blob: fe927bbc1c233791e8d3c63ad761030978d6eaa3 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include "base/memory_tool.h"
#include <forward_list>
#include <fstream>
#include <iostream>
#include <limits>
#include <sstream>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <vector>
#if defined(__linux__) && defined(__arm__)
#include <sys/personality.h>
#include <sys/utsname.h>
#endif
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "arch/instruction_set_features.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method-inl.h"
#include "base/callee_save_type.h"
#include "base/dumpable.h"
#include "base/file_utils.h"
#include "base/leb128.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/stringpiece.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "class_linker.h"
#include "class_loader_context.h"
#include "cmdline_parser.h"
#include "compiler.h"
#include "compiler_callbacks.h"
#include "debug/elf_debug_writer.h"
#include "debug/method_debug_info.h"
#include "dexlayout.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/quick_compiler_callbacks.h"
#include "dex/verification_results.h"
#include "dex2oat_options.h"
#include "dex2oat_return_codes.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "driver/compiler_options_map-inl.h"
#include "elf_file.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "gc/verification.h"
#include "interpreter/unstarted_runtime.h"
#include "java_vm_ext.h"
#include "jit/profile_compilation_info.h"
#include "linker/buffered_output_stream.h"
#include "linker/elf_writer.h"
#include "linker/elf_writer_quick.h"
#include "linker/file_output_stream.h"
#include "linker/image_writer.h"
#include "linker/multi_oat_relative_patcher.h"
#include "linker/oat_writer.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat_file.h"
#include "oat_file_assistant.h"
#include "runtime.h"
#include "runtime_options.h"
#include "scoped_thread_state_change-inl.h"
#include "vdex_file.h"
#include "verifier/verifier_deps.h"
#include "well_known_classes.h"
#include "zip_archive.h"
namespace art {
using android::base::StringAppendV;
using android::base::StringPrintf;
static constexpr size_t kDefaultMinDexFilesForSwap = 2;
static constexpr size_t kDefaultMinDexFileCumulativeSizeForSwap = 20 * MB;
// Compiler filter override for very large apps.
static constexpr CompilerFilter::Filter kLargeAppFilter = CompilerFilter::kVerify;
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return android::base::Join(command, ' ');
}
// A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be
// even more aggressive. There won't be much reasonable data here for us in that case anyways (the
// locations are all staged).
static std::string StrippedCommandLine() {
std::vector<std::string> command;
// Do a pre-pass to look for zip-fd and the compiler filter.
bool saw_zip_fd = false;
bool saw_compiler_filter = false;
for (int i = 0; i < original_argc; ++i) {
if (android::base::StartsWith(original_argv[i], "--zip-fd=")) {
saw_zip_fd = true;
}
if (android::base::StartsWith(original_argv[i], "--compiler-filter=")) {
saw_compiler_filter = true;
}
}
// Now filter out things.
for (int i = 0; i < original_argc; ++i) {
// All runtime-arg parameters are dropped.
if (strcmp(original_argv[i], "--runtime-arg") == 0) {
i++; // Drop the next part, too.
continue;
}
// Any instruction-setXXX is dropped.
if (android::base::StartsWith(original_argv[i], "--instruction-set")) {
continue;
}
// The boot image is dropped.
if (android::base::StartsWith(original_argv[i], "--boot-image=")) {
continue;
}
// The image format is dropped.
if (android::base::StartsWith(original_argv[i], "--image-format=")) {
continue;
}
// This should leave any dex-file and oat-file options, describing what we compiled.
// However, we prefer to drop this when we saw --zip-fd.
if (saw_zip_fd) {
// Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X
if (android::base::StartsWith(original_argv[i], "--zip-") ||
android::base::StartsWith(original_argv[i], "--dex-") ||
android::base::StartsWith(original_argv[i], "--oat-") ||
android::base::StartsWith(original_argv[i], "--swap-") ||
android::base::StartsWith(original_argv[i], "--app-image-")) {
continue;
}
}
command.push_back(original_argv[i]);
}
if (!saw_compiler_filter) {
command.push_back("--compiler-filter=" +
CompilerFilter::NameOfFilter(CompilerFilter::kDefaultCompilerFilter));
}
// Construct the final output.
if (command.size() <= 1U) {
// It seems only "/system/bin/dex2oat" is left, or not even that. Use a pretty line.
return "Starting dex2oat.";
}
return android::base::Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: dex2oat [options]...");
UsageError("");
UsageError(" -j<number>: specifies the number of threads used for compilation.");
UsageError(" Default is the number of detected hardware threads available on the");
UsageError(" host system.");
UsageError(" Example: -j12");
UsageError("");
UsageError(" --dex-file=<dex-file>: specifies a .dex, .jar, or .apk file to compile.");
UsageError(" Example: --dex-file=/system/framework/core.jar");
UsageError("");
UsageError(" --dex-location=<dex-location>: specifies an alternative dex location to");
UsageError(" encode in the oat file for the corresponding --dex-file argument.");
UsageError(" Example: --dex-file=/home/build/out/system/framework/core.jar");
UsageError(" --dex-location=/system/framework/core.jar");
UsageError("");
UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file");
UsageError(" containing a classes.dex file to compile.");
UsageError(" Example: --zip-fd=5");
UsageError("");
UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file");
UsageError(" corresponding to the file descriptor specified by --zip-fd.");
UsageError(" Example: --zip-location=/system/app/Calculator.apk");
UsageError("");
UsageError(" --oat-file=<file.oat>: specifies an oat output destination via a filename.");
UsageError(" Example: --oat-file=/system/framework/boot.oat");
UsageError("");
UsageError(" --oat-fd=<number>: specifies the oat output destination via a file descriptor.");
UsageError(" Example: --oat-fd=6");
UsageError("");
UsageError(" --input-vdex-fd=<number>: specifies the vdex input source via a file descriptor.");
UsageError(" Example: --input-vdex-fd=6");
UsageError("");
UsageError(" --output-vdex-fd=<number>: specifies the vdex output destination via a file");
UsageError(" descriptor.");
UsageError(" Example: --output-vdex-fd=6");
UsageError("");
UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding");
UsageError(" to the file descriptor specified by --oat-fd.");
UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat");
UsageError("");
UsageError(" --oat-symbols=<file.oat>: specifies an oat output destination with full symbols.");
UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat");
UsageError("");
UsageError(" --image=<file.art>: specifies an output image filename.");
UsageError(" Example: --image=/system/framework/boot.art");
UsageError("");
UsageError(" --image-format=(uncompressed|lz4|lz4hc):");
UsageError(" Which format to store the image.");
UsageError(" Example: --image-format=lz4");
UsageError(" Default: uncompressed");
UsageError("");
UsageError(" --image-classes=<classname-file>: specifies classes to include in an image.");
UsageError(" Example: --image=frameworks/base/preloaded-classes");
UsageError("");
UsageError(" --base=<hex-address>: specifies the base address when creating a boot image.");
UsageError(" Example: --base=0x50000000");
UsageError("");
UsageError(" --boot-image=<file.art>: provide the image file for the boot class path.");
UsageError(" Do not include the arch as part of the name, it is added automatically.");
UsageError(" Example: --boot-image=/system/framework/boot.art");
UsageError(" (specifies /system/framework/<arch>/boot.art as the image file)");
UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art");
UsageError("");
UsageError(" --android-root=<path>: used to locate libraries for portable linking.");
UsageError(" Example: --android-root=out/host/linux-x86");
UsageError(" Default: $ANDROID_ROOT");
UsageError("");
UsageError(" --instruction-set=(arm|arm64|mips|mips64|x86|x86_64): compile for a particular");
UsageError(" instruction set.");
UsageError(" Example: --instruction-set=x86");
UsageError(" Default: arm");
UsageError("");
UsageError(" --instruction-set-features=...,: Specify instruction set features");
UsageError(" Example: --instruction-set-features=div");
UsageError(" Default: default");
UsageError("");
UsageError(" --compile-pic: Force indirect use of code, methods, and classes");
UsageError(" Default: disabled");
UsageError("");
UsageError(" --compiler-backend=(Quick|Optimizing): select compiler backend");
UsageError(" set.");
UsageError(" Example: --compiler-backend=Optimizing");
UsageError(" Default: Optimizing");
UsageError("");
UsageError(" --compiler-filter="
"(assume-verified"
"|extract"
"|verify"
"|quicken"
"|space-profile"
"|space"
"|speed-profile"
"|speed"
"|everything-profile"
"|everything):");
UsageError(" select compiler filter.");
UsageError(" Example: --compiler-filter=everything");
UsageError(" Default: speed");
UsageError("");
UsageError(" --huge-method-max=<method-instruction-count>: threshold size for a huge");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold);
UsageError("");
UsageError(" --large-method-max=<method-instruction-count>: threshold size for a large");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold);
UsageError("");
UsageError(" --small-method-max=<method-instruction-count>: threshold size for a small");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold);
UsageError("");
UsageError(" --tiny-method-max=<method-instruction-count>: threshold size for a tiny");
UsageError(" method for compiler filter tuning.");
UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold);
UsageError("");
UsageError(" --num-dex-methods=<method-count>: threshold size for a small dex file for");
UsageError(" compiler filter tuning. If the input has fewer than this many methods");
UsageError(" and the filter is not interpret-only or verify-none or verify-at-runtime, ");
UsageError(" overrides the filter to use speed");
UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold);
UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold);
UsageError("");
UsageError(" --inline-max-code-units=<code-units-count>: the maximum code units that a method");
UsageError(" can have to be considered for inlining. A zero value will disable inlining.");
UsageError(" Honored only by Optimizing. Has priority over the --compiler-filter option.");
UsageError(" Intended for development/experimental use.");
UsageError(" Example: --inline-max-code-units=%d",
CompilerOptions::kDefaultInlineMaxCodeUnits);
UsageError(" Default: %d", CompilerOptions::kDefaultInlineMaxCodeUnits);
UsageError("");
UsageError(" --dump-timings: display a breakdown of where time was spent");
UsageError("");
UsageError(" -g");
UsageError(" --generate-debug-info: Generate debug information for native debugging,");
UsageError(" such as stack unwinding information, ELF symbols and DWARF sections.");
UsageError(" If used without --debuggable, it will be best-effort only.");
UsageError(" This option does not affect the generated code. (disabled by default)");
UsageError("");
UsageError(" --no-generate-debug-info: Do not generate debug information for native debugging.");
UsageError("");
UsageError(" --generate-mini-debug-info: Generate minimal amount of LZMA-compressed");
UsageError(" debug information necessary to print backtraces. (disabled by default)");
UsageError("");
UsageError(" --no-generate-mini-debug-info: Do not generate backtrace info.");
UsageError("");
UsageError(" --generate-build-id: Generate GNU-compatible linker build ID ELF section with");
UsageError(" SHA-1 of the file content (and thus stable across identical builds)");
UsageError("");
UsageError(" --no-generate-build-id: Do not generate the build ID ELF section.");
UsageError("");
UsageError(" --debuggable: Produce code debuggable with Java debugger.");
UsageError("");
