blob: 8caf0d145a1c36a71a445285d5b68afaf7196541 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
static const RegLocation badLoc = {kLocDalvikFrame, 0, 0, INVALID_REG,
INVALID_REG, INVALID_SREG, 0,
kLocDalvikFrame, INVALID_REG, INVALID_REG,
INVALID_OFFSET};
static const RegLocation retLoc = LOC_DALVIK_RETURN_VAL;
static const RegLocation retLocWide = LOC_DALVIK_RETURN_VAL_WIDE;
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
static void genNewArray(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest,
RegLocation rlSrc)
{
oatFlushAllRegs(cUnit); /* Everything to home location */
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pAllocFromCode), rLR);
loadCurrMethodDirect(cUnit, r1); // arg1 <- Method*
loadConstant(cUnit, r0, mir->dalvikInsn.vC); // arg0 <- type_id
loadValueDirectFixed(cUnit, rlSrc, r2); // arg2 <- count
opReg(cUnit, kOpBlx, rLR);
oatClobberCallRegs(cUnit);
RegLocation rlResult = oatGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
}
/*
* Similar to genNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
static void genFilledNewArray(CompilationUnit* cUnit, MIR* mir, bool isRange)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int elems;
int typeId;
if (isRange) {
elems = dInsn->vA;
typeId = dInsn->vB;
} else {
elems = dInsn->vB;
typeId = dInsn->vC;
}
oatFlushAllRegs(cUnit); /* Everything to home location */
// TODO: Alloc variant that checks types (see header comment) */
UNIMPLEMENTED(WARNING) << "Need AllocFromCode variant w/ extra checks";
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pAllocFromCode), rLR);
loadCurrMethodDirect(cUnit, r1); // arg1 <- Method*
loadConstant(cUnit, r0, typeId); // arg0 <- type_id
loadConstant(cUnit, r2, elems); // arg2 <- count
opReg(cUnit, kOpBlx, rLR);
/*
* NOTE: the implicit target for OP_FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in r0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
oatLockTemp(cUnit, r0);
// Having a range of 0 is legal
if (isRange && (dInsn->vA > 0)) {
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (unsigned int i = 0; i < dInsn->vA; i++) {
RegLocation loc = oatUpdateLoc(cUnit,
oatGetSrc(cUnit, mir, i));
if (loc.location == kLocPhysReg) {
storeBaseDisp(cUnit, rSP, loc.spOffset, loc.lowReg, kWord);
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
int rSrc = oatAllocTemp(cUnit);
int rDst = oatAllocTemp(cUnit);
int rIdx = oatAllocTemp(cUnit);
int rVal = rLR; // Using a lot of temps, rLR is known free here
// Set up source pointer
RegLocation rlFirst = oatGetSrc(cUnit, mir, 0);
opRegRegImm(cUnit, kOpAdd, rSrc, rSP, rlFirst.spOffset);
// Set up the target pointer
opRegRegImm(cUnit, kOpAdd, rDst, r0,
Array::DataOffset().Int32Value());
// Set up the loop counter (known to be > 0)
loadConstant(cUnit, rIdx, dInsn->vA);
// Generate the copy loop. Going backwards for convenience
ArmLIR* target = newLIR0(cUnit, kArmPseudoTargetLabel);
target->defMask = ENCODE_ALL;
// Copy next element
loadBaseIndexed(cUnit, rSrc, rIdx, rVal, 2, kWord);
storeBaseIndexed(cUnit, rDst, rIdx, rVal, 2, kWord);
// Use setflags encoding here
newLIR3(cUnit, kThumb2SubsRRI12, rIdx, rIdx, 1);
ArmLIR* branch = opCondBranch(cUnit, kArmCondNe);
branch->generic.target = (LIR*)target;
} else if (!isRange) {
// TUNING: interleave
for (unsigned int i = 0; i < dInsn->vA; i++) {
RegLocation rlArg = loadValue(cUnit,
oatGetSrc(cUnit, mir, i), kCoreReg);
storeBaseDisp(cUnit, r0,
Array::DataOffset().Int32Value() +
i * 4, rlArg.lowReg, kWord);
// If the loadValue caused a temp to be allocated, free it
if (oatIsTemp(cUnit, rlArg.lowReg)) {
oatFreeTemp(cUnit, rlArg.lowReg);
}
}
}
}
static void genSput(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc)
{
bool slow_path = true;
bool isObject = ((mir->dalvikInsn.opcode == OP_SPUT_OBJECT) ||
(mir->dalvikInsn.opcode == OP_SPUT_OBJECT_VOLATILE));
UNIMPLEMENTED(WARNING) << "Implement sput fast path";
int funcOffset;
if (slow_path) {
if (isObject) {
funcOffset = OFFSETOF_MEMBER(Thread, pSetObjStatic);
} else {
funcOffset = OFFSETOF_MEMBER(Thread, pSet32Static);
}
oatFlushAllRegs(cUnit);
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
loadValueDirect(cUnit, rlSrc, r2);
opReg(cUnit, kOpBlx, rLR);
oatClobberCallRegs(cUnit);
} else {
UNIMPLEMENTED(FATAL) << "Must update for new world";
#if 0
int valOffset = OFFSETOF_MEMBER(StaticField, value);
int tReg = oatAllocTemp(cUnit);
int objHead;
bool isVolatile;
bool isSputObject;
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void* fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
Opcode opcode = mir->dalvikInsn.opcode;
if (fieldPtr == NULL) {
// FIXME: need to handle this case for oat();
UNIMPLEMENTED(FATAL);
}
#if ANDROID_SMP != 0
isVolatile = (opcode == OP_SPUT_VOLATILE) ||
(opcode == OP_SPUT_VOLATILE_JUMBO) ||
(opcode == OP_SPUT_OBJECT_VOLATILE) ||
(opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
assert(isVolatile == artIsVolatileField((Field *) fieldPtr));
#else
isVolatile = artIsVolatileField((Field *) fieldPtr);
#endif
isSputObject = (opcode == OP_SPUT_OBJECT) ||
(opcode == OP_SPUT_OBJECT_VOLATILE);
rlSrc = oatGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
loadConstant(cUnit, tReg, (int) fieldPtr);
if (isSputObject) {
objHead = oatAllocTemp(cUnit);
loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
}
storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
oatFreeTemp(cUnit, tReg);
if (isVolatile) {
oatGenMemBarrier(cUnit, kSY);
}
if (isSputObject) {
/* NOTE: marking card based sfield->clazz */
markGCCard(cUnit, rlSrc.lowReg, objHead);
oatFreeTemp(cUnit, objHead);
}
#endif
}
}
static void genSputWide(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc)
{
bool slow_path = true;
UNIMPLEMENTED(WARNING) << "Implement sput-wide fast path";
int funcOffset;
if (slow_path) {
funcOffset = OFFSETOF_MEMBER(Thread, pSet64Static);
