_.disassemble_) {
DumpBytecodes(idx, code, code_offset);
}
// Try-catch blocks.
DumpCatches(code);
// Positions and locals table in the debug info.
dex_ir::DebugInfoItem* debug_info = code->DebugInfo();
fprintf(out_file_, " positions : \n");
if (debug_info != nullptr) {
DexFile::DecodeDebugPositionInfo(debug_info->GetDebugInfo(),
[this](uint32_t idx) {
return StringDataByIdx(idx, this->header_->GetCollections());
},
DumpPositionsCb,
out_file_);
}
fprintf(out_file_, " locals : \n");
if (debug_info != nullptr) {
std::vector<const char*> arg_descriptors;
const dex_ir::TypeList* parameters = proto->Parameters();
if (parameters != nullptr) {
const dex_ir::TypeIdVector* parameter_type_vector = parameters->GetTypeList();
if (parameter_type_vector != nullptr) {
for (const dex_ir::TypeId* type_id : *parameter_type_vector) {
arg_descriptors.push_back(type_id->GetStringId()->Data());
}
}
}
DexFile::DecodeDebugLocalInfo(debug_info->GetDebugInfo(),
"DexLayout in-memory",
declaring_class_descriptor,
arg_descriptors,
method_name,
is_static,
code->RegistersSize(),
code->InsSize(),
code->InsnsSize(),
[this](uint32_t idx) {
return StringDataByIdx(idx, this->header_->GetCollections());
},
[this](uint32_t idx) {
return
StringDataByTypeIdx(dchecked_integral_cast<uint16_t>(idx),
this->header_->GetCollections());
},
DumpLocalsCb,
out_file_);
}
}
/*
* Dumps a method.
*/
void DexLayout::DumpMethod(uint32_t idx, uint32_t flags, const dex_ir::CodeItem* code, int i) {
// Bail for anything private if export only requested.
if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
return;
}
dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
const char* name = method_id->Name()->Data();
char* type_descriptor = strdup(GetSignatureForProtoId(method_id->Proto()).c_str());
const char* back_descriptor = method_id->Class()->GetStringId()->Data();
char* access_str = CreateAccessFlagStr(flags, kAccessForMethod);
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " #%d : (in %s)\n", i, back_descriptor);
fprintf(out_file_, " name : '%s'\n", name);
fprintf(out_file_, " type : '%s'\n", type_descriptor);
fprintf(out_file_, " access : 0x%04x (%s)\n", flags, access_str);
if (code == nullptr) {
fprintf(out_file_, " code : (none)\n");
} else {
fprintf(out_file_, " code -\n");
DumpCode(idx,
code,
code->GetOffset(),
back_descriptor,
name,
(flags & kAccStatic) != 0,
method_id->Proto());
}
if (options_.disassemble_) {
fputc('\n', out_file_);
}
} else if (options_.output_format_ == kOutputXml) {
const bool constructor = (name[0] == '<');
// Method name and prototype.
if (constructor) {
std::string dot(DescriptorClassToDot(back_descriptor));
fprintf(out_file_, "<constructor name=\"%s\"\n", dot.c_str());
dot = DescriptorToDotWrapper(back_descriptor);
fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
} else {
fprintf(out_file_, "<method name=\"%s\"\n", name);
const char* return_type = strrchr(type_descriptor, ')');
if (return_type == nullptr) {
LOG(ERROR) << "bad method type descriptor '" << type_descriptor << "'";
goto bail;
}
std::string dot(DescriptorToDotWrapper(return_type + 1));
fprintf(out_file_, " return=\"%s\"\n", dot.c_str());
fprintf(out_file_, " abstract=%s\n", QuotedBool((flags & kAccAbstract) != 0));
fprintf(out_file_, " native=%s\n", QuotedBool((flags & kAccNative) != 0));
fprintf(out_file_, " synchronized=%s\n", QuotedBool(
(flags & (kAccSynchronized | kAccDeclaredSynchronized)) != 0));
}
// Additional method flags.
fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
// The "deprecated=" not knowable w/o parsing annotations.
fprintf(out_file_, " visibility=%s\n>\n", QuotedVisibility(flags));
// Parameters.
