blob: 4fe7a43a854b2af929cb5f2409af27e558cace96 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the X86 ISA */
#include "codegen_x86.h"
#include "base/logging.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "dex/reg_storage_eq.h"
#include "mirror/art_method.h"
#include "mirror/array-inl.h"
#include "utils.h"
#include "x86_lir.h"
namespace art {
/*
* Compare two 64-bit values
* x = y return 0
* x < y return -1
* x > y return 1
*/
void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
if (cu_->target64) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage temp_reg = AllocTemp();
OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondG); // result = (src1 > src2) ? 1 : 0
NewLIR2(kX86Set8R, temp_reg.GetReg(), kX86CondL); // temp = (src1 >= src2) ? 0 : 1
NewLIR2(kX86Sub8RR, rl_result.reg.GetReg(), temp_reg.GetReg());
NewLIR2(kX86Movsx8qRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
StoreValue(rl_dest, rl_result);
FreeTemp(temp_reg);
return;
}
// Prepare for explicit register usage
ExplicitTempRegisterLock(this, 4, &rs_r0, &rs_r1, &rs_r2, &rs_r3);
RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
LoadValueDirectWideFixed(rl_src1, r_tmp1);
LoadValueDirectWideFixed(rl_src2, r_tmp2);
// Compute (r1:r0) = (r1:r0) - (r3:r2)
OpRegReg(kOpSub, rs_r0, rs_r2); // r0 = r0 - r2
OpRegReg(kOpSbc, rs_r1, rs_r3); // r1 = r1 - r3 - CF
NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
OpReg(kOpNeg, rs_r2); // r2 = -r2
OpRegReg(kOpOr, rs_r0, rs_r1); // r0 = high | low - sets ZF
NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
NewLIR2(kX86Movzx8RR, r0, r0);
OpRegReg(kOpOr, rs_r0, rs_r2); // r0 = r0 | r2
RegLocation rl_result = LocCReturn();
StoreValue(rl_dest, rl_result);
}
X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
switch (cond) {
case kCondEq: return kX86CondEq;
case kCondNe: return kX86CondNe;
case kCondCs: return kX86CondC;
case kCondCc: return kX86CondNc;
case kCondUlt: return kX86CondC;
case kCondUge: return kX86CondNc;
case kCondMi: return kX86CondS;
case kCondPl: return kX86CondNs;
case kCondVs: return kX86CondO;
case kCondVc: return kX86CondNo;
case kCondHi: return kX86CondA;
case kCondLs: return kX86CondBe;
case kCondGe: return kX86CondGe;
case kCondLt: return kX86CondL;
case kCondGt: return kX86CondG;
case kCondLe: return kX86CondLe;
case kCondAl:
case kCondNv: LOG(FATAL) << "Should not reach here";
}
return kX86CondO;
}
LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
NewLIR2(src1.Is64Bit() ? kX86Cmp64RR : kX86Cmp32RR, src1.GetReg(), src2.GetReg());
X86ConditionCode cc = X86ConditionEncoding(cond);
LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
cc);
branch->target = target;
return branch;
}
LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
int check_value, LIR* target) {
if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
// TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
NewLIR2(reg.Is64Bit() ? kX86Test64RR: kX86Test32RR, reg.GetReg(), reg.GetReg());
} else {
if (reg.Is64Bit()) {
NewLIR2(IS_SIMM8(check_value) ? kX86Cmp64RI8 : kX86Cmp64RI, reg.GetReg(), check_value);
} else {
NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
}
}
X86ConditionCode cc = X86ConditionEncoding(cond);
LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
branch->target = target;
return branch;
}
LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
// If src or dest is a pair, we'll be using low reg.
if (r_dest.IsPair()) {
r_dest = r_dest.GetLow();
}
if (r_src.IsPair()) {
r_src = r_src.GetLow();
}
if (r_dest.IsFloat() || r_src.IsFloat())
return OpFpRegCopy(r_dest, r_src);
LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
r_dest.GetReg(), r_src.GetReg());
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
res->flags.is_nop = true;
}
return res;
}
void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
if (r_dest != r_src) {
LIR *res = OpRegCopyNoInsert(r_dest, r_src);
AppendLIR(res);
}
}
void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
if (r_dest != r_src) {
bool dest_fp = r_dest.IsFloat();
bool src_fp = r_src.IsFloat();
if (dest_fp) {
if (src_fp) {
OpRegCopy(r_dest, r_src);
} else {
// TODO: Prevent this from happening in the code. The result is often
// unused or could have been loaded more easily from memory.
if (!r_src.IsPair()) {
DCHECK(!r_dest.IsPair());
NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
} else {
NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
RegStorage r_tmp = AllocTempDouble();
NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
FreeTemp(r_tmp);
}
}
} else {
if (src_fp) {
if (!r_dest.IsPair()) {
DCHECK(!r_src.IsPair());
NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
} else {
NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
RegStorage temp_reg = AllocTempDouble();
NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
}
} else {
DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
if (!r_src.IsPair()) {
// Just copy the register directly.
OpRegCopy(r_dest, r_src);
} else {
// Handle overlap
if (r_src.GetHighReg() == r_dest.GetLowReg() &&
r_src.GetLowReg() == r_dest.GetHighReg()) {
// Deal with cycles.
RegStorage temp_reg = AllocTemp();
OpRegCopy(temp_reg, r_dest.GetHigh());
OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
OpRegCopy(r_dest.GetLow(), temp_reg);
FreeTemp(temp_reg);
} else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
OpRegCopy(r_dest.GetLow(), r_src.GetLow());
} else {
OpRegCopy(r_dest.GetLow(), r_src.GetLow());
OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
}
}
}
}
}
}
void X86Mir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
int32_t true_val, int32_t false_val, RegStorage rs_dest,
RegisterClass dest_reg_class) {
DCHECK(!left_op.IsPair() && !right_op.IsPair() && !rs_dest.IsPair());
DCHECK(!left_op.IsFloat() && !right_op.IsFloat() && !rs_dest.IsFloat());
// We really need this check for correctness, otherwise we will need to do more checks in
// non zero/one case
if (true_val == false_val) {
LoadConstantNoClobber(rs_dest, true_val);
return;
}
const bool dest_intersect = IsSameReg(rs_dest, left_op) || IsSameReg(rs_dest, right_op);
const bool zero_one_case = (true_val == 0 && false_val == 1) || (true_val == 1 && false_val == 0);
if (zero_one_case && IsByteRegister(rs_dest)) {
if (!dest_intersect) {
LoadConstantNoClobber(rs_dest, 0);
}
OpRegReg(kOpCmp, left_op, right_op);
// Set the low byte of the result to 0 or 1 from the compare condition code.