oatFlushAllRegs(cUnit);
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
loadValueDirectWideFixed(cUnit, rlSrc, r2, r3);
opReg(cUnit, kOpBlx, rLR);
oatClobberCallRegs(cUnit);
} else {
UNIMPLEMENTED(FATAL) << "Must update for new world";
#if 0
int tReg = oatAllocTemp(cUnit);
int valOffset = OFFSETOF_MEMBER(StaticField, value);
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void* fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
if (fieldPtr == NULL) {
// FIXME: need to handle this case for oat();
UNIMPLEMENTED(FATAL);
}
rlSrc = oatGetSrcWide(cUnit, mir, 0, 1);
rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
#endif
}
}
static void genSgetWide(CompilationUnit* cUnit, MIR* mir,
RegLocation rlResult, RegLocation rlDest)
{
bool slow_path = true;
UNIMPLEMENTED(WARNING) << "Implement sget-wide fast path";
int funcOffset;
if (slow_path) {
funcOffset = OFFSETOF_MEMBER(Thread, pGet64Static);
oatFlushAllRegs(cUnit);
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
opReg(cUnit, kOpBlx, rLR);
RegLocation rlResult = oatGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
} else {
UNIMPLEMENTED(FATAL) << "Must update for new world";
#if 0
int valOffset = OFFSETOF_MEMBER(StaticField, value);
const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
mir->meta.calleeMethod : cUnit->method;
void* fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
if (fieldPtr == NULL) {
// FIXME: need to handle this case for oat();
UNIMPLEMENTED(FATAL);
}
int tReg = oatAllocTemp(cUnit);
rlDest = oatGetDestWide(cUnit, mir, 0, 1);
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
storeValueWide(cUnit, rlDest, rlResult);
#endif
}
}
static void genSget(CompilationUnit* cUnit, MIR* mir,
RegLocation rlResult, RegLocation rlDest)
{
bool slow_path = true;
bool isObject = ((mir->dalvikInsn.opcode == OP_SGET_OBJECT) ||
(mir->dalvikInsn.opcode == OP_SGET_OBJECT_VOLATILE));
UNIMPLEMENTED(WARNING) << "Implement sget fast path";
int funcOffset;
if (slow_path) {
if (isObject) {
funcOffset = OFFSETOF_MEMBER(Thread, pGetObjStatic);
} else {
funcOffset = OFFSETOF_MEMBER(Thread, pGet32Static);
}
oatFlushAllRegs(cUnit);
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vB);
loadCurrMethodDirect(cUnit, r1);
opReg(cUnit, kOpBlx, rLR);
RegLocation rlResult = oatGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
} else {
UNIMPLEMENTED(FATAL) << "Must update for new world";
#if 0
int valOffset = OFFSETOF_MEMBER(StaticField, value);
int tReg = oatAllocTemp(cUnit);
bool isVolatile;
const Method *method = cUnit->method;
void* fieldPtr = (void*)
(method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
if (fieldPtr == NULL) {
// FIXME: need to handle this case for oat();
UNIMPLEMENTED(FATAL);
}
/*
* On SMP systems, Dalvik opcodes found to be referencing
* volatile fields are rewritten to their _VOLATILE variant.
* However, this does not happen on non-SMP systems. The compiler
* still needs to know about volatility to avoid unsafe
* optimizations so we determine volatility based on either
* the opcode or the field access flags.
*/
#if ANDROID_SMP != 0
Opcode opcode = mir->dalvikInsn.opcode;
isVolatile = (opcode == OP_SGET_VOLATILE) ||
(opcode == OP_SGET_OBJECT_VOLATILE);
assert(isVolatile == artIsVolatileField((Field *) fieldPtr));
#else
isVolatile = artIsVolatileField((Field *) fieldPtr);
#endif
rlDest = oatGetDest(cUnit, mir, 0);
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
if (isVolatile) {
oatGenMemBarrier(cUnit, kSY);
}
loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
storeValue(cUnit, rlDest, rlResult);
#endif
}
}
typedef int (*NextCallInsn)(CompilationUnit*, MIR*, DecodedInstruction*, int);
/*
* Bit of a hack here - in leiu of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
static int nextSDCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state)
{
UNIMPLEMENTED(FATAL) << "Update with new cache model";
#if 0
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get the pResMethods pointer [uses r0, sets r0]
UNIMPLEMENTED(FATAL) << "Update with new cache";
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, pResMethods),
r0, kWord, INVALID_SREG);
break;
case 2: // Get the target Method* [uses r0, sets r0]
loadBaseDisp(cUnit, mir, r0, dInsn->vB * 4, r0,
kWord, INVALID_SREG);
break;
case 3: // Get the target compiled code address [uses r0, sets rLR]
loadBaseDisp(cUnit, mir, r0,
OFFSETOF_MEMBER(Method, compiledInsns), rLR,
kWord, INVALID_SREG);
break;
default:
return -1;
}
#endif
return state + 1;
}
// Slow path static & direct invoke launch sequence
static int nextSDCallInsnSP(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state)
{
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get the current Method->DeclaringClass() [sets r0]
loadBaseDisp(cUnit, mir, r0,
art::Method::DeclaringClassOffset().Int32Value(),
r0, kWord, INVALID_SREG);
break;
case 2: // Method->DeclaringClass()->GetDexCache() [sets r0]
loadBaseDisp(cUnit, mir, r0,
art::Class::DexCacheOffset().Int32Value(), r0, kWord,
INVALID_SREG);
break;
case 3: // Method->DeclaringClass()->GetDexCache()->methodsObjectArr
loadBaseDisp(cUnit, mir, r0,
art::DexCache::ResolvedMethodsOffset().Int32Value(), r0,
kWord, INVALID_SREG);
break;
case 4: // Skip past the object header
opRegImm(cUnit, kOpAdd, r0, art::Array::DataOffset().Int32Value());
break;
case 5: // Get the target Method* [uses r0, sets r0]
loadBaseDisp(cUnit, mir, r0, dInsn->vB * 4, r0,
kWord, INVALID_SREG);
break;
case 6: // Get the target compiled code address [uses r0, sets rLR]
loadBaseDisp(cUnit, mir, r0,
art::Method::GetCodeOffset().Int32Value(), rLR,
kWord, INVALID_SREG);
break;
default:
return -1;
}
return state + 1;
}
/*
* Bit of a hack here - in leiu of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use rLR as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* r1 here rather than the standard loadArgRegs.