if (type_descriptor[0] != '(') {
LOG(ERROR) << "ERROR: bad descriptor '" << type_descriptor << "'";
goto bail;
}
char* tmp_buf = reinterpret_cast<char*>(malloc(strlen(type_descriptor) + 1));
const char* base = type_descriptor + 1;
int arg_num = 0;
while (*base != ')') {
char* cp = tmp_buf;
while (*base == '[') {
*cp++ = *base++;
}
if (*base == 'L') {
// Copy through ';'.
do {
*cp = *base++;
} while (*cp++ != ';');
} else {
// Primitive char, copy it.
if (strchr("ZBCSIFJD", *base) == nullptr) {
LOG(ERROR) << "ERROR: bad method signature '" << base << "'";
break; // while
}
*cp++ = *base++;
}
// Null terminate and display.
*cp++ = '\0';
std::string dot(DescriptorToDotWrapper(tmp_buf));
fprintf(out_file_, "<parameter name=\"arg%d\" type=\"%s\">\n"
"</parameter>\n", arg_num++, dot.c_str());
} // while
free(tmp_buf);
if (constructor) {
fprintf(out_file_, "</constructor>\n");
} else {
fprintf(out_file_, "</method>\n");
}
}
bail:
free(type_descriptor);
free(access_str);
}
/*
* Dumps a static (class) field.
*/
void DexLayout::DumpSField(uint32_t idx, uint32_t flags, int i, dex_ir::EncodedValue* init) {
// Bail for anything private if export only requested.
if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
return;
}
dex_ir::FieldId* field_id = header_->GetCollections().GetFieldId(idx);
const char* name = field_id->Name()->Data();
const char* type_descriptor = field_id->Type()->GetStringId()->Data();
const char* back_descriptor = field_id->Class()->GetStringId()->Data();
char* access_str = CreateAccessFlagStr(flags, kAccessForField);
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " #%d : (in %s)\n", i, back_descriptor);
fprintf(out_file_, " name : '%s'\n", name);
fprintf(out_file_, " type : '%s'\n", type_descriptor);
fprintf(out_file_, " access : 0x%04x (%s)\n", flags, access_str);
if (init != nullptr) {
fputs(" value : ", out_file_);
DumpEncodedValue(init);
fputs("\n", out_file_);
}
} else if (options_.output_format_ == kOutputXml) {
fprintf(out_file_, "<field name=\"%s\"\n", name);
std::string dot(DescriptorToDotWrapper(type_descriptor));
fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
fprintf(out_file_, " transient=%s\n", QuotedBool((flags & kAccTransient) != 0));
fprintf(out_file_, " volatile=%s\n", QuotedBool((flags & kAccVolatile) != 0));
// The "value=" is not knowable w/o parsing annotations.
fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
// The "deprecated=" is not knowable w/o parsing annotations.
fprintf(out_file_, " visibility=%s\n", QuotedVisibility(flags));
if (init != nullptr) {
fputs(" value=\"", out_file_);
DumpEncodedValue(init);
fputs("\"\n", out_file_);
}
fputs(">\n</field>\n", out_file_);
}
free(access_str);
}
/*
* Dumps an instance field.
*/
void DexLayout::DumpIField(uint32_t idx, uint32_t flags, int i) {
DumpSField(idx, flags, i, nullptr);
}
/*
* Dumps the class.
*
* Note "idx" is a DexClassDef index, not a DexTypeId index.
*
* If "*last_package" is nullptr or does not match the current class' package,
* the value will be replaced with a newly-allocated string.
*/
void DexLayout::DumpClass(int idx, char** last_package) {
dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
// Omitting non-public class.
if (options_.exports_only_ && (class_def->GetAccessFlags() & kAccPublic) == 0) {
return;
}
if (options_.show_section_headers_) {
DumpClassDef(idx);
}
if (options_.show_annotations_) {
DumpClassAnnotations(idx);
}
// For the XML output, show the package name. Ideally we'd gather
// up the classes, sort them, and dump them alphabetically so the
// package name wouldn't jump around, but that's not a great plan
// for something that needs to run on the device.
const char* class_descriptor =
header_->GetCollections().GetClassDef(idx)->ClassType()->GetStringId()->Data();
if (!(class_descriptor[0] == 'L' &&
class_descriptor[strlen(class_descriptor)-1] == ';')) {
// Arrays and primitives should not be defined explicitly. Keep going?