NewLIR2(kX86Set8R, rs_dest.GetReg(),
X86ConditionEncoding(true_val == 1 ? code : FlipComparisonOrder(code)));
if (dest_intersect) {
NewLIR2(rs_dest.Is64Bit() ? kX86Movzx8qRR : kX86Movzx8RR, rs_dest.GetReg(), rs_dest.GetReg());
}
} else {
// Be careful rs_dest can be changed only after cmp because it can be the same as one of ops
// and it cannot use xor because it makes cc flags to be dirty
RegStorage temp_reg = AllocTypedTemp(false, dest_reg_class, false);
if (temp_reg.Valid()) {
if (false_val == 0 && dest_intersect) {
code = FlipComparisonOrder(code);
std::swap(true_val, false_val);
}
if (!dest_intersect) {
LoadConstantNoClobber(rs_dest, false_val);
}
LoadConstantNoClobber(temp_reg, true_val);
OpRegReg(kOpCmp, left_op, right_op);
if (dest_intersect) {
LoadConstantNoClobber(rs_dest, false_val);
DCHECK(!last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
}
OpCondRegReg(kOpCmov, code, rs_dest, temp_reg);
FreeTemp(temp_reg);
} else {
// slow path
LIR* cmp_branch = OpCmpBranch(code, left_op, right_op, nullptr);
LoadConstantNoClobber(rs_dest, false_val);
LIR* that_is_it = NewLIR1(kX86Jmp8, 0);
LIR* true_case = NewLIR0(kPseudoTargetLabel);
cmp_branch->target = true_case;
LoadConstantNoClobber(rs_dest, true_val);
LIR* end = NewLIR0(kPseudoTargetLabel);
that_is_it->target = end;
}
}
}
void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
UNUSED(bb);
RegLocation rl_result;
RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
RegLocation rl_dest = mir_graph_->GetDest(mir);
// Avoid using float regs here.
RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
ConditionCode ccode = mir->meta.ccode;
// The kMirOpSelect has two variants, one for constants and one for moves.
const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
if (is_constant_case) {
int true_val = mir->dalvikInsn.vB;
int false_val = mir->dalvikInsn.vC;
// simplest strange case
if (true_val == false_val) {
rl_result = EvalLoc(rl_dest, result_reg_class, true);
LoadConstantNoClobber(rl_result.reg, true_val);
} else {
// TODO: use GenSelectConst32 and handle additional opcode patterns such as
// "cmp; setcc; movzx" or "cmp; sbb r0,r0; and r0,$mask; add r0,$literal".
rl_src = LoadValue(rl_src, src_reg_class);
rl_result = EvalLoc(rl_dest, result_reg_class, true);
/*
* For ccode == kCondEq:
*
* 1) When the true case is zero and result_reg is not same as src_reg:
* xor result_reg, result_reg
* cmp $0, src_reg
* mov t1, $false_case
* cmovnz result_reg, t1
* 2) When the false case is zero and result_reg is not same as src_reg:
* xor result_reg, result_reg
* cmp $0, src_reg
* mov t1, $true_case
* cmovz result_reg, t1
* 3) All other cases (we do compare first to set eflags):
* cmp $0, src_reg
* mov result_reg, $false_case
* mov t1, $true_case
* cmovz result_reg, t1
*/
// FIXME: depending on how you use registers you could get a false != mismatch when dealing
// with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
const bool result_reg_same_as_src =
(rl_src.location == kLocPhysReg && rl_src.reg.GetRegNum() == rl_result.reg.GetRegNum());
const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
const bool catch_all_case = !(true_zero_case || false_zero_case);
if (true_zero_case || false_zero_case) {
OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
}
if (true_zero_case || false_zero_case || catch_all_case) {
OpRegImm(kOpCmp, rl_src.reg, 0);
}
if (catch_all_case) {
OpRegImm(kOpMov, rl_result.reg, false_val);
}
if (true_zero_case || false_zero_case || catch_all_case) {
ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
int immediateForTemp = true_zero_case ? false_val : true_val;
RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
OpRegImm(kOpMov, temp1_reg, immediateForTemp);
OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
FreeTemp(temp1_reg);
}
}
} else {
rl_src = LoadValue(rl_src, src_reg_class);
RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
rl_true = LoadValue(rl_true, result_reg_class);
rl_false = LoadValue(rl_false, result_reg_class);
rl_result = EvalLoc(rl_dest, result_reg_class, true);
/*
* For ccode == kCondEq:
*
* 1) When true case is already in place:
* cmp $0, src_reg
* cmovnz result_reg, false_reg
* 2) When false case is already in place:
* cmp $0, src_reg
* cmovz result_reg, true_reg
* 3) When neither cases are in place:
* cmp $0, src_reg
* mov result_reg, false_reg
* cmovz result_reg, true_reg
*/
// kMirOpSelect is generated just for conditional cases when comparison is done with zero.
OpRegImm(kOpCmp, rl_src.reg, 0);
if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
} else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
} else {
OpRegCopy(rl_result.reg, rl_false.reg);
OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
}
}
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
LIR* taken = &block_label_list_[bb->taken];
RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
ConditionCode ccode = mir->meta.ccode;
if (rl_src1.is_const) {
std::swap(rl_src1, rl_src2);
ccode = FlipComparisonOrder(ccode);
}
if (rl_src2.is_const) {
// Do special compare/branch against simple const operand
int64_t val = mir_graph_->ConstantValueWide(rl_src2);
GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
return;
}
if (cu_->target64) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
OpCondBranch(ccode, taken);
return;
}
// Prepare for explicit register usage
ExplicitTempRegisterLock(this, 4, &rs_r0, &rs_r1, &rs_r2, &rs_r3);
RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
LoadValueDirectWideFixed(rl_src1, r_tmp1);
LoadValueDirectWideFixed(rl_src2, r_tmp2);
// Swap operands and condition code to prevent use of zero flag.
if (ccode == kCondLe || ccode == kCondGt) {
// Compute (r3:r2) = (r3:r2) - (r1:r0)
OpRegReg(kOpSub, rs_r2, rs_r0); // r2 = r2 - r0
OpRegReg(kOpSbc, rs_r3, rs_r1); // r3 = r3 - r1 - CF
} else {
// Compute (r1:r0) = (r1:r0) - (r3:r2)
OpRegReg(kOpSub, rs_r0, rs_r2); // r0 = r0 - r2
OpRegReg(kOpSbc, rs_r1, rs_r3); // r1 = r1 - r3 - CF
}
switch (ccode) {
case kCondEq:
case kCondNe:
OpRegReg(kOpOr, rs_r0, rs_r1); // r0 = r0 | r1
break;
case kCondLe:
ccode = kCondGe;
break;
case kCondGt:
ccode = kCondLt;
break;
case kCondLt:
case kCondGe:
break;
default:
LOG(FATAL) << "Unexpected ccode: " << ccode;
}
OpCondBranch(ccode, taken);
}
void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
int64_t val, ConditionCode ccode) {
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
LIR* taken = &block_label_list_[bb->taken];
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
if (cu_->target64) {
if (is_equality_test && val == 0) {
// We can simplify of comparing for ==, != to 0.
