blob: 223e08e1b447722865149c2e1bd7bd1d66b556e2 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "induction_var_range.h"
#include "base/arena_allocator.h"
#include "builder.h"
#include "induction_var_analysis.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
namespace art {
using Value = InductionVarRange::Value;
/**
* Fixture class for the InductionVarRange tests.
*/
class InductionVarRangeTest : public OptimizingUnitTest {
public:
InductionVarRangeTest()
: graph_(CreateGraph()),
iva_(new (GetAllocator()) HInductionVarAnalysis(graph_)),
range_(iva_) {
BuildGraph();
}
~InductionVarRangeTest() { }
void ExpectEqual(Value v1, Value v2) {
EXPECT_EQ(v1.instruction, v2.instruction);
EXPECT_EQ(v1.a_constant, v2.a_constant);
EXPECT_EQ(v1.b_constant, v2.b_constant);
EXPECT_EQ(v1.is_known, v2.is_known);
}
void ExpectInt(int32_t value, HInstruction* i) {
ASSERT_TRUE(i->IsIntConstant());
EXPECT_EQ(value, i->AsIntConstant()->GetValue());
}
//
// Construction methods.
//
/** Constructs bare minimum graph. */
void BuildGraph() {
graph_->SetNumberOfVRegs(1);
entry_block_ = new (GetAllocator()) HBasicBlock(graph_);
exit_block_ = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry_block_);
graph_->AddBlock(exit_block_);
graph_->SetEntryBlock(entry_block_);
graph_->SetExitBlock(exit_block_);
// Two parameters.
x_ = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kInt32);
entry_block_->AddInstruction(x_);
y_ = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kInt32);
entry_block_->AddInstruction(y_);
// Set arbitrary range analysis hint while testing private methods.
SetHint(x_);
}
/** Constructs loop with given upper bound. */
void BuildLoop(int32_t lower, HInstruction* upper, int32_t stride) {
// Control flow.
loop_preheader_ = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(loop_preheader_);
loop_header_ = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(loop_header_);
loop_body_ = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(loop_body_);
HBasicBlock* return_block = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(return_block);
entry_block_->AddSuccessor(loop_preheader_);
loop_preheader_->AddSuccessor(loop_header_);
loop_header_->AddSuccessor(loop_body_);
loop_header_->AddSuccessor(return_block);
loop_body_->AddSuccessor(loop_header_);
return_block->AddSuccessor(exit_block_);
// Instructions.
loop_preheader_->AddInstruction(new (GetAllocator()) HGoto());
HPhi* phi = new (GetAllocator()) HPhi(GetAllocator(), 0, 0, DataType::Type::kInt32);
loop_header_->AddPhi(phi);
phi->AddInput(graph_->GetIntConstant(lower)); // i = l
if (stride > 0) {
condition_ = new (GetAllocator()) HLessThan(phi, upper); // i < u
} else {
condition_ = new (GetAllocator()) HGreaterThan(phi, upper); // i > u
}
loop_header_->AddInstruction(condition_);
loop_header_->AddInstruction(new (GetAllocator()) HIf(condition_));
increment_ =
new (GetAllocator()) HAdd(DataType::Type::kInt32, phi, graph_->GetIntConstant(stride));
loop_body_->AddInstruction(increment_); // i += s
phi->AddInput(increment_);
loop_body_->AddInstruction(new (GetAllocator()) HGoto());
return_block->AddInstruction(new (GetAllocator()) HReturnVoid());
exit_block_->AddInstruction(new (GetAllocator()) HExit());
}
/** Constructs SSA and performs induction variable analysis. */
void PerformInductionVarAnalysis() {
graph_->BuildDominatorTree();
iva_->Run();
}
/** Sets hint. */
void SetHint(HInstruction* hint) {
range_.chase_hint_ = hint;
}
/** Constructs an invariant. */
HInductionVarAnalysis::InductionInfo* CreateInvariant(char opc,
HInductionVarAnalysis::InductionInfo* a,
HInductionVarAnalysis::InductionInfo* b) {
HInductionVarAnalysis::InductionOp op;
switch (opc) {
case '+': op = HInductionVarAnalysis::kAdd; break;
case '-': op = HInductionVarAnalysis::kSub; break;
case 'n': op = HInductionVarAnalysis::kNeg; break;
case '*': op = HInductionVarAnalysis::kMul; break;
case '/': op = HInductionVarAnalysis::kDiv; break;
case '%': op = HInductionVarAnalysis::kRem; break;
case '^': op = HInductionVarAnalysis::kXor; break;
case '<': op = HInductionVarAnalysis::kLT; break;
default: op = HInductionVarAnalysis::kNop; break;
}
return iva_->CreateInvariantOp(op, a, b);
}
/** Constructs a fetch. */
HInductionVarAnalysis::InductionInfo* CreateFetch(HInstruction* fetch) {
return iva_->CreateInvariantFetch(fetch);
}
/** Constructs a constant. */
HInductionVarAnalysis::InductionInfo* CreateConst(int32_t c) {
return CreateFetch(graph_->GetIntConstant(c));
}
/** Constructs a constant trip-count. */
HInductionVarAnalysis::InductionInfo* CreateTripCount(int32_t tc, bool in_loop, bool safe) {
HInductionVarAnalysis::InductionOp op = HInductionVarAnalysis::kTripCountInBodyUnsafe;
if (in_loop && safe) {
op = HInductionVarAnalysis::kTripCountInLoop;
} else if (in_loop) {
op = HInductionVarAnalysis::kTripCountInLoopUnsafe;
} else if (safe) {
op = HInductionVarAnalysis::kTripCountInBody;
}
// Return TC with taken-test 0 < TC.