LOG(ERROR) << "Malformed class name '" << class_descriptor << "'";
} else if (options_.output_format_ == kOutputXml) {
char* mangle = strdup(class_descriptor + 1);
mangle[strlen(mangle)-1] = '\0';
// Reduce to just the package name.
char* last_slash = strrchr(mangle, '/');
if (last_slash != nullptr) {
*last_slash = '\0';
} else {
*mangle = '\0';
}
for (char* cp = mangle; *cp != '\0'; cp++) {
if (*cp == '/') {
*cp = '.';
}
} // for
if (*last_package == nullptr || strcmp(mangle, *last_package) != 0) {
// Start of a new package.
if (*last_package != nullptr) {
fprintf(out_file_, "</package>\n");
}
fprintf(out_file_, "<package name=\"%s\"\n>\n", mangle);
free(*last_package);
*last_package = mangle;
} else {
free(mangle);
}
}
// General class information.
char* access_str = CreateAccessFlagStr(class_def->GetAccessFlags(), kAccessForClass);
const char* superclass_descriptor = nullptr;
if (class_def->Superclass() != nullptr) {
superclass_descriptor = class_def->Superclass()->GetStringId()->Data();
}
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, "Class #%d -\n", idx);
fprintf(out_file_, " Class descriptor : '%s'\n", class_descriptor);
fprintf(out_file_, " Access flags : 0x%04x (%s)\n",
class_def->GetAccessFlags(), access_str);
if (superclass_descriptor != nullptr) {
fprintf(out_file_, " Superclass : '%s'\n", superclass_descriptor);
}
fprintf(out_file_, " Interfaces -\n");
} else {
std::string dot(DescriptorClassToDot(class_descriptor));
fprintf(out_file_, "<class name=\"%s\"\n", dot.c_str());
if (superclass_descriptor != nullptr) {
dot = DescriptorToDotWrapper(superclass_descriptor);
fprintf(out_file_, " extends=\"%s\"\n", dot.c_str());
}
fprintf(out_file_, " interface=%s\n",
QuotedBool((class_def->GetAccessFlags() & kAccInterface) != 0));
fprintf(out_file_, " abstract=%s\n",
QuotedBool((class_def->GetAccessFlags() & kAccAbstract) != 0));
fprintf(out_file_, " static=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccStatic) != 0));
fprintf(out_file_, " final=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccFinal) != 0));
// The "deprecated=" not knowable w/o parsing annotations.
fprintf(out_file_, " visibility=%s\n", QuotedVisibility(class_def->GetAccessFlags()));
fprintf(out_file_, ">\n");
}
// Interfaces.
const dex_ir::TypeList* interfaces = class_def->Interfaces();
if (interfaces != nullptr) {
const dex_ir::TypeIdVector* interfaces_vector = interfaces->GetTypeList();
for (uint32_t i = 0; i < interfaces_vector->size(); i++) {
DumpInterface((*interfaces_vector)[i], i);
} // for
}
// Fields and methods.
dex_ir::ClassData* class_data = class_def->GetClassData();
// Prepare data for static fields.
dex_ir::EncodedArrayItem* static_values = class_def->StaticValues();
dex_ir::EncodedValueVector* encoded_values =
static_values == nullptr ? nullptr : static_values->GetEncodedValues();
const uint32_t encoded_values_size = (encoded_values == nullptr) ? 0 : encoded_values->size();
// Static fields.
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " Static fields -\n");
}
if (class_data != nullptr) {
dex_ir::FieldItemVector* static_fields = class_data->StaticFields();
if (static_fields != nullptr) {
for (uint32_t i = 0; i < static_fields->size(); i++) {
DumpSField((*static_fields)[i]->GetFieldId()->GetIndex(),
(*static_fields)[i]->GetAccessFlags(),
i,
i < encoded_values_size ? (*encoded_values)[i].get() : nullptr);
} // for
}
}
// Instance fields.