*/
static int nextVCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state)
{
UNIMPLEMENTED(FATAL) << "Update with new cache model";
#if 0
RegLocation rlArg;
switch(state) {
case 0: // Get the current Method* [set r0]
loadCurrMethodDirect(cUnit, r0);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
break;
case 1: // Get the pResMethods pointer [use r0, set r12]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, pResMethods),
r12, kWord, INVALID_SREG);
// Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1,
mir->offset, NULL);
break;
case 2: // Get the base Method* [use r12, set r0]
loadBaseDisp(cUnit, mir, r12, dInsn->vB * 4, r0,
kWord, INVALID_SREG);
// get this->clazz [use r1, set rLR]
loadBaseDisp(cUnit, mir, r1, OFFSETOF_MEMBER(Object, clazz), rLR,
kWord, INVALID_SREG);
break;
case 3: // Get the method index [use r0, set r12]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, methodIndex),
r12, kUnsignedHalf, INVALID_SREG);
// get this->clazz->vtable [use rLR, set rLR]
loadBaseDisp(cUnit, mir, rLR,
OFFSETOF_MEMBER(Class, vtable), rLR, kWord,
INVALID_SREG);
break;
case 4: // get target Method* [use rLR, use r12, set r0]
loadBaseIndexed(cUnit, rLR, r12, r0, 2, kWord);
break;
case 5: // Get the target compiled code address [use r0, set rLR]
UNIMPLEMENTED(FATAL) << "Update with new cache";
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, compiledInsns),
rLR, kWord, INVALID_SREG);
break;
default:
return -1;
}
#endif
return state + 1;
}
// Slow path sequence for virtual calls
static int nextVCallInsnSP(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state)
{
RegLocation rlArg;
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get the current Method->DeclaringClass() [uses/sets r0]
loadBaseDisp(cUnit, mir, r0,
art::Method::DeclaringClassOffset().Int32Value(),
r0, kWord, INVALID_SREG);
break;
case 2: // Method->DeclaringClass()->GetDexCache() [uses/sets r0]
loadBaseDisp(cUnit, mir, r0,
art::Class::DexCacheOffset().Int32Value(),
r0, kWord,
INVALID_SREG);
break;
case 3: // ...()->GetDexCache()->methodsObjectArr [uses/sets r0]
loadBaseDisp(cUnit, mir, r0,
art::DexCache::ResolvedMethodsOffset().Int32Value(),
r0, kWord, INVALID_SREG);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
// Skip past the object header
opRegImm(cUnit, kOpAdd, r0, art::Array::DataOffset().Int32Value());
break;
case 4:
// Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir->offset, NULL);
// get this->clazz [use r1, set rLR]
loadBaseDisp(cUnit, mir, r1, Object::ClassOffset().Int32Value(),
rLR, kWord, INVALID_SREG);
// Get the base Method* [uses r0, sets r0]
loadBaseDisp(cUnit, mir, r0, dInsn->vB * 4, r0,
kWord, INVALID_SREG);
// get this->clazz->vtable [use rLR, set rLR]
loadBaseDisp(cUnit, mir, rLR,
Class::VTableOffset().Int32Value(), rLR, kWord,
INVALID_SREG);
// Get the method index [use r0, set r12]
loadBaseDisp(cUnit, mir, r0,
Method::MethodIndexOffset().Int32Value(),
r12, kUnsignedHalf, INVALID_SREG);
// Skip past the object header
opRegImm(cUnit, kOpAdd, rLR, art::Array::DataOffset().Int32Value());
// Get target Method*
loadBaseIndexed(cUnit, rLR, r12, r0, 2, kWord);
break;
case 5: // Get the target compiled code address [uses r0, sets rLR]
loadBaseDisp(cUnit, mir, r0,
art::Method::GetCodeOffset().Int32Value(), rLR,
kWord, INVALID_SREG);
break;
default:
return -1;
}
return state + 1;
}
/* Load up to 3 arguments in r1..r3 */
static int loadArgRegs(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
int *args, NextCallInsn nextCallInsn)
{
for (int i = 0; i < 3; i++) {
if (args[i] != INVALID_REG) {
RegLocation rlArg = oatGetSrc(cUnit, mir, i);
// Arguments are treated as a series of untyped 32-bit values.
rlArg.wide = false;
loadValueDirectFixed(cUnit, rlArg, r1 + i);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
}
return callState;
}
/*
* Interleave launch code for INVOKE_INTERFACE. The target is
* identified using artFindInterfaceMethodInCache(class, ref, method, dex)
* Note that we'll have to reload "this" following the helper call.
*
* FIXME: do we need to have artFindInterfaceMethodInCache return
* a NULL if not found so we can throw exception here? Otherwise,
* may need to pass some additional info to allow the helper function
* to throw on its own.
*/
static int nextInterfaceCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state)
{
UNIMPLEMENTED(FATAL) << "Need findInterfaceMethodInCache";
#if 0
RegLocation rlArg;
switch(state) {
case 0:
// Load "this" [set r12]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r12);
// Get the current Method* [set arg2]
loadCurrMethodDirect(cUnit, r2);
// Is "this" null? [use r12]
genNullCheck(cUnit, oatSSASrc(mir,0), r12,
mir->offset, NULL);
// Get curMethod->clazz [set arg3]
loadBaseDisp(cUnit, mir, r2, OFFSETOF_MEMBER(Method, clazz),
r3, kWord, INVALID_SREG);
// Load this->class [usr r12, set arg0]
loadBaseDisp(cUnit, mir, r12, OFFSETOF_MEMBER(Class, clazz),
r3, kWord, INVALID_SREG);
// Load address of helper function
loadBaseDisp(cUnit, mir, rSELF,
OFFSETOF_MEMBER(Thread, pArtFindInterfaceMethodInCache),
rLR, kWord, INVALID_SREG);
// Get dvmDex
loadBaseDisp(cUnit, mir, r3, OFFSETOF_MEMBER(Class, pDvmDex),
r3, kWord, INVALID_SREG);
// Load ref [set arg1]
loadConstant(cUnit, r1, dInsn->vB);
// Call out to helper, target Method returned in ret0
newLIR1(cUnit, kThumbBlxR, rLR);
break;
case 1: // Get the target compiled code address [use r0, set rLR]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, compiledInsns),
rLR, kWord, INVALID_SREG);
default:
return -1;
}
#endif
return state + 1;
}
/*
* Interleave launch code for INVOKE_SUPER. See comments
* for nextVCallIns.
*/
static int nextSuperCallInsn(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int state)
{
UNIMPLEMENTED(FATAL) << "Need INVOKE_SUPER implementation";
#if 0
RegLocation rlArg;
switch(state) {
case 0:
// Get the current Method* [set r0]
loadCurrMethodDirect(cUnit, r0);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
// Get method->clazz [use r0, set r12]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, clazz),
r12, kWord, INVALID_SREG);
// Get pResmethods [use r0, set rLR]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, pResMethods),
rLR, kWord, INVALID_SREG);
// Get clazz->super [use r12, set r12]
loadBaseDisp(cUnit, mir, r12, OFFSETOF_MEMBER(Class, super),
r12, kWord, INVALID_SREG);
// Get base method [use rLR, set r0]
loadBaseDisp(cUnit, mir, rLR, dInsn->vB * 4, r0,
kWord, INVALID_SREG);
// Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1,
mir->offset, NULL);
// Get methodIndex [use r0, set rLR]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, methodIndex),
rLR, kUnsignedHalf, INVALID_SREG);
// Get vtableCount [use r12, set r0]
loadBaseDisp(cUnit, mir, r12,
OFFSETOF_MEMBER(Class, vtableCount),
r0, kWord, INVALID_SREG);
// Compare method index w/ vtable count [use r12, use rLR]
genRegRegCheck(cUnit, kArmCondGe, rLR, r0, mir->offset, NULL);
// get target Method* [use rLR, use r12, set r0]
loadBaseIndexed(cUnit, r0, r12, rLR, 2, kWord);
case 1: // Get the target compiled code address [use r0, set rLR]
loadBaseDisp(cUnit, mir, r0, OFFSETOF_MEMBER(Method, compiledInsns),
rLR, kWord, INVALID_SREG);
default:
return -1;
}
#endif
return state + 1;
}
/*
* Load up to 5 arguments, the first three of which will be in
* r1 .. r3. On entry r0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
static int genDalvikArgsNoRange(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
ArmLIR** pcrLabel, bool isRange,
NextCallInsn nextCallInsn)
{
RegLocation rlArg;
int registerArgs[3];
/* If no arguments, just return */
if (dInsn->vA == 0)
return callState;
oatLockCallTemps(cUnit);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
/*
* Load frame arguments arg4 & arg5 first. Coded a little odd to
* pre-schedule the method pointer target.