UsageError(" --avoid-storing-invocation: Avoid storing the invocation args in the key value");
UsageError(" store. Used to test determinism with different args.");
UsageError("");
UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,");
UsageError(" such as initial heap size, maximum heap size, and verbose output.");
UsageError(" Use a separate --runtime-arg switch for each argument.");
UsageError(" Example: --runtime-arg -Xms256m");
UsageError("");
UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation.");
UsageError("");
UsageError(" --profile-file-fd=<number>: same as --profile-file but accepts a file descriptor.");
UsageError(" Cannot be used together with --profile-file.");
UsageError("");
UsageError(" --swap-file=<file-name>: specifies a file to use for swap.");
UsageError(" Example: --swap-file=/data/tmp/swap.001");
UsageError("");
UsageError(" --swap-fd=<file-descriptor>: specifies a file to use for swap (by descriptor).");
UsageError(" Example: --swap-fd=10");
UsageError("");
UsageError(" --swap-dex-size-threshold=<size>: specifies the minimum total dex file size in");
UsageError(" bytes to allow the use of swap.");
UsageError(" Example: --swap-dex-size-threshold=1000000");
UsageError(" Default: %zu", kDefaultMinDexFileCumulativeSizeForSwap);
UsageError("");
UsageError(" --swap-dex-count-threshold=<count>: specifies the minimum number of dex files to");
UsageError(" allow the use of swap.");
UsageError(" Example: --swap-dex-count-threshold=10");
UsageError(" Default: %zu", kDefaultMinDexFilesForSwap);
UsageError("");
UsageError(" --very-large-app-threshold=<size>: specifies the minimum total dex file size in");
UsageError(" bytes to consider the input \"very large\" and reduce compilation done.");
UsageError(" Example: --very-large-app-threshold=100000000");
UsageError("");
UsageError(" --app-image-fd=<file-descriptor>: specify output file descriptor for app image.");
UsageError(" The image is non-empty only if a profile is passed in.");
UsageError(" Example: --app-image-fd=10");
UsageError("");
UsageError(" --app-image-file=<file-name>: specify a file name for app image.");
UsageError(" Example: --app-image-file=/data/dalvik-cache/system@app@Calculator.apk.art");
UsageError("");
UsageError(" --multi-image: specify that separate oat and image files be generated for each "
"input dex file.");
UsageError("");
UsageError(" --force-determinism: force the compiler to emit a deterministic output.");
UsageError("");
UsageError(" --dump-cfg=<cfg-file>: dump control-flow graphs (CFGs) to specified file.");
UsageError(" Example: --dump-cfg=output.cfg");
UsageError("");
UsageError(" --dump-cfg-append: when dumping CFGs to an existing file, append new CFG data to");
UsageError(" existing data (instead of overwriting existing data with new data, which is");
UsageError(" the default behavior). This option is only meaningful when used with");
UsageError(" --dump-cfg.");
UsageError("");
UsageError(" --classpath-dir=<directory-path>: directory used to resolve relative class paths.");
UsageError("");
UsageError(" --class-loader-context=<string spec>: a string specifying the intended");
UsageError(" runtime loading context for the compiled dex files.");
UsageError("");
UsageError(" --stored-class-loader-context=<string spec>: a string specifying the intended");
UsageError(" runtime loading context that is stored in the oat file. Overrides");
UsageError(" --class-loader-context. Note that this ignores the classpath_dir arg.");
UsageError("");
UsageError(" It describes how the class loader chain should be built in order to ensure");
UsageError(" classes are resolved during dex2aot as they would be resolved at runtime.");
UsageError(" This spec will be encoded in the oat file. If at runtime the dex file is");
UsageError(" loaded in a different context, the oat file will be rejected.");
UsageError("");
UsageError(" The chain is interpreted in the natural 'parent order', meaning that class");
UsageError(" loader 'i+1' will be the parent of class loader 'i'.");
UsageError(" The compilation sources will be appended to the classpath of the first class");
UsageError(" loader.");
UsageError("");
UsageError(" E.g. if the context is 'PCL[lib1.dex];DLC[lib2.dex]' and ");
UsageError(" --dex-file=src.dex then dex2oat will setup a PathClassLoader with classpath ");
UsageError(" 'lib1.dex:src.dex' and set its parent to a DelegateLastClassLoader with ");
UsageError(" classpath 'lib2.dex'.");
UsageError(" ");
UsageError(" Note that the compiler will be tolerant if the source dex files specified");
UsageError(" with --dex-file are found in the classpath. The source dex files will be");
UsageError(" removed from any class loader's classpath possibly resulting in empty");
UsageError(" class loaders.");
UsageError("");
UsageError(" Example: --class-loader-context=PCL[lib1.dex:lib2.dex];DLC[lib3.dex]");
UsageError("");
UsageError(" --dirty-image-objects=<directory-path>: list of known dirty objects in the image.");
UsageError(" The image writer will group them together.");
UsageError("");
UsageError(" --compact-dex-level=none|fast: None avoids generating compact dex, fast");
UsageError(" generates compact dex with low compile time. If speed-profile is specified as");
UsageError(" the compiler filter and the profile is not empty, the default compact dex");
UsageError(" level is always used.");
UsageError("");
UsageError(" --deduplicate-code=true|false: enable|disable code deduplication. Deduplicated");
UsageError(" code will have an arbitrary symbol tagged with [DEDUPED].");
UsageError("");
UsageError(" --copy-dex-files=true|false: enable|disable copying the dex files into the");
UsageError(" output vdex.");
UsageError("");
UsageError(" --compilation-reason=<string>: optional metadata specifying the reason for");
UsageError(" compiling the apk. If specified, the string will be embedded verbatim in");
UsageError(" the key value store of the oat file.");
UsageError("");
UsageError(" Example: --compilation-reason=install");
UsageError("");
std::cerr << "See log for usage error information\n";
exit(EXIT_FAILURE);
}
// The primary goal of the watchdog is to prevent stuck build servers
// during development when fatal aborts lead to a cascade of failures
// that result in a deadlock.
class WatchDog {
// WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks
#undef CHECK_PTHREAD_CALL
#define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \
do { \
int rc = call args; \
if (rc != 0) { \
errno = rc; \
std::string message(# call); \
message += " failed for "; \
message += reason; \
Fatal(message); \
} \
} while (false)
public:
explicit WatchDog(int64_t timeout_in_milliseconds)
: timeout_in_milliseconds_(timeout_in_milliseconds),
shutting_down_(false) {
const char* reason = "dex2oat watch dog thread startup";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason);
#ifndef __APPLE__
pthread_condattr_t condattr;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_init, (&condattr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_setclock, (&condattr, CLOCK_MONOTONIC), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, &condattr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_destroy, (&condattr), reason);
#endif
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason);
}
~WatchDog() {
const char* reason = "dex2oat watch dog thread shutdown";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
shutting_down_ = true;
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason);
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason);
}
// TODO: tune the multiplier for GC verification, the following is just to make the timeout
// large.
static constexpr int64_t kWatchdogVerifyMultiplier =
kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1;
// When setting timeouts, keep in mind that the build server may not be as fast as your
// desktop. Debug builds are slower so they have larger timeouts.
static constexpr int64_t kWatchdogSlowdownFactor = kIsDebugBuild ? 5U : 1U;
// 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager
// watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort
// itself before that watchdog would take down the system server.
static constexpr int64_t kWatchDogTimeoutSeconds = kWatchdogSlowdownFactor * (9 * 60 + 30);
static constexpr int64_t kDefaultWatchdogTimeoutInMS =
kWatchdogVerifyMultiplier * kWatchDogTimeoutSeconds * 1000;
private:
static void* CallBack(void* arg) {
WatchDog* self = reinterpret_cast<WatchDog*>(arg);
::art::SetThreadName("dex2oat watch dog");
self->Wait();
return nullptr;
}
NO_RETURN static void Fatal(const std::string& message) {
// TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However,
// it's rather easy to hang in unwinding.
// LogLine also avoids ART logging lock issues, as it's really only a wrapper around
// logcat logging or stderr output.
LogHelper::LogLineLowStack(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str());
// If we're on the host, try to dump all threads to get a sense of what's going on. This is
// restricted to the host as the dump may itself go bad.
// TODO: Use a double watchdog timeout, so we can enable this on-device.
if (!kIsTargetBuild && Runtime::Current() != nullptr) {
Runtime::Current()->AttachCurrentThread("Watchdog thread attached for dumping",
true,
nullptr,
false);
Runtime::Current()->DumpForSigQuit(std::cerr);
}
exit(1);
}
void Wait() {
timespec timeout_ts;
#if defined(__APPLE__)
InitTimeSpec(true, CLOCK_REALTIME, timeout_in_milliseconds_, 0, &timeout_ts);
#else
InitTimeSpec(true, CLOCK_MONOTONIC, timeout_in_milliseconds_, 0, &timeout_ts);
#endif
const char* reason = "dex2oat watch dog thread waiting";
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason);
while (!shutting_down_) {
int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts));
if (rc == ETIMEDOUT) {
Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " seconds",
timeout_in_milliseconds_/1000));
} else if (rc != 0) {
std::string message(StringPrintf("pthread_cond_timedwait failed: %s",
strerror(errno)));
Fatal(message.c_str());
}
}
CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason);
}
// TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases.
pthread_mutex_t mutex_;
pthread_cond_t cond_;
pthread_attr_t attr_;
pthread_t pthread_;
const int64_t timeout_in_milliseconds_;
bool shutting_down_;
};
class Dex2Oat FINAL {
public:
explicit Dex2Oat(TimingLogger* timings) :
compiler_kind_(Compiler::kOptimizing),
instruction_set_(kRuntimeISA == InstructionSet::kArm ? InstructionSet::kThumb2 : kRuntimeISA),
// Take the default set of instruction features from the build.
image_file_location_oat_checksum_(0),
image_file_location_oat_data_begin_(0),
image_patch_delta_(0),
key_value_store_(nullptr),
verification_results_(nullptr),
runtime_(nullptr),
thread_count_(sysconf(_SC_NPROCESSORS_CONF)),
start_ns_(NanoTime()),
start_cputime_ns_(ProcessCpuNanoTime()),
oat_fd_(-1),
input_vdex_fd_(-1),
output_vdex_fd_(-1),
input_vdex_file_(nullptr),
dm_fd_(-1),
zip_fd_(-1),
image_base_(0U),
image_classes_zip_filename_(nullptr),
image_classes_filename_(nullptr),
image_storage_mode_(ImageHeader::kStorageModeUncompressed),
compiled_classes_zip_filename_(nullptr),
compiled_classes_filename_(nullptr),
compiled_methods_zip_filename_(nullptr),
compiled_methods_filename_(nullptr),
passes_to_run_filename_(nullptr),
dirty_image_objects_filename_(nullptr),
multi_image_(false),
is_host_(false),
elf_writers_(),
oat_writers_(),
rodata_(),
image_writer_(nullptr),
driver_(nullptr),
opened_dex_files_maps_(),
opened_dex_files_(),
no_inline_from_dex_files_(),
avoid_storing_invocation_(false),
swap_fd_(kInvalidFd),
app_image_fd_(kInvalidFd),
profile_file_fd_(kInvalidFd),
timings_(timings),
force_determinism_(false)
{}
~Dex2Oat() {
// Log completion time before deleting the runtime_, because this accesses
// the runtime.
LogCompletionTime();
if (!kIsDebugBuild && !(RUNNING_ON_MEMORY_TOOL && kMemoryToolDetectsLeaks)) {
// We want to just exit on non-debug builds, not bringing the runtime down
// in an orderly fashion. So release the following fields.