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " Instance fields -\n");
}
if (class_data != nullptr) {
dex_ir::FieldItemVector* instance_fields = class_data->InstanceFields();
if (instance_fields != nullptr) {
for (uint32_t i = 0; i < instance_fields->size(); i++) {
DumpIField((*instance_fields)[i]->GetFieldId()->GetIndex(),
(*instance_fields)[i]->GetAccessFlags(),
i);
} // for
}
}
// Direct methods.
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " Direct methods -\n");
}
if (class_data != nullptr) {
dex_ir::MethodItemVector* direct_methods = class_data->DirectMethods();
if (direct_methods != nullptr) {
for (uint32_t i = 0; i < direct_methods->size(); i++) {
DumpMethod((*direct_methods)[i]->GetMethodId()->GetIndex(),
(*direct_methods)[i]->GetAccessFlags(),
(*direct_methods)[i]->GetCodeItem(),
i);
} // for
}
}
// Virtual methods.
if (options_.output_format_ == kOutputPlain) {
fprintf(out_file_, " Virtual methods -\n");
}
if (class_data != nullptr) {
dex_ir::MethodItemVector* virtual_methods = class_data->VirtualMethods();
if (virtual_methods != nullptr) {
for (uint32_t i = 0; i < virtual_methods->size(); i++) {
DumpMethod((*virtual_methods)[i]->GetMethodId()->GetIndex(),
(*virtual_methods)[i]->GetAccessFlags(),
(*virtual_methods)[i]->GetCodeItem(),
i);
} // for
}
}
// End of class.
if (options_.output_format_ == kOutputPlain) {
const char* file_name = "unknown";
if (class_def->SourceFile() != nullptr) {
file_name = class_def->SourceFile()->Data();
}
const dex_ir::StringId* source_file = class_def->SourceFile();
fprintf(out_file_, " source_file_idx : %d (%s)\n\n",
source_file == nullptr ? 0xffffffffU : source_file->GetIndex(), file_name);
} else if (options_.output_format_ == kOutputXml) {
fprintf(out_file_, "</class>\n");
}
free(access_str);
}
void DexLayout::DumpDexFile() {
// Headers.
if (options_.show_file_headers_) {
DumpFileHeader();
}
// Open XML context.
if (options_.output_format_ == kOutputXml) {
fprintf(out_file_, "<api>\n");
}
// Iterate over all classes.
char* package = nullptr;
const uint32_t class_defs_size = header_->GetCollections().ClassDefsSize();
for (uint32_t i = 0; i < class_defs_size; i++) {
DumpClass(i, &package);
} // for
// Free the last package allocated.
if (package != nullptr) {
fprintf(out_file_, "</package>\n");
free(package);
}
// Close XML context.
if (options_.output_format_ == kOutputXml) {
fprintf(out_file_, "</api>\n");
}
}
void DexLayout::LayoutClassDefsAndClassData(const DexFile* dex_file) {
std::vector<dex_ir::ClassDef*> new_class_def_order;
for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
if (info_->ContainsClass(*dex_file, type_idx)) {
new_class_def_order.push_back(class_def.get());
}
}
for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
if (!info_->ContainsClass(*dex_file, type_idx)) {
new_class_def_order.push_back(class_def.get());
}
}
std::unordered_set<dex_ir::ClassData*> visited_class_data;
size_t class_data_index = 0;
dex_ir::CollectionVector<dex_ir::ClassData>::Vector& class_datas =
header_->GetCollections().ClassDatas();
for (dex_ir::ClassDef* class_def : new_class_def_order) {
dex_ir::ClassData* class_data = class_def->GetClassData();
if (class_data != nullptr && visited_class_data.find(class_data) == visited_class_data.end()) {
visited_class_data.insert(class_data);
// Overwrite the existing vector with the new ordering, note that the sets of objects are
// equivalent, but the order changes. This is why this is not a memory leak.