return iva_->CreateTripCount(op,
CreateConst(tc),
CreateInvariant('<', CreateConst(0), CreateConst(tc)),
DataType::Type::kInt32);
}
/** Constructs a linear a * i + b induction. */
HInductionVarAnalysis::InductionInfo* CreateLinear(int32_t a, int32_t b) {
return iva_->CreateInduction(HInductionVarAnalysis::kLinear,
HInductionVarAnalysis::kNop,
CreateConst(a),
CreateConst(b),
nullptr,
DataType::Type::kInt32);
}
/** Constructs a polynomial sum(a * i + b) + c induction. */
HInductionVarAnalysis::InductionInfo* CreatePolynomial(int32_t a, int32_t b, int32_t c) {
return iva_->CreateInduction(HInductionVarAnalysis::kPolynomial,
HInductionVarAnalysis::kNop,
CreateLinear(a, b),
CreateConst(c),
nullptr,
DataType::Type::kInt32);
}
/** Constructs a geometric a * f^i + b induction. */
HInductionVarAnalysis::InductionInfo* CreateGeometric(int32_t a, int32_t b, int32_t f, char op) {
return iva_->CreateInduction(HInductionVarAnalysis::kGeometric,
op == '*' ? HInductionVarAnalysis::kMul
: HInductionVarAnalysis::kDiv,
CreateConst(a),
CreateConst(b),
graph_->GetIntConstant(f),
DataType::Type::kInt32);
}
/** Constructs a range [lo, hi] using a periodic induction. */
HInductionVarAnalysis::InductionInfo* CreateRange(int32_t lo, int32_t hi) {
return iva_->CreateInduction(HInductionVarAnalysis::kPeriodic,
HInductionVarAnalysis::kNop,
CreateConst(lo),
CreateConst(hi),
nullptr,
DataType::Type::kInt32);
}
/** Constructs a wrap-around induction consisting of a constant, followed by info. */
HInductionVarAnalysis::InductionInfo* CreateWrapAround(
int32_t initial,
HInductionVarAnalysis::InductionInfo* info) {
return iva_->CreateInduction(HInductionVarAnalysis::kWrapAround,
HInductionVarAnalysis::kNop,
CreateConst(initial),
info,
nullptr,
DataType::Type::kInt32);
}
/** Constructs a wrap-around induction consisting of a constant, followed by a range. */
HInductionVarAnalysis::InductionInfo* CreateWrapAround(int32_t initial, int32_t lo, int32_t hi) {
return CreateWrapAround(initial, CreateRange(lo, hi));
}
//
// Relay methods.
//
bool NeedsTripCount(HInductionVarAnalysis::InductionInfo* info) {
int64_t s = 0;
return range_.NeedsTripCount(info, &s);
}
bool IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) {
return range_.IsBodyTripCount(trip);
}
bool IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) {
return range_.IsUnsafeTripCount(trip);
}
Value GetMin(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip) {
return range_.GetVal(info, trip, /* in_body */ true, /* is_min */ true);
}
Value GetMax(HInductionVarAnalysis::InductionInfo* info,
HInductionVarAnalysis::InductionInfo* trip) {
return range_.GetVal(info, trip, /* in_body */ true, /* is_min */ false);
}
Value GetMul(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2,
bool is_min) {
return range_.GetMul(info1, info2, nullptr, /* in_body */ true, is_min);
}
Value GetDiv(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2,
bool is_min) {
return range_.GetDiv(info1, info2, nullptr, /* in_body */ true, is_min);
}
Value GetRem(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2) {
return range_.GetRem(info1, info2);
}
Value GetXor(HInductionVarAnalysis::InductionInfo* info1,
HInductionVarAnalysis::InductionInfo* info2) {
return range_.GetXor(info1, info2);
}
bool IsExact(HInductionVarAnalysis::InductionInfo* info, int64_t* value) {
return range_.IsConstant(info, InductionVarRange::kExact, value);
}
bool IsAtMost(HInductionVarAnalysis::InductionInfo* info, int64_t* value) {
return range_.IsConstant(info, InductionVarRange::kAtMost, value);
}
bool IsAtLeast(HInductionVarAnalysis::InductionInfo* info, int64_t* value) {
return range_.IsConstant(info, InductionVarRange::kAtLeast, value);
}
Value AddValue(Value v1, Value v2) { return range_.AddValue(v1, v2); }
Value SubValue(Value v1, Value v2) { return range_.SubValue(v1, v2); }
Value MulValue(Value v1, Value v2) { return range_.MulValue(v1, v2); }
Value DivValue(Value v1, Value v2) { return range_.DivValue(v1, v2); }
Value MinValue(Value v1, Value v2) { return range_.MergeVal(v1, v2, true); }
Value MaxValue(Value v1, Value v2) { return range_.MergeVal(v1, v2, false); }
// General building fields.
HGraph* graph_;
HBasicBlock* entry_block_;
HBasicBlock* exit_block_;
HBasicBlock* loop_preheader_;
HBasicBlock* loop_header_;
HBasicBlock* loop_body_;
HInductionVarAnalysis* iva_;
InductionVarRange range_;
// Instructions.
HInstruction* condition_;
HInstruction* increment_;
HInstruction* x_;
HInstruction* y_;
};
//
// Tests on private methods.
//
TEST_F(InductionVarRangeTest, IsConstant) {
int64_t value;
// Constant.
EXPECT_TRUE(IsExact(CreateConst(12345), &value));
EXPECT_EQ(12345, value);
EXPECT_TRUE(IsAtMost(CreateConst(12345), &value));
EXPECT_EQ(12345, value);
EXPECT_TRUE(IsAtLeast(CreateConst(12345), &value));
EXPECT_EQ(12345, value);
// Constant trivial range.
EXPECT_TRUE(IsExact(CreateRange(111, 111), &value));
EXPECT_EQ(111, value);
EXPECT_TRUE(IsAtMost(CreateRange(111, 111), &value));
EXPECT_EQ(111, value);
EXPECT_TRUE(IsAtLeast(CreateRange(111, 111), &value));
EXPECT_EQ(111, value);
// Constant non-trivial range.
EXPECT_FALSE(IsExact(CreateRange(11, 22), &value));
EXPECT_TRUE(IsAtMost(CreateRange(11, 22), &value));
EXPECT_EQ(22, value);
EXPECT_TRUE(IsAtLeast(CreateRange(11, 22), &value));
EXPECT_EQ(11, value);
// Symbolic.