NewLIR2(kX86Test64RR, rl_src1.reg.GetReg(), rl_src1.reg.GetReg());
} else if (is_equality_test && val_hi == 0 && val_lo > 0) {
OpRegImm(kOpCmp, rl_src1.reg, val_lo);
} else {
RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
LoadConstantWide(tmp, val);
OpRegReg(kOpCmp, rl_src1.reg, tmp);
FreeTemp(tmp);
}
OpCondBranch(ccode, taken);
return;
}
if (is_equality_test && val != 0) {
rl_src1 = ForceTempWide(rl_src1);
}
RegStorage low_reg = rl_src1.reg.GetLow();
RegStorage high_reg = rl_src1.reg.GetHigh();
if (is_equality_test) {
// We can simplify of comparing for ==, != to 0.
if (val == 0) {
if (IsTemp(low_reg)) {
OpRegReg(kOpOr, low_reg, high_reg);
// We have now changed it; ignore the old values.
Clobber(rl_src1.reg);
} else {
RegStorage t_reg = AllocTemp();
OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
FreeTemp(t_reg);
}
OpCondBranch(ccode, taken);
return;
}
// Need to compute the actual value for ==, !=.
OpRegImm(kOpSub, low_reg, val_lo);
NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
OpRegReg(kOpOr, high_reg, low_reg);
Clobber(rl_src1.reg);
} else if (ccode == kCondLe || ccode == kCondGt) {
// Swap operands and condition code to prevent use of zero flag.
RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
LoadConstantWide(tmp, val);
OpRegReg(kOpSub, tmp.GetLow(), low_reg);
OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
FreeTemp(tmp);
} else {
// We can use a compare for the low word to set CF.
OpRegImm(kOpCmp, low_reg, val_lo);
if (IsTemp(high_reg)) {
NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
// We have now changed it; ignore the old values.
Clobber(rl_src1.reg);
} else {
// mov temp_reg, high_reg; sbb temp_reg, high_constant
RegStorage t_reg = AllocTemp();
OpRegCopy(t_reg, high_reg);
NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
FreeTemp(t_reg);
}
}
OpCondBranch(ccode, taken);
}
void X86Mir2Lir::CalculateMagicAndShift(int64_t divisor, int64_t& magic, int& shift, bool is_long) {
// It does not make sense to calculate magic and shift for zero divisor.
DCHECK_NE(divisor, 0);
/* According to H.S.Warren's Hacker's Delight Chapter 10 and
* T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
* The magic number M and shift S can be calculated in the following way:
* Let nc be the most positive value of numerator(n) such that nc = kd - 1,
* where divisor(d) >=2.
* Let nc be the most negative value of numerator(n) such that nc = kd + 1,
* where divisor(d) <= -2.
* Thus nc can be calculated like:
* nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long
* nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long
*
* So the shift p is the smallest p satisfying
* 2^p > nc * (d - 2^p % d), where d >= 2
* 2^p > nc * (d + 2^p % d), where d <= -2.
*
* the magic number M is calcuated by
* M = (2^p + d - 2^p % d) / d, where d >= 2
* M = (2^p - d - 2^p % d) / d, where d <= -2.
*
* Notice that p is always bigger than or equal to 32/64, so we just return 32-p/64-p as
* the shift number S.
*/
int64_t p = (is_long) ? 63 : 31;
const uint64_t exp = (is_long) ? 0x8000000000000000ULL : 0x80000000U;
// Initialize the computations.
uint64_t abs_d = (divisor >= 0) ? divisor : -divisor;
uint64_t tmp = exp + ((is_long) ? static_cast<uint64_t>(divisor) >> 63 :
static_cast<uint32_t>(divisor) >> 31);
uint64_t abs_nc = tmp - 1 - tmp % abs_d;
uint64_t quotient1 = exp / abs_nc;
uint64_t remainder1 = exp % abs_nc;
uint64_t quotient2 = exp / abs_d;
uint64_t remainder2 = exp % abs_d;
/*
* To avoid handling both positive and negative divisor, Hacker's Delight
* introduces a method to handle these 2 cases together to avoid duplication.
*/
uint64_t delta;
do {
p++;
quotient1 = 2 * quotient1;
remainder1 = 2 * remainder1;
if (remainder1 >= abs_nc) {
quotient1++;
remainder1 = remainder1 - abs_nc;
}
quotient2 = 2 * quotient2;
remainder2 = 2 * remainder2;
if (remainder2 >= abs_d) {
quotient2++;
remainder2 = remainder2 - abs_d;
}
delta = abs_d - remainder2;
} while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
if (!is_long) {
magic = static_cast<int>(magic);
}
shift = (is_long) ? p - 64 : p - 32;
}
RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
UNUSED(rl_dest, reg_lo, lit, is_div);
LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
UNREACHABLE();
}
RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
int imm, bool is_div) {
// Use a multiply (and fixup) to perform an int div/rem by a constant.
RegLocation rl_result;
if (imm == 1) {
rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_div) {
// x / 1 == x.
LoadValueDirectFixed(rl_src, rl_result.reg);
} else {
// x % 1 == 0.
LoadConstantNoClobber(rl_result.reg, 0);
}
} else if (imm == -1) { // handle 0x80000000 / -1 special case.
rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_div) {
LoadValueDirectFixed(rl_src, rl_result.reg);
// Check if numerator is 0
OpRegImm(kOpCmp, rl_result.reg, 0);
LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
// handle 0x80000000 / -1
OpRegImm(kOpCmp, rl_result.reg, 0x80000000);
LIR *minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
// for x != MIN_INT, x / -1 == -x.
NewLIR1(kX86Neg32R, rl_result.reg.GetReg());
// EAX already contains the right value (0x80000000),
minint_branch->target = NewLIR0(kPseudoTargetLabel);
branch->target = NewLIR0(kPseudoTargetLabel);
} else {
// x % -1 == 0.
LoadConstantNoClobber(rl_result.reg, 0);
}
} else if (is_div && IsPowerOfTwo(std::abs(imm))) {
// Division using shifting.