*/
for (unsigned int i=3; i < dInsn->vA; i++) {
int reg;
int arg = (isRange) ? dInsn->vC + i : i;
rlArg = oatUpdateLoc(cUnit, oatGetSrc(cUnit, mir, arg));
if (rlArg.location == kLocPhysReg) {
reg = rlArg.lowReg;
} else {
reg = r1;
loadValueDirectFixed(cUnit, rlArg, r1);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
storeBaseDisp(cUnit, rSP, (i + 1) * 4, reg, kWord);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
/* Load register arguments r1..r3 */
for (unsigned int i = 0; i < 3; i++) {
if (i < dInsn->vA)
registerArgs[i] = (isRange) ? dInsn->vC + i : i;
else
registerArgs[i] = INVALID_REG;
}
callState = loadArgRegs(cUnit, mir, dInsn, callState, registerArgs,
nextCallInsn);
// Load direct & need a "this" null check?
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), r1,
mir->offset, NULL);
}
return callState;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in r1-r3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in r1-r3
*
*/
static int genDalvikArgsRange(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
ArmLIR** pcrLabel, NextCallInsn nextCallInsn)
{
int firstArg = dInsn->vC;
int numArgs = dInsn->vA;
// If we can treat it as non-range (Jumbo ops will use range form)
if (numArgs <= 5)
return genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pcrLabel,
true, nextCallInsn);
/*
* Make sure range list doesn't span the break between in normal
* Dalvik vRegs and the ins.
*/
int highestArg = oatGetSrc(cUnit, mir, numArgs-1).sRegLow;
int boundaryReg = cUnit->method->NumRegisters() - cUnit->method->NumIns();
if ((firstArg < boundaryReg) && (highestArg >= boundaryReg)) {
LOG(FATAL) << "Argument list spanned locals & args";
}
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the sReg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in physReg flush to memory
for (int i = 4; i < numArgs; i++) {
RegLocation loc = oatGetSrc(cUnit, mir, i);
//TODO: generic loc flushing routine
if (loc.wide) {
loc = oatUpdateLocWide(cUnit, loc);
if (loc.location == kLocPhysReg) { // TUNING: if dirty?
storeBaseDispWide(cUnit, rSP, loc.spOffset, loc.lowReg,
loc.highReg);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
} else {
loc = oatUpdateLoc(cUnit, loc);
if (loc.location == kLocPhysReg) { // TUNING: if dirty?
storeBaseDisp(cUnit, rSP, loc.spOffset, loc.lowReg, kWord);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
}
}
int startOffset = cUnit->regLocation[mir->ssaRep->uses[3]].spOffset;
int outsOffset = 4 /* Method* */ + (3 * 4);
if (numArgs >= 20) {
// Generate memcpy, but first make sure all of
opRegRegImm(cUnit, kOpAdd, r0, rSP, startOffset);
opRegRegImm(cUnit, kOpAdd, r1, rSP, outsOffset);
loadWordDisp(cUnit, rSELF, OFFSETOF_MEMBER(Thread, pMemcpy), rLR);
loadConstant(cUnit, r2, (numArgs - 3) * 4);
newLIR1(cUnit, kThumbBlxR, rLR);
} else {
// Use vldm/vstm pair using r3 as a temp
int regsLeft = std::min(numArgs - 3, 16);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
opRegRegImm(cUnit, kOpAdd, r3, rSP, startOffset);
newLIR3(cUnit, kThumb2Vldms, r3, fr0, regsLeft);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
opRegRegImm(cUnit, kOpAdd, r3, rSP, 4 /* Method* */ + (3 * 4));
callState = nextCallInsn(cUnit, mir, dInsn, callState);
newLIR3(cUnit, kThumb2Vstms, r3, fr0, regsLeft);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
// Handle the 1st 3 in r1, r2 & r3
for (unsigned int i = 0; i < dInsn->vA && i < 3; i++) {
RegLocation loc = oatGetSrc(cUnit, mir, firstArg + i);
loadValueDirectFixed(cUnit, loc, r1 + i);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
// Finally, deal with the register arguments
// We'll be using fixed registers here
oatLockCallTemps(cUnit);
callState = nextCallInsn(cUnit, mir, dInsn, callState);
return callState;
}
static void genInvokeStatic(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
int fastPath = false; // TODO: set based on resolution results
NextCallInsn nextCallInsn = fastPath ? nextSDCallInsn : nextSDCallInsnSP;
if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC) {
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, NULL,
false, nextCallInsn);
} else {
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, NULL,
nextCallInsn);
}
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
newLIR1(cUnit, kThumbBlxR, rLR);
}
static void genInvokeDirect(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* nullCk;
int fastPath = false; // TODO: set based on resolution results
NextCallInsn nextCallInsn = fastPath ? nextSDCallInsn : nextSDCallInsnSP;
if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, &nullCk,
false, nextCallInsn);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, &nullCk,
nextCallInsn);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
newLIR1(cUnit, kThumbBlxR, rLR);
}
static void genInvokeInterface(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* nullCk;
/* Note: must call nextInterfaceCallInsn() prior to 1st argument load */
callState = nextInterfaceCallInsn(cUnit, mir, dInsn, callState);
if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, &nullCk,
false, nextInterfaceCallInsn);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, &nullCk,
nextInterfaceCallInsn);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextInterfaceCallInsn(cUnit, mir, dInsn, callState);
}
newLIR1(cUnit, kThumbBlxR, rLR);
}
static void genInvokeSuper(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* nullCk;
// FIXME - redundantly loading arg0/r1 ("this")
if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, &nullCk,
false, nextSuperCallInsn);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, &nullCk,
nextSuperCallInsn);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextSuperCallInsn(cUnit, mir, dInsn, callState);
}
newLIR1(cUnit, kThumbBlxR, rLR);
}
static void genInvokeVirtual(CompilationUnit* cUnit, MIR* mir)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int callState = 0;
ArmLIR* nullCk;
int fastPath = false; // TODO: set based on resolution results
NextCallInsn nextCallInsn = fastPath ? nextVCallInsn : nextVCallInsnSP;
// TODO - redundantly loading arg0/r1 ("this")
if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
callState = genDalvikArgsNoRange(cUnit, mir, dInsn, callState, &nullCk,
false, nextCallInsn);
else
callState = genDalvikArgsRange(cUnit, mir, dInsn, callState, &nullCk,
nextCallInsn);
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, mir, dInsn, callState);
}
newLIR1(cUnit, kThumbBlxR, rLR);
}
// TODO: break out the case handlers. Might make it easier to support x86
static bool compileDalvikInstruction(CompilationUnit* cUnit, MIR* mir,
BasicBlock* bb, ArmLIR* labelList)
{
bool res = false; // Assume success
RegLocation rlSrc[3];
RegLocation rlDest = badLoc;
RegLocation rlResult = badLoc;
Opcode opcode = mir->dalvikInsn.opcode;
/* Prep Src and Dest locations */
int nextSreg = 0;
int nextLoc = 0;
int attrs = oatDataFlowAttributes[opcode];
rlSrc[0] = rlSrc[1] = rlSrc[2] = badLoc;
if (attrs & DF_UA) {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
nextSreg++;
} else if (attrs & DF_UA_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg,
nextSreg + 1);
nextSreg+= 2;
}
if (attrs & DF_UB) {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
nextSreg++;
} else if (attrs & DF_UB_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg,
nextSreg + 1);
nextSreg+= 2;
}
if (attrs & DF_UC) {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
} else if (attrs & DF_UC_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg,
nextSreg + 1);
}
if (attrs & DF_DA) {
rlDest = oatGetDest(cUnit, mir, 0);
} else if (attrs & DF_DA_WIDE) {
rlDest = oatGetDestWide(cUnit, mir, 0, 1);
}
switch(opcode) {
case OP_NOP:
break;
case OP_MOVE_EXCEPTION:
int exOffset;
int resetReg;
exOffset = Thread::ExceptionOffset().Int32Value();
resetReg = oatAllocTemp(cUnit);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg);
loadConstant(cUnit, resetReg, 0);
storeWordDisp(cUnit, rSELF, exOffset, resetReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_RETURN_VOID:
break;
case OP_RETURN:
case OP_RETURN_OBJECT:
storeValue(cUnit, retLoc, rlSrc[0]);
break;
case OP_RETURN_WIDE:
rlDest = retLocWide;
rlDest.fp = rlSrc[0].fp;
storeValueWide(cUnit, rlDest, rlSrc[0]);
break;
case OP_MOVE_RESULT_WIDE:
if (mir->OptimizationFlags & MIR_INLINED)
break; // Nop - combined w/ previous invoke
/*
* Somewhat hacky here. Because we're now passing
* return values in registers, we have to let the
* register allocation utilities know that the return
* registers are live and may not be used for address
* formation in storeValueWide.