// TODO: Consider cleaning this up with a shared_ptr.
class_datas[class_data_index].release();
class_datas[class_data_index].reset(class_data);
++class_data_index;
}
}
CHECK_EQ(class_data_index, class_datas.size());
if (DexLayout::kChangeClassDefOrder) {
// This currently produces dex files that violate the spec since the super class class_def is
// supposed to occur before any subclasses.
dex_ir::CollectionVector<dex_ir::ClassDef>::Vector& class_defs =
header_->GetCollections().ClassDefs();
CHECK_EQ(new_class_def_order.size(), class_defs.size());
for (size_t i = 0; i < class_defs.size(); ++i) {
// Overwrite the existing vector with the new ordering, note that the sets of objects are
// equivalent, but the order changes. This is why this is not a memory leak.
// TODO: Consider cleaning this up with a shared_ptr.
class_defs[i].release();
class_defs[i].reset(new_class_def_order[i]);
}
}
}
void DexLayout::LayoutStringData(const DexFile* dex_file) {
const size_t num_strings = header_->GetCollections().StringIds().size();
std::vector<bool> is_shorty(num_strings, false);
std::vector<bool> from_hot_method(num_strings, false);
for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
// A name of a profile class is probably going to get looked up by ClassTable::Lookup, mark it
// as hot. Add its super class and interfaces as well, which can be used during initialization.
const bool is_profile_class =
info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
if (is_profile_class) {
from_hot_method[class_def->ClassType()->GetStringId()->GetIndex()] = true;
const dex_ir::TypeId* superclass = class_def->Superclass();
if (superclass != nullptr) {
from_hot_method[superclass->GetStringId()->GetIndex()] = true;
}
const dex_ir::TypeList* interfaces = class_def->Interfaces();
if (interfaces != nullptr) {
for (const dex_ir::TypeId* interface_type : *interfaces->GetTypeList()) {
from_hot_method[interface_type->GetStringId()->GetIndex()] = true;
}
}
}
dex_ir::ClassData* data = class_def->GetClassData();
if (data == nullptr) {
continue;
}
for (size_t i = 0; i < 2; ++i) {
for (auto& method : *(i == 0 ? data->DirectMethods() : data->VirtualMethods())) {
const dex_ir::MethodId* method_id = method->GetMethodId();
dex_ir::CodeItem* code_item = method->GetCodeItem();
if (code_item == nullptr) {
continue;
}
const bool is_clinit = is_profile_class &&
(method->GetAccessFlags() & kAccConstructor) != 0 &&
(method->GetAccessFlags() & kAccStatic) != 0;
const bool method_executed = is_clinit ||
info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex())).IsInProfile();
if (!method_executed) {
continue;
}
is_shorty[method_id->Proto()->Shorty()->GetIndex()] = true;
dex_ir::CodeFixups* fixups = code_item->GetCodeFixups();
if (fixups == nullptr) {
continue;
}
// Add const-strings.
for (dex_ir::StringId* id : fixups->StringIds()) {
from_hot_method[id->GetIndex()] = true;
}
// Add field classes, names, and types.
for (dex_ir::FieldId* id : fixups->FieldIds()) {
// TODO: Only visit field ids from static getters and setters.
from_hot_method[id->Class()->GetStringId()->GetIndex()] = true;
from_hot_method[id->Name()->GetIndex()] = true;
from_hot_method[id->Type()->GetStringId()->GetIndex()] = true;
}
// For clinits, add referenced method classes, names, and protos.
if (is_clinit) {
for (dex_ir::MethodId* id : fixups->MethodIds()) {
from_hot_method[id->Class()->GetStringId()->GetIndex()] = true;
from_hot_method[id->Name()->GetIndex()] = true;
is_shorty[id->Proto()->Shorty()->GetIndex()] = true;
}
}
}
}
}
// Sort string data by specified order.
std::vector<dex_ir::StringId*> string_ids;
for (auto& string_id : header_->GetCollections().StringIds()) {
string_ids.push_back(string_id.get());
}
std::sort(string_ids.begin(),
string_ids.end(),
[&is_shorty, &from_hot_method](const dex_ir::StringId* a,
const dex_ir::StringId* b) {
const bool a_is_hot = from_hot_method[a->GetIndex()];
const bool b_is_hot = from_hot_method[b->GetIndex()];
if (a_is_hot != b_is_hot) {
return a_is_hot < b_is_hot;
}
// After hot methods are partitioned, subpartition shorties.