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (IsSameReg(rl_result.reg, rl_src.reg)) {
RegStorage rs_temp = AllocTypedTemp(false, kCoreReg);
rl_result.reg.SetReg(rs_temp.GetReg());
}
// Check if numerator is 0
OpRegImm(kOpCmp, rl_src.reg, 0);
LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
LoadConstantNoClobber(rl_result.reg, 0);
LIR* done = NewLIR1(kX86Jmp8, 0);
branch->target = NewLIR0(kPseudoTargetLabel);
NewLIR3(kX86Lea32RM, rl_result.reg.GetReg(), rl_src.reg.GetReg(), std::abs(imm) - 1);
NewLIR2(kX86Test32RR, rl_src.reg.GetReg(), rl_src.reg.GetReg());
OpCondRegReg(kOpCmov, kCondPl, rl_result.reg, rl_src.reg);
int shift_amount = CTZ(imm);
OpRegImm(kOpAsr, rl_result.reg, shift_amount);
if (imm < 0) {
OpReg(kOpNeg, rl_result.reg);
}
done->target = NewLIR0(kPseudoTargetLabel);
} else {
CHECK(imm <= -2 || imm >= 2);
// Use H.S.Warren's Hacker's Delight Chapter 10 and
// T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
int64_t magic;
int shift;
CalculateMagicAndShift((int64_t)imm, magic, shift, false /* is_long */);
/*
* For imm >= 2,
* int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
* int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
* For imm <= -2,
* int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
* int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
* We implement this algorithm in the following way:
* 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
* 2. if imm > 0 and magic < 0, add numerator to EDX
* if imm < 0 and magic > 0, sub numerator from EDX
* 3. if S !=0, SAR S bits for EDX
* 4. add 1 to EDX if EDX < 0
* 5. Thus, EDX is the quotient
*/
FlushReg(rs_r0);
Clobber(rs_r0);
LockTemp(rs_r0);
FlushReg(rs_r2);
Clobber(rs_r2);
LockTemp(rs_r2);
// Assume that the result will be in EDX for divide, and EAX for remainder.
rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, is_div ? rs_r2 : rs_r0,
INVALID_SREG, INVALID_SREG};
// We need the value at least twice. Load into a temp.
rl_src = LoadValue(rl_src, kCoreReg);
RegStorage numerator_reg = rl_src.reg;
// Check if numerator is 0.
OpRegImm(kOpCmp, numerator_reg, 0);
LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
// Return result 0 if numerator was 0.
LoadConstantNoClobber(rl_result.reg, 0);
LIR* done = NewLIR1(kX86Jmp8, 0);
branch->target = NewLIR0(kPseudoTargetLabel);
// EAX = magic.
LoadConstant(rs_r0, magic);
// EDX:EAX = magic * numerator.
NewLIR1(kX86Imul32DaR, numerator_reg.GetReg());
if (imm > 0 && magic < 0) {
// Add numerator to EDX.
DCHECK(numerator_reg.Valid());
NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
} else if (imm < 0 && magic > 0) {
DCHECK(numerator_reg.Valid());
NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
}
// Do we need the shift?
if (shift != 0) {
// Shift EDX by 'shift' bits.
NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
}
// Add 1 to EDX if EDX < 0.
// Move EDX to EAX.
OpRegCopy(rs_r0, rs_r2);
// Move sign bit to bit 0, zeroing the rest.
NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
// EDX = EDX + EAX.
NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
// Quotient is in EDX.
if (!is_div) {
// We need to compute the remainder.
// Remainder is divisor - (quotient * imm).
DCHECK(numerator_reg.Valid());
OpRegCopy(rs_r0, numerator_reg);
// EAX = numerator * imm.
OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
// EAX -= EDX.
NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
// For this case, return the result in EAX.
}
done->target = NewLIR0(kPseudoTargetLabel);
}
return rl_result;
}
RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
bool is_div) {
UNUSED(rl_dest, reg_lo, reg_hi, is_div);
LOG(FATAL) << "Unexpected use of GenDivRem for x86";
UNREACHABLE();
}
RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div, int flags) {
UNUSED(rl_dest);
// We have to use fixed registers, so flush all the temps.
// Prepare for explicit register usage.
ExplicitTempRegisterLock(this, 3, &rs_r0, &rs_r1, &rs_r2);
// Load LHS into EAX.
LoadValueDirectFixed(rl_src1, rs_r0);
// Load RHS into EBX.
LoadValueDirectFixed(rl_src2, rs_r1);
// Copy LHS sign bit into EDX.
NewLIR0(kx86Cdq32Da);
if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
// Handle division by zero case.
GenDivZeroCheck(rs_r1);
}
// Check if numerator is 0
OpRegImm(kOpCmp, rs_r0, 0);
LIR* branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
// Have to catch 0x80000000/-1 case, or we will get an exception!
OpRegImm(kOpCmp, rs_r1, -1);
LIR* minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
// RHS is -1.
OpRegImm(kOpCmp, rs_r0, 0x80000000);
LIR* minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
branch->target = NewLIR0(kPseudoTargetLabel);
// In 0x80000000/-1 case.
if (!is_div) {
// For DIV, EAX is already right. For REM, we need EDX 0.
LoadConstantNoClobber(rs_r2, 0);
}
LIR* done = NewLIR1(kX86Jmp8, 0);
// Expected case.
minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
minint_branch->target = minus_one_branch->target;
NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
done->target = NewLIR0(kPseudoTargetLabel);
// Result is in EAX for div and EDX for rem.
RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
if (!is_div) {
rl_result.reg.SetReg(r2);
}
return rl_result;
}
bool X86Mir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
if (is_long && !cu_->target64) {
/*
* We want to implement the following algorithm
* mov eax, low part of arg1
* mov edx, high part of arg1
* mov ebx, low part of arg2
* mov ecx, high part of arg2
* mov edi, eax
* sub edi, ebx
* mov edi, edx
* sbb edi, ecx
* is_min ? "cmovgel eax, ebx" : "cmovll eax, ebx"
* is_min ? "cmovgel edx, ecx" : "cmovll edx, ecx"
*
* The algorithm above needs 5 registers: a pair for the first operand
* (which later will be used as result), a pair for the second operand
* and a temp register (e.g. 'edi') for intermediate calculations.
* Ideally we have 6 GP caller-save registers in 32-bit mode. They are:
* 'eax', 'ebx', 'ecx', 'edx', 'esi' and 'edi'. So there should be
* always enough registers to operate on. Practically, there is a pair
* of registers 'edi' and 'esi' which holds promoted values and
* sometimes should be treated as 'callee save'. If one of the operands
* is in the promoted registers then we have enough register to
* operate on. Otherwise there is lack of resources and we have to
* save 'edi' before calculations and restore after.
*/
RegLocation rl_src1 = info->args[0];
RegLocation rl_src2 = info->args[2];
RegLocation rl_dest = InlineTargetWide(info);
int res_vreg, src1_vreg, src2_vreg;
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
/*
* If the result register is the same as the second element, then we
* need to be careful. The reason is that the first copy will
* inadvertently clobber the second element with the first one thus
* yielding the wrong result. Thus we do a swap in that case.
