blob: bb6645122121e0fcec1b84bc70ef618e6487dcfc [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "object_utils.h"
namespace art {
#define DISPLAY_MISSING_TARGETS (cUnit->enableDebug & \
(1 << kDebugDisplayMissingTargets))
STATIC const RegLocation badLoc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, INVALID_REG,
INVALID_REG, INVALID_SREG};
/* Mark register usage state and return long retloc */
STATIC RegLocation getRetLocWide(CompilationUnit* cUnit)
{
RegLocation res = LOC_DALVIK_RETURN_VAL_WIDE;
oatLockTemp(cUnit, res.lowReg);
oatLockTemp(cUnit, res.highReg);
oatMarkPair(cUnit, res.lowReg, res.highReg);
return res;
}
STATIC RegLocation getRetLoc(CompilationUnit* cUnit)
{
RegLocation res = LOC_DALVIK_RETURN_VAL;
oatLockTemp(cUnit, res.lowReg);
return res;
}
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
STATIC void genNewArray(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest,
RegLocation rlSrc)
{
oatFlushAllRegs(cUnit); /* Everything to home location */
uint32_t type_idx = mir->dalvikInsn.vC;
if (cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx,
cUnit->dex_cache,
*cUnit->dex_file,
type_idx)) {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pAllocArrayFromCode), rLR);
} else {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pAllocArrayFromCodeWithAccessCheck), rLR);
}
loadCurrMethodDirect(cUnit, r1); // arg1 <- Method*
loadConstant(cUnit, r0, type_idx); // arg0 <- type_id
loadValueDirectFixed(cUnit, rlSrc, r2); // arg2 <- count
callRuntimeHelper(cUnit, rLR);
RegLocation rlResult = oatGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
}
/*
* Similar to genNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
STATIC void genFilledNewArray(CompilationUnit* cUnit, MIR* mir, bool isRange)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int elems = dInsn->vA;
int typeId = dInsn->vB;
oatFlushAllRegs(cUnit); /* Everything to home location */
if (cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx,
cUnit->dex_cache,
*cUnit->dex_file,
typeId)) {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pCheckAndAllocArrayFromCode), rLR);
} else {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pCheckAndAllocArrayFromCodeWithAccessCheck), rLR);
}
loadCurrMethodDirect(cUnit, r1); // arg1 <- Method*
loadConstant(cUnit, r0, typeId); // arg0 <- type_id
loadConstant(cUnit, r2, elems); // arg2 <- count
callRuntimeHelper(cUnit, rLR);
/*
* NOTE: the implicit target for OP_FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in r0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
oatLockTemp(cUnit, r0);
// Having a range of 0 is legal
if (isRange && (dInsn->vA > 0)) {
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (unsigned int i = 0; i < dInsn->vA; i++) {
RegLocation loc = oatUpdateLoc(cUnit,
oatGetSrc(cUnit, mir, i));
if (loc.location == kLocPhysReg) {
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, kWord);
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
int rSrc = oatAllocTemp(cUnit);
int rDst = oatAllocTemp(cUnit);
int rIdx = oatAllocTemp(cUnit);
int rVal = rLR; // Using a lot of temps, rLR is known free here
// Set up source pointer
RegLocation rlFirst = oatGetSrc(cUnit, mir, 0);
opRegRegImm(cUnit, kOpAdd, rSrc, rSP,
oatSRegOffset(cUnit, rlFirst.sRegLow));
// Set up the target pointer
opRegRegImm(cUnit, kOpAdd, rDst, r0,
Array::DataOffset().Int32Value());
// Set up the loop counter (known to be > 0)
loadConstant(cUnit, rIdx, dInsn->vA - 1);
// Generate the copy loop. Going backwards for convenience
ArmLIR* target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
// Copy next element
loadBaseIndexed(cUnit, rSrc, rIdx, rVal, 2, kWord);
storeBaseIndexed(cUnit, rDst, rIdx, rVal, 2, kWord);
// Use setflags encoding here
newLIR3(cUnit, kThumb2SubsRRI12, rIdx, rIdx, 1);
ArmLIR* branch = opCondBranch(cUnit, kArmCondGe);
branch->generic.target = (LIR*)target;
} else if (!isRange) {
// TUNING: interleave
for (unsigned int i = 0; i < dInsn->vA; i++) {
RegLocation rlArg = loadValue(cUnit,
oatGetSrc(cUnit, mir, i), kCoreReg);
storeBaseDisp(cUnit, r0,
Array::DataOffset().Int32Value() +
i * 4, rlArg.lowReg, kWord);
// If the loadValue caused a temp to be allocated, free it
if (oatIsTemp(cUnit, rlArg.lowReg)) {
oatFreeTemp(cUnit, rlArg.lowReg);
}
}
}
}
Field* FindFieldWithResolvedStaticStorage(CompilationUnit* cUnit,
const uint32_t fieldIdx,
uint32_t& resolvedTypeIdx) {
Field* field = cUnit->class_linker->ResolveField(*cUnit->dex_file,
fieldIdx,
cUnit->dex_cache,
cUnit->class_loader,
true);
if (field == NULL) {
Thread* thread = Thread::Current();
if (thread->IsExceptionPending()) { // clear any exception left by resolve field
thread->ClearException();
}
return NULL;
}
const DexFile::FieldId& field_id = cUnit->dex_file->GetFieldId(fieldIdx);
int type_idx = field_id.class_idx_;
Class* klass = cUnit->dex_cache->GetResolvedTypes()->Get(type_idx);
// Check if storage class is the same as class referred to by type idx.
// They may not be if the FieldId refers a subclass, but storage is in super
if (field->GetDeclaringClass() == klass) {
resolvedTypeIdx = type_idx;
return field;
}
// See if we can find a dex reference for the storage class.
// we may not if the dex file never references the super class,
// but usually it will.
std::string descriptor(FieldHelper(field).GetDeclaringClassDescriptor());
const DexFile::StringId* string_id =
cUnit->dex_file->FindStringId(descriptor);
if (string_id == NULL) {
return NULL; // descriptor not found, resort to slow path
}
const DexFile::TypeId* type_id =
cUnit->dex_file->FindTypeId(cUnit->dex_file->GetIndexForStringId(*string_id));
if (type_id == NULL) {
return NULL; // type id not found, resort to slow path
}
resolvedTypeIdx = cUnit->dex_file->GetIndexForTypeId(*type_id);
return field;
}
STATIC void genSput(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc)
{
bool isObject = ((mir->dalvikInsn.opcode == OP_SPUT_OBJECT) ||
(mir->dalvikInsn.opcode == OP_SPUT_OBJECT_VOLATILE));
int fieldIdx = mir->dalvikInsn.vB;
uint32_t typeIdx;
Field* field = FindFieldWithResolvedStaticStorage(cUnit, fieldIdx, typeIdx);
oatFlushAllRegs(cUnit);
if (SLOW_FIELD_PATH || field == NULL) {
// Slow path
warnIfUnresolved(cUnit, fieldIdx, field);
int funcOffset = isObject ? OFFSETOF_MEMBER(Thread, pSetObjStatic)
: OFFSETOF_MEMBER(Thread, pSet32Static);
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
loadValueDirect(cUnit, rlSrc, r2);
callRuntimeHelper(cUnit, rLR);
} else {
// fast path
int fieldOffset = field->GetOffset().Int32Value();
// Using fixed register to sync with slow path
int rMethod = r1;
oatLockTemp(cUnit, rMethod);
loadCurrMethodDirect(cUnit, rMethod);
int rBase = r0;
oatLockTemp(cUnit, rBase);
loadWordDisp(cUnit, rMethod,
Method::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
loadWordDisp(cUnit, rBase, Array::DataOffset().Int32Value() +
sizeof(int32_t*)* typeIdx, rBase);
// TUNING: fast path should fall through
// TUNING: Try a conditional skip here, might be faster
ArmLIR* branchOver = genCmpImmBranch(cUnit, kArmCondNe, rBase, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInitializeStaticStorage), rLR);
loadConstant(cUnit, r0, typeIdx);
callRuntimeHelper(cUnit, rLR);
ArmLIR* skipTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)skipTarget;
rlSrc = oatGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
#if ANDROID_SMP != 0
if (field->IsVolatile()) {
oatGenMemBarrier(cUnit, kST);
}
#endif
storeWordDisp(cUnit, rBase, fieldOffset, rlSrc.lowReg);
#if ANDROID_SMP != 0
if (field->IsVolatile()) {
oatGenMemBarrier(cUnit, kSY);
}
#endif
if (isObject) {
markGCCard(cUnit, rlSrc.lowReg, rBase);
}
oatFreeTemp(cUnit, rBase);
}
}