const bool a_is_shorty = is_shorty[a->GetIndex()];
const bool b_is_shorty = is_shorty[b->GetIndex()];
if (a_is_shorty != b_is_shorty) {
return a_is_shorty < b_is_shorty;
}
// Order by index by default.
return a->GetIndex() < b->GetIndex();
});
dex_ir::CollectionVector<dex_ir::StringData>::Vector& string_datas =
header_->GetCollections().StringDatas();
// Now we know what order we want the string data, reorder them.
size_t data_index = 0;
for (dex_ir::StringId* string_id : string_ids) {
string_datas[data_index].release();
string_datas[data_index].reset(string_id->DataItem());
++data_index;
}
if (kIsDebugBuild) {
std::unordered_set<dex_ir::StringData*> visited;
for (const std::unique_ptr<dex_ir::StringData>& data : string_datas) {
visited.insert(data.get());
}
for (auto& string_id : header_->GetCollections().StringIds()) {
CHECK(visited.find(string_id->DataItem()) != visited.end());
}
}
CHECK_EQ(data_index, string_datas.size());
}
// Orders code items according to specified class data ordering.
void DexLayout::LayoutCodeItems(const DexFile* dex_file) {
static constexpr InvokeType invoke_types[] = {
kDirect,
kVirtual
};
std::unordered_map<dex_ir::CodeItem*, LayoutType>& code_item_layout =
layout_hotness_info_.code_item_layout_;
// Assign hotness flags to all code items.
for (InvokeType invoke_type : invoke_types) {
for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
const bool is_profile_class =
info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
// Skip classes that are not defined in this dex file.
dex_ir::ClassData* class_data = class_def->GetClassData();
if (class_data == nullptr) {
continue;
}
for (auto& method : *(invoke_type == InvokeType::kDirect
? class_data->DirectMethods()
: class_data->VirtualMethods())) {
const dex_ir::MethodId *method_id = method->GetMethodId();
dex_ir::CodeItem *code_item = method->GetCodeItem();
if (code_item == nullptr) {
continue;
}
// Separate executed methods (clinits and profiled methods) from unexecuted methods.
const bool is_clinit = (method->GetAccessFlags() & kAccConstructor) != 0 &&
(method->GetAccessFlags() & kAccStatic) != 0;
const bool is_startup_clinit = is_profile_class && is_clinit;
using Hotness = ProfileCompilationInfo::MethodHotness;
Hotness hotness = info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex()));
LayoutType state = LayoutType::kLayoutTypeUnused;
if (hotness.IsHot()) {
// Hot code is compiled, maybe one day it won't be accessed. So lay it out together for
// now.
state = LayoutType::kLayoutTypeHot;
} else if (is_startup_clinit || hotness.GetFlags() == Hotness::kFlagStartup) {
// Startup clinit or a method that only has the startup flag.
state = LayoutType::kLayoutTypeStartupOnly;
} else if (is_clinit) {
state = LayoutType::kLayoutTypeUsedOnce;
} else if (hotness.IsInProfile()) {
state = LayoutType::kLayoutTypeSometimesUsed;
}
auto it = code_item_layout.emplace(code_item, state);
if (!it.second) {
LayoutType& layout_type = it.first->second;
// Already exists, merge the hotness.
layout_type = MergeLayoutType(layout_type, state);
}
}
}
}
dex_ir::CollectionVector<dex_ir::CodeItem>::Vector& code_items =
header_->GetCollections().CodeItems();
if (VLOG_IS_ON(dex)) {
size_t layout_count[static_cast<size_t>(LayoutType::kLayoutTypeCount)] = {};
for (const std::unique_ptr<dex_ir::CodeItem>& code_item : code_items) {
auto it = code_item_layout.find(code_item.get());
DCHECK(it != code_item_layout.end());
++layout_count[static_cast<size_t>(it->second)];
}
for (size_t i = 0; i < static_cast<size_t>(LayoutType::kLayoutTypeCount); ++i) {
LOG(INFO) << "Code items in category " << i << " count=" << layout_count[i];
}
}
// Sort the code items vector by new layout. The writing process will take care of calculating
// all the offsets. Stable sort to preserve any existing locality that might be there.