driver_.release();
image_writer_.release();
for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files_) {
dex_file.release();
}
for (std::unique_ptr<MemMap>& map : opened_dex_files_maps_) {
map.release();
}
for (std::unique_ptr<File>& vdex_file : vdex_files_) {
vdex_file.release();
}
for (std::unique_ptr<File>& oat_file : oat_files_) {
oat_file.release();
}
runtime_.release();
verification_results_.release();
key_value_store_.release();
}
}
struct ParserOptions {
std::vector<const char*> oat_symbols;
std::string boot_image_filename;
int64_t watch_dog_timeout_in_ms = -1;
bool watch_dog_enabled = true;
bool requested_specific_compiler = false;
std::string error_msg;
};
void ParseBase(const std::string& option) {
char* end;
image_base_ = strtoul(option.c_str(), &end, 16);
if (end == option.c_str() || *end != '\0') {
Usage("Failed to parse hexadecimal value for option %s", option.data());
}
}
bool VerifyProfileData() {
return profile_compilation_info_->VerifyProfileData(dex_files_);
}
void ParseInstructionSetVariant(const std::string& option, ParserOptions* parser_options) {
instruction_set_features_ = InstructionSetFeatures::FromVariant(
instruction_set_, option, &parser_options->error_msg);
if (instruction_set_features_.get() == nullptr) {
Usage("%s", parser_options->error_msg.c_str());
}
}
void ParseInstructionSetFeatures(const std::string& option, ParserOptions* parser_options) {
if (instruction_set_features_ == nullptr) {
instruction_set_features_ = InstructionSetFeatures::FromVariant(
instruction_set_, "default", &parser_options->error_msg);
if (instruction_set_features_.get() == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
instruction_set_features_ =
instruction_set_features_->AddFeaturesFromString(option, &parser_options->error_msg);
if (instruction_set_features_ == nullptr) {
Usage("Error parsing '%s': %s", option.c_str(), parser_options->error_msg.c_str());
}
}
void ProcessOptions(ParserOptions* parser_options) {
compiler_options_->boot_image_ = !image_filenames_.empty();
compiler_options_->app_image_ = app_image_fd_ != -1 || !app_image_file_name_.empty();
if (IsBootImage() && image_filenames_.size() == 1) {
const std::string& boot_image_filename = image_filenames_[0];
compiler_options_->core_image_ = CompilerDriver::IsCoreImageFilename(boot_image_filename);
}
if (IsAppImage() && IsBootImage()) {
Usage("Can't have both --image and (--app-image-fd or --app-image-file)");
}
if (oat_filenames_.empty() && oat_fd_ == -1) {
Usage("Output must be supplied with either --oat-file or --oat-fd");
}
if (input_vdex_fd_ != -1 && !input_vdex_.empty()) {
Usage("Can't have both --input-vdex-fd and --input-vdex");
}
if (output_vdex_fd_ != -1 && !output_vdex_.empty()) {
Usage("Can't have both --output-vdex-fd and --output-vdex");
}
if (!oat_filenames_.empty() && oat_fd_ != -1) {
Usage("--oat-file should not be used with --oat-fd");
}
if ((output_vdex_fd_ == -1) != (oat_fd_ == -1)) {
Usage("VDEX and OAT output must be specified either with one --oat-filename "
"or with --oat-fd and --output-vdex-fd file descriptors");
}
if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) {
Usage("--oat-symbols should not be used with --oat-fd");
}
if (!parser_options->oat_symbols.empty() && is_host_) {
Usage("--oat-symbols should not be used with --host");
}
if (output_vdex_fd_ != -1 && !image_filenames_.empty()) {
Usage("--output-vdex-fd should not be used with --image");
}
if (oat_fd_ != -1 && !image_filenames_.empty()) {
Usage("--oat-fd should not be used with --image");
}
if ((input_vdex_fd_ != -1 || !input_vdex_.empty()) &&
(dm_fd_ != -1 || !dm_file_location_.empty())) {
Usage("An input vdex should not be passed with a .dm file");
}
if (!parser_options->oat_symbols.empty() &&
parser_options->oat_symbols.size() != oat_filenames_.size()) {
Usage("--oat-file arguments do not match --oat-symbols arguments");
}
if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) {
Usage("--oat-file arguments do not match --image arguments");
}
if (android_root_.empty()) {
const char* android_root_env_var = getenv("ANDROID_ROOT");
if (android_root_env_var == nullptr) {
Usage("--android-root unspecified and ANDROID_ROOT not set");
}
android_root_ += android_root_env_var;
}
if (!IsBootImage() && parser_options->boot_image_filename.empty()) {
parser_options->boot_image_filename += android_root_;
parser_options->boot_image_filename += "/framework/boot.art";
}
if (!parser_options->boot_image_filename.empty()) {
boot_image_filename_ = parser_options->boot_image_filename;
}
if (image_classes_filename_ != nullptr && !IsBootImage()) {
Usage("--image-classes should only be used with --image");
}
if (image_classes_filename_ != nullptr && !boot_image_filename_.empty()) {
Usage("--image-classes should not be used with --boot-image");
}
if (image_classes_zip_filename_ != nullptr && image_classes_filename_ == nullptr) {
Usage("--image-classes-zip should be used with --image-classes");
}
if (compiled_classes_filename_ != nullptr && !IsBootImage()) {
Usage("--compiled-classes should only be used with --image");
}
if (compiled_classes_filename_ != nullptr && !boot_image_filename_.empty()) {
Usage("--compiled-classes should not be used with --boot-image");
}
if (compiled_classes_zip_filename_ != nullptr && compiled_classes_filename_ == nullptr) {
Usage("--compiled-classes-zip should be used with --compiled-classes");
}
if (dex_filenames_.empty() && zip_fd_ == -1) {
Usage("Input must be supplied with either --dex-file or --zip-fd");
}
if (!dex_filenames_.empty() && zip_fd_ != -1) {
Usage("--dex-file should not be used with --zip-fd");
}
if (!dex_filenames_.empty() && !zip_location_.empty()) {
Usage("--dex-file should not be used with --zip-location");
}
if (dex_locations_.empty()) {
for (const char* dex_file_name : dex_filenames_) {
dex_locations_.push_back(dex_file_name);
}
} else if (dex_locations_.size() != dex_filenames_.size()) {
Usage("--dex-location arguments do not match --dex-file arguments");
}
if (!dex_filenames_.empty() && !oat_filenames_.empty()) {
if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) {
Usage("--oat-file arguments must be singular or match --dex-file arguments");
}
}
if (zip_fd_ != -1 && zip_location_.empty()) {
Usage("--zip-location should be supplied with --zip-fd");
}
if (boot_image_filename_.empty()) {
if (image_base_ == 0) {
Usage("Non-zero --base not specified");
}
}
const bool have_profile_file = !profile_file_.empty();
const bool have_profile_fd = profile_file_fd_ != kInvalidFd;
if (have_profile_file && have_profile_fd) {
Usage("Profile file should not be specified with both --profile-file-fd and --profile-file");
}
if (have_profile_file || have_profile_fd) {
if (compiled_classes_filename_ != nullptr ||
compiled_classes_zip_filename_ != nullptr ||
image_classes_filename_ != nullptr ||
image_classes_zip_filename_ != nullptr) {
Usage("Profile based image creation is not supported with image or compiled classes");
}
}
if (!parser_options->oat_symbols.empty()) {
oat_unstripped_ = std::move(parser_options->oat_symbols);
}
// If no instruction set feature was given, use the default one for the target
// instruction set.
if (instruction_set_features_.get() == nullptr) {
instruction_set_features_ = InstructionSetFeatures::FromVariant(
instruction_set_, "default", &parser_options->error_msg);
if (instruction_set_features_.get() == nullptr) {
Usage("Problem initializing default instruction set features variant: %s",
parser_options->error_msg.c_str());
}
}
if (instruction_set_ == kRuntimeISA) {
std::unique_ptr<const InstructionSetFeatures> runtime_features(
InstructionSetFeatures::FromCppDefines());
if (!instruction_set_features_->Equals(runtime_features.get())) {
LOG(WARNING) << "Mismatch between dex2oat instruction set features ("
<< *instruction_set_features_ << ") and those of dex2oat executable ("
<< *runtime_features <<") for the command line:\n"
<< CommandLine();
}
}
if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) {
compiler_options_->inline_max_code_units_ = CompilerOptions::kDefaultInlineMaxCodeUnits;
}
// Checks are all explicit until we know the architecture.
// Set the compilation target's implicit checks options.
switch (instruction_set_) {
case InstructionSet::kArm:
case InstructionSet::kThumb2:
case InstructionSet::kArm64:
case InstructionSet::kX86:
case InstructionSet::kX86_64:
case InstructionSet::kMips:
case InstructionSet::kMips64:
compiler_options_->implicit_null_checks_ = true;
compiler_options_->implicit_so_checks_ = true;
break;
default:
// Defaults are correct.
break;
}
if (!IsBootImage() && multi_image_) {
Usage("--multi-image can only be used when creating boot images");
}
if (IsBootImage() && multi_image_ && image_filenames_.size() > 1) {
Usage("--multi-image cannot be used with multiple image names");
}
// For now, if we're on the host and compile the boot image, *always* use multiple image files.
if (!kIsTargetBuild && IsBootImage()) {
if (image_filenames_.size() == 1) {
multi_image_ = true;
}
}
// Done with usage checks, enable watchdog if requested
if (parser_options->watch_dog_enabled) {
int64_t timeout = parser_options->watch_dog_timeout_in_ms > 0
? parser_options->watch_dog_timeout_in_ms
: WatchDog::kDefaultWatchdogTimeoutInMS;
watchdog_.reset(new WatchDog(timeout));
}
// Fill some values into the key-value store for the oat header.
key_value_store_.reset(new SafeMap<std::string, std::string>());
// Automatically force determinism for the boot image in a host build if read barriers
// are enabled, or if the default GC is CMS or MS. When the default GC is CMS
// (Concurrent Mark-Sweep), the GC is switched to a non-concurrent one by passing the
// option `-Xgc:nonconcurrent` (see below).
if (!kIsTargetBuild && IsBootImage()) {
if (SupportsDeterministicCompilation()) {
force_determinism_ = true;
} else {
LOG(WARNING) << "Deterministic compilation is disabled.";
}
}
compiler_options_->force_determinism_ = force_determinism_;
if (passes_to_run_filename_ != nullptr) {
passes_to_run_.reset(ReadCommentedInputFromFile<std::vector<std::string>>(
passes_to_run_filename_,
nullptr)); // No post-processing.
if (passes_to_run_.get() == nullptr) {
Usage("Failed to read list of passes to run.");
}
}
compiler_options_->passes_to_run_ = passes_to_run_.get();
}
static bool SupportsDeterministicCompilation() {
return (kUseReadBarrier ||
gc::kCollectorTypeDefault == gc::kCollectorTypeCMS ||
gc::kCollectorTypeDefault == gc::kCollectorTypeMS);
}
void ExpandOatAndImageFilenames() {
std::string base_oat = oat_filenames_[0];
size_t last_oat_slash = base_oat.rfind('/');
if (last_oat_slash == std::string::npos) {
Usage("--multi-image used with unusable oat filename %s", base_oat.c_str());
}
// We also need to honor path components that were encoded through '@'. Otherwise the loading
// code won't be able to find the images.
if (base_oat.find('@', last_oat_slash) != std::string::npos) {
last_oat_slash = base_oat.rfind('@');
}
base_oat = base_oat.substr(0, last_oat_slash + 1);
std::string base_img = image_filenames_[0];
size_t last_img_slash = base_img.rfind('/');
if (last_img_slash == std::string::npos) {
Usage("--multi-image used with unusable image filename %s", base_img.c_str());
}
// We also need to honor path components that were encoded through '@'. Otherwise the loading
// code won't be able to find the images.
if (base_img.find('@', last_img_slash) != std::string::npos) {
last_img_slash = base_img.rfind('@');
}
// Get the prefix, which is the primary image name (without path components). Strip the
// extension.
std::string prefix = base_img.substr(last_img_slash + 1);
if (prefix.rfind('.') != std::string::npos) {
prefix = prefix.substr(0, prefix.rfind('.'));
}
if (!prefix.empty()) {
prefix = prefix + "-";
}
base_img = base_img.substr(0, last_img_slash + 1);
// Note: we have some special case here for our testing. We have to inject the differentiating
// parts for the different core images.
std::string infix; // Empty infix by default.
