blob: 531424ea4f3f9f65027e80d8d8041a64dc417187 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
// Author: enh@google.com (Elliott Hughes)
#include "utils.h"
#include <pthread.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include "UniquePtr.h"
#include "class_loader.h"
#include "file.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#if !defined(HAVE_POSIX_CLOCKS)
#include <sys/time.h>
#endif
#if defined(HAVE_PRCTL)
#include <sys/prctl.h>
#endif
#if defined(__linux__)
#include <linux/unistd.h>
#endif
namespace art {
pid_t GetTid() {
#if defined(__APPLE__)
// Mac OS doesn't have gettid(2).
return getpid();
#else
// Neither bionic nor glibc exposes gettid(2).
return syscall(__NR_gettid);
#endif
}
bool ReadFileToString(const std::string& file_name, std::string* result) {
UniquePtr<File> file(OS::OpenFile(file_name.c_str(), false));
if (file.get() == NULL) {
return false;
}
std::vector<char> buf(8 * KB);
while (true) {
int64_t n = file->Read(&buf[0], buf.size());
if (n == -1) {
return false;
}
if (n == 0) {
return true;
}
result->append(&buf[0], n);
}
}
std::string GetIsoDate() {
time_t now = time(NULL);
struct tm tmbuf;
struct tm* ptm = localtime_r(&now, &tmbuf);
return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
}
uint64_t MilliTime() {
#if defined(HAVE_POSIX_CLOCKS)
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_nsec / 1000000LL;
#else
struct timeval now;
gettimeofday(&now, NULL);
return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_usec / 1000LL;
#endif
}
uint64_t MicroTime() {
#if defined(HAVE_POSIX_CLOCKS)
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
#else
struct timeval now;
gettimeofday(&now, NULL);
return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_usec * 1000LL;
#endif
}
uint64_t NanoTime() {
#if defined(HAVE_POSIX_CLOCKS)
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
#else
struct timeval now;
gettimeofday(&now, NULL);
return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_usec * 1000LL;
#endif
}
uint64_t ThreadCpuMicroTime() {
#if defined(HAVE_POSIX_CLOCKS)
struct timespec now;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
#else
UNIMPLEMENTED(WARNING);
return -1;
#endif
}
uint64_t NsToMs(uint64_t ns) {
return ns/1000/1000;
}
std::string PrettyDescriptor(const String* java_descriptor) {
if (java_descriptor == NULL) {
return "null";
}
return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
}
std::string PrettyDescriptor(const Class* klass) {
if (klass == NULL) {
return "null";
}
return PrettyDescriptor(ClassHelper(klass).GetDescriptor());
}
std::string PrettyDescriptor(const std::string& descriptor) {
// Count the number of '['s to get the dimensionality.
const char* c = descriptor.c_str();
size_t dim = 0;
while (*c == '[') {
dim++;
c++;
}
// Reference or primitive?
if (*c == 'L') {
// "[[La/b/C;" -> "a.b.C[][]".
c++; // Skip the 'L'.
} else {
// "[[B" -> "byte[][]".
// To make life easier, we make primitives look like unqualified
// reference types.
switch (*c) {
case 'B': c = "byte;"; break;
case 'C': c = "char;"; break;
case 'D': c = "double;"; break;
case 'F': c = "float;"; break;
case 'I': c = "int;"; break;
case 'J': c = "long;"; break;
case 'S': c = "short;"; break;
case 'Z': c = "boolean;"; break;
default: return descriptor;
}
}
// At this point, 'c' is a string of the form "fully/qualified/Type;"
// or "primitive;". Rewrite the type with '.' instead of '/':
std::string result;
const char* p = c;
while (*p != ';') {
char ch = *p++;
if (ch == '/') {
ch = '.';
}
result.push_back(ch);
}
// ...and replace the semicolon with 'dim' "[]" pairs:
while (dim--) {
result += "[]";
}
return result;
}
std::string PrettyDescriptor(Primitive::Type type) {
std::string descriptor_string(Primitive::Descriptor(type));
return PrettyDescriptor(descriptor_string);
}
std::string PrettyField(const Field* f, bool with_type) {
if (f == NULL) {
return "null";
}
FieldHelper fh(f);
std::string result;
if (with_type) {
result += PrettyDescriptor(fh.GetTypeDescriptor());
result += ' ';
}
result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
result += '.';
result += fh.GetName();
return result;
}
std::string PrettyMethod(const Method* m, bool with_signature) {
if (m == NULL) {
return "null";
}
MethodHelper mh(m);
std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
result += '.';
result += mh.GetName();
if (with_signature) {
// TODO: iterate over the signature's elements and pass them all to
// PrettyDescriptor? We'd need to pull out the return type specially, too.