std::stable_sort(code_items.begin(),
code_items.end(),
[&](const std::unique_ptr<dex_ir::CodeItem>& a,
const std::unique_ptr<dex_ir::CodeItem>& b) {
auto it_a = code_item_layout.find(a.get());
auto it_b = code_item_layout.find(b.get());
DCHECK(it_a != code_item_layout.end());
DCHECK(it_b != code_item_layout.end());
const LayoutType layout_type_a = it_a->second;
const LayoutType layout_type_b = it_b->second;
return layout_type_a < layout_type_b;
});
}
void DexLayout::LayoutOutputFile(const DexFile* dex_file) {
LayoutStringData(dex_file);
LayoutClassDefsAndClassData(dex_file);
LayoutCodeItems(dex_file);
}
bool DexLayout::OutputDexFile(const DexFile* input_dex_file,
bool compute_offsets,
std::unique_ptr<DexContainer>* dex_container,
std::string* error_msg) {
const std::string& dex_file_location = input_dex_file->GetLocation();
std::unique_ptr<File> new_file;
// If options_.output_dex_directory_ is non null, we are outputting to a file.
if (options_.output_dex_directory_ != nullptr) {
std::string output_location(options_.output_dex_directory_);
size_t last_slash = dex_file_location.rfind('/');
std::string dex_file_directory = dex_file_location.substr(0, last_slash + 1);
if (output_location == dex_file_directory) {
output_location = dex_file_location + ".new";
} else if (last_slash != std::string::npos) {
output_location += dex_file_location.substr(last_slash);
} else {
output_location += "/" + dex_file_location + ".new";
}
new_file.reset(OS::CreateEmptyFile(output_location.c_str()));
if (new_file == nullptr) {
LOG(ERROR) << "Could not create dex writer output file: " << output_location;
return false;
}
}
if (!DexWriter::Output(this, dex_container, compute_offsets, error_msg)) {
return false;
}
if (new_file != nullptr) {
DexContainer* const container = dex_container->get();
DexContainer::Section* const main_section = container->GetMainSection();
if (!new_file->WriteFully(main_section->Begin(), main_section->Size())) {
LOG(ERROR) << "Failed to write main section for dex file " << dex_file_location;
new_file->Erase();
return false;
}
DexContainer::Section* const data_section = container->GetDataSection();
if (!new_file->WriteFully(data_section->Begin(), data_section->Size())) {
LOG(ERROR) << "Failed to write data section for dex file " << dex_file_location;
new_file->Erase();
return false;
}
UNUSED(new_file->FlushCloseOrErase());
}
return true;
}
/*
* Dumps the requested sections of the file.
*/
bool DexLayout::ProcessDexFile(const char* file_name,
const DexFile* dex_file,
size_t dex_file_index,
std::unique_ptr<DexContainer>* dex_container,
std::string* error_msg) {
const bool has_output_container = dex_container != nullptr;
const bool output = options_.output_dex_directory_ != nullptr || has_output_container;
// Try to avoid eagerly assigning offsets to find bugs since GetOffset will abort if the offset
// is unassigned.
bool eagerly_assign_offsets = false;
if (options_.visualize_pattern_ || options_.show_section_statistics_ || options_.dump_) {
// These options required the offsets for dumping purposes.
eagerly_assign_offsets = true;
}
std::unique_ptr<dex_ir::Header> header(dex_ir::DexIrBuilder(*dex_file,
eagerly_assign_offsets,
GetOptions()));
SetHeader(header.get());
if (options_.verbose_) {
fprintf(out_file_, "Opened '%s', DEX version '%.3s'\n",
file_name, dex_file->GetHeader().magic_ + 4);
}
if (options_.visualize_pattern_) {
VisualizeDexLayout(header_, dex_file, dex_file_index, info_);
return true;
}
if (options_.show_section_statistics_) {
ShowDexSectionStatistics(header_, dex_file_index);
return true;
}
// Dump dex file.