STATIC void genSputWide(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc)
{
int fieldIdx = mir->dalvikInsn.vB;
uint32_t typeIdx;
Field* field = FindFieldWithResolvedStaticStorage(cUnit, fieldIdx, typeIdx);
oatFlushAllRegs(cUnit);
#if ANDROID_SMP != 0
bool isVolatile = (field == NULL) || field->IsVolatile();
#else
bool isVolatile = false;
#endif
if (SLOW_FIELD_PATH || field == NULL || isVolatile) {
warnIfUnresolved(cUnit, fieldIdx, field);
loadWordDisp(cUnit, rSELF, OFFSETOF_MEMBER(Thread, pSet64Static), rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
loadValueDirectWideFixed(cUnit, rlSrc, r2, r3);
callRuntimeHelper(cUnit, rLR);
} else {
// fast path
int fieldOffset = field->GetOffset().Int32Value();
// Using fixed register to sync with slow path
int rMethod = r1;
oatLockTemp(cUnit, rMethod);
loadCurrMethodDirect(cUnit, r1);
int rBase = r0;
oatLockTemp(cUnit, rBase);
loadWordDisp(cUnit, rMethod,
Method::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
loadWordDisp(cUnit, rBase, Array::DataOffset().Int32Value() +
sizeof(int32_t*)* typeIdx, rBase);
// TUNING: fast path should fall through
ArmLIR* branchOver = genCmpImmBranch(cUnit, kArmCondNe, rBase, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInitializeStaticStorage), rLR);
loadConstant(cUnit, r0, typeIdx);
callRuntimeHelper(cUnit, rLR);
ArmLIR* skipTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)skipTarget;
rlSrc = oatGetSrcWide(cUnit, mir, 0, 1);
rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
storeBaseDispWide(cUnit, rBase, fieldOffset, rlSrc.lowReg,
rlSrc.highReg);
oatFreeTemp(cUnit, rBase);
}
}
STATIC void genSgetWide(CompilationUnit* cUnit, MIR* mir,
RegLocation rlResult, RegLocation rlDest)
{
int fieldIdx = mir->dalvikInsn.vB;
uint32_t typeIdx;
Field* field = FindFieldWithResolvedStaticStorage(cUnit, fieldIdx, typeIdx);
#if ANDROID_SMP != 0
bool isVolatile = (field == NULL) || field->IsVolatile();
#else
bool isVolatile = false;
#endif
oatFlushAllRegs(cUnit);
if (SLOW_FIELD_PATH || field == NULL || isVolatile) {
warnIfUnresolved(cUnit, fieldIdx, field);
loadWordDisp(cUnit, rSELF, OFFSETOF_MEMBER(Thread, pGet64Static), rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
callRuntimeHelper(cUnit, rLR);
RegLocation rlResult = oatGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
} else {
// Fast path
int fieldOffset = field->GetOffset().Int32Value();
// Using fixed register to sync with slow path
int rMethod = r1;
oatLockTemp(cUnit, rMethod);
loadCurrMethodDirect(cUnit, rMethod);
int rBase = r0;
oatLockTemp(cUnit, rBase);
loadWordDisp(cUnit, rMethod,
Method::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
loadWordDisp(cUnit, rBase, Array::DataOffset().Int32Value() +
sizeof(int32_t*)* typeIdx, rBase);
// TUNING: fast path should fall through
ArmLIR* branchOver = genCmpImmBranch(cUnit, kArmCondNe, rBase, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInitializeStaticStorage), rLR);
loadConstant(cUnit, r0, typeIdx);
callRuntimeHelper(cUnit, rLR);
ArmLIR* skipTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)skipTarget;
rlDest = oatGetDestWide(cUnit, mir, 0, 1);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadBaseDispWide(cUnit, NULL, rBase, fieldOffset, rlResult.lowReg,
rlResult.highReg, INVALID_SREG);
oatFreeTemp(cUnit, rBase);
storeValueWide(cUnit, rlDest, rlResult);
}
}
STATIC void genSget(CompilationUnit* cUnit, MIR* mir,
RegLocation rlResult, RegLocation rlDest)
{
int fieldIdx = mir->dalvikInsn.vB;
uint32_t typeIdx;
Field* field = FindFieldWithResolvedStaticStorage(cUnit, fieldIdx, typeIdx);
bool isObject = ((mir->dalvikInsn.opcode == OP_SGET_OBJECT) ||
(mir->dalvikInsn.opcode == OP_SGET_OBJECT_VOLATILE));
oatFlushAllRegs(cUnit);
if (SLOW_FIELD_PATH || field == NULL) {
// Slow path
warnIfUnresolved(cUnit, fieldIdx, field);
int funcOffset = isObject ? OFFSETOF_MEMBER(Thread, pGetObjStatic)
: OFFSETOF_MEMBER(Thread, pGet32Static);
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
callRuntimeHelper(cUnit, rLR);
RegLocation rlResult = oatGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
} else {
// Fast path
int fieldOffset = field->GetOffset().Int32Value();
// Using fixed register to sync with slow path
int rMethod = r1;
oatLockTemp(cUnit, rMethod);
loadCurrMethodDirect(cUnit, rMethod);
int rBase = r0;
oatLockTemp(cUnit, rBase);
loadWordDisp(cUnit, rMethod,
Method::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
loadWordDisp(cUnit, rBase, Array::DataOffset().Int32Value() +
sizeof(int32_t*)* typeIdx, rBase);
// TUNING: fast path should fall through
ArmLIR* branchOver = genCmpImmBranch(cUnit, kArmCondNe, rBase, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInitializeStaticStorage), rLR);
loadConstant(cUnit, r0, typeIdx);
callRuntimeHelper(cUnit, rLR);
ArmLIR* skipTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)skipTarget;
rlDest = oatGetDest(cUnit, mir, 0);
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
#if ANDROID_SMP != 0
if (field->IsVolatile()) {
oatGenMemBarrier(cUnit, kSY);
}
#endif
loadWordDisp(cUnit, rBase, fieldOffset, rlResult.lowReg);
oatFreeTemp(cUnit, rBase);
storeValue(cUnit, rlDest, rlResult);
}
}
typedef int (*NextCallInsn)(CompilationUnit*, MIR*, DecodedInstruction*, int,
ArmLIR*);
/*
* Bit of a hack here - in leiu of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
STATIC int nextSDCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state,
ArmLIR* rollback)
{
DCHECK(rollback == NULL);
uint32_t idx = dInsn->vB;
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get method->code_and_direct_methods_
loadWordDisp(cUnit, r0,
Method::GetDexCacheCodeAndDirectMethodsOffset().Int32Value(),
r0);
break;
case 2: // Grab target method* and target code_
loadWordDisp(cUnit, r0,
CodeAndDirectMethods::CodeOffsetInBytes(idx), rLR);
loadWordDisp(cUnit, r0,
CodeAndDirectMethods::MethodOffsetInBytes(idx), r0);
break;
default:
return -1;
}
return state + 1;
}
/*
* Bit of a hack here - in leiu of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use rLR as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* r1 here rather than the standard loadArgRegs.
*/
STATIC int nextVCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state,
ArmLIR* rollback)
{
DCHECK(rollback == NULL);
RegLocation rlArg;
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
Method* baseMethod = cUnit->class_linker->ResolveMethod(*cUnit->dex_file,
dInsn->vB,
cUnit->dex_cache,
cUnit->class_loader,
false);
CHECK(baseMethod != NULL);
uint32_t target_idx = baseMethod->GetMethodIndex();
switch(state) {
case 0: // Get "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
break;
case 1: // Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
// get this->klass_ [use r1, set rLR]
loadWordDisp(cUnit, r1, Object::ClassOffset().Int32Value(), rLR);
break;
case 2: // Get this->klass_->vtable [usr rLR, set rLR]
loadWordDisp(cUnit, rLR, Class::VTableOffset().Int32Value(), rLR);
break;
case 3: // Get target method [use rLR, set r0]
loadWordDisp(cUnit, rLR, (target_idx * 4) +
Array::DataOffset().Int32Value(), r0);
break;
case 4: // Get the target compiled code address [uses r0, sets rLR]
loadWordDisp(cUnit, r0, Method::GetCodeOffset().Int32Value(), rLR);
break;
default:
return -1;
}
return state + 1;
}
STATIC int nextVCallInsnSP(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state,
ArmLIR* rollback)
{
RegLocation rlArg;
ArmLIR* skipBranch;
ArmLIR* skipTarget;
/*
* This handles the case in which the base method is not fully
* resolved at compile time. We must generate code to test
* for resolution a run time, bail to the slow path if not to
* fill in all the tables. In the latter case, we'll restart at
* at the beginning of the sequence.