result += mh.GetSignature();
}
return result;
}
std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
result += '.';
result += dex_file.GetMethodName(method_id);
if (with_signature) {
// TODO: iterate over the signature's elements and pass them all to
// PrettyDescriptor? We'd need to pull out the return type specially, too.
result += dex_file.GetMethodSignature(method_id);
}
return result;
}
std::string PrettyTypeOf(const Object* obj) {
if (obj == NULL) {
return "null";
}
if (obj->GetClass() == NULL) {
return "(raw)";
}
ClassHelper kh(obj->GetClass());
std::string result(PrettyDescriptor(kh.GetDescriptor()));
if (obj->IsClass()) {
kh.ChangeClass(obj->AsClass());
result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">";
}
return result;
}
std::string PrettyClass(const Class* c) {
if (c == NULL) {
return "null";
}
std::string result;
result += "java.lang.Class<";
result += PrettyDescriptor(c);
result += ">";
return result;
}
std::string PrettyClassAndClassLoader(const Class* c) {
if (c == NULL) {
return "null";
}
std::string result;
result += "java.lang.Class<";
result += PrettyDescriptor(c);
result += ",";
result += PrettyTypeOf(c->GetClassLoader());
// TODO: add an identifying hash value for the loader
result += ">";
return result;
}
std::string MangleForJni(const std::string& s) {
std::string result;
size_t char_count = CountModifiedUtf8Chars(s.c_str());
const char* cp = &s[0];
for (size_t i = 0; i < char_count; ++i) {
uint16_t ch = GetUtf16FromUtf8(&cp);
if (ch == '$' || ch > 127) {
StringAppendF(&result, "_0%04x", ch);
} else {
switch (ch) {
case '_':
result += "_1";
break;
case ';':
result += "_2";
break;
case '[':
result += "_3";
break;
case '/':
result += "_";
break;
default:
result.push_back(ch);
break;
}
}
}
return result;
}
std::string DotToDescriptor(const char* class_name) {
std::string descriptor(class_name);
std::replace(descriptor.begin(), descriptor.end(), '.', '/');
if (descriptor.length() > 0 && descriptor[0] != '[') {
descriptor = "L" + descriptor + ";";
}
return descriptor;
}
std::string DescriptorToDot(const StringPiece& descriptor) {
DCHECK_EQ(descriptor[0], 'L');
DCHECK_EQ(descriptor[descriptor.size()-1], ';');
std::string dot(descriptor.substr(1, descriptor.size() - 2).ToString());
std::replace(dot.begin(), dot.end(), '/', '.');
return dot;
}
std::string JniShortName(const Method* m) {
MethodHelper mh(m);
std::string class_name(mh.GetDeclaringClassDescriptor());
// Remove the leading 'L' and trailing ';'...
CHECK_EQ(class_name[0], 'L') << class_name;
CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
class_name.erase(0, 1);
class_name.erase(class_name.size() - 1, 1);
std::string method_name(mh.GetName());
std::string short_name;
short_name += "Java_";
short_name += MangleForJni(class_name);
short_name += "_";
short_name += MangleForJni(method_name);
return short_name;
}
std::string JniLongName(const Method* m) {
std::string long_name;
long_name += JniShortName(m);
long_name += "__";
std::string signature(MethodHelper(m).GetSignature());
signature.erase(0, 1);
signature.erase(signature.begin() + signature.find(')'), signature.end());
long_name += MangleForJni(signature);
return long_name;
}
// Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
0x00000000, // 00..1f low control characters; nothing valid
0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z'
};
// Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
/*
* It's a multibyte encoded character. Decode it and analyze. We
* accept anything that isn't (a) an improperly encoded low value,
* (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
* control character, or (e) a high space, layout, or special
* character (U+00a0, U+2000..U+200f, U+2028..U+202f,
* U+fff0..U+ffff). This is all specified in the dex format
* document.