*/
assert(retLocWide.lowReg == r0);
assert(retLocWide.lowReg == r1);
oatLockTemp(cUnit, retLocWide.lowReg);
oatLockTemp(cUnit, retLocWide.highReg);
storeValueWide(cUnit, rlDest, retLocWide);
oatFreeTemp(cUnit, retLocWide.lowReg);
oatFreeTemp(cUnit, retLocWide.highReg);
break;
case OP_MOVE_RESULT:
case OP_MOVE_RESULT_OBJECT:
if (mir->OptimizationFlags & MIR_INLINED)
break; // Nop - combined w/ previous invoke
/* See comment for OP_MOVE_RESULT_WIDE */
assert(retLoc.lowReg == r0);
oatLockTemp(cUnit, retLoc.lowReg);
storeValue(cUnit, rlDest, retLoc);
oatFreeTemp(cUnit, retLoc.lowReg);
break;
case OP_MOVE:
case OP_MOVE_OBJECT:
case OP_MOVE_16:
case OP_MOVE_OBJECT_16:
case OP_MOVE_FROM16:
case OP_MOVE_OBJECT_FROM16:
storeValue(cUnit, rlDest, rlSrc[0]);
break;
case OP_MOVE_WIDE:
case OP_MOVE_WIDE_16:
case OP_MOVE_WIDE_FROM16:
storeValueWide(cUnit, rlDest, rlSrc[0]);
break;
case OP_CONST:
case OP_CONST_4:
case OP_CONST_16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_CONST_HIGH16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg,
mir->dalvikInsn.vB << 16);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_CONST_WIDE_16:
case OP_CONST_WIDE_32:
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
//TUNING: do high separately to avoid load dependency
opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_CONST_WIDE:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
mir->dalvikInsn.vB_wide & 0xffffffff,
(mir->dalvikInsn.vB_wide >> 32) & 0xffffffff);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_CONST_WIDE_HIGH16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
0, mir->dalvikInsn.vB << 16);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_MONITOR_ENTER:
genMonitorEnter(cUnit, mir, rlSrc[0]);
break;
case OP_MONITOR_EXIT:
genMonitorExit(cUnit, mir, rlSrc[0]);
break;
case OP_CHECK_CAST:
genCheckCast(cUnit, mir, rlSrc[0]);
break;
case OP_INSTANCE_OF:
genInstanceof(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_NEW_INSTANCE:
genNewInstance(cUnit, mir, rlDest);
break;
case OP_THROW:
genThrow(cUnit, mir, rlSrc[0]);
break;
case OP_ARRAY_LENGTH:
int lenOffset;
lenOffset = Array::LengthOffset().Int32Value();
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
genNullCheck(cUnit, rlSrc[0].sRegLow, rlSrc[0].lowReg,
mir->offset, NULL);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rlSrc[0].lowReg, lenOffset,
rlResult.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_CONST_STRING:
case OP_CONST_STRING_JUMBO:
genConstString(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_CONST_CLASS:
genConstClass(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_FILL_ARRAY_DATA:
genFillArrayData(cUnit, mir, rlSrc[0]);
break;
case OP_FILLED_NEW_ARRAY:
genFilledNewArray(cUnit, mir, false /* not range */);
break;
case OP_FILLED_NEW_ARRAY_RANGE:
genFilledNewArray(cUnit, mir, true /* range */);
break;
case OP_NEW_ARRAY:
genNewArray(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_GOTO:
case OP_GOTO_16:
case OP_GOTO_32:
// TUNING: add MIR flag to disable when unnecessary
bool backwardBranch;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendPoll(cUnit, mir);
}
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
break;
case OP_PACKED_SWITCH:
genPackedSwitch(cUnit, mir, rlSrc[0]);
break;
case OP_SPARSE_SWITCH:
genSparseSwitch(cUnit, mir, rlSrc[0]);
break;
case OP_CMPL_FLOAT:
case OP_CMPG_FLOAT:
case OP_CMPL_DOUBLE:
case OP_CMPG_DOUBLE:
res = genCmpFP(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_CMP_LONG:
genCmpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_IF_EQ:
case OP_IF_NE:
case OP_IF_LT:
case OP_IF_GE:
case OP_IF_GT:
case OP_IF_LE: {
bool backwardBranch;
ArmConditionCode cond;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendPoll(cUnit, mir);
}
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlSrc[1] = loadValue(cUnit, rlSrc[1], kCoreReg);
opRegReg(cUnit, kOpCmp, rlSrc[0].lowReg, rlSrc[1].lowReg);
switch(opcode) {
case OP_IF_EQ:
cond = kArmCondEq;
break;
case OP_IF_NE:
cond = kArmCondNe;
break;
case OP_IF_LT:
cond = kArmCondLt;
break;
case OP_IF_GE:
cond = kArmCondGe;
break;
case OP_IF_GT:
cond = kArmCondGt;
break;
case OP_IF_LE:
cond = kArmCondLe;
break;
default:
cond = (ArmConditionCode)0;
LOG(FATAL) << "Unexpected opcode " << (int)opcode;
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
break;
}
case OP_IF_EQZ:
case OP_IF_NEZ:
case OP_IF_LTZ:
case OP_IF_GEZ:
case OP_IF_GTZ:
case OP_IF_LEZ: {
bool backwardBranch;
ArmConditionCode cond;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendPoll(cUnit, mir);
}
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
opRegImm(cUnit, kOpCmp, rlSrc[0].lowReg, 0);
switch(opcode) {
case OP_IF_EQZ:
cond = kArmCondEq;
break;
case OP_IF_NEZ:
cond = kArmCondNe;
break;
case OP_IF_LTZ:
cond = kArmCondLt;
break;
case OP_IF_GEZ:
cond = kArmCondGe;
break;
case OP_IF_GTZ:
cond = kArmCondGt;
break;
case OP_IF_LEZ:
cond = kArmCondLe;
break;
default:
cond = (ArmConditionCode)0;