*/
res_vreg = mir_graph_->SRegToVReg(rl_dest.s_reg_low);
src2_vreg = mir_graph_->SRegToVReg(rl_src2.s_reg_low);
if (res_vreg == src2_vreg) {
std::swap(rl_src1, rl_src2);
}
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Pick the first integer as min/max.
OpRegCopyWide(rl_result.reg, rl_src1.reg);
/*
* If the integers are both in the same register, then there is
* nothing else to do because they are equal and we have already
* moved one into the result.
*/
src1_vreg = mir_graph_->SRegToVReg(rl_src1.s_reg_low);
src2_vreg = mir_graph_->SRegToVReg(rl_src2.s_reg_low);
if (src1_vreg == src2_vreg) {
StoreValueWide(rl_dest, rl_result);
return true;
}
// Free registers to make some room for the second operand.
// But don't try to free ourselves or promoted registers.
if (res_vreg != src1_vreg &&
IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
FreeTemp(rl_src1.reg);
}
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
// Do we have a free register for intermediate calculations?
RegStorage tmp = AllocTemp(false);
if (tmp == RegStorage::InvalidReg()) {
/*
* No, will use 'edi'.
*
* As mentioned above we have 4 temporary and 2 promotable
* caller-save registers. Therefore, we assume that a free
* register can be allocated only if 'esi' and 'edi' are
* already used as operands. If number of promotable registers
* increases from 2 to 4 then our assumption fails and operand
* data is corrupted.
* Let's DCHECK it.
*/
DCHECK(IsTemp(rl_src2.reg.GetLow()) &&
IsTemp(rl_src2.reg.GetHigh()) &&
IsTemp(rl_result.reg.GetLow()) &&
IsTemp(rl_result.reg.GetHigh()));
tmp = rs_rDI;
NewLIR1(kX86Push32R, tmp.GetReg());
}
// Now we are ready to do calculations.
OpRegReg(kOpMov, tmp, rl_result.reg.GetLow());
OpRegReg(kOpSub, tmp, rl_src2.reg.GetLow());
OpRegReg(kOpMov, tmp, rl_result.reg.GetHigh());
OpRegReg(kOpSbc, tmp, rl_src2.reg.GetHigh());
// Let's put pop 'edi' here to break a bit the dependency chain.
if (tmp == rs_rDI) {
NewLIR1(kX86Pop32R, tmp.GetReg());
}
// Conditionally move the other integer into the destination register.
ConditionCode cc = is_min ? kCondGe : kCondLt;
OpCondRegReg(kOpCmov, cc, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpCondRegReg(kOpCmov, cc, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
StoreValueWide(rl_dest, rl_result);
return true;
}
// Get the two arguments to the invoke and place them in GP registers.
RegLocation rl_dest = (is_long) ? InlineTargetWide(info) : InlineTarget(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src1 = info->args[0];
RegLocation rl_src2 = (is_long) ? info->args[2] : info->args[1];
rl_src1 = (is_long) ? LoadValueWide(rl_src1, kCoreReg) : LoadValue(rl_src1, kCoreReg);
rl_src2 = (is_long) ? LoadValueWide(rl_src2, kCoreReg) : LoadValue(rl_src2, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
/*
* If the result register is the same as the second element, then we need to be careful.
* The reason is that the first copy will inadvertently clobber the second element with
* the first one thus yielding the wrong result. Thus we do a swap in that case.
*/
if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
std::swap(rl_src1, rl_src2);
}
// Pick the first integer as min/max.
OpRegCopy(rl_result.reg, rl_src1.reg);
// If the integers are both in the same register, then there is nothing else to do
// because they are equal and we have already moved one into the result.
if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
// It is possible we didn't pick correctly so do the actual comparison now.
OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
// Conditionally move the other integer into the destination register.
ConditionCode condition_code = is_min ? kCondGt : kCondLt;
OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
}
if (is_long) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
return true;
}
bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src_address = info->args[0]; // long address
RegLocation rl_address;
if (!cu_->target64) {
rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[0]
rl_address = LoadValue(rl_src_address, kCoreReg);
} else {
rl_address = LoadValueWide(rl_src_address, kCoreReg);
}
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Unaligned access is allowed on x86.
LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
if (size == k64) {
StoreValueWide(rl_dest, rl_result);
} else {
DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
StoreValue(rl_dest, rl_result);
}
return true;
}
bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
RegLocation rl_src_address = info->args[0]; // long address
RegLocation rl_address;
if (!cu_->target64) {
rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[0]
rl_address = LoadValue(rl_src_address, kCoreReg);
} else {
rl_address = LoadValueWide(rl_src_address, kCoreReg);
}
RegLocation rl_src_value = info->args[2]; // [size] value
RegLocation rl_value;
if (size == k64) {
// Unaligned access is allowed on x86.
rl_value = LoadValueWide(rl_src_value, kCoreReg);
} else {
DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
// In 32-bit mode the only EAX..EDX registers can be used with Mov8MR.
if (!cu_->target64 && size == kSignedByte) {
rl_src_value = UpdateLocTyped(rl_src_value);
if (rl_src_value.location == kLocPhysReg && !IsByteRegister(rl_src_value.reg)) {
RegStorage temp = AllocateByteRegister();
OpRegCopy(temp, rl_src_value.reg);
rl_value.reg = temp;
} else {
rl_value = LoadValue(rl_src_value, kCoreReg);
}
} else {
rl_value = LoadValue(rl_src_value, kCoreReg);
}
}
StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
return true;
}
void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
}
void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
DCHECK_EQ(kX86, cu_->instruction_set);
NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
}
void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
DCHECK_EQ(kX86_64, cu_->instruction_set);
NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
}
static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
}
bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object - known non-null
RegLocation rl_src_offset = info->args[2]; // long low
if (!cu_->target64) {
rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
}
RegLocation rl_src_expected = info->args[4]; // int, long or Object
// If is_long, high half is in info->args[5]
RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
// If is_long, high half is in info->args[7]
if (is_long && cu_->target64) {
// RAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in RAX.
FlushReg(rs_r0q);
Clobber(rs_r0q);
LockTemp(rs_r0q);
RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
RegLocation rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
RegLocation rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
LoadValueDirectWide(rl_src_expected, rs_r0q);
NewLIR5(kX86LockCmpxchg64AR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0,
rl_new_value.reg.GetReg());
// After a store we need to insert barrier in case of potential load. Since the
// locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
GenMemBarrier(kAnyAny);
FreeTemp(rs_r0q);
} else if (is_long) {
// TODO: avoid unnecessary loads of SI and DI when the values are in registers.
// TODO: CFI support.