{
// Check the first name.
std::string dex_file = oat_filenames_[0];
size_t last_dex_slash = dex_file.rfind('/');
if (last_dex_slash != std::string::npos) {
dex_file = dex_file.substr(last_dex_slash + 1);
}
size_t last_dex_dot = dex_file.rfind('.');
if (last_dex_dot != std::string::npos) {
dex_file = dex_file.substr(0, last_dex_dot);
}
if (android::base::StartsWith(dex_file, "core-")) {
infix = dex_file.substr(strlen("core"));
}
}
std::string base_symbol_oat;
if (!oat_unstripped_.empty()) {
base_symbol_oat = oat_unstripped_[0];
size_t last_symbol_oat_slash = base_symbol_oat.rfind('/');
if (last_symbol_oat_slash == std::string::npos) {
Usage("--multi-image used with unusable symbol filename %s", base_symbol_oat.c_str());
}
base_symbol_oat = base_symbol_oat.substr(0, last_symbol_oat_slash + 1);
}
// Now create the other names. Use a counted loop to skip the first one.
for (size_t i = 1; i < dex_locations_.size(); ++i) {
// TODO: Make everything properly std::string.
std::string image_name = CreateMultiImageName(dex_locations_[i], prefix, infix, ".art");
char_backing_storage_.push_front(base_img + image_name);
image_filenames_.push_back(char_backing_storage_.front().c_str());
std::string oat_name = CreateMultiImageName(dex_locations_[i], prefix, infix, ".oat");
char_backing_storage_.push_front(base_oat + oat_name);
oat_filenames_.push_back(char_backing_storage_.front().c_str());
if (!base_symbol_oat.empty()) {
char_backing_storage_.push_front(base_symbol_oat + oat_name);
oat_unstripped_.push_back(char_backing_storage_.front().c_str());
}
}
}
// Modify the input string in the following way:
// 0) Assume input is /a/b/c.d
// 1) Strip the path -> c.d
// 2) Inject prefix p -> pc.d
// 3) Inject infix i -> pci.d
// 4) Replace suffix with s if it's "jar" -> d == "jar" -> pci.s
static std::string CreateMultiImageName(std::string in,
const std::string& prefix,
const std::string& infix,
const char* replace_suffix) {
size_t last_dex_slash = in.rfind('/');
if (last_dex_slash != std::string::npos) {
in = in.substr(last_dex_slash + 1);
}
if (!prefix.empty()) {
in = prefix + in;
}
if (!infix.empty()) {
// Inject infix.
size_t last_dot = in.rfind('.');
if (last_dot != std::string::npos) {
in.insert(last_dot, infix);
}
}
if (android::base::EndsWith(in, ".jar")) {
in = in.substr(0, in.length() - strlen(".jar")) +
(replace_suffix != nullptr ? replace_suffix : "");
}
return in;
}
void InsertCompileOptions(int argc, char** argv) {
std::ostringstream oss;
if (!avoid_storing_invocation_) {
for (int i = 0; i < argc; ++i) {
if (i > 0) {
oss << ' ';
}
oss << argv[i];
}
key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str());
oss.str(""); // Reset.
}
oss << kRuntimeISA;
key_value_store_->Put(OatHeader::kDex2OatHostKey, oss.str());
key_value_store_->Put(
OatHeader::kPicKey,
compiler_options_->compile_pic_ ? OatHeader::kTrueValue : OatHeader::kFalseValue);
key_value_store_->Put(
OatHeader::kDebuggableKey,
compiler_options_->debuggable_ ? OatHeader::kTrueValue : OatHeader::kFalseValue);
key_value_store_->Put(
OatHeader::kNativeDebuggableKey,
compiler_options_->GetNativeDebuggable() ? OatHeader::kTrueValue : OatHeader::kFalseValue);
key_value_store_->Put(OatHeader::kCompilerFilter,
CompilerFilter::NameOfFilter(compiler_options_->GetCompilerFilter()));
key_value_store_->Put(OatHeader::kConcurrentCopying,
kUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue);
}
// This simple forward is here so the string specializations below don't look out of place.
template <typename T, typename U>
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<T>& key,
U* out) {
map.AssignIfExists(key, out);
}
// Specializations to handle const char* vs std::string.
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<std::string>& key,
const char** out) {
if (map.Exists(key)) {
char_backing_storage_.push_front(std::move(*map.Get(key)));
*out = char_backing_storage_.front().c_str();
}
}
void AssignIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<std::vector<std::string>>& key,
std::vector<const char*>* out) {
if (map.Exists(key)) {
for (auto& val : *map.Get(key)) {
char_backing_storage_.push_front(std::move(val));
out->push_back(char_backing_storage_.front().c_str());
}
}
}
template <typename T>
void AssignTrueIfExists(Dex2oatArgumentMap& map,
const Dex2oatArgumentMap::Key<T>& key,
bool* out) {
if (map.Exists(key)) {
*out = true;
}
}
// Parse the arguments from the command line. In case of an unrecognized option or impossible
// values/combinations, a usage error will be displayed and exit() is called. Thus, if the method
// returns, arguments have been successfully parsed.
void ParseArgs(int argc, char** argv) {
original_argc = argc;
original_argv = argv;
Locks::Init();
InitLogging(argv, Runtime::Abort);
compiler_options_.reset(new CompilerOptions());
using M = Dex2oatArgumentMap;
std::string error_msg;
std::unique_ptr<M> args_uptr = M::Parse(argc, const_cast<const char**>(argv), &error_msg);
if (args_uptr == nullptr) {
Usage("Failed to parse command line: %s", error_msg.c_str());
UNREACHABLE();
}
M& args = *args_uptr;
std::unique_ptr<ParserOptions> parser_options(new ParserOptions());
AssignIfExists(args, M::CompactDexLevel, &compact_dex_level_);
AssignIfExists(args, M::DexFiles, &dex_filenames_);
AssignIfExists(args, M::DexLocations, &dex_locations_);
AssignIfExists(args, M::OatFiles, &oat_filenames_);
AssignIfExists(args, M::OatSymbols, &parser_options->oat_symbols);
AssignIfExists(args, M::ImageFilenames, &image_filenames_);
AssignIfExists(args, M::ZipFd, &zip_fd_);
AssignIfExists(args, M::ZipLocation, &zip_location_);
AssignIfExists(args, M::InputVdexFd, &input_vdex_fd_);
AssignIfExists(args, M::OutputVdexFd, &output_vdex_fd_);
AssignIfExists(args, M::InputVdex, &input_vdex_);
AssignIfExists(args, M::OutputVdex, &output_vdex_);
AssignIfExists(args, M::DmFd, &dm_fd_);
AssignIfExists(args, M::DmFile, &dm_file_location_);
AssignIfExists(args, M::OatFd, &oat_fd_);
AssignIfExists(args, M::OatLocation, &oat_location_);
AssignIfExists(args, M::Watchdog, &parser_options->watch_dog_enabled);
AssignIfExists(args, M::WatchdogTimeout, &parser_options->watch_dog_timeout_in_ms);
AssignIfExists(args, M::Threads, &thread_count_);
AssignIfExists(args, M::ImageClasses, &image_classes_filename_);
AssignIfExists(args, M::ImageClassesZip, &image_classes_zip_filename_);
AssignIfExists(args, M::CompiledClasses, &compiled_classes_filename_);
AssignIfExists(args, M::CompiledClassesZip, &compiled_classes_zip_filename_);
AssignIfExists(args, M::CompiledMethods, &compiled_methods_filename_);
AssignIfExists(args, M::CompiledMethodsZip, &compiled_methods_zip_filename_);
AssignIfExists(args, M::Passes, &passes_to_run_filename_);
AssignIfExists(args, M::BootImage, &parser_options->boot_image_filename);
AssignIfExists(args, M::AndroidRoot, &android_root_);
AssignIfExists(args, M::Profile, &profile_file_);
AssignIfExists(args, M::ProfileFd, &profile_file_fd_);
AssignIfExists(args, M::RuntimeOptions, &runtime_args_);
AssignIfExists(args, M::SwapFile, &swap_file_name_);
AssignIfExists(args, M::SwapFileFd, &swap_fd_);
AssignIfExists(args, M::SwapDexSizeThreshold, &min_dex_file_cumulative_size_for_swap_);
AssignIfExists(args, M::SwapDexCountThreshold, &min_dex_files_for_swap_);
AssignIfExists(args, M::VeryLargeAppThreshold, &very_large_threshold_);
AssignIfExists(args, M::AppImageFile, &app_image_file_name_);
AssignIfExists(args, M::AppImageFileFd, &app_image_fd_);
AssignIfExists(args, M::NoInlineFrom, &no_inline_from_string_);
AssignIfExists(args, M::ClasspathDir, &classpath_dir_);
AssignIfExists(args, M::DirtyImageObjects, &dirty_image_objects_filename_);
AssignIfExists(args, M::ImageFormat, &image_storage_mode_);
AssignIfExists(args, M::CompilationReason, &compilation_reason_);
AssignIfExists(args, M::Backend, &compiler_kind_);
parser_options->requested_specific_compiler = args.Exists(M::Backend);
AssignIfExists(args, M::TargetInstructionSet, &instruction_set_);
// arm actually means thumb2.
if (instruction_set_ == InstructionSet::kArm) {
instruction_set_ = InstructionSet::kThumb2;
}
AssignTrueIfExists(args, M::Host, &is_host_);
AssignTrueIfExists(args, M::AvoidStoringInvocation, &avoid_storing_invocation_);
AssignTrueIfExists(args, M::MultiImage, &multi_image_);
AssignIfExists(args, M::CopyDexFiles, &copy_dex_files_);
if (args.Exists(M::ForceDeterminism)) {
if (!SupportsDeterministicCompilation()) {
Usage("Option --force-determinism requires read barriers or a CMS/MS garbage collector");
}
force_determinism_ = true;
}
if (args.Exists(M::Base)) {
ParseBase(*args.Get(M::Base));
}
if (args.Exists(M::TargetInstructionSetVariant)) {
ParseInstructionSetVariant(*args.Get(M::TargetInstructionSetVariant), parser_options.get());
}
if (args.Exists(M::TargetInstructionSetFeatures)) {
ParseInstructionSetFeatures(*args.Get(M::TargetInstructionSetFeatures), parser_options.get());
}
if (args.Exists(M::ClassLoaderContext)) {
std::string class_loader_context_arg = *args.Get(M::ClassLoaderContext);
class_loader_context_ = ClassLoaderContext::Create(class_loader_context_arg);
if (class_loader_context_ == nullptr) {
Usage("Option --class-loader-context has an incorrect format: %s",
class_loader_context_arg.c_str());
}
if (args.Exists(M::StoredClassLoaderContext)) {
const std::string stored_context_arg = *args.Get(M::StoredClassLoaderContext);
stored_class_loader_context_ = ClassLoaderContext::Create(stored_context_arg);
if (stored_class_loader_context_ == nullptr) {
Usage("Option --stored-class-loader-context has an incorrect format: %s",
stored_context_arg.c_str());
} else if (!class_loader_context_->VerifyClassLoaderContextMatch(
stored_context_arg,
/*verify_names*/ false,
/*verify_checksums*/ false)) {
Usage(
"Option --stored-class-loader-context '%s' mismatches --class-loader-context '%s'",
stored_context_arg.c_str(),
class_loader_context_arg.c_str());
}
}
} else if (args.Exists(M::StoredClassLoaderContext)) {
Usage("Option --stored-class-loader-context should only be used if "
"--class-loader-context is also specified");
}
if (!ReadCompilerOptions(args, compiler_options_.get(), &error_msg)) {
Usage(error_msg.c_str());
}
ProcessOptions(parser_options.get());
// Insert some compiler things.
InsertCompileOptions(argc, argv);
}
// Check whether the oat output files are writable, and open them for later. Also open a swap
// file, if a name is given.
bool OpenFile() {
// Prune non-existent dex files now so that we don't create empty oat files for multi-image.