if (options_.dump_) {
DumpDexFile();
}
// In case we are outputting to a file, keep it open so we can verify.
if (output) {
// Layout information about what strings and code items are hot. Used by the writing process
// to generate the sections that are stored in the oat file.
bool do_layout = info_ != nullptr;
if (do_layout) {
LayoutOutputFile(dex_file);
}
// The output needs a dex container, use a temporary one.
std::unique_ptr<DexContainer> temp_container;
if (dex_container == nullptr) {
dex_container = &temp_container;
}
// If we didn't set the offsets eagerly, we definitely need to compute them here.
if (!OutputDexFile(dex_file, do_layout || !eagerly_assign_offsets, dex_container, error_msg)) {
return false;
}
// Clear header before verifying to reduce peak RAM usage.
const size_t file_size = header_->FileSize();
header.reset();
// Verify the output dex file's structure, only enabled by default for debug builds.
if (options_.verify_output_ && has_output_container) {
std::string location = "memory mapped file for " + std::string(file_name);
// Dex file verifier cannot handle compact dex.
bool verify = options_.compact_dex_level_ == CompactDexLevel::kCompactDexLevelNone;
const ArtDexFileLoader dex_file_loader;
DexContainer::Section* const main_section = (*dex_container)->GetMainSection();
DexContainer::Section* const data_section = (*dex_container)->GetDataSection();
DCHECK_EQ(file_size, main_section->Size())
<< main_section->Size() << " " << data_section->Size();
std::unique_ptr<const DexFile> output_dex_file(
dex_file_loader.OpenWithDataSection(
main_section->Begin(),
main_section->Size(),
data_section->Begin(),
data_section->Size(),
location,
/* checksum */ 0,
/*oat_dex_file*/ nullptr,
verify,
/*verify_checksum*/ false,
error_msg));
CHECK(output_dex_file != nullptr) << "Failed to re-open output file:" << *error_msg;
// Do IR-level comparison between input and output. This check ignores potential differences
// due to layout, so offsets are not checked. Instead, it checks the data contents of each
// item.
//
// Regenerate output IR to catch any bugs that might happen during writing.
std::unique_ptr<dex_ir::Header> output_header(
dex_ir::DexIrBuilder(*output_dex_file,
/*eagerly_assign_offsets*/ true,
GetOptions()));
std::unique_ptr<dex_ir::Header> orig_header(
dex_ir::DexIrBuilder(*dex_file,
/*eagerly_assign_offsets*/ true,
GetOptions()));
CHECK(VerifyOutputDexFile(output_header.get(), orig_header.get(), error_msg)) << *error_msg;
}
}
return true;
}
/*
* Processes a single file (either direct .dex or indirect .zip/.jar/.apk).
*/
int DexLayout::ProcessFile(const char* file_name) {
if (options_.verbose_) {
fprintf(out_file_, "Processing '%s'...\n", file_name);
}
// If the file is not a .dex file, the function tries .zip/.jar/.apk files,
// all of which are Zip archives with "classes.dex" inside.
const bool verify_checksum = !options_.ignore_bad_checksum_;
std::string error_msg;
const ArtDexFileLoader dex_file_loader;
std::vector<std::unique_ptr<const DexFile>> dex_files;
if (!dex_file_loader.Open(
file_name, file_name, /* verify */ true, verify_checksum, &error_msg, &dex_files)) {
// Display returned error message to user. Note that this error behavior
// differs from the error messages shown by the original Dalvik dexdump.
LOG(ERROR) << error_msg;
return -1;
}
// Success. Either report checksum verification or process
// all dex files found in given file.
if (options_.checksum_only_) {
fprintf(out_file_, "Checksum verified\n");
} else {
for (size_t i = 0; i < dex_files.size(); i++) {
// Pass in a null container to avoid output by default.
if (!ProcessDexFile(file_name,
dex_files[i].get(),
i,
/*dex_container*/ nullptr,
&error_msg)) {
LOG(WARNING) << "Failed to run dex file " << i << " in " << file_name << " : " << error_msg;
}
}
}
return 0;
}
} // namespace art