LOG(FATAL) << "Unexpected opcode " << (int)opcode;
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
break;
}
case OP_AGET_WIDE:
genArrayGet(cUnit, mir, kLong, rlSrc[0], rlSrc[1], rlDest, 3);
break;
case OP_AGET:
case OP_AGET_OBJECT:
genArrayGet(cUnit, mir, kWord, rlSrc[0], rlSrc[1], rlDest, 2);
break;
case OP_AGET_BOOLEAN:
genArrayGet(cUnit, mir, kUnsignedByte, rlSrc[0], rlSrc[1],
rlDest, 0);
break;
case OP_AGET_BYTE:
genArrayGet(cUnit, mir, kSignedByte, rlSrc[0], rlSrc[1], rlDest, 0);
break;
case OP_AGET_CHAR:
genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc[0], rlSrc[1],
rlDest, 1);
break;
case OP_AGET_SHORT:
genArrayGet(cUnit, mir, kSignedHalf, rlSrc[0], rlSrc[1], rlDest, 1);
break;
case OP_APUT_WIDE:
genArrayPut(cUnit, mir, kLong, rlSrc[1], rlSrc[2], rlSrc[0], 3);
break;
case OP_APUT:
genArrayPut(cUnit, mir, kWord, rlSrc[1], rlSrc[2], rlSrc[0], 2);
break;
case OP_APUT_OBJECT:
genArrayObjPut(cUnit, mir, rlSrc[1], rlSrc[2], rlSrc[0], 2);
break;
case OP_APUT_SHORT:
case OP_APUT_CHAR:
genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc[1], rlSrc[2],
rlSrc[0], 1);
break;
case OP_APUT_BYTE:
case OP_APUT_BOOLEAN:
genArrayPut(cUnit, mir, kUnsignedByte, rlSrc[1], rlSrc[2],
rlSrc[0], 0);
break;
case OP_IGET_WIDE:
case OP_IGET_WIDE_VOLATILE:
genIGetWideX(cUnit, mir, rlDest, rlSrc[0]);
break;
case OP_IGET:
case OP_IGET_VOLATILE:
case OP_IGET_OBJECT:
case OP_IGET_OBJECT_VOLATILE:
genIGetX(cUnit, mir, kWord, rlDest, rlSrc[0]);
break;
case OP_IGET_BOOLEAN:
case OP_IGET_BYTE:
genIGetX(cUnit, mir, kUnsignedByte, rlDest, rlSrc[0]);
break;
case OP_IGET_CHAR:
genIGetX(cUnit, mir, kUnsignedHalf, rlDest, rlSrc[0]);
break;
case OP_IGET_SHORT:
genIGetX(cUnit, mir, kSignedHalf, rlDest, rlSrc[0]);
break;
case OP_IPUT_WIDE:
case OP_IPUT_WIDE_VOLATILE:
genIPutWideX(cUnit, mir, rlSrc[0], rlSrc[1]);
break;
case OP_IPUT_OBJECT:
case OP_IPUT_OBJECT_VOLATILE:
genIPutX(cUnit, mir, kWord, rlSrc[0], rlSrc[1], true);
break;
case OP_IPUT:
case OP_IPUT_VOLATILE:
genIPutX(cUnit, mir, kWord, rlSrc[0], rlSrc[1], false);
break;
case OP_IPUT_BOOLEAN:
case OP_IPUT_BYTE:
genIPutX(cUnit, mir, kUnsignedByte, rlSrc[0], rlSrc[1], false);
break;
case OP_IPUT_CHAR:
genIPutX(cUnit, mir, kUnsignedHalf, rlSrc[0], rlSrc[1], false);
break;
case OP_IPUT_SHORT:
genIPutX(cUnit, mir, kSignedHalf, rlSrc[0], rlSrc[1], false);
break;
case OP_SGET:
case OP_SGET_OBJECT:
case OP_SGET_BOOLEAN:
case OP_SGET_BYTE:
case OP_SGET_CHAR:
case OP_SGET_SHORT:
genSget(cUnit, mir, rlResult, rlDest);
break;
case OP_SGET_WIDE:
genSgetWide(cUnit, mir, rlResult, rlDest);
break;
case OP_SPUT:
case OP_SPUT_OBJECT:
case OP_SPUT_BOOLEAN:
case OP_SPUT_BYTE:
case OP_SPUT_CHAR:
case OP_SPUT_SHORT:
genSput(cUnit, mir, rlSrc[0]);
break;
case OP_SPUT_WIDE:
genSputWide(cUnit, mir, rlSrc[0]);
break;
case OP_INVOKE_STATIC_RANGE:
case OP_INVOKE_STATIC:
genInvokeStatic(cUnit, mir);
break;
case OP_INVOKE_DIRECT:
case OP_INVOKE_DIRECT_RANGE:
genInvokeDirect(cUnit, mir);
break;
case OP_INVOKE_VIRTUAL:
case OP_INVOKE_VIRTUAL_RANGE:
genInvokeVirtual(cUnit, mir);
break;
case OP_INVOKE_SUPER:
case OP_INVOKE_SUPER_RANGE:
genInvokeSuper(cUnit, mir);
break;
case OP_INVOKE_INTERFACE:
case OP_INVOKE_INTERFACE_RANGE:
genInvokeInterface(cUnit, mir);
break;
case OP_NEG_INT:
case OP_NOT_INT:
res = genArithOpInt(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_NEG_LONG:
case OP_NOT_LONG:
res = genArithOpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_NEG_FLOAT:
res = genArithOpFloat(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_NEG_DOUBLE:
res = genArithOpDouble(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]);
break;
case OP_INT_TO_LONG:
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
if (rlSrc[0].location == kLocPhysReg) {
genRegCopy(cUnit, rlResult.lowReg, rlSrc[0].lowReg);
} else {
loadValueDirect(cUnit, rlSrc[0], rlResult.lowReg);
}
opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
break;
case OP_LONG_TO_INT:
rlSrc[0] = oatUpdateLocWide(cUnit, rlSrc[0]);
rlSrc[0] = oatWideToNarrow(cUnit, rlSrc[0]);
storeValue(cUnit, rlDest, rlSrc[0]);
break;
case OP_INT_TO_BYTE:
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc[0].lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_SHORT:
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc[0].lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_CHAR:
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc[0].lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case OP_INT_TO_FLOAT:
case OP_INT_TO_DOUBLE:
case OP_LONG_TO_FLOAT:
case OP_LONG_TO_DOUBLE:
case OP_FLOAT_TO_INT:
case OP_FLOAT_TO_LONG:
case OP_FLOAT_TO_DOUBLE:
case OP_DOUBLE_TO_INT:
case OP_DOUBLE_TO_LONG:
case OP_DOUBLE_TO_FLOAT:
genConversion(cUnit, mir);
break;
case OP_ADD_INT:
case OP_SUB_INT:
case OP_MUL_INT:
case OP_DIV_INT:
case OP_REM_INT:
case OP_AND_INT:
case OP_OR_INT:
case OP_XOR_INT:
case OP_SHL_INT:
case OP_SHR_INT:
case OP_USHR_INT:
case OP_ADD_INT_2ADDR:
case OP_SUB_INT_2ADDR:
case OP_MUL_INT_2ADDR:
case OP_DIV_INT_2ADDR:
case OP_REM_INT_2ADDR:
case OP_AND_INT_2ADDR:
case OP_OR_INT_2ADDR:
case OP_XOR_INT_2ADDR:
case OP_SHL_INT_2ADDR:
case OP_SHR_INT_2ADDR:
case OP_USHR_INT_2ADDR:
genArithOpInt(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_ADD_LONG:
case OP_SUB_LONG:
case OP_MUL_LONG:
case OP_DIV_LONG:
case OP_REM_LONG:
case OP_AND_LONG:
case OP_OR_LONG:
case OP_XOR_LONG:
case OP_ADD_LONG_2ADDR:
case OP_SUB_LONG_2ADDR:
case OP_MUL_LONG_2ADDR:
case OP_DIV_LONG_2ADDR:
case OP_REM_LONG_2ADDR:
case OP_AND_LONG_2ADDR:
case OP_OR_LONG_2ADDR:
case OP_XOR_LONG_2ADDR:
genArithOpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_SHL_LONG:
case OP_SHR_LONG:
case OP_USHR_LONG:
case OP_SHL_LONG_2ADDR:
case OP_SHR_LONG_2ADDR:
case OP_USHR_LONG_2ADDR:
genShiftOpLong(cUnit,mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_ADD_FLOAT:
case OP_SUB_FLOAT:
case OP_MUL_FLOAT:
case OP_DIV_FLOAT:
case OP_REM_FLOAT:
case OP_ADD_FLOAT_2ADDR:
case OP_SUB_FLOAT_2ADDR:
case OP_MUL_FLOAT_2ADDR:
case OP_DIV_FLOAT_2ADDR:
case OP_REM_FLOAT_2ADDR:
genArithOpFloat(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_ADD_DOUBLE:
case OP_SUB_DOUBLE:
case OP_MUL_DOUBLE:
case OP_DIV_DOUBLE:
case OP_REM_DOUBLE:
case OP_ADD_DOUBLE_2ADDR:
case OP_SUB_DOUBLE_2ADDR:
case OP_MUL_DOUBLE_2ADDR:
case OP_DIV_DOUBLE_2ADDR:
case OP_REM_DOUBLE_2ADDR:
genArithOpDouble(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]);
break;
case OP_RSUB_INT:
case OP_ADD_INT_LIT16:
case OP_MUL_INT_LIT16:
case OP_DIV_INT_LIT16:
case OP_REM_INT_LIT16:
case OP_AND_INT_LIT16:
case OP_OR_INT_LIT16:
case OP_XOR_INT_LIT16:
case OP_ADD_INT_LIT8:
case OP_RSUB_INT_LIT8:
case OP_MUL_INT_LIT8:
case OP_DIV_INT_LIT8:
case OP_REM_INT_LIT8:
case OP_AND_INT_LIT8:
case OP_OR_INT_LIT8:
case OP_XOR_INT_LIT8:
case OP_SHL_INT_LIT8:
case OP_SHR_INT_LIT8:
case OP_USHR_INT_LIT8:
genArithOpIntLit(cUnit, mir, rlDest, rlSrc[0], mir->dalvikInsn.vC);
break;
default:
res = true;
}
return res;
}
static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
"kMirOpPhi",
"kMirOpNullNRangeUpCheck",
"kMirOpNullNRangeDownCheck",
"kMirOpLowerBound",
"kMirOpPunt",
"kMirOpCheckInlinePrediction",
};
/* Extended MIR instructions like PHI */
static void handleExtendedMethodMIR(CompilationUnit* cUnit, MIR* mir)
{
int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
char* msg = (char*)oatNew(strlen(extendedMIROpNames[opOffset]) + 1, false);
strcpy(msg, extendedMIROpNames[opOffset]);
ArmLIR* op = newLIR1(cUnit, kArmPseudoExtended, (int) msg);
switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
case kMirOpPhi: {
char* ssaString = oatGetSSAString(cUnit, mir->ssaRep);
op->flags.isNop = true;
newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
break;
}
default:
break;
}
}
/* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame.
* Note: at this pointCopy any ins that are passed in register to their
* home location */
static void flushIns(CompilationUnit* cUnit)
{
if (cUnit->method->NumIns() == 0)
return;
int inRegs = (cUnit->method->NumIns() > 2) ? 3
: cUnit->method->NumIns();
int startReg = r1;
int startLoc = cUnit->method->NumRegisters() -
cUnit->method->NumIns();
for (int i = 0; i < inRegs; i++) {
RegLocation loc = cUnit->regLocation[startLoc + i];
//TUNING: be smarter about flushing ins to frame
storeBaseDisp(cUnit, rSP, loc.spOffset, startReg + i, kWord);
if (loc.location == kLocPhysReg) {
genRegCopy(cUnit, loc.lowReg, startReg + i);
}
}
// Handle special case of wide argument half in regs, half in frame
if (inRegs == 3) {
RegLocation loc = cUnit->regLocation[startLoc + 2];
if (loc.wide && loc.location == kLocPhysReg) {
// Load the other half of the arg into the promoted pair
loadBaseDisp(cUnit, NULL, rSP, loc.spOffset+4,
loc.highReg, kWord, INVALID_SREG);
inRegs++;
}
}
// Now, do initial assignment of all promoted arguments passed in frame
for (int i = inRegs; i < cUnit->method->NumIns();) {
RegLocation loc = cUnit->regLocation[startLoc + i];
if (loc.fpLocation == kLocPhysReg) {
loc.location = kLocPhysReg;
loc.fp = true;
loc.lowReg = loc.fpLowReg;
loc.highReg = loc.fpHighReg;
}
if (loc.location == kLocPhysReg) {
if (loc.wide) {
loadBaseDispWide(cUnit, NULL, rSP, loc.spOffset,
loc.lowReg, loc.highReg, INVALID_SREG);
i++;
} else {
loadBaseDisp(cUnit, NULL, rSP, loc.spOffset,
loc.lowReg, kWord, INVALID_SREG);
}
}
i++;
}
}
/* Handle the content in each basic block */
static bool methodBlockCodeGen(CompilationUnit* cUnit, BasicBlock* bb)
{
MIR* mir;
ArmLIR* labelList = (ArmLIR*) cUnit->blockLabelList;
int blockId = bb->id;
cUnit->curBlock = bb;
labelList[blockId].operands[0] = bb->startOffset;
/* Insert the block label */
labelList[blockId].opcode = kArmPseudoNormalBlockLabel;
oatAppendLIR(cUnit, (LIR*) &labelList[blockId]);
oatClobberAllRegs(cUnit);
oatResetNullCheck(cUnit);
ArmLIR* headLIR = NULL;
if (bb->blockType == kEntryBlock) {
/*
* On entry, r0, r1, r2 & r3 are live. Let the register allocation
* mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with a single temp: r12. This should be enough.