PruneNonExistentDexFiles();
// Expand oat and image filenames for multi image.
if (IsBootImage() && multi_image_) {
ExpandOatAndImageFilenames();
}
// OAT and VDEX file handling
if (oat_fd_ == -1) {
DCHECK(!oat_filenames_.empty());
for (const char* oat_filename : oat_filenames_) {
std::unique_ptr<File> oat_file(OS::CreateEmptyFile(oat_filename));
if (oat_file == nullptr) {
PLOG(ERROR) << "Failed to create oat file: " << oat_filename;
return false;
}
if (fchmod(oat_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename;
oat_file->Erase();
return false;
}
oat_files_.push_back(std::move(oat_file));
DCHECK_EQ(input_vdex_fd_, -1);
if (!input_vdex_.empty()) {
std::string error_msg;
input_vdex_file_ = VdexFile::Open(input_vdex_,
/* writable */ false,
/* low_4gb */ false,
DoEagerUnquickeningOfVdex(),
&error_msg);
}
DCHECK_EQ(output_vdex_fd_, -1);
std::string vdex_filename = output_vdex_.empty()
? ReplaceFileExtension(oat_filename, "vdex")
: output_vdex_;
if (vdex_filename == input_vdex_ && output_vdex_.empty()) {
update_input_vdex_ = true;
std::unique_ptr<File> vdex_file(OS::OpenFileReadWrite(vdex_filename.c_str()));
vdex_files_.push_back(std::move(vdex_file));
} else {
std::unique_ptr<File> vdex_file(OS::CreateEmptyFile(vdex_filename.c_str()));
if (vdex_file == nullptr) {
PLOG(ERROR) << "Failed to open vdex file: " << vdex_filename;
return false;
}
if (fchmod(vdex_file->Fd(), 0644) != 0) {
PLOG(ERROR) << "Failed to make vdex file world readable: " << vdex_filename;
vdex_file->Erase();
return false;
}
vdex_files_.push_back(std::move(vdex_file));
}
}
} else {
std::unique_ptr<File> oat_file(new File(oat_fd_, oat_location_, /* check_usage */ true));
if (oat_file == nullptr) {
PLOG(ERROR) << "Failed to create oat file: " << oat_location_;
return false;
}
oat_file->DisableAutoClose();
if (oat_file->SetLength(0) != 0) {
PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed.";
oat_file->Erase();
return false;
}
oat_files_.push_back(std::move(oat_file));
if (input_vdex_fd_ != -1) {
struct stat s;
int rc = TEMP_FAILURE_RETRY(fstat(input_vdex_fd_, &s));
if (rc == -1) {
PLOG(WARNING) << "Failed getting length of vdex file";
} else {
std::string error_msg;
input_vdex_file_ = VdexFile::Open(input_vdex_fd_,
s.st_size,
"vdex",
/* writable */ false,
/* low_4gb */ false,
DoEagerUnquickeningOfVdex(),
&error_msg);
// If there's any problem with the passed vdex, just warn and proceed
// without it.
if (input_vdex_file_ == nullptr) {
PLOG(WARNING) << "Failed opening vdex file: " << error_msg;
}
}
}
DCHECK_NE(output_vdex_fd_, -1);
std::string vdex_location = ReplaceFileExtension(oat_location_, "vdex");
std::unique_ptr<File> vdex_file(new File(output_vdex_fd_, vdex_location, /* check_usage */ true));
if (vdex_file == nullptr) {
PLOG(ERROR) << "Failed to create vdex file: " << vdex_location;
return false;
}
vdex_file->DisableAutoClose();
if (input_vdex_file_ != nullptr && output_vdex_fd_ == input_vdex_fd_) {
update_input_vdex_ = true;
} else {
if (vdex_file->SetLength(0) != 0) {
PLOG(ERROR) << "Truncating vdex file " << vdex_location << " failed.";
vdex_file->Erase();
return false;
}
}
vdex_files_.push_back(std::move(vdex_file));
oat_filenames_.push_back(oat_location_.c_str());
}
// If we're updating in place a vdex file, be defensive and put an invalid vdex magic in case
// dex2oat gets killed.
// Note: we're only invalidating the magic data in the file, as dex2oat needs the rest of
// the information to remain valid.
if (update_input_vdex_) {
std::unique_ptr<linker::BufferedOutputStream> vdex_out =
std::make_unique<linker::BufferedOutputStream>(
std::make_unique<linker::FileOutputStream>(vdex_files_.back().get()));
if (!vdex_out->WriteFully(&VdexFile::VerifierDepsHeader::kVdexInvalidMagic,
arraysize(VdexFile::VerifierDepsHeader::kVdexInvalidMagic))) {
PLOG(ERROR) << "Failed to invalidate vdex header. File: " << vdex_out->GetLocation();
return false;
}
if (!vdex_out->Flush()) {
PLOG(ERROR) << "Failed to flush stream after invalidating header of vdex file."
<< " File: " << vdex_out->GetLocation();
return false;
}
}
if (dm_fd_ != -1 || !dm_file_location_.empty()) {
std::string error_msg;
if (dm_fd_ != -1) {
dm_file_.reset(ZipArchive::OpenFromFd(dm_fd_, "DexMetadata", &error_msg));
} else {
dm_file_.reset(ZipArchive::Open(dm_file_location_.c_str(), &error_msg));
}
if (dm_file_ == nullptr) {
LOG(WARNING) << "Could not open DexMetadata archive " << error_msg;
}
}
if (dm_file_ != nullptr) {
DCHECK(input_vdex_file_ == nullptr);
std::string error_msg;
static const char* kDexMetadata = "DexMetadata";
std::unique_ptr<ZipEntry> zip_entry(dm_file_->Find(VdexFile::kVdexNameInDmFile, &error_msg));
if (zip_entry == nullptr) {
LOG(INFO) << "No " << VdexFile::kVdexNameInDmFile << " file in DexMetadata archive. "
<< "Not doing fast verification.";
} else {
std::unique_ptr<MemMap> input_file(zip_entry->MapDirectlyOrExtract(
VdexFile::kVdexNameInDmFile,
kDexMetadata,
&error_msg));
if (input_file == nullptr) {
LOG(WARNING) << "Could not open vdex file in DexMetadata archive: " << error_msg;
} else {
input_vdex_file_ = std::make_unique<VdexFile>(input_file.release());
}
}
}
// Swap file handling
//
// If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file
// that we can use for swap.
//
// If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We
// will immediately unlink to satisfy the swap fd assumption.
if (swap_fd_ == -1 && !swap_file_name_.empty()) {
std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str()));
if (swap_file.get() == nullptr) {
PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_;
return false;
}
swap_fd_ = swap_file->Fd();
swap_file->MarkUnchecked(); // We don't we to track this, it will be unlinked immediately.
swap_file->DisableAutoClose(); // We'll handle it ourselves, the File object will be
// released immediately.
unlink(swap_file_name_.c_str());
}
return true;
}
void EraseOutputFiles() {
for (auto& files : { &vdex_files_, &oat_files_ }) {
for (size_t i = 0; i < files->size(); ++i) {
if ((*files)[i].get() != nullptr) {
(*files)[i]->Erase();
(*files)[i].reset();
}
}
}
}
void LoadClassProfileDescriptors() {
if (!IsImage()) {
return;
}
// If we don't have a profile, treat it as an empty set of classes. b/77340429
if (image_classes_ == nullptr) {
// May be non-null when --image-classes is passed in, in that case avoid clearing the list.
image_classes_.reset(new std::unordered_set<std::string>());
}
if (profile_compilation_info_ != nullptr) {
// Filter out class path classes since we don't want to include these in the image.
image_classes_.reset(
new std::unordered_set<std::string>(
profile_compilation_info_->GetClassDescriptors(dex_files_)));
VLOG(compiler) << "Loaded " << image_classes_->size()
<< " image class descriptors from profile";
if (VLOG_IS_ON(compiler)) {
for (const std::string& s : *image_classes_) {
LOG(INFO) << "Image class " << s;
}
}
}
}
// Set up the environment for compilation. Includes starting the runtime and loading/opening the
// boot class path.
dex2oat::ReturnCode Setup() {
TimingLogger::ScopedTiming t("dex2oat Setup", timings_);
if (!PrepareImageClasses() || !PrepareCompiledClasses() || !PrepareCompiledMethods() ||
!PrepareDirtyObjects()) {
return dex2oat::ReturnCode::kOther;
}
// Verification results are null since we don't know if we will need them yet as the compler
// filter may change.
callbacks_.reset(new QuickCompilerCallbacks(
IsBootImage() ?
CompilerCallbacks::CallbackMode::kCompileBootImage :
CompilerCallbacks::CallbackMode::kCompileApp));
RuntimeArgumentMap runtime_options;
if (!PrepareRuntimeOptions(&runtime_options, callbacks_.get())) {
return dex2oat::ReturnCode::kOther;
}
CreateOatWriters();
if (!AddDexFileSources()) {
return dex2oat::ReturnCode::kOther;
}
if (!compilation_reason_.empty()) {
key_value_store_->Put(OatHeader::kCompilationReasonKey, compilation_reason_);
}
if (IsBootImage() && image_filenames_.size() > 1) {
// If we're compiling the boot image, store the boot classpath into the Key-Value store.
// We need this for the multi-image case.
key_value_store_->Put(OatHeader::kBootClassPathKey,
gc::space::ImageSpace::GetMultiImageBootClassPath(dex_locations_,
oat_filenames_,
image_filenames_));
}
if (!IsBootImage()) {
// When compiling an app, create the runtime early to retrieve
// the image location key needed for the oat header.
if (!CreateRuntime(std::move(runtime_options))) {
return dex2oat::ReturnCode::kCreateRuntime;
}
if (CompilerFilter::DependsOnImageChecksum(compiler_options_->GetCompilerFilter())) {
TimingLogger::ScopedTiming t3("Loading image checksum", timings_);
std::vector<gc::space::ImageSpace*> image_spaces =
Runtime::Current()->GetHeap()->GetBootImageSpaces();
image_file_location_oat_checksum_ = image_spaces[0]->GetImageHeader().GetOatChecksum();
image_file_location_oat_data_begin_ =
reinterpret_cast<uintptr_t>(image_spaces[0]->GetImageHeader().GetOatDataBegin());
image_patch_delta_ = image_spaces[0]->GetImageHeader().GetPatchDelta();
// Store the boot image filename(s).
std::vector<std::string> image_filenames;
for (const gc::space::ImageSpace* image_space : image_spaces) {
image_filenames.push_back(image_space->GetImageFilename());
}
std::string image_file_location = android::base::Join(image_filenames, ':');
if (!image_file_location.empty()) {
key_value_store_->Put(OatHeader::kImageLocationKey, image_file_location);
}
} else {
image_file_location_oat_checksum_ = 0u;
image_file_location_oat_data_begin_ = 0u;
image_patch_delta_ = 0;
}
// Open dex files for class path.
if (class_loader_context_ == nullptr) {
// If no context was specified use the default one (which is an empty PathClassLoader).
class_loader_context_ = ClassLoaderContext::Default();
}
DCHECK_EQ(oat_writers_.size(), 1u);
// Note: Ideally we would reject context where the source dex files are also
// specified in the classpath (as it doesn't make sense). However this is currently
// needed for non-prebuild tests and benchmarks which expects on the fly compilation.
// Also, for secondary dex files we do not have control on the actual classpath.
// Instead of aborting, remove all the source location from the context classpaths.
if (class_loader_context_->RemoveLocationsFromClassPaths(
oat_writers_[0]->GetSourceLocations())) {
LOG(WARNING) << "The source files to be compiled are also in the classpath.";
}
// We need to open the dex files before encoding the context in the oat file.
// (because the encoding adds the dex checksum...)
// TODO(calin): consider redesigning this so we don't have to open the dex files before
// creating the actual class loader.
if (!class_loader_context_->OpenDexFiles(runtime_->GetInstructionSet(), classpath_dir_)) {
// Do not abort if we couldn't open files from the classpath. They might be
// apks without dex files and right now are opening flow will fail them.
LOG(WARNING) << "Failed to open classpath dex files";
}
// Store the class loader context in the oat header.
// TODO: deprecate this since store_class_loader_context should be enough to cover the users
// of classpath_dir as well.
std::string class_path_key =
class_loader_context_->EncodeContextForOatFile(classpath_dir_,
stored_class_loader_context_.get());
key_value_store_->Put(OatHeader::kClassPathKey, class_path_key);
}
// Now that we have finalized key_value_store_, start writing the oat file.
{
TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_);
rodata_.reserve(oat_writers_.size());
for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) {
rodata_.push_back(elf_writers_[i]->StartRoData());
// Unzip or copy dex files straight to the oat file.
std::vector<std::unique_ptr<MemMap>> opened_dex_files_map;
std::vector<std::unique_ptr<const DexFile>> opened_dex_files;
// No need to verify the dex file when we have a vdex file, which means it was already
// verified.
const bool verify = (input_vdex_file_ == nullptr);
if (!oat_writers_[i]->WriteAndOpenDexFiles(
vdex_files_[i].get(),
rodata_.back(),
instruction_set_,
instruction_set_features_.get(),
key_value_store_.get(),
verify,
update_input_vdex_,
copy_dex_files_,
&opened_dex_files_map,
&opened_dex_files)) {
return dex2oat::ReturnCode::kOther;
}
dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files));
if (opened_dex_files_map.empty()) {
DCHECK(opened_dex_files.empty());
} else {
for (std::unique_ptr<MemMap>& map : opened_dex_files_map) {
opened_dex_files_maps_.push_back(std::move(map));
}
for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files) {
dex_file_oat_index_map_.emplace(dex_file.get(), i);
opened_dex_files_.push_back(std::move(dex_file));
}
}
}
}
dex_files_ = MakeNonOwningPointerVector(opened_dex_files_);
// If we need to downgrade the compiler-filter for size reasons.
if (!IsBootImage() && IsVeryLarge(dex_files_)) {
// Disable app image to make sure dex2oat unloading is enabled.
compiler_options_->DisableAppImage();
// If we need to downgrade the compiler-filter for size reasons, do that early before we read
// it below for creating verification callbacks.
if (!CompilerFilter::IsAsGoodAs(kLargeAppFilter, compiler_options_->GetCompilerFilter())) {
LOG(INFO) << "Very large app, downgrading to verify.";
// Note: this change won't be reflected in the key-value store, as that had to be
// finalized before loading the dex files. This setup is currently required
// to get the size from the DexFile objects.