*/
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get method->dex_cache_resolved_methods_
loadWordDisp(cUnit, r0,
Method::GetDexCacheResolvedMethodsOffset().Int32Value(), rLR);
break;
case 2: // method->dex_cache_resolved_methods_->Get(method_idx)
loadWordDisp(cUnit, rLR, (dInsn->vB * 4) +
Array::DataOffset().Int32Value(), rLR);
break;
case 3: // Resolved?
skipBranch = genCmpImmBranch(cUnit, kArmCondNe, rLR, 0);
// Slowest path, bail to helper, rollback and retry
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pResolveMethodFromCode), rLR);
loadConstant(cUnit, r1, dInsn->vB);
loadConstant(cUnit, r2, false);
callRuntimeHelper(cUnit, rLR);
genUnconditionalBranch(cUnit, rollback);
// Resume normal slow path
skipTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
skipBranch->generic.target = (LIR*)skipTarget;
// Get base_method->method_index [usr rLR, set r0]
loadBaseDisp(cUnit, mir, rLR,
Method::GetMethodIndexOffset().Int32Value(), r0,
kUnsignedHalf, INVALID_SREG);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
break;
case 4:
// Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
// get this->clazz [use r1, set rLR]
loadWordDisp(cUnit, r1, Object::ClassOffset().Int32Value(), rLR);
break;
case 5:
// get this->klass_->vtable_ [usr rLR, set rLR]
loadWordDisp(cUnit, rLR, Class::VTableOffset().Int32Value(), rLR);
DCHECK_EQ((Array::DataOffset().Int32Value() & 0x3), 0);
// In load shadow fold vtable_ object header size into method_index_
opRegImm(cUnit, kOpAdd, r0,
Array::DataOffset().Int32Value() / 4);
// Get target Method*
loadBaseIndexed(cUnit, rLR, r0, r0, 2, kWord);
break;
case 6: // Get the target compiled code address [uses r0, sets rLR]
loadWordDisp(cUnit, r0, Method::GetCodeOffset().Int32Value(), rLR);
break;
default:
return -1;
}
return state + 1;
}
STATIC int loadArgRegs(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
NextCallInsn nextCallInsn, ArmLIR* rollback,
bool skipThis)
{
int nextReg = r1;
int nextArg = 0;
if (skipThis) {
nextReg++;
nextArg++;
}
for (; (nextReg <= r3) && (nextArg < mir->ssaRep->numUses); nextReg++) {
RegLocation rlArg = oatGetRawSrc(cUnit, mir, nextArg++);
rlArg = oatUpdateRawLoc(cUnit, rlArg);
if (rlArg.wide && (nextReg <= r2)) {
loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1);
nextReg++;
nextArg++;
} else {
rlArg.wide = false;
loadValueDirectFixed(cUnit, rlArg, nextReg);
}
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
}
return callState;
}
// Interleave launch code for INVOKE_INTERFACE.
STATIC int nextInterfaceCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state,
ArmLIR* rollback)
{
DCHECK(rollback == NULL);
switch(state) {
case 0: // Load trampoline target
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampoline),
rLR);
// Load r0 with method index
loadConstant(cUnit, r0, dInsn->vB);
break;
default:
return -1;
}
return state + 1;
}
/*
* Interleave launch code for INVOKE_SUPER. See comments
* for nextVCallIns.
*/
STATIC int nextSuperCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state,
ArmLIR* rollback)
{
DCHECK(rollback == NULL);
RegLocation rlArg;
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time. Note also that this path assumes
* that the check to verify that the target method index falls
* within the size of the super's vtable has been done at compile-time.
*/
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Method* baseMethod = class_linker->ResolveMethod(*cUnit->dex_file,
dInsn->vB,
cUnit->dex_cache,
cUnit->class_loader,
false);
CHECK(baseMethod != NULL);
Class* declaring_class = cUnit->dex_cache->GetResolvedTypes()
->Get(cUnit->dex_file->GetMethodId(cUnit->method_idx).class_idx_);
Class* superClass = (declaring_class != NULL)
? declaring_class->GetSuperClass() : NULL;
CHECK(superClass != NULL);
int32_t target_idx = baseMethod->GetMethodIndex();
CHECK(superClass->GetVTable()->GetLength() > target_idx);
Method* targetMethod = superClass->GetVTable()->Get(target_idx);
CHECK(targetMethod != NULL);
switch(state) {
case 0: // Get current Method* [set r0]
loadCurrMethodDirect(cUnit, r0);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
// Get method->declaring_class_ [use r0, set rLR]
loadWordDisp(cUnit, r0, Method::DeclaringClassOffset().Int32Value(),
rLR);
// Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
break;
case 1: // Get method->declaring_class_->super_class [usr rLR, set rLR]
loadWordDisp(cUnit, rLR, Class::SuperClassOffset().Int32Value(),
rLR);
break;
case 2: // Get ...->super_class_->vtable [u/s rLR]
loadWordDisp(cUnit, rLR, Class::VTableOffset().Int32Value(), rLR);
break;
case 3: // Get target method [use rLR, set r0]
loadWordDisp(cUnit, rLR, (target_idx * 4) +
Array::DataOffset().Int32Value(), r0);
break;
case 4: // Get the target compiled code address [uses r0, sets rLR]
loadWordDisp(cUnit, r0, Method::GetCodeOffset().Int32Value(), rLR);
break;
default:
return -1;
}
return state + 1;
}
/* Slow-path version of nextSuperCallInsn */
STATIC int nextSuperCallInsnSP(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state,
ArmLIR* rollback)
{
RegLocation rlArg;
ArmLIR* skipBranch;
ArmLIR* skipTarget;
int tReg;
/*
* This handles the case in which the base method is not fully
* resolved at compile time. We must generate code to test
* for resolution a run time, bail to the slow path if not to
* fill in all the tables. In the latter case, we'll restart at
* at the beginning of the sequence.
*/
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get method->dex_cache_resolved_methods_ [uses r0, set rLR]
loadWordDisp(cUnit, r0,
Method::GetDexCacheResolvedMethodsOffset().Int32Value(), rLR);
break;
case 2: // method->dex_cache_resolved_methods_->Get(meth_idx) [u/s rLR]
loadWordDisp(cUnit, rLR, (dInsn->vB * 4) +
Array::DataOffset().Int32Value(), rLR);
break;
case 3: // Resolved?
skipBranch = genCmpImmBranch(cUnit, kArmCondNe, rLR, 0);
// Slowest path, bail to helper, rollback and retry
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pResolveMethodFromCode), rLR);
loadConstant(cUnit, r1, dInsn->vB);
loadConstant(cUnit, r2, true);
callRuntimeHelper(cUnit, rLR);
genUnconditionalBranch(cUnit, rollback);
// Resume normal slow path
skipTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
skipBranch->generic.target = (LIR*)skipTarget;
// Get base_method->method_index [usr rLR, set rLR]
loadBaseDisp(cUnit, mir, rLR,
Method::GetMethodIndexOffset().Int32Value(), rLR,
kUnsignedHalf, INVALID_SREG);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
// Load curMethod->declaring_class_ [uses r0, sets r0]
loadWordDisp(cUnit, r0, Method::DeclaringClassOffset().Int32Value(),
r0);
// Null this?
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
// Get method->declaring_class_->super_class [usr r0, set r0]
loadWordDisp(cUnit, r0, Class::SuperClassOffset().Int32Value(), r0);
break;
case 4: // Get ...->super_class_->vtable [u/s r0]
loadWordDisp(cUnit, r0, Class::VTableOffset().Int32Value(), r0);
if (!(mir->optimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
// Range check, throw NSM on failure
tReg = oatAllocTemp(cUnit);
loadWordDisp(cUnit, r0, Array::LengthOffset().Int32Value(),
tReg);
genRegRegCheck(cUnit, kArmCondCs, rLR, tReg, mir,
kArmThrowNoSuchMethod);
oatFreeTemp(cUnit, tReg);
}
// Adjust vtable_ base past object header
opRegImm(cUnit, kOpAdd, r0, Array::DataOffset().Int32Value());
// Get target Method*
loadBaseIndexed(cUnit, r0, rLR, r0, 2, kWord);
break;
case 5: // Get the target compiled code address [uses r0, sets rLR]
loadWordDisp(cUnit, r0, Method::GetCodeOffset().Int32Value(), rLR);
break;
default:
return -1;
}
return state + 1;
}
/*
* Load up to 5 arguments, the first three of which will be in
* r1 .. r3. On entry r0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
STATIC int genDalvikArgsNoRange(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
ArmLIR** pcrLabel, bool isRange,
NextCallInsn nextCallInsn, ArmLIR* rollback,
bool skipThis)
{
RegLocation rlArg;
/* If no arguments, just return */
if (dInsn->vA == 0)
return callState;
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
DCHECK_LE(dInsn->vA, 5U);
if (dInsn->vA > 3) {
uint32_t nextUse = 3;
//Detect special case of wide arg spanning arg3/arg4
RegLocation rlUse0 = oatGetRawSrc(cUnit, mir, 0);
RegLocation rlUse1 = oatGetRawSrc(cUnit, mir, 1);
RegLocation rlUse2 = oatGetRawSrc(cUnit, mir, 2);
if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) &&
rlUse2.wide) {
int reg;
// Wide spans, we need the 2nd half of uses[2].