EXPECT_FALSE(IsExact(CreateFetch(x_), &value));
EXPECT_FALSE(IsAtMost(CreateFetch(x_), &value));
EXPECT_FALSE(IsAtLeast(CreateFetch(x_), &value));
}
TEST_F(InductionVarRangeTest, TripCountProperties) {
EXPECT_FALSE(NeedsTripCount(nullptr));
EXPECT_FALSE(NeedsTripCount(CreateConst(1)));
EXPECT_TRUE(NeedsTripCount(CreateLinear(1, 1)));
EXPECT_FALSE(NeedsTripCount(CreateWrapAround(1, 2, 3)));
EXPECT_TRUE(NeedsTripCount(CreateWrapAround(1, CreateLinear(1, 1))));
EXPECT_FALSE(IsBodyTripCount(nullptr));
EXPECT_FALSE(IsBodyTripCount(CreateTripCount(100, true, true)));
EXPECT_FALSE(IsBodyTripCount(CreateTripCount(100, true, false)));
EXPECT_TRUE(IsBodyTripCount(CreateTripCount(100, false, true)));
EXPECT_TRUE(IsBodyTripCount(CreateTripCount(100, false, false)));
EXPECT_FALSE(IsUnsafeTripCount(nullptr));
EXPECT_FALSE(IsUnsafeTripCount(CreateTripCount(100, true, true)));
EXPECT_TRUE(IsUnsafeTripCount(CreateTripCount(100, true, false)));
EXPECT_FALSE(IsUnsafeTripCount(CreateTripCount(100, false, true)));
EXPECT_TRUE(IsUnsafeTripCount(CreateTripCount(100, false, false)));
}
TEST_F(InductionVarRangeTest, GetMinMaxNull) {
ExpectEqual(Value(), GetMin(nullptr, nullptr));
ExpectEqual(Value(), GetMax(nullptr, nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxAdd) {
ExpectEqual(Value(12),
GetMin(CreateInvariant('+', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(22),
GetMax(CreateInvariant('+', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(x_, 1, -20),
GetMin(CreateInvariant('+', CreateFetch(x_), CreateRange(-20, -10)), nullptr));
ExpectEqual(Value(x_, 1, -10),
GetMax(CreateInvariant('+', CreateFetch(x_), CreateRange(-20, -10)), nullptr));
ExpectEqual(Value(x_, 1, 10),
GetMin(CreateInvariant('+', CreateRange(10, 20), CreateFetch(x_)), nullptr));
ExpectEqual(Value(x_, 1, 20),
GetMax(CreateInvariant('+', CreateRange(10, 20), CreateFetch(x_)), nullptr));
ExpectEqual(Value(5),
GetMin(CreateInvariant('+', CreateRange(-5, -1), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(19),
GetMax(CreateInvariant('+', CreateRange(-5, -1), CreateRange(10, 20)), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxSub) {
ExpectEqual(Value(-18),
GetMin(CreateInvariant('-', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(-8),
GetMax(CreateInvariant('-', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(x_, 1, 10),
GetMin(CreateInvariant('-', CreateFetch(x_), CreateRange(-20, -10)), nullptr));
ExpectEqual(Value(x_, 1, 20),
GetMax(CreateInvariant('-', CreateFetch(x_), CreateRange(-20, -10)), nullptr));
ExpectEqual(Value(x_, -1, 10),
GetMin(CreateInvariant('-', CreateRange(10, 20), CreateFetch(x_)), nullptr));
ExpectEqual(Value(x_, -1, 20),
GetMax(CreateInvariant('-', CreateRange(10, 20), CreateFetch(x_)), nullptr));
ExpectEqual(Value(-25),
GetMin(CreateInvariant('-', CreateRange(-5, -1), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(-11),
GetMax(CreateInvariant('-', CreateRange(-5, -1), CreateRange(10, 20)), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxNeg) {
ExpectEqual(Value(-20), GetMin(CreateInvariant('n', nullptr, CreateRange(10, 20)), nullptr));
ExpectEqual(Value(-10), GetMax(CreateInvariant('n', nullptr, CreateRange(10, 20)), nullptr));
ExpectEqual(Value(10), GetMin(CreateInvariant('n', nullptr, CreateRange(-20, -10)), nullptr));
ExpectEqual(Value(20), GetMax(CreateInvariant('n', nullptr, CreateRange(-20, -10)), nullptr));
ExpectEqual(Value(x_, -1, 0), GetMin(CreateInvariant('n', nullptr, CreateFetch(x_)), nullptr));
ExpectEqual(Value(x_, -1, 0), GetMax(CreateInvariant('n', nullptr, CreateFetch(x_)), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxMul) {
ExpectEqual(Value(20),
GetMin(CreateInvariant('*', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(40),
GetMax(CreateInvariant('*', CreateConst(2), CreateRange(10, 20)), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxDiv) {
ExpectEqual(Value(3),
GetMin(CreateInvariant('/', CreateRange(12, 20), CreateConst(4)), nullptr));
ExpectEqual(Value(5),
GetMax(CreateInvariant('/', CreateRange(12, 20), CreateConst(4)), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxConstant) {
ExpectEqual(Value(12345), GetMin(CreateConst(12345), nullptr));
ExpectEqual(Value(12345), GetMax(CreateConst(12345), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxFetch) {
ExpectEqual(Value(x_, 1, 0), GetMin(CreateFetch(x_), nullptr));
ExpectEqual(Value(x_, 1, 0), GetMax(CreateFetch(x_), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxLinear) {
ExpectEqual(Value(20), GetMin(CreateLinear(10, 20), CreateTripCount(100, true, true)));
ExpectEqual(Value(1010), GetMax(CreateLinear(10, 20), CreateTripCount(100, true, true)));
ExpectEqual(Value(-970), GetMin(CreateLinear(-10, 20), CreateTripCount(100, true, true)));
ExpectEqual(Value(20), GetMax(CreateLinear(-10, 20), CreateTripCount(100, true, true)));
}
TEST_F(InductionVarRangeTest, GetMinMaxWrapAround) {
ExpectEqual(Value(-5), GetMin(CreateWrapAround(-5, -1, 10), nullptr));
ExpectEqual(Value(10), GetMax(CreateWrapAround(-5, -1, 10), nullptr));
ExpectEqual(Value(-1), GetMin(CreateWrapAround(2, -1, 10), nullptr));
ExpectEqual(Value(10), GetMax(CreateWrapAround(2, -1, 10), nullptr));
ExpectEqual(Value(-1), GetMin(CreateWrapAround(20, -1, 10), nullptr));