FlushAllRegs();
LockCallTemps();
RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
// FIXME: needs 64-bit update.
const bool obj_in_di = IsInReg(this, rl_src_obj, rs_rDI);
const bool obj_in_si = IsInReg(this, rl_src_obj, rs_rSI);
DCHECK(!obj_in_si || !obj_in_di);
const bool off_in_di = IsInReg(this, rl_src_offset, rs_rDI);
const bool off_in_si = IsInReg(this, rl_src_offset, rs_rSI);
DCHECK(!off_in_si || !off_in_di);
// If obj/offset is in a reg, use that reg. Otherwise, use the empty reg.
RegStorage rs_obj = obj_in_di ? rs_rDI : obj_in_si ? rs_rSI : !off_in_di ? rs_rDI : rs_rSI;
RegStorage rs_off = off_in_si ? rs_rSI : off_in_di ? rs_rDI : !obj_in_si ? rs_rSI : rs_rDI;
bool push_di = (!obj_in_di && !off_in_di) && (rs_obj == rs_rDI || rs_off == rs_rDI);
bool push_si = (!obj_in_si && !off_in_si) && (rs_obj == rs_rSI || rs_off == rs_rSI);
if (push_di) {
NewLIR1(kX86Push32R, rs_rDI.GetReg());
MarkTemp(rs_rDI);
LockTemp(rs_rDI);
}
if (push_si) {
NewLIR1(kX86Push32R, rs_rSI.GetReg());
MarkTemp(rs_rSI);
LockTemp(rs_rSI);
}
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
const size_t push_offset = (push_si ? 4u : 0u) + (push_di ? 4u : 0u);
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
if (!obj_in_si && !obj_in_di) {
LoadWordDisp(rs_rSP, SRegOffset(rl_src_obj.s_reg_low) + push_offset, rs_obj);
// Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
}
if (!off_in_si && !off_in_di) {
LoadWordDisp(rs_rSP, SRegOffset(rl_src_offset.s_reg_low) + push_offset, rs_off);
// Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
}
NewLIR4(kX86LockCmpxchg64A, rs_obj.GetReg(), rs_off.GetReg(), 0, 0);
// After a store we need to insert barrier to prevent reordering with either
// earlier or later memory accesses. Since
// locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated,
// and it will be associated with the cmpxchg instruction, preventing both.
GenMemBarrier(kAnyAny);
if (push_si) {
FreeTemp(rs_rSI);
UnmarkTemp(rs_rSI);
NewLIR1(kX86Pop32R, rs_rSI.GetReg());
}
if (push_di) {
FreeTemp(rs_rDI);
UnmarkTemp(rs_rDI);
NewLIR1(kX86Pop32R, rs_rDI.GetReg());
}
FreeCallTemps();
} else {
// EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
FlushReg(rs_r0);
Clobber(rs_r0);
LockTemp(rs_r0);
RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
RegLocation rl_new_value = LoadValue(rl_src_new_value, LocToRegClass(rl_src_new_value));
if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
// Mark card for object assuming new value is stored.
FreeTemp(rs_r0); // Temporarily release EAX for MarkGCCard().
MarkGCCard(0, rl_new_value.reg, rl_object.reg);
LockTemp(rs_r0);
}
RegLocation rl_offset;
if (cu_->target64) {
rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
} else {
rl_offset = LoadValue(rl_src_offset, kCoreReg);
}
LoadValueDirect(rl_src_expected, rs_r0);
NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0,
rl_new_value.reg.GetReg());
// After a store we need to insert barrier to prevent reordering with either
// earlier or later memory accesses. Since
// locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated,
// and it will be associated with the cmpxchg instruction, preventing both.
GenMemBarrier(kAnyAny);
FreeTemp(rs_r0);
}
// Convert ZF to boolean
RegLocation rl_dest = InlineTarget(info); // boolean place for result
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage result_reg = rl_result.reg;
// For 32-bit, SETcc only works with EAX..EDX.
if (!IsByteRegister(result_reg)) {
result_reg = AllocateByteRegister();
}
NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
if (IsTemp(result_reg)) {
FreeTemp(result_reg);
}
StoreValue(rl_dest, rl_result);
return true;
}
void X86Mir2Lir::SwapBits(RegStorage result_reg, int shift, int32_t value) {
RegStorage r_temp = AllocTemp();
OpRegCopy(r_temp, result_reg);
OpRegImm(kOpLsr, result_reg, shift);
OpRegImm(kOpAnd, r_temp, value);
OpRegImm(kOpAnd, result_reg, value);
OpRegImm(kOpLsl, r_temp, shift);
OpRegReg(kOpOr, result_reg, r_temp);
FreeTemp(r_temp);
}
void X86Mir2Lir::SwapBits64(RegStorage result_reg, int shift, int64_t value) {
RegStorage r_temp = AllocTempWide();
OpRegCopy(r_temp, result_reg);
OpRegImm(kOpLsr, result_reg, shift);
RegStorage r_value = AllocTempWide();
LoadConstantWide(r_value, value);
OpRegReg(kOpAnd, r_temp, r_value);
OpRegReg(kOpAnd, result_reg, r_value);
OpRegImm(kOpLsl, r_temp, shift);
OpRegReg(kOpOr, result_reg, r_temp);
FreeTemp(r_temp);
FreeTemp(r_value);
}
bool X86Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info);
if (rl_dest.s_reg_low == INVALID_SREG) {
// Result is unused, the code is dead. Inlining successful, no code generated.
return true;
}
RegLocation rl_src_i = info->args[0];
RegLocation rl_i = (size == k64) ? LoadValueWide(rl_src_i, kCoreReg)
: LoadValue(rl_src_i, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (size == k64) {
if (cu_->instruction_set == kX86_64) {
/* Use one bswap instruction to reverse byte order first and then use 3 rounds of
swapping bits to reverse bits in a long number x. Using bswap to save instructions
compared to generic luni implementation which has 5 rounds of swapping bits.
x = bswap x
x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
*/
OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
SwapBits64(rl_result.reg, 1, 0x5555555555555555);
SwapBits64(rl_result.reg, 2, 0x3333333333333333);
SwapBits64(rl_result.reg, 4, 0x0f0f0f0f0f0f0f0f);
StoreValueWide(rl_dest, rl_result);
return true;
}
RegStorage r_i_low = rl_i.reg.GetLow();
if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
// First REV shall clobber rl_result.reg.GetLowReg(), save the value in a temp for the second
// REV.
r_i_low = AllocTemp();
OpRegCopy(r_i_low, rl_i.reg);
}
OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
FreeTemp(r_i_low);
}
SwapBits(rl_result.reg.GetLow(), 1, 0x55555555);
SwapBits(rl_result.reg.GetLow(), 2, 0x33333333);
SwapBits(rl_result.reg.GetLow(), 4, 0x0f0f0f0f);
SwapBits(rl_result.reg.GetHigh(), 1, 0x55555555);
SwapBits(rl_result.reg.GetHigh(), 2, 0x33333333);
SwapBits(rl_result.reg.GetHigh(), 4, 0x0f0f0f0f);
StoreValueWide(rl_dest, rl_result);
} else {
OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
SwapBits(rl_result.reg, 1, 0x55555555);
SwapBits(rl_result.reg, 2, 0x33333333);
SwapBits(rl_result.reg, 4, 0x0f0f0f0f);
StoreValue(rl_dest, rl_result);
}
return true;
}
LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
if (cu_->target64) {
// We can do this directly using RIP addressing.