// TODO: refactor. b/29790079
compiler_options_->SetCompilerFilter(kLargeAppFilter);
}
}
if (CompilerFilter::IsAnyCompilationEnabled(compiler_options_->GetCompilerFilter())) {
// Only modes with compilation require verification results, do this here instead of when we
// create the compilation callbacks since the compilation mode may have been changed by the
// very large app logic.
// Avoiding setting the verification results saves RAM by not adding the dex files later in
// the function.
verification_results_.reset(new VerificationResults(compiler_options_.get()));
callbacks_->SetVerificationResults(verification_results_.get());
}
// We had to postpone the swap decision till now, as this is the point when we actually
// know about the dex files we're going to use.
// Make sure that we didn't create the driver, yet.
CHECK(driver_ == nullptr);
// If we use a swap file, ensure we are above the threshold to make it necessary.
if (swap_fd_ != -1) {
if (!UseSwap(IsBootImage(), dex_files_)) {
close(swap_fd_);
swap_fd_ = -1;
VLOG(compiler) << "Decided to run without swap.";
} else {
LOG(INFO) << "Large app, accepted running with swap.";
}
}
// Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that.
if (IsBootImage()) {
// For boot image, pass opened dex files to the Runtime::Create().
// Note: Runtime acquires ownership of these dex files.
runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_);
if (!CreateRuntime(std::move(runtime_options))) {
return dex2oat::ReturnCode::kOther;
}
}
// If we're doing the image, override the compiler filter to force full compilation. Must be
// done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force
// compilation of class initializers.
// Whilst we're in native take the opportunity to initialize well known classes.
Thread* self = Thread::Current();
WellKnownClasses::Init(self->GetJniEnv());
if (!IsBootImage()) {
constexpr bool kSaveDexInput = false;
if (kSaveDexInput) {
SaveDexInput();
}
}
// Ensure opened dex files are writable for dex-to-dex transformations.
for (const std::unique_ptr<MemMap>& map : opened_dex_files_maps_) {
if (!map->Protect(PROT_READ | PROT_WRITE)) {
PLOG(ERROR) << "Failed to make .dex files writeable.";
return dex2oat::ReturnCode::kOther;
}
}
// Verification results are only required for modes that have any compilation. Avoid
// adding the dex files if possible to prevent allocating large arrays.
if (verification_results_ != nullptr) {
for (const auto& dex_file : dex_files_) {
// Pre-register dex files so that we can access verification results without locks during
// compilation and verification.
verification_results_->AddDexFile(dex_file);
}
}
return dex2oat::ReturnCode::kNoFailure;
}
// If we need to keep the oat file open for the image writer.
bool ShouldKeepOatFileOpen() const {
return IsImage() && oat_fd_ != kInvalidFd;
}
// Doesn't return the class loader since it's not meant to be used for image compilation.
void CompileDexFilesIndividually() {
CHECK(!IsImage()) << "Not supported with image";
for (const DexFile* dex_file : dex_files_) {
std::vector<const DexFile*> dex_files(1u, dex_file);
VLOG(compiler) << "Compiling " << dex_file->GetLocation();
jobject class_loader = CompileDexFiles(dex_files);
CHECK(class_loader != nullptr);
ScopedObjectAccess soa(Thread::Current());
// Unload class loader to free RAM.
jweak weak_class_loader = soa.Env()->GetVm()->AddWeakGlobalRef(
soa.Self(),
soa.Decode<mirror::ClassLoader>(class_loader));
soa.Env()->GetVm()->DeleteGlobalRef(soa.Self(), class_loader);
runtime_->GetHeap()->CollectGarbage(/* clear_soft_references */ true);
ObjPtr<mirror::ClassLoader> decoded_weak = soa.Decode<mirror::ClassLoader>(weak_class_loader);
if (decoded_weak != nullptr) {
LOG(FATAL) << "Failed to unload class loader, path from root set: "
<< runtime_->GetHeap()->GetVerification()->FirstPathFromRootSet(decoded_weak);
}
VLOG(compiler) << "Unloaded classloader";
}
}
bool ShouldCompileDexFilesIndividually() const {
// Compile individually if we are:
// 1. not building an image,
// 2. not verifying a vdex file,
// 3. using multidex,
// 4. not doing any AOT compilation.
// This means extract, no-vdex verify, and quicken, will use the individual compilation
// mode (to reduce RAM used by the compiler).
return !IsImage() &&
!update_input_vdex_ &&
dex_files_.size() > 1 &&
!CompilerFilter::IsAotCompilationEnabled(compiler_options_->GetCompilerFilter());
}
// Set up and create the compiler driver and then invoke it to compile all the dex files.
jobject Compile() {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
TimingLogger::ScopedTiming t("dex2oat Compile", timings_);
// Find the dex files we should not inline from.
std::vector<std::string> no_inline_filters;
Split(no_inline_from_string_, ',', &no_inline_filters);
// For now, on the host always have core-oj removed.
const std::string core_oj = "core-oj";
if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) {
no_inline_filters.push_back(core_oj);
}
if (!no_inline_filters.empty()) {
std::vector<const DexFile*> class_path_files;
if (!IsBootImage()) {
// The class loader context is used only for apps.
class_path_files = class_loader_context_->FlattenOpenedDexFiles();
}
std::vector<const std::vector<const DexFile*>*> dex_file_vectors = {
&class_linker->GetBootClassPath(),
&class_path_files,
&dex_files_
};
for (const std::vector<const DexFile*>* dex_file_vector : dex_file_vectors) {
for (const DexFile* dex_file : *dex_file_vector) {
for (const std::string& filter : no_inline_filters) {
// Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This
// allows tests to specify <test-dexfile>!classes2.dex if needed but if the
// base location passes the StartsWith() test, so do all extra locations.
std::string dex_location = dex_file->GetLocation();
if (filter.find('/') == std::string::npos) {
// The filter does not contain the path. Remove the path from dex_location as well.
size_t last_slash = dex_file->GetLocation().rfind('/');
if (last_slash != std::string::npos) {
dex_location = dex_location.substr(last_slash + 1);
}
}
if (android::base::StartsWith(dex_location, filter.c_str())) {
VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation();
no_inline_from_dex_files_.push_back(dex_file);
break;
}
}
}
}
if (!no_inline_from_dex_files_.empty()) {
compiler_options_->no_inline_from_ = &no_inline_from_dex_files_;
}
}
driver_.reset(new CompilerDriver(compiler_options_.get(),
verification_results_.get(),
compiler_kind_,
instruction_set_,
instruction_set_features_.get(),
image_classes_.release(),
compiled_classes_.release(),
compiled_methods_.release(),
thread_count_,
swap_fd_,
profile_compilation_info_.get()));
driver_->SetDexFilesForOatFile(dex_files_);
if (!IsBootImage()) {
driver_->SetClasspathDexFiles(class_loader_context_->FlattenOpenedDexFiles());
}
const bool compile_individually = ShouldCompileDexFilesIndividually();
if (compile_individually) {
// Set the compiler driver in the callbacks so that we can avoid re-verification. This not
// only helps performance but also prevents reverifying quickened bytecodes. Attempting
// verify quickened bytecode causes verification failures.
// Only set the compiler filter if we are doing separate compilation since there is a bit
// of overhead when checking if a class was previously verified.
callbacks_->SetDoesClassUnloading(true, driver_.get());
}
// Setup vdex for compilation.
if (!DoEagerUnquickeningOfVdex() && input_vdex_file_ != nullptr) {
callbacks_->SetVerifierDeps(
new verifier::VerifierDeps(dex_files_, input_vdex_file_->GetVerifierDepsData()));
// TODO: we unquicken unconditionally, as we don't know
// if the boot image has changed. How exactly we'll know is under
// experimentation.
TimingLogger::ScopedTiming time_unquicken("Unquicken", timings_);
// We do not decompile a RETURN_VOID_NO_BARRIER into a RETURN_VOID, as the quickening
// optimization does not depend on the boot image (the optimization relies on not
// having final fields in a class, which does not change for an app).
input_vdex_file_->Unquicken(dex_files_, /* decompile_return_instruction */ false);
} else {
// Create the main VerifierDeps, here instead of in the compiler since we want to aggregate
// the results for all the dex files, not just the results for the current dex file.
callbacks_->SetVerifierDeps(new verifier::VerifierDeps(dex_files_));
}
// Invoke the compilation.
if (compile_individually) {
CompileDexFilesIndividually();
// Return a null classloader since we already freed released it.
return nullptr;
}
return CompileDexFiles(dex_files_);
}
// Create the class loader, use it to compile, and return.
jobject CompileDexFiles(const std::vector<const DexFile*>& dex_files) {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
jobject class_loader = nullptr;
if (!IsBootImage()) {
class_loader = class_loader_context_->CreateClassLoader(dex_files_);
callbacks_->SetDexFiles(&dex_files);
}
// Register dex caches and key them to the class loader so that they only unload when the
// class loader unloads.
for (const auto& dex_file : dex_files) {
ScopedObjectAccess soa(Thread::Current());
// Registering the dex cache adds a strong root in the class loader that prevents the dex
// cache from being unloaded early.
ObjPtr<mirror::DexCache> dex_cache = class_linker->RegisterDexFile(
*dex_file,
soa.Decode<mirror::ClassLoader>(class_loader));
if (dex_cache == nullptr) {
soa.Self()->AssertPendingException();
LOG(FATAL) << "Failed to register dex file " << dex_file->GetLocation() << " "
<< soa.Self()->GetException()->Dump();
}
}
driver_->CompileAll(class_loader, dex_files, timings_);
return class_loader;
}
// Notes on the interleaving of creating the images and oat files to
// ensure the references between the two are correct.
//
// Currently we have a memory layout that looks something like this:
//
// +--------------+
// | images |
// +--------------+
// | oat files |
// +--------------+
// | alloc spaces |
// +--------------+
//
// There are several constraints on the loading of the images and oat files.
//
// 1. The images are expected to be loaded at an absolute address and
// contain Objects with absolute pointers within the images.
//
// 2. There are absolute pointers from Methods in the images to their
// code in the oat files.
//
// 3. There are absolute pointers from the code in the oat files to Methods
// in the images.
//
// 4. There are absolute pointers from code in the oat files to other code
// in the oat files.
//
// To get this all correct, we go through several steps.
//
// 1. We prepare offsets for all data in the oat files and calculate
// the oat data size and code size. During this stage, we also set
// oat code offsets in methods for use by the image writer.
//
// 2. We prepare offsets for the objects in the images and calculate
// the image sizes.
//
// 3. We create the oat files. Originally this was just our own proprietary
// file but now it is contained within an ELF dynamic object (aka an .so
// file). Since we know the image sizes and oat data sizes and code sizes we
// can prepare the ELF headers and we then know the ELF memory segment
// layout and we can now resolve all references. The compiler provides
// LinkerPatch information in each CompiledMethod and we resolve these,
// using the layout information and image object locations provided by
// image writer, as we're writing the method code.
//
// 4. We create the image files. They need to know where the oat files
// will be loaded after itself. Originally oat files were simply
// memory mapped so we could predict where their contents were based
// on the file size. Now that they are ELF files, we need to inspect
// the ELF files to understand the in memory segment layout including
// where the oat header is located within.
// TODO: We could just remember this information from step 3.
//
// 5. We fixup the ELF program headers so that dlopen will try to
// load the .so at the desired location at runtime by offsetting the
// Elf32_Phdr.p_vaddr values by the desired base address.