ExpectEqual(Value(20), GetMax(CreateWrapAround(20, -1, 10), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxPolynomial) {
ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), nullptr));
ExpectEqual(Value(), GetMax(CreatePolynomial(3, 5, 7), nullptr));
ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), CreateTripCount(5, true, true)));
ExpectEqual(Value(45), GetMax(CreatePolynomial(3, 5, 7), CreateTripCount(5, true, true)));
ExpectEqual(Value(7), GetMin(CreatePolynomial(3, 5, 7), CreateTripCount(10, true, true)));
ExpectEqual(Value(160), GetMax(CreatePolynomial(3, 5, 7), CreateTripCount(10, true, true)));
ExpectEqual(Value(-7), GetMin(CreatePolynomial(11, 13, -7),
CreateTripCount(5, true, true)));
ExpectEqual(Value(111), GetMax(CreatePolynomial(11, 13, -7),
CreateTripCount(5, true, true)));
ExpectEqual(Value(-7), GetMin(CreatePolynomial(11, 13, -7),
CreateTripCount(10, true, true)));
ExpectEqual(Value(506), GetMax(CreatePolynomial(11, 13, -7),
CreateTripCount(10, true, true)));
ExpectEqual(Value(), GetMin(CreatePolynomial(-3, 5, 7), CreateTripCount(10, true, true)));
ExpectEqual(Value(), GetMax(CreatePolynomial(-3, 5, 7), CreateTripCount(10, true, true)));
ExpectEqual(Value(), GetMin(CreatePolynomial(3, -5, 7), CreateTripCount(10, true, true)));
ExpectEqual(Value(), GetMax(CreatePolynomial(3, -5, 7), CreateTripCount(10, true, true)));
}
TEST_F(InductionVarRangeTest, GetMinMaxGeometricMul) {
ExpectEqual(Value(), GetMin(CreateGeometric(1, 1, 1, '*'), nullptr));
ExpectEqual(Value(), GetMax(CreateGeometric(1, 1, 1, '*'), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxGeometricDiv) {
ExpectEqual(Value(5), GetMin(CreateGeometric(11, 5, 3, '/'), nullptr));
ExpectEqual(Value(16), GetMax(CreateGeometric(11, 5, 3, '/'), nullptr));
ExpectEqual(Value(-5), GetMin(CreateGeometric(11, -5, 3, '/'), nullptr));
ExpectEqual(Value(6), GetMax(CreateGeometric(11, -5, 3, '/'), nullptr));
ExpectEqual(Value(-6), GetMin(CreateGeometric(-11, 5, 3, '/'), nullptr));
ExpectEqual(Value(5), GetMax(CreateGeometric(-11, 5, 3, '/'), nullptr));
ExpectEqual(Value(-16), GetMin(CreateGeometric(-11, -5, 3, '/'), nullptr));
ExpectEqual(Value(-5), GetMax(CreateGeometric(-11, -5, 3, '/'), nullptr));
}
TEST_F(InductionVarRangeTest, GetMinMaxPeriodic) {
ExpectEqual(Value(-2), GetMin(CreateRange(-2, 99), nullptr));
ExpectEqual(Value(99), GetMax(CreateRange(-2, 99), nullptr));
}
TEST_F(InductionVarRangeTest, GetMulMin) {
ExpectEqual(Value(-14), GetMul(CreateConst(2), CreateRange(-7, 8), true));
ExpectEqual(Value(-16), GetMul(CreateConst(-2), CreateRange(-7, 8), true));
ExpectEqual(Value(-14), GetMul(CreateRange(-7, 8), CreateConst(2), true));
ExpectEqual(Value(-16), GetMul(CreateRange(-7, 8), CreateConst(-2), true));
ExpectEqual(Value(6), GetMul(CreateRange(2, 10), CreateRange(3, 5), true));
ExpectEqual(Value(-50), GetMul(CreateRange(2, 10), CreateRange(-5, -3), true));
ExpectEqual(Value(), GetMul(CreateRange(2, 10), CreateRange(-1, 1), true));
ExpectEqual(Value(-50), GetMul(CreateRange(-10, -2), CreateRange(3, 5), true));
ExpectEqual(Value(6), GetMul(CreateRange(-10, -2), CreateRange(-5, -3), true));
ExpectEqual(Value(), GetMul(CreateRange(-10, -2), CreateRange(-1, 1), true));
ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(2, 10), true));
ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-10, -2), true));
ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-1, 1), true));
}
TEST_F(InductionVarRangeTest, GetMulMax) {
ExpectEqual(Value(16), GetMul(CreateConst(2), CreateRange(-7, 8), false));
ExpectEqual(Value(14), GetMul(CreateConst(-2), CreateRange(-7, 8), false));
ExpectEqual(Value(16), GetMul(CreateRange(-7, 8), CreateConst(2), false));
ExpectEqual(Value(14), GetMul(CreateRange(-7, 8), CreateConst(-2), false));
ExpectEqual(Value(50), GetMul(CreateRange(2, 10), CreateRange(3, 5), false));
ExpectEqual(Value(-6), GetMul(CreateRange(2, 10), CreateRange(-5, -3), false));
ExpectEqual(Value(), GetMul(CreateRange(2, 10), CreateRange(-1, 1), false));
ExpectEqual(Value(-6), GetMul(CreateRange(-10, -2), CreateRange(3, 5), false));
ExpectEqual(Value(50), GetMul(CreateRange(-10, -2), CreateRange(-5, -3), false));
ExpectEqual(Value(), GetMul(CreateRange(-10, -2), CreateRange(-1, 1), false));
ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(2, 10), false));
ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-10, -2), false));
ExpectEqual(Value(), GetMul(CreateRange(-1, 1), CreateRange(-1, 1), false));
}
TEST_F(InductionVarRangeTest, GetDivMin) {
ExpectEqual(Value(-5), GetDiv(CreateRange(-10, 20), CreateConst(2), true));
ExpectEqual(Value(-10), GetDiv(CreateRange(-10, 20), CreateConst(-2), true));
ExpectEqual(Value(10), GetDiv(CreateRange(40, 1000), CreateRange(2, 4), true));
ExpectEqual(Value(-500), GetDiv(CreateRange(40, 1000), CreateRange(-4, -2), true));
ExpectEqual(Value(), GetDiv(CreateRange(40, 1000), CreateRange(-1, 1), true));
ExpectEqual(Value(-500), GetDiv(CreateRange(-1000, -40), CreateRange(2, 4), true));
ExpectEqual(Value(10), GetDiv(CreateRange(-1000, -40), CreateRange(-4, -2), true));
ExpectEqual(Value(), GetDiv(CreateRange(-1000, -40), CreateRange(-1, 1), true));
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(40, 1000), true));
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1000, -40), true));
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1, 1), true));