*/
oatLockTemp(cUnit, r0);
oatLockTemp(cUnit, r1);
oatLockTemp(cUnit, r2);
oatLockTemp(cUnit, r3);
newLIR0(cUnit, kArmPseudoMethodEntry);
/* Spill core callee saves */
newLIR1(cUnit, kThumb2Push, cUnit->coreSpillMask);
/* Need to spill any FP regs? */
if (cUnit->numFPSpills) {
newLIR1(cUnit, kThumb2VPushCS, cUnit->numFPSpills);
}
opRegImm(cUnit, kOpSub, rSP, cUnit->frameSize - (cUnit->numSpills * 4));
storeBaseDisp(cUnit, rSP, 0, r0, kWord);
flushIns(cUnit);
oatFreeTemp(cUnit, r0);
oatFreeTemp(cUnit, r1);
oatFreeTemp(cUnit, r2);
oatFreeTemp(cUnit, r3);
} else if (bb->blockType == kExitBlock) {
newLIR0(cUnit, kArmPseudoMethodExit);
opRegImm(cUnit, kOpAdd, rSP, cUnit->frameSize - (cUnit->numSpills * 4));
/* Need to restore any FP callee saves? */
if (cUnit->numFPSpills) {
newLIR1(cUnit, kThumb2VPopCS, cUnit->numFPSpills);
}
if (cUnit->coreSpillMask & (1 << rLR)) {
/* Unspill rLR to rPC */
cUnit->coreSpillMask &= ~(1 << rLR);
cUnit->coreSpillMask |= (1 << rPC);
}
newLIR1(cUnit, kThumb2Pop, cUnit->coreSpillMask);
if (!(cUnit->coreSpillMask & (1 << rPC))) {
/* We didn't pop to rPC, so must do a bv rLR */
newLIR1(cUnit, kThumbBx, rLR);
}
}
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
oatResetRegPool(cUnit);
if (cUnit->disableOpt & (1 << kTrackLiveTemps)) {
oatClobberAllRegs(cUnit);
}
if (cUnit->disableOpt & (1 << kSuppressLoads)) {
oatResetDefTracking(cUnit);
}
if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
handleExtendedMethodMIR(cUnit, mir);
continue;
}
cUnit->currentDalvikOffset = mir->offset;
Opcode dalvikOpcode = mir->dalvikInsn.opcode;
InstructionFormat dalvikFormat =
dexGetFormatFromOpcode(dalvikOpcode);
ArmLIR* boundaryLIR;
/* Mark the beginning of a Dalvik instruction for line tracking */
boundaryLIR = newLIR1(cUnit, kArmPseudoDalvikByteCodeBoundary,
(int) oatGetDalvikDisassembly(
&mir->dalvikInsn, ""));
/* Remember the first LIR for this block */
if (headLIR == NULL) {
headLIR = boundaryLIR;
/* Set the first boundaryLIR as a scheduling barrier */
headLIR->defMask = ENCODE_ALL;
}
/* Don't generate the SSA annotation unless verbose mode is on */
if (cUnit->printMe && mir->ssaRep) {
char *ssaString = oatGetSSAString(cUnit, mir->ssaRep);
newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
}
bool notHandled = compileDalvikInstruction(cUnit, mir, bb, labelList);
if (notHandled) {
char buf[100];
snprintf(buf, 100, "%#06x: Opcode %#x (%s) / Fmt %d not handled",
mir->offset,
dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
dalvikFormat);
LOG(FATAL) << buf;
}
}
if (headLIR) {
/*
* Eliminate redundant loads/stores and delay stores into later
* slots
*/
oatApplyLocalOptimizations(cUnit, (LIR*) headLIR,
cUnit->lastLIRInsn);
/*
* Generate an unconditional branch to the fallthrough block.
*/
if (bb->fallThrough) {
genUnconditionalBranch(cUnit,
&labelList[bb->fallThrough->id]);
}
}
return false;
}
/*
* Nop any unconditional branches that go to the next instruction.
* Note: new redundant branches may be inserted later, and we'll
* use a check in final instruction assembly to nop those out.
*/
void removeRedundantBranches(CompilationUnit* cUnit)
{
ArmLIR* thisLIR;
for (thisLIR = (ArmLIR*) cUnit->firstLIRInsn;
thisLIR != (ArmLIR*) cUnit->lastLIRInsn;
thisLIR = NEXT_LIR(thisLIR)) {
/* Branch to the next instruction */
if ((thisLIR->opcode == kThumbBUncond) ||
(thisLIR->opcode == kThumb2BUncond)) {
ArmLIR* nextLIR = thisLIR;
while (true) {
nextLIR = NEXT_LIR(nextLIR);
/*
* Is the branch target the next instruction?
*/
if (nextLIR == (ArmLIR*) thisLIR->generic.target) {
thisLIR->flags.isNop = true;
break;
}
/*
* Found real useful stuff between the branch and the target.
* Need to explicitly check the lastLIRInsn here because it
* might be the last real instruction.
*/
if (!isPseudoOpcode(nextLIR->opcode) ||
(nextLIR = (ArmLIR*) cUnit->lastLIRInsn))
break;
}
}
}
}
void oatMethodMIR2LIR(CompilationUnit* cUnit)
{
/* Used to hold the labels of each block */
cUnit->blockLabelList =
(void *) oatNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
oatDataFlowAnalysisDispatcher(cUnit, methodBlockCodeGen,
kPreOrderDFSTraversal, false /* Iterative */);
removeRedundantBranches(cUnit);
}
/* Common initialization routine for an architecture family */
bool oatArchInit()
{
int i;
for (i = 0; i < kArmLast; i++) {
if (EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << EncodingMap[i].name <<
" is wrong: expecting " << i << ", seeing " <<
(int)EncodingMap[i].opcode;
}
}
return oatArchVariantInit();
}
/* Needed by the Assembler */
void oatSetupResourceMasks(ArmLIR* lir)
{
setupResourceMasks(lir);
}
/* Needed by the ld/st optmizatons */
ArmLIR* oatRegCopyNoInsert(CompilationUnit* cUnit, int rDest, int rSrc)
{
return genRegCopyNoInsert(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
ArmLIR* oatRegCopy(CompilationUnit* cUnit, int rDest, int rSrc)
{
return genRegCopy(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
void oatRegCopyWide(CompilationUnit* cUnit, int destLo, int destHi,
int srcLo, int srcHi)
{
genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
}
void oatFlushRegImpl(CompilationUnit* cUnit, int rBase,
int displacement, int rSrc, OpSize size)
{
storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
}
void oatFlushRegWideImpl(CompilationUnit* cUnit, int rBase,
int displacement, int rSrcLo, int rSrcHi)
{
storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
}