*/
uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
// Perform follow-up tests based on the high 8 bits.
switch (utf16 >> 8) {
case 0x00:
// It's only valid if it's above the ISO-8859-1 high space (0xa0).
return (utf16 > 0x00a0);
case 0xd8:
case 0xd9:
case 0xda:
case 0xdb:
// It's a leading surrogate. Check to see that a trailing
// surrogate follows.
utf16 = GetUtf16FromUtf8(pUtf8Ptr);
return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
case 0xdc:
case 0xdd:
case 0xde:
case 0xdf:
// It's a trailing surrogate, which is not valid at this point.
return false;
case 0x20:
case 0xff:
// It's in the range that has spaces, controls, and specials.
switch (utf16 & 0xfff8) {
case 0x2000:
case 0x2008:
case 0x2028:
case 0xfff0:
case 0xfff8:
return false;
}
break;
}
return true;
}
/* Return whether the pointed-at modified-UTF-8 encoded character is
* valid as part of a member name, updating the pointer to point past
* the consumed character. This will consume two encoded UTF-16 code
* points if the character is encoded as a surrogate pair. Also, if
* this function returns false, then the given pointer may only have
* been partially advanced.
*/
bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
uint8_t c = (uint8_t) **pUtf8Ptr;
if (c <= 0x7f) {
// It's low-ascii, so check the table.
uint32_t wordIdx = c >> 5;
uint32_t bitIdx = c & 0x1f;
(*pUtf8Ptr)++;
return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
}
// It's a multibyte encoded character. Call a non-inline function
// for the heavy lifting.
return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
}
bool IsValidMemberName(const char* s) {
bool angle_name = false;
switch(*s) {
case '\0':
// The empty string is not a valid name.
return false;
case '<':
angle_name = true;
s++;
break;
}
while (true) {
switch (*s) {
case '\0':
return !angle_name;
case '>':
return angle_name && s[1] == '\0';
}
if (!IsValidPartOfMemberNameUtf8(&s)) {
return false;
}
}
}
enum ClassNameType { kName, kDescriptor };
bool IsValidClassName(const char* s, ClassNameType type, char separator) {
int arrayCount = 0;
while (*s == '[') {
arrayCount++;
s++;
}
if (arrayCount > 255) {
// Arrays may have no more than 255 dimensions.
return false;
}
if (arrayCount != 0) {
/*
* If we're looking at an array of some sort, then it doesn't
* matter if what is being asked for is a class name; the
* format looks the same as a type descriptor in that case, so
* treat it as such.
*/
type = kDescriptor;
}
if (type == kDescriptor) {
/*
* We are looking for a descriptor. Either validate it as a
* single-character primitive type, or continue on to check the
* embedded class name (bracketed by "L" and ";").
*/
switch (*(s++)) {
case 'B':
case 'C':
case 'D':
case 'F':
case 'I':
case 'J':
case 'S':
case 'Z':
// These are all single-character descriptors for primitive types.
return (*s == '\0');
case 'V':
// Non-array void is valid, but you can't have an array of void.
return (arrayCount == 0) && (*s == '\0');
case 'L':
// Class name: Break out and continue below.
break;
default:
// Oddball descriptor character.
return false;
}
}
/*
* We just consumed the 'L' that introduces a class name as part
* of a type descriptor, or we are looking for an unadorned class
* name.
*/
bool sepOrFirst = true; // first character or just encountered a separator.
for (;;) {
uint8_t c = (uint8_t) *s;
switch (c) {
case '\0':
/*
* Premature end for a type descriptor, but valid for
* a class name as long as we haven't encountered an
* empty component (including the degenerate case of
* the empty string "").
*/
return (type == kName) && !sepOrFirst;
case ';':
/*
* Invalid character for a class name, but the
* legitimate end of a type descriptor. In the latter
* case, make sure that this is the end of the string
* and that it doesn't end with an empty component
* (including the degenerate case of "L;").