}
TEST_F(InductionVarRangeTest, GetDivMax) {
ExpectEqual(Value(10), GetDiv(CreateRange(-10, 20), CreateConst(2), false));
ExpectEqual(Value(5), GetDiv(CreateRange(-10, 20), CreateConst(-2), false));
ExpectEqual(Value(500), GetDiv(CreateRange(40, 1000), CreateRange(2, 4), false));
ExpectEqual(Value(-10), GetDiv(CreateRange(40, 1000), CreateRange(-4, -2), false));
ExpectEqual(Value(), GetDiv(CreateRange(40, 1000), CreateRange(-1, 1), false));
ExpectEqual(Value(-10), GetDiv(CreateRange(-1000, -40), CreateRange(2, 4), false));
ExpectEqual(Value(500), GetDiv(CreateRange(-1000, -40), CreateRange(-4, -2), false));
ExpectEqual(Value(), GetDiv(CreateRange(-1000, -40), CreateRange(-1, 1), false));
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(40, 1000), false));
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1000, 40), false));
ExpectEqual(Value(), GetDiv(CreateRange(-1, 1), CreateRange(-1, 1), false));
}
TEST_F(InductionVarRangeTest, GetMinMaxRem) {
ExpectEqual(Value(), GetMin(CreateInvariant('%', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(), GetMax(CreateInvariant('%', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(), GetMin(CreateInvariant('%', CreateRange(10, 20), CreateConst(2)), nullptr));
ExpectEqual(Value(), GetMax(CreateInvariant('%', CreateRange(10, 20), CreateConst(2)), nullptr));
ExpectEqual(Value(2), GetMin(CreateInvariant('%', CreateConst(2), CreateConst(5)), nullptr));
ExpectEqual(Value(2), GetMax(CreateInvariant('%', CreateConst(2), CreateConst(5)), nullptr));
ExpectEqual(Value(1), GetMin(CreateInvariant('%', CreateConst(11), CreateConst(5)), nullptr));
ExpectEqual(Value(1), GetMax(CreateInvariant('%', CreateConst(11), CreateConst(5)), nullptr));
}
TEST_F(InductionVarRangeTest, GetRem) {
ExpectEqual(Value(0), GetRem(CreateConst(1), CreateConst(1)));
ExpectEqual(Value(2), GetRem(CreateConst(2), CreateConst(5)));
ExpectEqual(Value(1), GetRem(CreateConst(11), CreateConst(5)));
ExpectEqual(Value(-2), GetRem(CreateConst(-2), CreateConst(5)));
ExpectEqual(Value(-1), GetRem(CreateConst(-11), CreateConst(5)));
ExpectEqual(Value(2), GetRem(CreateConst(2), CreateConst(-5)));
ExpectEqual(Value(1), GetRem(CreateConst(11), CreateConst(-5)));
ExpectEqual(Value(-2), GetRem(CreateConst(-2), CreateConst(-5)));
ExpectEqual(Value(-1), GetRem(CreateConst(-11), CreateConst(-5)));
ExpectEqual(Value(), GetRem(CreateConst(1), CreateConst(0)));
}
TEST_F(InductionVarRangeTest, GetMinMaxXor) {
ExpectEqual(Value(), GetMin(CreateInvariant('^', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(), GetMax(CreateInvariant('^', CreateConst(2), CreateRange(10, 20)), nullptr));
ExpectEqual(Value(), GetMin(CreateInvariant('^', CreateRange(10, 20), CreateConst(2)), nullptr));
ExpectEqual(Value(), GetMax(CreateInvariant('^', CreateRange(10, 20), CreateConst(2)), nullptr));
ExpectEqual(Value(3), GetMin(CreateInvariant('^', CreateConst(1), CreateConst(2)), nullptr));
ExpectEqual(Value(3), GetMax(CreateInvariant('^', CreateConst(1), CreateConst(2)), nullptr));
}
TEST_F(InductionVarRangeTest, GetXor) {
ExpectEqual(Value(0), GetXor(CreateConst(1), CreateConst(1)));
ExpectEqual(Value(3), GetXor(CreateConst(1), CreateConst(2)));
ExpectEqual(Value(-2), GetXor(CreateConst(1), CreateConst(-1)));
ExpectEqual(Value(0), GetXor(CreateConst(-1), CreateConst(-1)));
}
TEST_F(InductionVarRangeTest, AddValue) {
ExpectEqual(Value(110), AddValue(Value(10), Value(100)));
ExpectEqual(Value(-5), AddValue(Value(x_, 1, -4), Value(x_, -1, -1)));
ExpectEqual(Value(x_, 3, -5), AddValue(Value(x_, 2, -4), Value(x_, 1, -1)));
ExpectEqual(Value(), AddValue(Value(x_, 1, 5), Value(y_, 1, -7)));
ExpectEqual(Value(x_, 1, 23), AddValue(Value(x_, 1, 20), Value(3)));
ExpectEqual(Value(y_, 1, 5), AddValue(Value(55), Value(y_, 1, -50)));
const int32_t max_value = std::numeric_limits<int32_t>::max();
ExpectEqual(Value(max_value), AddValue(Value(max_value - 5), Value(5)));
ExpectEqual(Value(), AddValue(Value(max_value - 5), Value(6))); // unsafe
}
TEST_F(InductionVarRangeTest, SubValue) {
ExpectEqual(Value(-90), SubValue(Value(10), Value(100)));
ExpectEqual(Value(-3), SubValue(Value(x_, 1, -4), Value(x_, 1, -1)));
ExpectEqual(Value(x_, 2, -3), SubValue(Value(x_, 3, -4), Value(x_, 1, -1)));
ExpectEqual(Value(), SubValue(Value(x_, 1, 5), Value(y_, 1, -7)));
ExpectEqual(Value(x_, 1, 17), SubValue(Value(x_, 1, 20), Value(3)));
ExpectEqual(Value(y_, -4, 105), SubValue(Value(55), Value(y_, 4, -50)));
const int32_t min_value = std::numeric_limits<int32_t>::min();
ExpectEqual(Value(min_value), SubValue(Value(min_value + 5), Value(5)));
ExpectEqual(Value(), SubValue(Value(min_value + 5), Value(6))); // unsafe
}
TEST_F(InductionVarRangeTest, MulValue) {
ExpectEqual(Value(1000), MulValue(Value(10), Value(100)));
ExpectEqual(Value(), MulValue(Value(x_, 1, -4), Value(x_, 1, -1)));
ExpectEqual(Value(), MulValue(Value(x_, 1, 5), Value(y_, 1, -7)));
ExpectEqual(Value(x_, 9, 60), MulValue(Value(x_, 3, 20), Value(3)));
ExpectEqual(Value(y_, 55, -110), MulValue(Value(55), Value(y_, 1, -2)));
ExpectEqual(Value(), MulValue(Value(90000), Value(-90000))); // unsafe
}
TEST_F(InductionVarRangeTest, MulValueSpecial) {
const int32_t min_value = std::numeric_limits<int32_t>::min();
const int32_t max_value = std::numeric_limits<int32_t>::max();
// Unsafe.