rlArg = oatUpdateLocWide(cUnit, rlUse2);
if (rlArg.location == kLocPhysReg) {
reg = rlArg.highReg;
} else {
// r2 & r3 can safely be used here
reg = r3;
loadWordDisp(cUnit, rSP,
oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg);
callState = nextCallInsn(cUnit, mir, dInsn, callState,
rollback);
}
storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord);
storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord);
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
nextUse++;
}
// Loop through the rest
while (nextUse < dInsn->vA) {
int lowReg;
int highReg;
rlArg = oatGetRawSrc(cUnit, mir, nextUse);
rlArg = oatUpdateRawLoc(cUnit, rlArg);
if (rlArg.location == kLocPhysReg) {
lowReg = rlArg.lowReg;
highReg = rlArg.highReg;
} else {
lowReg = r2;
highReg = r3;
if (rlArg.wide) {
loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg);
} else {
loadValueDirectFixed(cUnit, rlArg, lowReg);
}
callState = nextCallInsn(cUnit, mir, dInsn, callState,
rollback);
}
int outsOffset = (nextUse + 1) * 4;
if (rlArg.wide) {
storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg);
nextUse += 2;
} else {
storeWordDisp(cUnit, rSP, outsOffset, lowReg);
nextUse++;
}
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
}
}
callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
rollback, skipThis);
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
}
return callState;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in r1-r3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in r1-r3
*
*/
STATIC int genDalvikArgsRange(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
ArmLIR** pcrLabel, NextCallInsn nextCallInsn,
ArmLIR* rollback, bool skipThis)
{
int firstArg = dInsn->vC;
int numArgs = dInsn->vA;
// If we can treat it as non-range (Jumbo ops will use range form)
if (numArgs <= 5)
return genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pcrLabel,
true, nextCallInsn, rollback, skipThis);
/*
* Make sure range list doesn't span the break between in normal
* Dalvik vRegs and the ins.
*/
int highestArg = oatGetSrc(cUnit, mir, numArgs-1).sRegLow;
int boundaryReg = cUnit->numDalvikRegisters - cUnit->numIns;
if ((firstArg < boundaryReg) && (highestArg >= boundaryReg)) {
LOG(FATAL) << "Argument list spanned locals & args";
}
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the sReg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in physReg flush to memory
for (int nextArg = 0; nextArg < numArgs;) {
RegLocation loc = oatGetRawSrc(cUnit, mir, nextArg);
if (loc.wide) {
loc = oatUpdateLocWide(cUnit, loc);
if ((nextArg >= 2) && (loc.location == kLocPhysReg)) {
storeBaseDispWide(cUnit, rSP,
oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, loc.highReg);
}
nextArg += 2;
} else {
loc = oatUpdateLoc(cUnit, loc);
if ((nextArg >= 3) && (loc.location == kLocPhysReg)) {
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, kWord);
}
nextArg++;
}
}
int startOffset = oatSRegOffset(cUnit,
cUnit->regLocation[mir->ssaRep->uses[3]].sRegLow);
int outsOffset = 4 /* Method* */ + (3 * 4);
if (numArgs >= 20) {
// Generate memcpy
opRegRegImm(cUnit, kOpAdd, r0, rSP, outsOffset);
opRegRegImm(cUnit, kOpAdd, r1, rSP, startOffset);
loadWordDisp(cUnit, rSELF, OFFSETOF_MEMBER(Thread, pMemcpy), rLR);
loadConstant(cUnit, r2, (numArgs - 3) * 4);
callRuntimeHelper(cUnit, rLR);
// Restore Method*
loadCurrMethodDirect(cUnit, r0);
} else {
// Use vldm/vstm pair using r3 as a temp
int regsLeft = std::min(numArgs - 3, 16);
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
opRegRegImm(cUnit, kOpAdd, r3, rSP, startOffset);
ArmLIR* ld = newLIR3(cUnit, kThumb2Vldms, r3, fr0, regsLeft);
//TUNING: loosen barrier
ld->defMask = ENCODE_ALL;
setMemRefType(ld, true /* isLoad */, kDalvikReg);
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
opRegRegImm(cUnit, kOpAdd, r3, rSP, 4 /* Method* */ + (3 * 4));
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
ArmLIR* st = newLIR3(cUnit, kThumb2Vstms, r3, fr0, regsLeft);
setMemRefType(st, false /* isLoad */, kDalvikReg);
st->defMask = ENCODE_ALL;
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
}
callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
rollback, skipThis);
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
}
return callState;
}
// Debugging routine - if null target, branch to DebugMe
STATIC void genShowTarget(CompilationUnit* cUnit)
{
ArmLIR* branchOver = genCmpImmBranch(cUnit, kArmCondNe, rLR, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pDebugMe), rLR);
ArmLIR* target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = -1;
branchOver->generic.target = (LIR*)target;
}
STATIC void genInvokeStaticDirect(CompilationUnit* cUnit, MIR* mir,
bool direct, bool range)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* nullCk;
ArmLIR** pNullCk = direct ? &nullCk : NULL;
NextCallInsn nextCallInsn = nextSDCallInsn;
oatFlushAllRegs(cUnit); /* Everything to home location */
// Explicit register usage
oatLockCallTemps(cUnit);
// Is this the special "Ljava/lang/Object;.<init>:()V" case?
if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT) {
int idx = mir->dalvikInsn.vB;
Method* target = cUnit->dex_cache->GetResolvedMethods()->Get(idx);
if (target) {
if (PrettyMethod(target) == "java.lang.Object.<init>()V") {
RegLocation rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pObjectInit), rLR);
genNullCheck(cUnit, oatSSASrc(mir,0), r0, mir);
opReg(cUnit, kOpBlx, rLR);
oatClobberCalleeSave(cUnit);
return;
}
}
}
if (range) {
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, pNullCk,
nextCallInsn, NULL, false);
} else {
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pNullCk,
false, nextCallInsn, NULL, false);
}
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, mir, dInsn, callState, NULL);
}
if (DISPLAY_MISSING_TARGETS) {
genShowTarget(cUnit);
}
opReg(cUnit, kOpBlx, rLR);
oatClobberCalleeSave(cUnit);
}
/*
* All invoke-interface calls bounce off of art_invoke_interface_trampoline,
* which will locate the target and continue on via a tail call.