// TODO: Do this in step 3. We already know the layout there.
//
// Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5.
// are done by the CreateImageFile() below.
// Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the
// ImageWriter, if necessary.
// Note: Flushing (and closing) the file is the caller's responsibility, except for the failure
// case (when the file will be explicitly erased).
bool WriteOutputFiles() {
TimingLogger::ScopedTiming t("dex2oat Oat", timings_);
// Sync the data to the file, in case we did dex2dex transformations.
for (const std::unique_ptr<MemMap>& map : opened_dex_files_maps_) {
if (!map->Sync()) {
PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map->GetName();
return false;
}
}
if (IsImage()) {
if (IsAppImage() && image_base_ == 0) {
gc::Heap* const heap = Runtime::Current()->GetHeap();
for (gc::space::ImageSpace* image_space : heap->GetBootImageSpaces()) {
image_base_ = std::max(image_base_, RoundUp(
reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatFileEnd()),
kPageSize));
}
// The non moving space is right after the oat file. Put the preferred app image location
// right after the non moving space so that we ideally get a continuous immune region for
// the GC.
// Use the default non moving space capacity since dex2oat does not have a separate non-
// moving space. This means the runtime's non moving space space size will be as large
// as the growth limit for dex2oat, but smaller in the zygote.
const size_t non_moving_space_capacity = gc::Heap::kDefaultNonMovingSpaceCapacity;
image_base_ += non_moving_space_capacity;
VLOG(compiler) << "App image base=" << reinterpret_cast<void*>(image_base_);
}
image_writer_.reset(new linker::ImageWriter(*driver_,
image_base_,
compiler_options_->GetCompilePic(),
IsAppImage(),
image_storage_mode_,
oat_filenames_,
dex_file_oat_index_map_,
dirty_image_objects_.get()));
// We need to prepare method offsets in the image address space for direct method patching.
TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_);
if (!image_writer_->PrepareImageAddressSpace()) {
LOG(ERROR) << "Failed to prepare image address space.";
return false;
}
}
// Initialize the writers with the compiler driver, image writer, and their
// dex files. The writers were created without those being there yet.
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i];
std::vector<const DexFile*>& dex_files = dex_files_per_oat_file_[i];
oat_writer->Initialize(driver_.get(), image_writer_.get(), dex_files);
}
{
TimingLogger::ScopedTiming t2("dex2oat Write VDEX", timings_);
DCHECK(IsBootImage() || oat_files_.size() == 1u);
verifier::VerifierDeps* verifier_deps = callbacks_->GetVerifierDeps();
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
File* vdex_file = vdex_files_[i].get();
std::unique_ptr<linker::BufferedOutputStream> vdex_out =
std::make_unique<linker::BufferedOutputStream>(
std::make_unique<linker::FileOutputStream>(vdex_file));
if (!oat_writers_[i]->WriteVerifierDeps(vdex_out.get(), verifier_deps)) {
LOG(ERROR) << "Failed to write verifier dependencies into VDEX " << vdex_file->GetPath();
return false;
}
if (!oat_writers_[i]->WriteQuickeningInfo(vdex_out.get())) {
LOG(ERROR) << "Failed to write quickening info into VDEX " << vdex_file->GetPath();
return false;
}
// VDEX finalized, seek back to the beginning and write checksums and the header.
if (!oat_writers_[i]->WriteChecksumsAndVdexHeader(vdex_out.get())) {
LOG(ERROR) << "Failed to write vdex header into VDEX " << vdex_file->GetPath();
return false;
}
}
}
{
TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_);
linker::MultiOatRelativePatcher patcher(instruction_set_, instruction_set_features_.get());
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<linker::ElfWriter>& elf_writer = elf_writers_[i];
std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i];
oat_writer->PrepareLayout(&patcher);
size_t rodata_size = oat_writer->GetOatHeader().GetExecutableOffset();
size_t text_size = oat_writer->GetOatSize() - rodata_size;
elf_writer->PrepareDynamicSection(rodata_size,
text_size,
oat_writer->GetBssSize(),
oat_writer->GetBssMethodsOffset(),
oat_writer->GetBssRootsOffset(),
oat_writer->GetVdexSize());
if (IsImage()) {
// Update oat layout.
DCHECK(image_writer_ != nullptr);
DCHECK_LT(i, oat_filenames_.size());
image_writer_->UpdateOatFileLayout(i,
elf_writer->GetLoadedSize(),
oat_writer->GetOatDataOffset(),
oat_writer->GetOatSize());
}
if (IsBootImage()) {
// Have the image_file_location_oat_checksum_ for boot oat files
// depend on the contents of all the boot oat files. This way only
// the primary image checksum needs to be checked to determine
// whether any of the images are out of date.
image_file_location_oat_checksum_ ^= oat_writer->GetOatHeader().GetChecksum();
}
}
for (size_t i = 0, size = oat_files_.size(); i != size; ++i) {
std::unique_ptr<File>& oat_file = oat_files_[i];
std::unique_ptr<linker::ElfWriter>& elf_writer = elf_writers_[i];
std::unique_ptr<linker::OatWriter>& oat_writer = oat_writers_[i];
// We need to mirror the layout of the ELF file in the compressed debug-info.
// Therefore PrepareDebugInfo() relies on the SetLoadedSectionSizes() call further above.
debug::DebugInfo debug_info = oat_writer->GetDebugInfo(); // Keep the variable alive.
elf_writer->PrepareDebugInfo(debug_info); // Processes the data on background thread.
linker::OutputStream*& rodata = rodata_[i];
DCHECK(rodata != nullptr);
if (!oat_writer->WriteRodata(rodata)) {
LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->EndRoData(rodata);
rodata = nullptr;
linker::OutputStream* text = elf_writer->StartText();
if (!oat_writer->WriteCode(text)) {
LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath();
return false;
}
elf_writer->EndText(text);
if (!oat_writer->WriteHeader(elf_writer->GetStream(),
image_file_location_oat_checksum_,
image_file_location_oat_data_begin_,
image_patch_delta_)) {
LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath();
return false;
}
if (IsImage()) {
// Update oat header information.
DCHECK(image_writer_ != nullptr);
DCHECK_LT(i, oat_filenames_.size());
image_writer_->UpdateOatFileHeader(i, oat_writer->GetOatHeader());
}
elf_writer->WriteDynamicSection();
elf_writer->WriteDebugInfo(oat_writer->GetDebugInfo());
if (!elf_writer->End()) {
LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath();
return false;
}
if (!FlushOutputFile(&vdex_files_[i]) || !FlushOutputFile(&oat_files_[i])) {
return false;
}
VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i];
oat_writer.reset();
elf_writer.reset();
}
}
return true;
}
// If we are compiling an image, invoke the image creation routine. Else just skip.
bool HandleImage() {
if (IsImage()) {
TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_);
if (!CreateImageFile()) {
return false;
}
VLOG(compiler) << "Images written successfully";
}
return true;
}
// Create a copy from stripped to unstripped.
bool CopyStrippedToUnstripped() {
for (size_t i = 0; i < oat_unstripped_.size(); ++i) {
// If we don't want to strip in place, copy from stripped location to unstripped location.
// We need to strip after image creation because FixupElf needs to use .strtab.
if (strcmp(oat_unstripped_[i], oat_filenames_[i]) != 0) {
// If the oat file is still open, flush it.
if (oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened()) {
if (!FlushCloseOutputFile(&oat_files_[i])) {
return false;
}
}
TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_);
std::unique_ptr<File> in(OS::OpenFileForReading(oat_filenames_[i]));
std::unique_ptr<File> out(OS::CreateEmptyFile(oat_unstripped_[i]));
int64_t in_length = in->GetLength();
if (in_length < 0) {
PLOG(ERROR) << "Failed to get the length of oat file: " << in->GetPath();
return false;
}
if (!out->Copy(in.get(), 0, in_length)) {
PLOG(ERROR) << "Failed to copy oat file to file: " << out->GetPath();
return false;
}
if (out->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i];
return false;
}
VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i];
}
}
return true;
}
bool FlushOutputFile(std::unique_ptr<File>* file) {
if (file->get() != nullptr) {
if (file->get()->Flush() != 0) {
PLOG(ERROR) << "Failed to flush output file: " << file->get()->GetPath();
return false;
}
}
return true;
}
bool FlushCloseOutputFile(std::unique_ptr<File>* file) {
if (file->get() != nullptr) {
std::unique_ptr<File> tmp(file->release());
if (tmp->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close output file: " << tmp->GetPath();
return false;
}
}
return true;
}
bool FlushOutputFiles() {
TimingLogger::ScopedTiming t2("dex2oat Flush Output Files", timings_);
for (auto& files : { &vdex_files_, &oat_files_ }) {
for (size_t i = 0; i < files->size(); ++i) {
if (!FlushOutputFile(&(*files)[i])) {
return false;
}
}
}
return true;
}
bool FlushCloseOutputFiles() {
bool result = true;
for (auto& files : { &vdex_files_, &oat_files_ }) {
for (size_t i = 0; i < files->size(); ++i) {
result &= FlushCloseOutputFile(&(*files)[i]);
}
}
return result;
}
void DumpTiming() {
if (compiler_options_->GetDumpTimings() ||
(kIsDebugBuild && timings_->GetTotalNs() > MsToNs(1000))) {
LOG(INFO) << Dumpable<TimingLogger>(*timings_);
}
}
bool IsImage() const {
return IsAppImage() || IsBootImage();
}
bool IsAppImage() const {
return compiler_options_->IsAppImage();
}
bool IsBootImage() const {
return compiler_options_->IsBootImage();
}
bool IsHost() const {
return is_host_;
}
bool UseProfile() const {
return profile_file_fd_ != -1 || !profile_file_.empty();
}
bool DoProfileGuidedOptimizations() const {
return UseProfile();
}
bool DoGenerateCompactDex() const {
return compact_dex_level_ != CompactDexLevel::kCompactDexLevelNone;
}
bool DoDexLayoutOptimizations() const {
return DoProfileGuidedOptimizations() || DoGenerateCompactDex();
}
bool DoOatLayoutOptimizations() const {
return DoProfileGuidedOptimizations();
}
bool MayInvalidateVdexMetadata() const {
// DexLayout can invalidate the vdex metadata if changing the class def order is enabled, so
// we need to unquicken the vdex file eagerly, before passing it to dexlayout.
return DoDexLayoutOptimizations();
}
bool DoEagerUnquickeningOfVdex() const {
return MayInvalidateVdexMetadata() && dm_file_ == nullptr;
}
bool LoadProfile() {
DCHECK(UseProfile());
// TODO(calin): We should be using the runtime arena pool (instead of the
// default profile arena). However the setup logic is messy and needs
// cleaning up before that (e.g. the oat writers are created before the
// runtime).
profile_compilation_info_.reset(new ProfileCompilationInfo());
ScopedFlock profile_file;
std::string error;
if (profile_file_fd_ != -1) {
profile_file = LockedFile::DupOf(profile_file_fd_, "profile",
true /* read_only_mode */, &error);
} else if (profile_file_ != "") {
profile_file = LockedFile::Open(profile_file_.c_str(), O_RDONLY, true, &error);
}
// Return early if we're unable to obtain a lock on the profile.
if (profile_file.get() == nullptr) {
LOG(ERROR) << "Cannot lock profiles: " << error;
return false;
}
if (!profile_compilation_info_->Load(profile_file->Fd())) {
profile_compilation_info_.reset(nullptr);
return false;
}
return true;
}
private:
bool UseSwap(bool is_image, const std::vector<const DexFile*>& dex_files) {
if (is_image) {
// Don't use swap, we know generation should succeed, and we don't want to slow it down.
return false;
}
if (dex_files.size() < min_dex_files_for_swap_) {
// If there are less dex files than the threshold, assume it's gonna be fine.
return false;
}
size_t dex_files_size = 0;
for (const auto* dex_file : dex_files) {
dex_files_size += dex_file->GetHeader().file_size_;
}
return dex_files_size >= min_dex_file_cumulative_size_for_swap_;
}
bool IsVeryLarge(std::vector<const DexFile*>& dex_files) {
size_t dex_files_size = 0;
for (const auto* dex_file : dex_files) {
dex_files_size += dex_file->GetHeader().file_size_;
}
return dex_files_size >= very_large_threshold_;
}
bool PrepareImageClasses() {
// If --image-classes was specified, calculate the full list of classes to include in the image.
if (image_classes_filename_ != nullptr) {
image_classes_ =
ReadClasses(image_classes_zip_filename_, image_classes_filename_, "image");
if (image_classes_ == nullptr) {
return false;
}
} else if (IsBootImage()) {
image_classes_.reset(new std::unordered_set<std::string>);
}
return true;
}
bool PrepareCompiledClasses() {
// If --compiled-classes was specified, calculate the full list of classes to compile in the
// image.
if (compiled_classes_filename_ != nullptr) {
compiled_classes_ =
ReadClasses(compiled_classes_zip_filename_, compiled_classes_filename_, "compiled");
if (compiled_classes_ == nullptr) {
return false;
}
} else {
compiled_classes_.reset(nullptr); // By default compile everything.