// We don't know the proper offset for the value, so pick one that will force
// 4 byte offset. We will fix this up in the assembler later to have the right
// value.
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
LIR* res = NewLIR3(kX86Mov32RM, reg.GetReg(), kRIPReg, 256);
res->target = target;
res->flags.fixup = kFixupLoad;
return res;
}
CHECK(base_of_code_ != nullptr);
// Address the start of the method
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
if (rl_method.wide) {
LoadValueDirectWideFixed(rl_method, reg);
} else {
LoadValueDirectFixed(rl_method, reg);
}
store_method_addr_used_ = true;
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that will force
// 4 byte offset. We will fix this up in the assembler later to have the right
// value.
ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
0, 0, target);
res->target = target;
res->flags.fixup = kFixupLoad;
return res;
}
LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
UNUSED(r_base, count);
LOG(FATAL) << "Unexpected use of OpVldm for x86";
UNREACHABLE();
}
LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
UNUSED(r_base, count);
LOG(FATAL) << "Unexpected use of OpVstm for x86";
UNREACHABLE();
}
void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
RegLocation rl_result, int lit,
int first_bit, int second_bit) {
UNUSED(lit);
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
FreeTemp(t_reg);
if (first_bit != 0) {
OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
}
}
void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
if (cu_->target64) {
DCHECK(reg.Is64Bit());
NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
} else {
DCHECK(reg.IsPair());
// We are not supposed to clobber the incoming storage, so allocate a temporary.
RegStorage t_reg = AllocTemp();
// Doing an OR is a quick way to check if both registers are zero. This will set the flags.
OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
// The temp is no longer needed so free it at this time.
FreeTemp(t_reg);
}
// In case of zero, throw ArithmeticException.
GenDivZeroCheck(kCondEq);
}
void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
RegStorage array_base,
int len_offset) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in,
RegStorage index_in, RegStorage array_base_in, int32_t len_offset_in)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch_in),
index_(index_in), array_base_(array_base_in), len_offset_(len_offset_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
RegStorage new_index = index_;
// Move index out of kArg1, either directly to kArg0, or to kArg2.
// TODO: clean-up to check not a number but with type
if (index_ == m2l_->TargetReg(kArg1, kNotWide)) {
if (array_base_ == m2l_->TargetReg(kArg0, kRef)) {
m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kNotWide), index_);
new_index = m2l_->TargetReg(kArg2, kNotWide);
} else {
m2l_->OpRegCopy(m2l_->TargetReg(kArg0, kNotWide), index_);
new_index = m2l_->TargetReg(kArg0, kNotWide);
}
}
// Load array length to kArg1.
X86Mir2Lir* x86_m2l = static_cast<X86Mir2Lir*>(m2l_);
x86_m2l->OpRegMem(kOpMov, m2l_->TargetReg(kArg1, kNotWide), array_base_, len_offset_);
x86_m2l->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, new_index,
m2l_->TargetReg(kArg1, kNotWide), true);
}
private:
const RegStorage index_;
const RegStorage array_base_;
const int32_t len_offset_;
};
OpRegMem(kOpCmp, index, array_base, len_offset);
MarkPossibleNullPointerException(0);
LIR* branch = OpCondBranch(kCondUge, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
index, array_base, len_offset));
}
void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
RegStorage array_base,
int32_t len_offset) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in,
int32_t index_in, RegStorage array_base_in, int32_t len_offset_in)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch_in),
index_(index_in), array_base_(array_base_in), len_offset_(len_offset_in) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
// Load array length to kArg1.
X86Mir2Lir* x86_m2l = static_cast<X86Mir2Lir*>(m2l_);
x86_m2l->OpRegMem(kOpMov, m2l_->TargetReg(kArg1, kNotWide), array_base_, len_offset_);
x86_m2l->LoadConstant(m2l_->TargetReg(kArg0, kNotWide), index_);
x86_m2l->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, m2l_->TargetReg(kArg0, kNotWide),
m2l_->TargetReg(kArg1, kNotWide), true);
}
private:
const int32_t index_;
const RegStorage array_base_;
const int32_t len_offset_;
};
NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
MarkPossibleNullPointerException(0);
LIR* branch = OpCondBranch(kCondLs, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
index, array_base, len_offset));
}
// Test suspend flag, return target of taken suspend branch
LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
if (cu_->target64) {
OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
} else {
OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
}
return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
}
// Decrement register and branch on condition
LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
OpRegImm(kOpSub, reg, 1);
return OpCondBranch(c_code, target);
}
bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) {
UNUSED(dalvik_opcode, is_div, rl_src, rl_dest, lit);
LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
UNREACHABLE();
}
bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
UNUSED(rl_src, rl_dest, lit);
LOG(FATAL) << "Unexpected use of easyMultiply in x86";
UNREACHABLE();
}
LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
UNUSED(cond, guide);
LOG(FATAL) << "Unexpected use of OpIT in x86";
UNREACHABLE();
}
void X86Mir2Lir::OpEndIT(LIR* it) {
UNUSED(it);
LOG(FATAL) << "Unexpected use of OpEndIT in x86";
UNREACHABLE();
}
void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
switch (val) {
case 0:
NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
break;
case 1:
OpRegCopy(dest, src);
break;
default:
OpRegRegImm(kOpMul, dest, src, val);
break;
}
}
void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
UNUSED(sreg);
// All memory accesses below reference dalvik regs.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR *m;
switch (val) {
case 0:
NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
break;
case 1: {
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
LoadBaseDisp(rs_rSP, displacement, dest, k32, kNotVolatile);
break;
}
default:
m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
rs_rX86_SP_32.GetReg(), displacement, val);
AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
break;
}
}
void X86Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, int flags) {
if (!cu_->target64) {
// Some x86 32b ops are fallback.
switch (opcode) {
case Instruction::NOT_LONG:
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags);
return;
default:
// Everything else we can handle.
break;
}
}
switch (opcode) {
case Instruction::NOT_LONG:
GenNotLong(rl_dest, rl_src2);
return;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
return;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
return;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
GenMulLong(opcode, rl_dest, rl_src1, rl_src2, flags);
return;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true, flags);
return;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false, flags);
return;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
return;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
return;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
return;
case Instruction::NEG_LONG:
GenNegLong(rl_dest, rl_src2);
return;
default:
LOG(FATAL) << "Invalid long arith op";
return;
}
}
bool X86Mir2Lir::GenMulLongConst(RegLocation rl_dest, RegLocation rl_src1, int64_t val, int flags) {
// All memory accesses below reference dalvik regs.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (val == 0) {
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
if (cu_->target64) {
OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
} else {
OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
}
StoreValueWide(rl_dest, rl_result);
return true;
} else if (val == 1) {
StoreValueWide(rl_dest, rl_src1);
return true;
} else if (val == 2) {
GenArithOpLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1, flags);
return true;
} else if (IsPowerOfTwo(val)) {
int shift_amount = CTZ(val);
if (!PartiallyIntersects(rl_src1, rl_dest)) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest, rl_src1,
shift_amount, flags);
StoreValueWide(rl_dest, rl_result);
return true;
}
}
// Okay, on 32b just bite the bullet and do it, still better than the general case.
if (!cu_->target64) {
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
// Prepare for explicit register usage.