*/
STATIC void genInvokeInterface(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* nullCk;
oatFlushAllRegs(cUnit); /* Everything to home location */
// Explicit register usage
oatLockCallTemps(cUnit);
/* Note: must call nextInterfaceCallInsn() prior to 1st argument load */
callState = nextInterfaceCallInsn(cUnit, mir, dInsn, callState, NULL);
if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, &nullCk,
false, nextInterfaceCallInsn, NULL,
false);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, &nullCk,
nextInterfaceCallInsn, NULL, false);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextInterfaceCallInsn(cUnit, mir, dInsn, callState, NULL);
}
if (DISPLAY_MISSING_TARGETS) {
genShowTarget(cUnit);
}
opReg(cUnit, kOpBlx, rLR);
oatClobberCalleeSave(cUnit);
}
STATIC void genInvokeSuper(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* rollback;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Method* baseMethod = class_linker->ResolveMethod(*cUnit->dex_file,
dInsn->vB,
cUnit->dex_cache,
cUnit->class_loader,
false);
NextCallInsn nextCallInsn;
bool fastPath = true;
oatFlushAllRegs(cUnit); /* Everything to home location */
// Explicit register usage
oatLockCallTemps(cUnit);
// For testing, force call to artResolveMethodFromCode & ignore result
if (EXERCISE_RESOLVE_METHOD) {
loadCurrMethodDirect(cUnit, r0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pResolveMethodFromCode), rLR);
loadConstant(cUnit, r1, dInsn->vB);
loadConstant(cUnit, r2, true);
callRuntimeHelper(cUnit, rLR);
}
if (SLOW_INVOKE_PATH || baseMethod == NULL) {
Thread* thread = Thread::Current();
if (thread->IsExceptionPending()) { // clear any exception left by resolve method
thread->ClearException();
}
fastPath = false;
} else {
Class* declaring_class = cUnit->dex_cache->GetResolvedTypes()
->Get(cUnit->dex_file->GetMethodId(cUnit->method_idx).class_idx_);
Class* superClass = (declaring_class != NULL)
? declaring_class->GetSuperClass() : NULL;
if (superClass == NULL) {
fastPath = false;
} else {
int32_t target_idx = baseMethod->GetMethodIndex();
if (superClass->GetVTable()->GetLength() <= target_idx) {
fastPath = false;
} else {
fastPath = (superClass->GetVTable()->Get(target_idx) != NULL);
}
}
}
if (fastPath) {
nextCallInsn = nextSuperCallInsn;
rollback = NULL;
} else {
nextCallInsn = nextSuperCallInsnSP;
rollback = newLIR0(cUnit, kArmPseudoTargetLabel);
rollback->defMask = -1;
}
if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, NULL,
false, nextCallInsn, rollback, true);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, NULL,
nextCallInsn, rollback, true);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
}
if (DISPLAY_MISSING_TARGETS) {
genShowTarget(cUnit);
}
opReg(cUnit, kOpBlx, rLR);
oatClobberCalleeSave(cUnit);
}
STATIC void genInvokeVirtual(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* rollback;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Method* method = class_linker->ResolveMethod(*cUnit->dex_file,
dInsn->vB,
cUnit->dex_cache,
cUnit->class_loader,
false);
NextCallInsn nextCallInsn;
oatFlushAllRegs(cUnit); /* Everything to home location */
// Explicit register usage
oatLockCallTemps(cUnit);
// For testing, force call to artResolveMethodFromCode & ignore result
if (EXERCISE_RESOLVE_METHOD) {
loadCurrMethodDirect(cUnit, r0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pResolveMethodFromCode), rLR);
loadConstant(cUnit, r1, dInsn->vB);
loadConstant(cUnit, r2, false);
callRuntimeHelper(cUnit, rLR);
}
if (SLOW_INVOKE_PATH || method == NULL) {
Thread* thread = Thread::Current();
if (thread->IsExceptionPending()) { // clear any exception left by resolve method
thread->ClearException();
}
// Slow path
nextCallInsn = nextVCallInsnSP;
// If we need a slow-path callout, we'll restart here
rollback = newLIR0(cUnit, kArmPseudoTargetLabel);
rollback->defMask = -1;
} else {
// Fast path
nextCallInsn = nextVCallInsn;
rollback = NULL;
}
if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, NULL,
false, nextCallInsn, rollback, true);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, NULL,
nextCallInsn, rollback, true);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, mir, dInsn, callState, rollback);
}
if (DISPLAY_MISSING_TARGETS) {
genShowTarget(cUnit);
}
opReg(cUnit, kOpBlx, rLR);
oatClobberCalleeSave(cUnit);
}
STATIC bool compileDalvikInstruction(CompilationUnit* cUnit, MIR* mir,
BasicBlock* bb, ArmLIR* labelList)
{
bool res = false; // Assume success
RegLocation rlSrc[3];
RegLocation rlDest = badLoc;
RegLocation rlResult = badLoc;
Opcode opcode = mir->dalvikInsn.opcode;
/* Prep Src and Dest locations */
int nextSreg = 0;
int nextLoc = 0;
int attrs = oatDataFlowAttributes[opcode];
rlSrc[0] = rlSrc[1] = rlSrc[2] = badLoc;
if (attrs & DF_UA) {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
nextSreg++;
} else if (attrs & DF_UA_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg,
nextSreg + 1);
nextSreg+= 2;
}
if (attrs & DF_UB) {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
nextSreg++;
} else if (attrs & DF_UB_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg,
nextSreg + 1);
nextSreg+= 2;
}
if (attrs & DF_UC) {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
} else if (attrs & DF_UC_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg,
nextSreg + 1);
}
if (attrs & DF_DA) {
rlDest = oatGetDest(cUnit, mir, 0);
} else if (attrs & DF_DA_WIDE) {
rlDest = oatGetDestWide(cUnit, mir, 0, 1);
}
switch(opcode) {
case OP_NOP:
break;
case OP_MOVE_EXCEPTION:
int exOffset;
int resetReg;
exOffset = Thread::ExceptionOffset().Int32Value();
resetReg = oatAllocTemp(cUnit);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg);
loadConstant(cUnit, resetReg, 0);
storeWordDisp(cUnit, rSELF, exOffset, resetReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_RETURN_VOID:
genSuspendTest(cUnit, mir);
break;
case OP_RETURN:
case OP_RETURN_OBJECT:
genSuspendTest(cUnit, mir);
storeValue(cUnit, getRetLoc(cUnit), rlSrc[0]);
break;
case OP_RETURN_WIDE:
genSuspendTest(cUnit, mir);
storeValueWide(cUnit, getRetLocWide(cUnit), rlSrc[0]);
break;
case OP_MOVE_RESULT_WIDE:
if (mir->optimizationFlags & MIR_INLINED)
break; // Nop - combined w/ previous invoke
storeValueWide(cUnit, rlDest, getRetLocWide(cUnit));
break;
case OP_MOVE_RESULT:
case OP_MOVE_RESULT_OBJECT:
if (mir->optimizationFlags & MIR_INLINED)
break; // Nop - combined w/ previous invoke
storeValue(cUnit, rlDest, getRetLoc(cUnit));
break;
case OP_MOVE:
case OP_MOVE_OBJECT:
case OP_MOVE_16:
case OP_MOVE_OBJECT_16:
case OP_MOVE_FROM16:
case OP_MOVE_OBJECT_FROM16:
storeValue(cUnit, rlDest, rlSrc[0]);
break;
case OP_MOVE_WIDE:
case OP_MOVE_WIDE_16:
case OP_MOVE_WIDE_FROM16:
storeValueWide(cUnit, rlDest, rlSrc[0]);
break;
case OP_CONST:
case OP_CONST_4:
case OP_CONST_16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_CONST_HIGH16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg,
mir->dalvikInsn.vB << 16);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_CONST_WIDE_16:
case OP_CONST_WIDE_32:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