}
return true;
}
static std::unique_ptr<std::unordered_set<std::string>> ReadClasses(const char* zip_filename,
const char* classes_filename,
const char* tag) {
std::unique_ptr<std::unordered_set<std::string>> classes;
std::string error_msg;
if (zip_filename != nullptr) {
classes.reset(ReadImageClassesFromZip(zip_filename, classes_filename, &error_msg));
} else {
classes.reset(ReadImageClassesFromFile(classes_filename));
}
if (classes == nullptr) {
LOG(ERROR) << "Failed to create list of " << tag << " classes from '"
<< classes_filename << "': " << error_msg;
}
return classes;
}
bool PrepareCompiledMethods() {
// If --compiled-methods was specified, read the methods to compile from the given file(s).
if (compiled_methods_filename_ != nullptr) {
std::string error_msg;
if (compiled_methods_zip_filename_ != nullptr) {
compiled_methods_.reset(ReadCommentedInputFromZip<std::unordered_set<std::string>>(
compiled_methods_zip_filename_,
compiled_methods_filename_,
nullptr, // No post-processing.
&error_msg));
} else {
compiled_methods_.reset(ReadCommentedInputFromFile<std::unordered_set<std::string>>(
compiled_methods_filename_,
nullptr)); // No post-processing.
}
if (compiled_methods_.get() == nullptr) {
LOG(ERROR) << "Failed to create list of compiled methods from '"
<< compiled_methods_filename_ << "': " << error_msg;
return false;
}
} else {
compiled_methods_.reset(nullptr); // By default compile everything.
}
return true;
}
bool PrepareDirtyObjects() {
if (dirty_image_objects_filename_ != nullptr) {
dirty_image_objects_.reset(ReadCommentedInputFromFile<std::unordered_set<std::string>>(
dirty_image_objects_filename_,
nullptr));
if (dirty_image_objects_ == nullptr) {
LOG(ERROR) << "Failed to create list of dirty objects from '"
<< dirty_image_objects_filename_ << "'";
return false;
}
} else {
dirty_image_objects_.reset(nullptr);
}
return true;
}
void PruneNonExistentDexFiles() {
DCHECK_EQ(dex_filenames_.size(), dex_locations_.size());
size_t kept = 0u;
for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) {
if (!OS::FileExists(dex_filenames_[i])) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'";
} else {
dex_filenames_[kept] = dex_filenames_[i];
dex_locations_[kept] = dex_locations_[i];
++kept;
}
}
dex_filenames_.resize(kept);
dex_locations_.resize(kept);
}
bool AddDexFileSources() {
TimingLogger::ScopedTiming t2("AddDexFileSources", timings_);
if (input_vdex_file_ != nullptr && input_vdex_file_->HasDexSection()) {
DCHECK_EQ(oat_writers_.size(), 1u);
const std::string& name = zip_location_.empty() ? dex_locations_[0] : zip_location_;
DCHECK(!name.empty());
if (!oat_writers_[0]->AddVdexDexFilesSource(*input_vdex_file_.get(), name.c_str())) {
return false;
}
} else if (zip_fd_ != -1) {
DCHECK_EQ(oat_writers_.size(), 1u);
if (!oat_writers_[0]->AddZippedDexFilesSource(File(zip_fd_, /* check_usage */ false),
zip_location_.c_str())) {
return false;
}
} else if (oat_writers_.size() > 1u) {
// Multi-image.
DCHECK_EQ(oat_writers_.size(), dex_filenames_.size());
DCHECK_EQ(oat_writers_.size(), dex_locations_.size());
for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) {
if (!oat_writers_[i]->AddDexFileSource(dex_filenames_[i], dex_locations_[i])) {
return false;
}
}
} else {
DCHECK_EQ(oat_writers_.size(), 1u);
DCHECK_EQ(dex_filenames_.size(), dex_locations_.size());
DCHECK_NE(dex_filenames_.size(), 0u);
for (size_t i = 0; i != dex_filenames_.size(); ++i) {
if (!oat_writers_[0]->AddDexFileSource(dex_filenames_[i], dex_locations_[i])) {
return false;
}
}
}
return true;
}
void CreateOatWriters() {
TimingLogger::ScopedTiming t2("CreateOatWriters", timings_);
elf_writers_.reserve(oat_files_.size());
oat_writers_.reserve(oat_files_.size());
for (const std::unique_ptr<File>& oat_file : oat_files_) {
elf_writers_.emplace_back(linker::CreateElfWriterQuick(instruction_set_,
instruction_set_features_.get(),
compiler_options_.get(),
oat_file.get()));
elf_writers_.back()->Start();
bool do_oat_writer_layout = DoDexLayoutOptimizations() || DoOatLayoutOptimizations();
if (profile_compilation_info_ != nullptr && profile_compilation_info_->IsEmpty()) {
do_oat_writer_layout = false;
}
oat_writers_.emplace_back(new linker::OatWriter(
IsBootImage(),
timings_,
do_oat_writer_layout ? profile_compilation_info_.get() : nullptr,
compact_dex_level_));
}
}
void SaveDexInput() {
for (size_t i = 0; i < dex_files_.size(); ++i) {
const DexFile* dex_file = dex_files_[i];
std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex",
getpid(), i));
std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str()));
if (tmp_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open file " << tmp_file_name
<< ". Try: adb shell chmod 777 /data/local/tmp";
continue;
}
// This is just dumping files for debugging. Ignore errors, and leave remnants.
UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size()));
UNUSED(tmp_file->Flush());
UNUSED(tmp_file->Close());
LOG(INFO) << "Wrote input to " << tmp_file_name;
}
}
bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options,
QuickCompilerCallbacks* callbacks) {
RuntimeOptions raw_options;
if (boot_image_filename_.empty()) {
std::string boot_class_path = "-Xbootclasspath:";
boot_class_path += android::base::Join(dex_filenames_, ':');
raw_options.push_back(std::make_pair(boot_class_path, nullptr));
std::string boot_class_path_locations = "-Xbootclasspath-locations:";
boot_class_path_locations += android::base::Join(dex_locations_, ':');
raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr));
} else {
std::string boot_image_option = "-Ximage:";
boot_image_option += boot_image_filename_;
raw_options.push_back(std::make_pair(boot_image_option, nullptr));
}
for (size_t i = 0; i < runtime_args_.size(); i++) {
raw_options.push_back(std::make_pair(runtime_args_[i], nullptr));
}
raw_options.push_back(std::make_pair("compilercallbacks", callbacks));
raw_options.push_back(
std::make_pair("imageinstructionset", GetInstructionSetString(instruction_set_)));
// Only allow no boot image for the runtime if we're compiling one. When we compile an app,
// we don't want fallback mode, it will abort as we do not push a boot classpath (it might
// have been stripped in preopting, anyways).
if (!IsBootImage()) {
raw_options.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr));
}
// Never allow implicit image compilation.
raw_options.push_back(std::make_pair("-Xnoimage-dex2oat", nullptr));
// Disable libsigchain. We don't don't need it during compilation and it prevents us
// from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT).
raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr));
// Disable Hspace compaction to save heap size virtual space.
// Only need disable Hspace for OOM becasue background collector is equal to
// foreground collector by default for dex2oat.
raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr));
if (compiler_options_->IsForceDeterminism()) {
// If we're asked to be deterministic, ensure non-concurrent GC for determinism.
//
// Note that with read barriers, this option is ignored, because Runtime::Init
// overrides the foreground GC to be gc::kCollectorTypeCC when instantiating
// gc::Heap. This is fine, as concurrent GC requests are not honored in dex2oat,
// which uses an unstarted runtime.
raw_options.push_back(std::make_pair("-Xgc:nonconcurrent", nullptr));
// The default LOS implementation (map) is not deterministic. So disable it.
raw_options.push_back(std::make_pair("-XX:LargeObjectSpace=disabled", nullptr));
// We also need to turn off the nonmoving space. For that, we need to disable HSpace
// compaction (done above) and ensure that neither foreground nor background collectors
// are concurrent.
//
// Likewise, this option is ignored with read barriers because Runtime::Init
// overrides the background GC to be gc::kCollectorTypeCCBackground, but that's
// fine too, for the same reason (see above).
raw_options.push_back(std::make_pair("-XX:BackgroundGC=nonconcurrent", nullptr));
// To make identity hashcode deterministic, set a known seed.
mirror::Object::SetHashCodeSeed(987654321U);
}
if (!Runtime::ParseOptions(raw_options, false, runtime_options)) {
LOG(ERROR) << "Failed to parse runtime options";
return false;
}
return true;
}
// Create a runtime necessary for compilation.
bool CreateRuntime(RuntimeArgumentMap&& runtime_options) {
TimingLogger::ScopedTiming t_runtime("Create runtime", timings_);
if (!Runtime::Create(std::move(runtime_options))) {
LOG(ERROR) << "Failed to create runtime";
return false;
}
// Runtime::Init will rename this thread to be "main". Prefer "dex2oat" so that "top" and
// "ps -a" don't change to non-descript "main."
SetThreadName(kIsDebugBuild ? "dex2oatd" : "dex2oat");
runtime_.reset(Runtime::Current());
runtime_->SetInstructionSet(instruction_set_);
for (uint32_t i = 0; i < static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
CalleeSaveType type = CalleeSaveType(i);
if (!runtime_->HasCalleeSaveMethod(type)) {
runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type);
}
}
// Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this
// set up.
interpreter::UnstartedRuntime::Initialize();
runtime_->GetClassLinker()->RunRootClinits();
// Runtime::Create acquired the mutator_lock_ that is normally given away when we
// Runtime::Start, give it away now so that we don't starve GC.
Thread* self = Thread::Current();
self->TransitionFromRunnableToSuspended(kNative);
return true;
}
// Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files.
bool CreateImageFile()
REQUIRES(!Locks::mutator_lock_) {
CHECK(image_writer_ != nullptr);
if (!IsBootImage()) {
CHECK(image_filenames_.empty());
image_filenames_.push_back(app_image_file_name_.c_str());
}
if (!image_writer_->Write(app_image_fd_,
image_filenames_,
oat_filenames_)) {
LOG(ERROR) << "Failure during image file creation";
return false;
}
// We need the OatDataBegin entries.
dchecked_vector<uintptr_t> oat_data_begins;
for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
oat_data_begins.push_back(image_writer_->GetOatDataBegin(i));
}
// Destroy ImageWriter before doing FixupElf.
image_writer_.reset();
for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
const char* oat_filename = oat_filenames_[i];
// Do not fix up the ELF file if we are --compile-pic or compiling the app image
if (!compiler_options_->GetCompilePic() && IsBootImage()) {
std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename));
if (oat_file.get() == nullptr) {
PLOG(ERROR) << "Failed to open ELF file: " << oat_filename;
return false;
}
if (!linker::ElfWriter::Fixup(oat_file.get(), oat_data_begins[i])) {
oat_file->Erase();
LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath();
return false;
}
if (oat_file->FlushCloseOrErase()) {
PLOG(ERROR) << "Failed to flush and close fixed ELF file " << oat_file->GetPath();
return false;
}
}
}
return true;
}
// Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;)
static std::unordered_set<