ExpectEqual(Value(), MulValue(Value(min_value), Value(min_value)));
ExpectEqual(Value(), MulValue(Value(min_value), Value(-1)));
ExpectEqual(Value(), MulValue(Value(min_value), Value(max_value)));
ExpectEqual(Value(), MulValue(Value(max_value), Value(max_value)));
// Safe.
ExpectEqual(Value(min_value), MulValue(Value(min_value), Value(1)));
ExpectEqual(Value(max_value), MulValue(Value(max_value), Value(1)));
ExpectEqual(Value(-max_value), MulValue(Value(max_value), Value(-1)));
ExpectEqual(Value(-1), MulValue(Value(1), Value(-1)));
ExpectEqual(Value(1), MulValue(Value(-1), Value(-1)));
}
TEST_F(InductionVarRangeTest, DivValue) {
ExpectEqual(Value(25), DivValue(Value(100), Value(4)));
ExpectEqual(Value(), DivValue(Value(x_, 1, -4), Value(x_, 1, -1)));
ExpectEqual(Value(), DivValue(Value(x_, 1, 5), Value(y_, 1, -7)));
ExpectEqual(Value(), DivValue(Value(x_, 12, 24), Value(3)));
ExpectEqual(Value(), DivValue(Value(55), Value(y_, 1, -50)));
ExpectEqual(Value(), DivValue(Value(1), Value(0))); // unsafe
}
TEST_F(InductionVarRangeTest, DivValueSpecial) {
const int32_t min_value = std::numeric_limits<int32_t>::min();
const int32_t max_value = std::numeric_limits<int32_t>::max();
// Unsafe.
ExpectEqual(Value(), DivValue(Value(min_value), Value(-1)));
// Safe.
ExpectEqual(Value(1), DivValue(Value(min_value), Value(min_value)));
ExpectEqual(Value(1), DivValue(Value(max_value), Value(max_value)));
ExpectEqual(Value(min_value), DivValue(Value(min_value), Value(1)));
ExpectEqual(Value(max_value), DivValue(Value(max_value), Value(1)));
ExpectEqual(Value(-max_value), DivValue(Value(max_value), Value(-1)));
ExpectEqual(Value(-1), DivValue(Value(1), Value(-1)));
ExpectEqual(Value(1), DivValue(Value(-1), Value(-1)));
}
TEST_F(InductionVarRangeTest, MinValue) {
ExpectEqual(Value(10), MinValue(Value(10), Value(100)));
ExpectEqual(Value(x_, 1, -4), MinValue(Value(x_, 1, -4), Value(x_, 1, -1)));
ExpectEqual(Value(x_, 4, -4), MinValue(Value(x_, 4, -4), Value(x_, 4, -1)));
ExpectEqual(Value(), MinValue(Value(x_, 1, 5), Value(y_, 1, -7)));
ExpectEqual(Value(), MinValue(Value(x_, 1, 20), Value(3)));
ExpectEqual(Value(), MinValue(Value(55), Value(y_, 1, -50)));
}
TEST_F(InductionVarRangeTest, MaxValue) {
ExpectEqual(Value(100), MaxValue(Value(10), Value(100)));
ExpectEqual(Value(x_, 1, -1), MaxValue(Value(x_, 1, -4), Value(x_, 1, -1)));
ExpectEqual(Value(x_, 4, -1), MaxValue(Value(x_, 4, -4), Value(x_, 4, -1)));
ExpectEqual(Value(), MaxValue(Value(x_, 1, 5), Value(y_, 1, -7)));
ExpectEqual(Value(), MaxValue(Value(x_, 1, 20), Value(3)));
ExpectEqual(Value(), MaxValue(Value(55), Value(y_, 1, -50)));
}
TEST_F(InductionVarRangeTest, ArrayLengthAndHints) {
// We pass a bogus constant for the class to avoid mocking one.
HInstruction* new_array = new (GetAllocator()) HNewArray(
/* cls= */ x_,
/* length= */ x_,
/* dex_pc= */ 0,
/* component_size_shift= */ 0);
entry_block_->AddInstruction(new_array);
HInstruction* array_length = new (GetAllocator()) HArrayLength(new_array, 0);
entry_block_->AddInstruction(array_length);
// With null hint: yields extreme constants.
const int32_t max_value = std::numeric_limits<int32_t>::max();
SetHint(nullptr);
ExpectEqual(Value(0), GetMin(CreateFetch(array_length), nullptr));
ExpectEqual(Value(max_value), GetMax(CreateFetch(array_length), nullptr));
// With explicit hint: yields the length instruction.
SetHint(array_length);
ExpectEqual(Value(array_length, 1, 0), GetMin(CreateFetch(array_length), nullptr));
ExpectEqual(Value(array_length, 1, 0), GetMax(CreateFetch(array_length), nullptr));
// With any non-null hint: chases beyond the length instruction.