*/
return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
case '/':
case '.':
if (c != separator) {
// The wrong separator character.
return false;
}
if (sepOrFirst) {
// Separator at start or two separators in a row.
return false;
}
sepOrFirst = true;
s++;
break;
default:
if (!IsValidPartOfMemberNameUtf8(&s)) {
return false;
}
sepOrFirst = false;
break;
}
}
}
bool IsValidBinaryClassName(const char* s) {
return IsValidClassName(s, kName, '.');
}
bool IsValidJniClassName(const char* s) {
return IsValidClassName(s, kName, '/');
}
bool IsValidDescriptor(const char* s) {
return IsValidClassName(s, kDescriptor, '/');
}
void Split(const std::string& s, char delim, std::vector<std::string>& result) {
const char* p = s.data();
const char* end = p + s.size();
while (p != end) {
if (*p == delim) {
++p;
} else {
const char* start = p;
while (++p != end && *p != delim) {
// Skip to the next occurrence of the delimiter.
}
result.push_back(std::string(start, p - start));
}
}
}
void SetThreadName(const char* threadName) {
int hasAt = 0;
int hasDot = 0;
const char* s = threadName;
while (*s) {
if (*s == '.') {
hasDot = 1;
} else if (*s == '@') {
hasAt = 1;
}
s++;
}
int len = s - threadName;
if (len < 15 || hasAt || !hasDot) {
s = threadName;
} else {
s = threadName + len - 15;
}
#if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
/* pthread_setname_np fails rather than truncating long strings */
char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
strncpy(buf, s, sizeof(buf)-1);
buf[sizeof(buf)-1] = '\0';
errno = pthread_setname_np(pthread_self(), buf);
if (errno != 0) {
PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
}
#elif defined(HAVE_PRCTL)
prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
#else
UNIMPLEMENTED(WARNING) << threadName;
#endif
}
void GetTaskStats(pid_t tid, int& utime, int& stime, int& task_cpu) {
utime = stime = task_cpu = 0;
std::string stats;
if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", GetTid()).c_str(), &stats)) {
return;
}
// Skip the command, which may contain spaces.
stats = stats.substr(stats.find(')') + 2);
// Extract the three fields we care about.
std::vector<std::string> fields;
Split(stats, ' ', fields);
utime = strtoull(fields[11].c_str(), NULL, 10);
stime = strtoull(fields[12].c_str(), NULL, 10);
task_cpu = strtoull(fields[36].c_str(), NULL, 10);
}
std::string GetArtCacheOrDie() {
const char* data_root = getenv("ANDROID_DATA");
if (data_root == NULL) {
if (OS::DirectoryExists("/data")) {
data_root = "/data";
} else {
data_root = "/tmp";
}
}
if (!OS::DirectoryExists(data_root)) {
LOG(FATAL) << "Failed to find ANDROID_DATA directory " << data_root;
return "";
}
std::string art_cache(StringPrintf("%s/art-cache", data_root));
if (!OS::DirectoryExists(art_cache.c_str())) {
if (StringPiece(art_cache).starts_with("/tmp/")) {
int result = mkdir(art_cache.c_str(), 0700);
if (result != 0) {
LOG(FATAL) << "Failed to create art-cache directory " << art_cache;
return "";
}
} else {
LOG(FATAL) << "Failed to find art-cache directory " << art_cache;
return "";
}
}
return art_cache;
}
std::string GetArtCacheFilenameOrDie(const std::string& location) {
std::string art_cache(GetArtCacheOrDie());
CHECK_EQ(location[0], '/');
std::string cache_file(location, 1); // skip leading slash
std::replace(cache_file.begin(), cache_file.end(), '/', '@');
return art_cache + "/" + cache_file;
}
bool IsValidZipFilename(const std::string& filename) {
if (filename.size() < 4) {
return false;
}
std::string suffix(filename.substr(filename.size() - 4));
return (suffix == ".zip" || suffix == ".jar" || suffix == ".apk");
}
bool IsValidDexFilename(const std::string& filename) {
if (filename.size() < 4) {
return false;
}
std::string suffix(filename.substr(filename.size() - 4));
return (suffix == ".dex");
}
} // namespace art