mir->dalvikInsn.vB,
(mir->dalvikInsn.vB & 0x80000000) ? -1 : 0);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_CONST_WIDE:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
mir->dalvikInsn.vB_wide & 0xffffffff,
(mir->dalvikInsn.vB_wide >> 32) & 0xffffffff);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_CONST_WIDE_HIGH16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
0, mir->dalvikInsn.vB << 16);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_MONITOR_ENTER:
genMonitorEnter(cUnit, mir, rlSrc[0]);
break;
case OP_MONITOR_EXIT:
genMonitorExit(cUnit, mir, rlSrc[0]);
break;
case OP_CHECK_CAST:
genCheckCast(cUnit, mir, rlSrc[0]);
break;
case OP_INSTANCE_OF:
genInstanceof(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_NEW_INSTANCE:
genNewInstance(cUnit, mir, rlDest);
break;
case OP_THROW:
genThrow(cUnit, mir, rlSrc[0]);
break;
case OP_THROW_VERIFICATION_ERROR:
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pThrowVerificationErrorFromCode), rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vA);
loadConstant(cUnit, r1, mir->dalvikInsn.vB);
callRuntimeHelper(cUnit, rLR);
break;
case OP_ARRAY_LENGTH:
int lenOffset;
lenOffset = Array::LengthOffset().Int32Value();
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
genNullCheck(cUnit, rlSrc[0].sRegLow, rlSrc[0].lowReg, mir);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rlSrc[0].lowReg, lenOffset,
rlResult.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_CONST_STRING:
case OP_CONST_STRING_JUMBO:
genConstString(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_CONST_CLASS:
genConstClass(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_FILL_ARRAY_DATA:
genFillArrayData(cUnit, mir, rlSrc[0]);
break;
case OP_FILLED_NEW_ARRAY:
genFilledNewArray(cUnit, mir, false /* not range */);
break;
case OP_FILLED_NEW_ARRAY_RANGE:
genFilledNewArray(cUnit, mir, true /* range */);
break;
case OP_NEW_ARRAY:
genNewArray(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_GOTO:
case OP_GOTO_16:
case OP_GOTO_32:
if (bb->taken->startOffset <= mir->offset) {
genSuspendTest(cUnit, mir);
}
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
break;
case OP_PACKED_SWITCH:
genPackedSwitch(cUnit, mir, rlSrc[0]);
break;
case OP_SPARSE_SWITCH:
genSparseSwitch(cUnit, mir, rlSrc[0]);
break;
case OP_CMPL_FLOAT:
case OP_CMPG_FLOAT:
case OP_CMPL_DOUBLE:
case OP_CMPG_DOUBLE:
res = genCmpFP(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_CMP_LONG:
genCmpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_IF_EQ:
case OP_IF_NE:
case OP_IF_LT:
case OP_IF_GE:
case OP_IF_GT:
case OP_IF_LE: {
bool backwardBranch;
ArmConditionCode cond;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendTest(cUnit, mir);
}
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlSrc[1] = loadValue(cUnit, rlSrc[1], kCoreReg);
opRegReg(cUnit, kOpCmp, rlSrc[0].lowReg, rlSrc[1].lowReg);
switch(opcode) {
case OP_IF_EQ:
cond = kArmCondEq;
break;
case OP_IF_NE:
cond = kArmCondNe;
break;
case OP_IF_LT:
cond = kArmCondLt;
break;
case OP_IF_GE:
cond = kArmCondGe;
break;
case OP_IF_GT:
cond = kArmCondGt;
break;
case OP_IF_LE:
cond = kArmCondLe;
break;
default:
cond = (ArmConditionCode)0;
LOG(FATAL) << "Unexpected opcode " << (int)opcode;
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
break;
}
case OP_IF_EQZ:
case OP_IF_NEZ:
case OP_IF_LTZ:
case OP_IF_GEZ:
case OP_IF_GTZ:
case OP_IF_LEZ: {
bool backwardBranch;
ArmConditionCode cond;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendTest(cUnit, mir);
}
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
opRegImm(cUnit, kOpCmp, rlSrc[0].lowReg, 0);
switch(opcode) {
case OP_IF_EQZ:
cond = kArmCondEq;
break;
case OP_IF_NEZ:
cond = kArmCondNe;
break;
case OP_IF_LTZ:
cond = kArmCondLt;
break;
case OP_IF_GEZ:
cond = kArmCondGe;
break;
case OP_IF_GTZ:
cond = kArmCondGt;
break;
case OP_IF_LEZ:
cond = kArmCondLe;
break;
default:
cond = (ArmConditionCode)0;
LOG(FATAL) << "Unexpected opcode " << (int)opcode;
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
break;
}
case OP_AGET_WIDE:
genArrayGet(cUnit, mir, kLong, rlSrc[0], rlSrc[1], rlDest, 3);
break;
case OP_AGET:
case OP_AGET_OBJECT:
genArrayGet(cUnit, mir, kWord, rlSrc[0], rlSrc[1], rlDest, 2);
break;
case OP_AGET_BOOLEAN:
genArrayGet(cUnit, mir, kUnsignedByte, rlSrc[0], rlSrc[1],
rlDest, 0);
break;
case OP_AGET_BYTE:
genArrayGet(cUnit, mir, kSignedByte, rlSrc[0], rlSrc[1], rlDest, 0);
break;
case OP_AGET_CHAR:
genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc[0], rlSrc[1],
rlDest, 1);
break;
case OP_AGET_SHORT:
genArrayGet(cUnit, mir, kSignedHalf, rlSrc[0], rlSrc[1], rlDest, 1);
break;
case OP_APUT_WIDE:
genArrayPut(cUnit, mir, kLong, rlSrc[1], rlSrc[2], rlSrc[0], 3);
break;
case OP_APUT:
genArrayPut(cUnit, mir, kWord, rlSrc[1], rlSrc[2], rlSrc[0], 2);
break;
case OP_APUT_OBJECT:
genArrayObjPut(cUnit, mir, rlSrc[1], rlSrc[2], rlSrc[0], 2);
break;
case OP_APUT_SHORT:
case OP_APUT_CHAR:
genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc[1], rlSrc[2],
rlSrc[0], 1);
break;
case OP_APUT_BYTE:
case OP_APUT_BOOLEAN:
genArrayPut(cUnit, mir, kUnsignedByte, rlSrc[1], rlSrc[2],
rlSrc[0], 0);
break;
case OP_IGET_WIDE:
case OP_IGET_WIDE_VOLATILE:
genIGetWide(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_IGET:
case OP_IGET_VOLATILE:
case OP_IGET_OBJECT:
case OP_IGET_OBJECT_VOLATILE:
genIGet(cUnit, mir, kWord, rlDest, rlSrc[0]);
break;
case OP_IGET_BOOLEAN:
case OP_IGET_BYTE:
genIGet(cUnit, mir, kUnsignedByte, rlDest, rlSrc[0]);
break;
case OP_IGET_CHAR:
genIGet(cUnit, mir, kUnsignedHalf, rlDest, rlSrc[0]);
break;
case OP_IGET_SHORT:
genIGet(cUnit, mir, kSignedHalf, rlDest, rlSrc[0]);
break;
case OP_IPUT_WIDE:
case OP_IPUT_WIDE_VOLATILE:
genIPutWide(cUnit, mir, rlSrc[0], rlSrc[1]);
break;
case OP_IPUT_OBJECT:
case OP_IPUT_OBJECT_VOLATILE:
genIPut(cUnit, mir, kWord, rlSrc[0], rlSrc[1], true);
break;
case OP_IPUT:
case OP_IPUT_VOLATILE:
genIPut(cUnit, mir, kWord, rlSrc[0], rlSrc[1], false);
break;
case OP_IPUT_BOOLEAN:
case OP_IPUT_BYTE:
genIPut(cUnit, mir, kUnsignedByte, rlSrc[0], rlSrc[1], false);
break;
case OP_IPUT_CHAR:
genIPut(cUnit, mir, kUnsignedHalf, rlSrc[0], rlSrc[1], false);
break;
case OP_IPUT_SHORT:
genIPut(cUnit, mir, kSignedHalf, rlSrc[0], rlSrc[1], false);
break;
case OP_SGET:
case OP_SGET_OBJECT:
case OP_SGET_BOOLEAN:
case OP_SGET_BYTE:
case OP_SGET_CHAR:
case OP_SGET_SHORT:
genSget(cUnit, mir, rlResult, rlDest);
break;
case OP_SGET_WIDE:
genSgetWide(cUnit, mir, rlResult, rlDest);
break;
case OP_SPUT:
case OP_SPUT_OBJECT:
case OP_SPUT_BOOLEAN:
case OP_SPUT_BYTE:
case OP_SPUT_CHAR:
case OP_SPUT_SHORT:
genSput(cUnit, mir, rlSrc[0]);
break;
case OP_SPUT_WIDE:
genSputWide(cUnit, mir, rlSrc[0]);
break;
case OP_INVOKE_STATIC_RANGE:
genInvokeStaticDirect(cUnit, mir, false /*direct*/,
true /*range*/);
break;
case OP_INVOKE_STATIC:
genInvokeStaticDirect(cUnit, mir, false /*direct*/,
false /*range*/);
break;
case OP_INVOKE_DIRECT:
genInvokeStaticDirect(cUnit, mir, true /*direct*/,
false /*range*/);
break;
case OP_INVOKE_DIRECT_RANGE:
genInvokeStaticDirect(cUnit, mir, true /*direct*/,
true /*range*/);
break;
case OP_INVOKE_VIRTUAL:
case OP_INVOKE_VIRTUAL_RANGE:
genInvokeVirtual(cUnit, mir);
break;
case OP_INVOKE_SUPER:
case OP_INVOKE_SUPER_RANGE:
genInvokeSuper(cUnit, mir);
break;
case OP_INVOKE_INTERFACE:
case OP_INVOKE_INTERFACE_RANGE:
genInvokeInterface(cUnit, mir);
break;
case OP_NEG_INT:
case OP_NOT_INT:
res = genArithOpInt(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_NEG_LONG:
case OP_NOT_LONG:
res = genArithOpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_NEG_FLOAT:
res = genArithOpFloat(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_NEG_DOUBLE:
res = genArithOpDouble(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_INT_TO_LONG:
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
if (rlSrc[0].location == kLocPhysReg) {
genRegCopy(cUnit, rlResult.lowReg, rlSrc[0].lowReg);
} else {
loadValueDirect(cUnit, rlSrc[0], rlResult.lowReg);
}
opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_LONG_TO_INT:
rlSrc[0] = oatUpdateLocWide(cUnit, rlSrc[0]);
rlSrc[0] = oatWideToNarrow(cUnit, rlSrc[0]);
storeValue(cUnit, rlDest, rlSrc[0]);
break;
case OP_INT_TO_BYTE:
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc[0].lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_SHORT:
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc[0].lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_CHAR:
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc[0].lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_FLOAT:
case OP_INT_TO_DOUBLE:
case OP_LONG_TO_FLOAT:
case OP_LONG_TO_DOUBLE:
case OP_FLOAT_TO_INT:
case OP_FLOAT_TO_LONG:
case OP_FLOAT_TO_DOUBLE:
case OP_DOUBLE_TO_INT:
case OP_DOUBLE_TO_LONG:
case OP_DOUBLE_TO_FLOAT:
genConversion(cUnit, mir);
break;
case OP_ADD_INT:
case OP_SUB_INT:
case OP_MUL_INT:
case OP_DIV_INT:
case OP_REM_INT:
case OP_AND_INT:
case OP_OR_INT:
case OP_XOR_INT:
case OP_SHL_INT:
case OP_SHR_INT:
case OP_USHR_INT:
case OP_ADD_INT_2ADDR:
case OP_SUB_INT_2ADDR:
case OP_MUL_INT_2ADDR:
case OP_DIV_INT_2ADDR:
case OP_REM_INT_2ADDR:
case OP_AND_INT_2ADDR:
case OP_OR_INT_2ADDR:
case OP_XOR_INT_2ADDR:
case OP_SHL_INT_2ADDR:
case OP_SHR_INT_2ADDR:
case OP_USHR_INT_2ADDR:
genArithOpInt(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_ADD_LONG:
case OP_SUB_LONG:
case OP_MUL_LONG:
case OP_DIV_LONG:
case OP_REM_LONG:
case OP_AND_LONG:
case OP_OR_LONG:
case OP_XOR_LONG:
case OP_ADD_LONG_2ADDR:
case OP_SUB_LONG_2ADDR:
case OP_MUL_LONG_2ADDR:
case OP_DIV_LONG_2ADDR:
case OP_REM_LONG_2ADDR:
case OP_AND_LONG_2ADDR:
case OP_OR_LONG_2ADDR:
case OP_XOR_LONG_2ADDR:
genArithOpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_SHL_LONG:
case OP_SHR_LONG:
case OP_USHR_LONG:
case OP_SHL_LONG_2ADDR:
case OP_SHR_LONG_2ADDR:
case OP_USHR_LONG_2ADDR:
genShiftOpLong(cUnit,mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_ADD_FLOAT:
case OP_SUB_FLOAT:
case OP_MUL_FLOAT:
case OP_DIV_FLOAT:
case OP_REM_FLOAT:
case OP_ADD_FLOAT_2ADDR:
case OP_SUB_FLOAT_2ADDR:
case OP_MUL_FLOAT_2ADDR:
case OP_DIV_FLOAT_2ADDR:
case OP_REM_FLOAT_2ADDR:
genArithOpFloat(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_ADD_DOUBLE:
case OP_SUB_DOUBLE:
case OP_MUL_DOUBLE:
case OP_DIV_DOUBLE:
case OP_REM_DOUBLE:
case OP_ADD_DOUBLE_2ADDR:
case OP_SUB_DOUBLE_2ADDR:
case OP_MUL_DOUBLE_2ADDR:
case OP_DIV_DOUBLE_2ADDR:
case OP_REM_DOUBLE_2ADDR:
genArithOpDouble(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_RSUB_INT:
case OP_ADD_INT_LIT16:
case OP_MUL_INT_LIT16:
case OP_DIV_INT_LIT16:
case OP_REM_INT_LIT16:
case OP_AND_INT_LIT16:
case OP_OR_INT_LIT16:
case OP_XOR_INT_LIT16:
case OP_ADD_INT_LIT8:
case OP_RSUB_INT_LIT8:
case OP_MUL_INT_LIT8:
case OP_DIV_INT_LIT8:
case OP_REM_INT_LIT8:
case OP_AND_INT_LIT8:
case OP_OR_INT_LIT8:
case OP_XOR_INT_LIT8:
case OP_SHL_INT_LIT8:
case OP_SHR_INT_LIT8:
case OP_USHR_INT_LIT8:
genArithOpIntLit(cUnit, mir, rlDest, rlSrc[0], mir->dalvikInsn.vC);
break;
default:
res = true;
}
return res;
}
STATIC const char* extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
"kMirOpPhi",
"kMirOpNullNRangeUpCheck",
"kMirOpNullNRangeDownCheck",
"kMirOpLowerBound",
"kMirOpPunt",
"kMirOpCheckInlinePrediction",
};
/* Extended MIR instructions like PHI */
STATIC void handleExtendedMethodMIR(CompilationUnit* cUnit, MIR* mir)
{
int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
char* msg = (char*)oatNew(strlen(extendedMIROpNames[opOffset]) + 1, false);
strcpy(msg, extendedMIROpNames[opOffset]);
ArmLIR* op = newLIR1(cUnit, kArmPseudoExtended, (int) msg);
switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
case kMirOpPhi: {
char* ssaString = oatGetSSAString(cUnit, mir->ssaRep);
op->flags.isNop = true;
newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
break;
}
default:
break;
}
}
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform intial
* assignment of promoted arguments.
*/
STATIC void flushIns(CompilationUnit* cUnit)
{
if (cUnit->numIns == 0)
return;
int firstArgReg = r1;
int lastArgReg = r3;
int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
/*
* Arguments passed in registers should be flushed
* to their backing locations in the frame for now.
* Also, we need to do initial assignment for promoted
* arguments. NOTE: an older version of dx had an issue
* in which it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. In those
* cases, copy argument to both. This will be uncommon
* enough that it isn't worth attempting to optimize.
*/
for (int i = 0; i < cUnit->numIns; i++) {
PromotionMap vMap = cUnit->promotionMap[startVReg + i];
if (i <= (lastArgReg - firstArgReg)) {
// If arriving in register
if (vMap.coreLocation == kLocPhysReg) {
genRegCopy(cUnit, vMap.coreReg, firstArgReg + i);
}
if (vMap.fpLocation == kLocPhysReg) {
genRegCopy(cUnit, vMap.fpReg, firstArgReg + i);
}
// Also put a copy in memory in case we're partially promoted
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
firstArgReg + i, kWord);
} else {
// If arriving in frame & promoted
if (vMap.coreLocation == kLocPhysReg) {
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
vMap.coreReg);
}
if (vMap.fpLocation == kLocPhysReg) {
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
vMap.fpReg);
}
}
}
}
/* Handle the content in each basic block */
STATIC bool methodBlockCodeGen(CompilationUnit* cUnit, BasicBlock* bb)
{
MIR* mir;
ArmLIR* labelList = (ArmLIR*) cUnit->blockLabelList;
int blockId = bb->id;
cUnit->curBlock = bb;
labelList[blockId].operands[0] = bb->startOffset;
/* Insert the block label */
labelList[blockId].opcode = kArmPseudoNormalBlockLabel;
oatAppendLIR(cUnit, (LIR*) &labelList[blockId]);
/* Reset local optimization data on block boundaries */
oatResetRegPool(cUnit);
oatClobberAllRegs(cUnit);
oatResetDefTracking(cUnit);
ArmLIR* headLIR = NULL;
int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills;
if (bb->blockType == kEntryBlock) {
/*
* On entry, r0, r1, r2 & r3 are live. Let the register allocation
* mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with a single temp: r12. This should be enough.