SetHint(x_);
ExpectEqual(Value(x_, 1, 0), GetMin(CreateFetch(array_length), nullptr));
ExpectEqual(Value(x_, 1, 0), GetMax(CreateFetch(array_length), nullptr));
}
TEST_F(InductionVarRangeTest, AddOrSubAndConstant) {
HInstruction* add = new (GetAllocator())
HAdd(DataType::Type::kInt32, x_, graph_->GetIntConstant(-1));
HInstruction* alt = new (GetAllocator())
HAdd(DataType::Type::kInt32, graph_->GetIntConstant(-1), x_);
HInstruction* sub = new (GetAllocator())
HSub(DataType::Type::kInt32, x_, graph_->GetIntConstant(1));
HInstruction* rev = new (GetAllocator())
HSub(DataType::Type::kInt32, graph_->GetIntConstant(1), x_);
entry_block_->AddInstruction(add);
entry_block_->AddInstruction(alt);
entry_block_->AddInstruction(sub);
entry_block_->AddInstruction(rev);
ExpectEqual(Value(x_, 1, -1), GetMin(CreateFetch(add), nullptr));
ExpectEqual(Value(x_, 1, -1), GetMax(CreateFetch(add), nullptr));
ExpectEqual(Value(x_, 1, -1), GetMin(CreateFetch(alt), nullptr));
ExpectEqual(Value(x_, 1, -1), GetMax(CreateFetch(alt), nullptr));
ExpectEqual(Value(x_, 1, -1), GetMin(CreateFetch(sub), nullptr));
ExpectEqual(Value(x_, 1, -1), GetMax(CreateFetch(sub), nullptr));
ExpectEqual(Value(x_, -1, 1), GetMin(CreateFetch(rev), nullptr));
ExpectEqual(Value(x_, -1, 1), GetMax(CreateFetch(rev), nullptr));
}
//
// Tests on public methods.
//
TEST_F(InductionVarRangeTest, ConstantTripCountUp) {
BuildLoop(0, graph_->GetIntConstant(1000), 1);
PerformInductionVarAnalysis();
Value v1, v2;
bool needs_finite_test = true;
bool needs_taken_test = true;
HInstruction* phi = condition_->InputAt(0);
HInstruction* exit = exit_block_->GetLastInstruction();
// In context of header: known.
range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(0), v1);
ExpectEqual(Value(1000), v2);
// In context of loop-body: known.
range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(0), v1);
ExpectEqual(Value(999), v2);
range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(1), v1);
ExpectEqual(Value(1000), v2);
// Induction vs. no-induction.
EXPECT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test));
EXPECT_TRUE(range_.CanGenerateLastValue(phi));
EXPECT_FALSE(range_.CanGenerateRange(exit, exit, &needs_finite_test, &needs_taken_test));
EXPECT_FALSE(range_.CanGenerateLastValue(exit));
// Last value (unsimplified).
HInstruction* last = range_.GenerateLastValue(phi, graph_, loop_preheader_);
ASSERT_TRUE(last->IsAdd());
ExpectInt(1000, last->InputAt(0));
ExpectInt(0, last->InputAt(1));
// Loop logic.
int64_t tc = 0;
EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc));
EXPECT_EQ(1000, tc);
HInstruction* offset = nullptr;
EXPECT_TRUE(range_.IsUnitStride(phi, phi, graph_, &offset));
ExpectInt(0, offset);
HInstruction* tce = range_.GenerateTripCount(
loop_header_->GetLoopInformation(), graph_, loop_preheader_);
ASSERT_TRUE(tce != nullptr);
ExpectInt(1000, tce);
}
TEST_F(InductionVarRangeTest, ConstantTripCountDown) {
BuildLoop(1000, graph_->GetIntConstant(0), -1);
PerformInductionVarAnalysis();
Value v1, v2;
bool needs_finite_test = true;
bool needs_taken_test = true;
HInstruction* phi = condition_->InputAt(0);
HInstruction* exit = exit_block_->GetLastInstruction();
// In context of header: known.
range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(0), v1);
ExpectEqual(Value(1000), v2);
// In context of loop-body: known.
range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(1), v1);
ExpectEqual(Value(1000), v2);
range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(0), v1);
ExpectEqual(Value(999), v2);
// Induction vs. no-induction.
EXPECT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test));
EXPECT_TRUE(range_.CanGenerateLastValue(phi));
EXPECT_FALSE(range_.CanGenerateRange(exit, exit, &needs_finite_test, &needs_taken_test));
EXPECT_FALSE(range_.CanGenerateLastValue(exit));
// Last value (unsimplified).
HInstruction* last = range_.GenerateLastValue(phi, graph_, loop_preheader_);
ASSERT_TRUE(last->IsSub());
ExpectInt(1000, last->InputAt(0));
ASSERT_TRUE(last->InputAt(1)->IsNeg());
last = last->InputAt(1)->InputAt(0);
ASSERT_TRUE(last->IsSub());
ExpectInt(0, last->InputAt(0));
ExpectInt(1000, last->InputAt(1));
// Loop logic.
int64_t tc = 0;
EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc));
EXPECT_EQ(1000, tc);
HInstruction* offset = nullptr;
EXPECT_FALSE(range_.IsUnitStride(phi, phi, graph_, &offset));
HInstruction* tce = range_.GenerateTripCount(
loop_header_->GetLoopInformation(), graph_, loop_preheader_);
ASSERT_TRUE(tce != nullptr);
ASSERT_TRUE(tce->IsNeg());
last = tce->InputAt(0);
EXPECT_TRUE(last->IsSub());
ExpectInt(0, last->InputAt(0));
ExpectInt(1000, last->InputAt(1));
}
TEST_F(InductionVarRangeTest, SymbolicTripCountUp) {
BuildLoop(0, x_, 1);
PerformInductionVarAnalysis();
Value v1, v2;
bool needs_finite_test = true;
bool needs_taken_test = true;
HInstruction* phi = condition_->InputAt(0);
// In context of header: upper unknown.
range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(0), v1);
ExpectEqual(Value(), v2);
// In context of loop-body: known.
range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(0), v1);
ExpectEqual(Value(x_, 1, -1), v2);
range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(1), v1);
ExpectEqual(Value(x_, 1, 0), v2);
HInstruction* lower = nullptr;
HInstruction* upper = nullptr;
// Can generate code in context of loop-body only.
EXPECT_FALSE(range_.CanGenerateRange(condition_, phi, &needs_finite_test, &needs_taken_test));
ASSERT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test));
EXPECT_FALSE(needs_finite_test);
EXPECT_TRUE(needs_taken_test);
// Generates code (unsimplified).
range_.GenerateRange(increment_, phi, graph_, loop_preheader_, &lower, &upper);
// Verify lower is 0+0.
ASSERT_TRUE(lower != nullptr);
ASSERT_TRUE(lower->IsAdd());
ExpectInt(0, lower->InputAt(0));
ExpectInt(0, lower->InputAt(1));
// Verify upper is (V-1)+0.
ASSERT_TRUE(upper != nullptr);
ASSERT_TRUE(upper->IsAdd());
ASSERT_TRUE(upper->InputAt(0)->IsSub());
EXPECT_TRUE(upper->InputAt(0)->InputAt(0)->IsParameterValue());
ExpectInt(1, upper->InputAt(0)->InputAt(1));
ExpectInt(0, upper->InputAt(1));
// Verify taken-test is 0<V.
HInstruction* taken = range_.GenerateTakenTest(increment_, graph_, loop_preheader_);
ASSERT_TRUE(taken != nullptr);
ASSERT_TRUE(taken->IsLessThan());
ExpectInt(0, taken->InputAt(0));
EXPECT_TRUE(taken->InputAt(1)->IsParameterValue());
// Replacement.
range_.Replace(loop_header_->GetLastInstruction(), x_, y_);
range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(1), v1);
ExpectEqual(Value(y_, 1, 0), v2);
// Loop logic.
int64_t tc = 0;
EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc));
EXPECT_EQ(0, tc); // unknown
HInstruction* offset = nullptr;
EXPECT_TRUE(range_.IsUnitStride(phi, phi, graph_, &offset));
ExpectInt(0, offset);
HInstruction* tce = range_.GenerateTripCount(
loop_header_->GetLoopInformation(), graph_, loop_preheader_);
ASSERT_TRUE(tce != nullptr);
EXPECT_TRUE(tce->IsSelect()); // guarded by taken-test
ExpectInt(0, tce->InputAt(0));
EXPECT_TRUE(tce->InputAt(1)->IsParameterValue());
EXPECT_TRUE(tce->InputAt(2)->IsLessThan());
}
TEST_F(InductionVarRangeTest, SymbolicTripCountDown) {
BuildLoop(1000, x_, -1);
PerformInductionVarAnalysis();
Value v1, v2;
bool needs_finite_test = true;
bool needs_taken_test = true;
HInstruction* phi = condition_->InputAt(0);
// In context of header: lower unknown.
range_.GetInductionRange(condition_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(), v1);
ExpectEqual(Value(1000), v2);
// In context of loop-body: known.
range_.GetInductionRange(increment_, phi, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(x_, 1, 1), v1);
ExpectEqual(Value(1000), v2);
range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(x_, 1, 0), v1);
ExpectEqual(Value(999), v2);
HInstruction* lower = nullptr;
HInstruction* upper = nullptr;
// Can generate code in context of loop-body only.
EXPECT_FALSE(range_.CanGenerateRange(condition_, phi, &needs_finite_test, &needs_taken_test));
ASSERT_TRUE(range_.CanGenerateRange(increment_, phi, &needs_finite_test, &needs_taken_test));
EXPECT_FALSE(needs_finite_test);
EXPECT_TRUE(needs_taken_test);
// Generates code (unsimplified).
range_.GenerateRange(increment_, phi, graph_, loop_preheader_, &lower, &upper);
// Verify lower is 1000-((1000-V)-1).
ASSERT_TRUE(lower != nullptr);
ASSERT_TRUE(lower->IsSub());
ExpectInt(1000, lower->InputAt(0));
lower = lower->InputAt(1);
ASSERT_TRUE(lower->IsSub());
ExpectInt(1, lower->InputAt(1));
lower = lower->InputAt(0);
ASSERT_TRUE(lower->IsSub());
ExpectInt(1000, lower->InputAt(0));
EXPECT_TRUE(lower->InputAt(1)->IsParameterValue());
// Verify upper is 1000-0.
ASSERT_TRUE(upper != nullptr);
ASSERT_TRUE(upper->IsSub());
ExpectInt(1000, upper->InputAt(0));
ExpectInt(0, upper->InputAt(1));
// Verify taken-test is 1000>V.
HInstruction* taken = range_.GenerateTakenTest(increment_, graph_, loop_preheader_);
ASSERT_TRUE(taken != nullptr);
ASSERT_TRUE(taken->IsGreaterThan());
ExpectInt(1000, taken->InputAt(0));
EXPECT_TRUE(taken->InputAt(1)->IsParameterValue());
// Replacement.
range_.Replace(loop_header_->GetLastInstruction(), x_, y_);
range_.GetInductionRange(increment_, increment_, x_, &v1, &v2, &needs_finite_test);
EXPECT_FALSE(needs_finite_test);
ExpectEqual(Value(y_, 1, 0), v1);
ExpectEqual(Value(999), v2);
// Loop logic.
int64_t tc = 0;
EXPECT_TRUE(range_.IsFinite(loop_header_->GetLoopInformation(), &tc));
EXPECT_EQ(0, tc); // unknown
HInstruction* offset = nullptr;
EXPECT_FALSE(range_.IsUnitStride(phi, phi, graph_, &offset));
HInstruction* tce = range_.GenerateTripCount(
loop_header_->GetLoopInformation(), graph_, loop_preheader_);
ASSERT_TRUE(tce != nullptr);
EXPECT_TRUE(tce->IsSelect()); // guarded by taken-test
ExpectInt(0, tce->InputAt(0));
EXPECT_TRUE(tce->InputAt(1)->IsSub());
EXPECT_TRUE(tce->InputAt(2)->IsGreaterThan());
tce = tce->InputAt(1);
ExpectInt(1000, taken->InputAt(0));
EXPECT_TRUE(taken->InputAt(1)->IsParameterValue());
}
} // namespace art