*/
oatLockTemp(cUnit, r0);
oatLockTemp(cUnit, r1);
oatLockTemp(cUnit, r2);
oatLockTemp(cUnit, r3);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skipOverflowCheck = ((cUnit->attrs & METHOD_IS_LEAF) &&
((size_t)cUnit->frameSize <
Thread::kStackOverflowReservedBytes));
newLIR0(cUnit, kArmPseudoMethodEntry);
if (!skipOverflowCheck) {
/* Load stack limit */
loadWordDisp(cUnit, rSELF,
Thread::StackEndOffset().Int32Value(), r12);
}
/* Spill core callee saves */
newLIR1(cUnit, kThumb2Push, cUnit->coreSpillMask);
/* Need to spill any FP regs? */
if (cUnit->numFPSpills) {
/*
* NOTE: fp spills are a little different from core spills in that
* they are pushed as a contiguous block. When promoting from
* the fp set, we must allocate all singles from s16..highest-promoted
*/
newLIR1(cUnit, kThumb2VPushCS, cUnit->numFPSpills);
}
if (!skipOverflowCheck) {
opRegRegImm(cUnit, kOpSub, rLR, rSP,
cUnit->frameSize - (spillCount * 4));
genRegRegCheck(cUnit, kArmCondCc, rLR, r12, NULL,
kArmThrowStackOverflow);
genRegCopy(cUnit, rSP, rLR); // Establish stack
} else {
opRegImm(cUnit, kOpSub, rSP,
cUnit->frameSize - (spillCount * 4));
}
storeBaseDisp(cUnit, rSP, 0, r0, kWord);
flushIns(cUnit);
oatFreeTemp(cUnit, r0);
oatFreeTemp(cUnit, r1);
oatFreeTemp(cUnit, r2);
oatFreeTemp(cUnit, r3);
} else if (bb->blockType == kExitBlock) {
newLIR0(cUnit, kArmPseudoMethodExit);
opRegImm(cUnit, kOpAdd, rSP, cUnit->frameSize - (spillCount * 4));
/* Need to restore any FP callee saves? */
if (cUnit->numFPSpills) {
newLIR1(cUnit, kThumb2VPopCS, cUnit->numFPSpills);
}
if (cUnit->coreSpillMask & (1 << rLR)) {
/* Unspill rLR to rPC */
cUnit->coreSpillMask &= ~(1 << rLR);
cUnit->coreSpillMask |= (1 << rPC);
}
newLIR1(cUnit, kThumb2Pop, cUnit->coreSpillMask);
if (!(cUnit->coreSpillMask & (1 << rPC))) {
/* We didn't pop to rPC, so must do a bv rLR */
newLIR1(cUnit, kThumbBx, rLR);
}
}
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
oatResetRegPool(cUnit);
if (cUnit->disableOpt & (1 << kTrackLiveTemps)) {
oatClobberAllRegs(cUnit);
}
if (cUnit->disableOpt & (1 << kSuppressLoads)) {
oatResetDefTracking(cUnit);
}
if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
handleExtendedMethodMIR(cUnit, mir);
continue;
}
cUnit->currentDalvikOffset = mir->offset;
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
InstructionFormat dalvikFormat =
dexGetFormatFromOpcode(dalvikOpcode);
ArmLIR* boundaryLIR;
/* Mark the beginning of a Dalvik instruction for line tracking */
boundaryLIR = newLIR1(cUnit, kArmPseudoDalvikByteCodeBoundary,
(int) oatGetDalvikDisassembly(
&mir->dalvikInsn, ""));
cUnit->boundaryMap.insert(std::make_pair(mir->offset,
(LIR*)boundaryLIR));
/* Remember the first LIR for this block */
if (headLIR == NULL) {
headLIR = boundaryLIR;
/* Set the first boundaryLIR as a scheduling barrier */
headLIR->defMask = ENCODE_ALL;
}
/* Don't generate the SSA annotation unless verbose mode is on */
if (cUnit->printMe && mir->ssaRep) {
char* ssaString = oatGetSSAString(cUnit, mir->ssaRep);
newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
}
bool notHandled = compileDalvikInstruction(cUnit, mir, bb, labelList);
if (notHandled) {
char buf[100];
snprintf(buf, 100, "%#06x: Opcode %#x (%s) / Fmt %d not handled",
mir->offset,
dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
dalvikFormat);
LOG(FATAL) << buf;
}
}
if (headLIR) {
/*
* Eliminate redundant loads/stores and delay stores into later
* slots
*/
oatApplyLocalOptimizations(cUnit, (LIR*) headLIR,
cUnit->lastLIRInsn);
/*
* Generate an unconditional branch to the fallthrough block.
*/
if (bb->fallThrough) {
genUnconditionalBranch(cUnit,
&labelList[bb->fallThrough->id]);
}
}
return false;
}
/*
* Nop any unconditional branches that go to the next instruction.
* Note: new redundant branches may be inserted later, and we'll
* use a check in final instruction assembly to nop those out.
*/
void removeRedundantBranches(CompilationUnit* cUnit)
{
ArmLIR* thisLIR;
for (thisLIR = (ArmLIR*) cUnit->firstLIRInsn;
thisLIR != (ArmLIR*) cUnit->lastLIRInsn;
thisLIR = NEXT_LIR(thisLIR)) {
/* Branch to the next instruction */
if ((thisLIR->opcode == kThumbBUncond) ||
(thisLIR->opcode == kThumb2BUncond)) {
ArmLIR* nextLIR = thisLIR;
while (true) {
nextLIR = NEXT_LIR(nextLIR);
/*
* Is the branch target the next instruction?
*/
if (nextLIR == (ArmLIR*) thisLIR->generic.target) {
thisLIR->flags.isNop = true;
break;
}
/*
* Found real useful stuff between the branch and the target.
* Need to explicitly check the lastLIRInsn here because it
* might be the last real instruction.
*/
if (!isPseudoOpcode(nextLIR->opcode) ||
(nextLIR = (ArmLIR*) cUnit->lastLIRInsn))
break;
}
}
}
}
STATIC void handleSuspendLaunchpads(CompilationUnit *cUnit)
{
ArmLIR** suspendLabel =
(ArmLIR **) cUnit->suspendLaunchpads.elemList;
int numElems = cUnit->suspendLaunchpads.numUsed;
for (int i = 0; i < numElems; i++) {
/* TUNING: move suspend count load into helper */
ArmLIR* lab = suspendLabel[i];
ArmLIR* resumeLab = (ArmLIR*)lab->operands[0];
cUnit->currentDalvikOffset = lab->operands[1];
oatAppendLIR(cUnit, (LIR *)lab);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pTestSuspendFromCode), rLR);
loadWordDisp(cUnit, rSELF,
Thread::SuspendCountOffset().Int32Value(), rSUSPEND);
opReg(cUnit, kOpBlx, rLR);
genUnconditionalBranch(cUnit, resumeLab);
}
}
STATIC void handleThrowLaunchpads(CompilationUnit *cUnit)
{
ArmLIR** throwLabel =
(ArmLIR **) cUnit->throwLaunchpads.elemList;
int numElems = cUnit->throwLaunchpads.numUsed;
int i;
for (i = 0; i < numElems; i++) {
ArmLIR* lab = throwLabel[i];
cUnit->currentDalvikOffset = lab->operands[1];
oatAppendLIR(cUnit, (LIR *)lab);
int funcOffset = 0;
int v1 = lab->operands[2];
int v2 = lab->operands[3];
switch(lab->operands[0]) {
case kArmThrowNullPointer:
funcOffset = OFFSETOF_MEMBER(Thread, pThrowNullPointerFromCode);
break;
case kArmThrowArrayBounds:
if (v2 != r0) {
genRegCopy(cUnit, r0, v1);
genRegCopy(cUnit, r1, v2);
} else {
if (v1 == r1) {
genRegCopy(cUnit, r12, v1);
genRegCopy(cUnit, r1, v2);
genRegCopy(cUnit, r0, r12);
} else {
genRegCopy(cUnit, r1, v2);
genRegCopy(cUnit, r0, v1);
}
}
funcOffset = OFFSETOF_MEMBER(Thread, pThrowArrayBoundsFromCode);
break;
case kArmThrowDivZero:
funcOffset = OFFSETOF_MEMBER(Thread, pThrowDivZeroFromCode);
break;
case kArmThrowVerificationError:
loadConstant(cUnit, r0, v1);
loadConstant(cUnit, r1, v2);
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowVerificationErrorFromCode);
break;
case kArmThrowNegArraySize:
genRegCopy(cUnit, r0, v1);
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowNegArraySizeFromCode);
break;
case kArmThrowNoSuchMethod:
genRegCopy(cUnit, r0, v1);
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowNoSuchMethodFromCode);
break;
case kArmThrowStackOverflow:
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowStackOverflowFromCode);
// Restore stack alignment
opRegImm(cUnit, kOpAdd, rSP,
(cUnit->numCoreSpills + cUnit->numFPSpills) * 4);
break;
default:
LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
}
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
callRuntimeHelper(cUnit, rLR);
}
}
void oatMethodMIR2LIR(CompilationUnit* cUnit)
{
/* Used to hold the labels of each block */
cUnit->blockLabelList =
(void *) oatNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
oatDataFlowAnalysisDispatcher(cUnit, methodBlockCodeGen,
kPreOrderDFSTraversal, false /* Iterative */);
handleSuspendLaunchpads(cUnit);
handleThrowLaunchpads(cUnit);
removeRedundantBranches(cUnit);
}
/* Common initialization routine for an architecture family */
bool oatArchInit()
{
int i;
for (i = 0; i < kArmLast; i++) {
if (EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << EncodingMap[i].name <<
" is wrong: expecting " << i << ", seeing " <<
(int)EncodingMap[i].opcode;
}
}
return oatArchVariantInit();
}
/* Needed by the Assembler */
void oatSetupResourceMasks(ArmLIR* lir)
{
setupResourceMasks(lir);
}
/* Needed by the ld/st optmizatons */
ArmLIR* oatRegCopyNoInsert(CompilationUnit* cUnit, int rDest, int rSrc)
{
return genRegCopyNoInsert(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
ArmLIR* oatRegCopy(CompilationUnit* cUnit, int rDest, int rSrc)
{
return genRegCopy(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
void oatRegCopyWide(CompilationUnit* cUnit, int destLo, int destHi,
int srcLo, int srcHi)
{
genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
}
void oatFlushRegImpl(CompilationUnit* cUnit, int rBase,
int displacement, int rSrc, OpSize size)
{
storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
}
void oatFlushRegWideImpl(CompilationUnit* cUnit, int rBase,
int displacement, int rSrcLo, int rSrcHi)
{
storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
}
} // namespace art