ExplicitTempRegisterLock(this, 3, &rs_r0, &rs_r1, &rs_r2);
rl_src1 = UpdateLocWideTyped(rl_src1);
bool src1_in_reg = rl_src1.location == kLocPhysReg;
int displacement = SRegOffset(rl_src1.s_reg_low);
// ECX <- 1H * 2L
// EAX <- 1L * 2H
if (src1_in_reg) {
GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
} else {
GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
}
// ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
// EAX <- 2L
LoadConstantNoClobber(rs_r0, val_lo);
// EDX:EAX <- 2L * 1L (double precision)
if (src1_in_reg) {
NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
} else {
LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP_32.GetReg(), displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// EDX <- EDX + ECX (add high words)
NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
// Result is EDX:EAX
RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
StoreValueWide(rl_dest, rl_result);
return true;
}
return false;
}
void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, int flags) {
if (rl_src1.is_const) {
std::swap(rl_src1, rl_src2);
}
if (rl_src2.is_const) {
if (GenMulLongConst(rl_dest, rl_src1, mir_graph_->ConstantValueWide(rl_src2), flags)) {
return;
}
}
// All memory accesses below reference dalvik regs.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
if (cu_->target64) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
} else if (rl_result.reg.GetReg() != rl_src1.reg.GetReg() &&
rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
} else if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
rl_result.reg.GetReg() != rl_src2.reg.GetReg()) {
NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
} else {
OpRegCopy(rl_result.reg, rl_src1.reg);
NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
}
StoreValueWide(rl_dest, rl_result);
return;
}
// Not multiplying by a constant. Do it the hard way
// Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
mir_graph_->SRegToVReg(rl_src2.s_reg_low);
// Prepare for explicit register usage.
ExplicitTempRegisterLock(this, 3, &rs_r0, &rs_r1, &rs_r2);
rl_src1 = UpdateLocWideTyped(rl_src1);
rl_src2 = UpdateLocWideTyped(rl_src2);
// At this point, the VRs are in their home locations.
bool src1_in_reg = rl_src1.location == kLocPhysReg;
bool src2_in_reg = rl_src2.location == kLocPhysReg;
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
// ECX <- 1H
if (src1_in_reg) {
NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
} else {
LoadBaseDisp(rs_rSP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32,
kNotVolatile);
}
if (is_square) {
// Take advantage of the fact that the values are the same.
// ECX <- ECX * 2L (1H * 2L)
if (src2_in_reg) {
NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
} else {
int displacement = SRegOffset(rl_src2.s_reg_low);
LIR* m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP_32.GetReg(),
displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// ECX <- 2*ECX (2H * 1L) + (1H * 2L)
NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
} else {
// EAX <- 2H
if (src2_in_reg) {
NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
} else {
LoadBaseDisp(rs_rSP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32,
kNotVolatile);
}
// EAX <- EAX * 1L (2H * 1L)
if (src1_in_reg) {
NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
} else {
int displacement = SRegOffset(rl_src1.s_reg_low);
LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP_32.GetReg(),
displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// ECX <- ECX * 2L (1H * 2L)
if (src2_in_reg) {
NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
} else {
int displacement = SRegOffset(rl_src2.s_reg_low);
LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP_32.GetReg(),
displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
}
// EAX <- 2L
if (src2_in_reg) {
NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
} else {
LoadBaseDisp(rs_rSP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32,
kNotVolatile);
}
// EDX:EAX <- 2L * 1L (double precision)
if (src1_in_reg) {
NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
} else {
int displacement = SRegOffset(rl_src1.s_reg_low);
LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP_32.GetReg(), displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// EDX <- EDX + ECX (add high words)
NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
// Result is EDX:EAX
RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
Instruction::Code op) {
DCHECK_EQ(rl_dest.location, kLocPhysReg);
X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
if (rl_src.location == kLocPhysReg) {
// Both operands are in registers.
// But we must ensure that rl_src is in pair
if (cu_->target64) {
NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
} else {
rl_src = LoadValueWide(rl_src, kCoreReg);
if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
// The registers are the same, so we would clobber it before the use.
RegStorage temp_reg = AllocTemp();
OpRegCopy(temp_reg, rl_dest.reg);
rl_src.reg.SetHighReg(temp_reg.GetReg());
}
NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
x86op = GetOpcode(op, rl_dest, rl_src, true);
NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
}
return;
}
// RHS is in memory.
DCHECK((rl_src.location == kLocDalvikFrame) ||
(rl_src.location == kLocCompilerTemp));
int r_base = rs_rX86_SP_32.GetReg();
int displacement = SRegOffset(rl_src.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR *lir = NewLIR3(x86op, cu_->target64 ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(),
r_base, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
if (!cu_->target64) {
x86op = GetOpcode(op, rl_dest, rl_src, true);
lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
}
}
void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
rl_dest = UpdateLocWideTyped(rl_dest);
if (rl_dest.location == kLocPhysReg) {
// Ensure we are in a register pair
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
rl_src = UpdateLocWideTyped(rl_src);
GenLongRegOrMemOp(rl_result, rl_src, op);
StoreFinalValueWide(rl_dest, rl_result);
return;
} else if (!cu_->target64 && Intersects(rl_src, rl_dest)) {
// Handle the case when src and dest are intersect.
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
rl_src = UpdateLocWideTyped(rl_src);
GenLongRegOrMemOp(rl_result, rl_src, op);
StoreFinalValueWide(rl_dest, rl_result);
return;
}
// It wasn't in registers, so it better be in memory.
DCHECK((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp));
rl_src = LoadValueWide(rl_src, kCoreReg);
// Operate directly into memory.
X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
int r_base = rs_rX86_SP_32.GetReg();
int displacement = SRegOffset(rl_dest.s_reg_low);
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
cu_->target64 ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
if (!cu_->target64) {
x86op = GetOpcode(op, rl_dest, rl_src, true);
lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
}
int v_src_reg = mir_graph_->SRegToVReg(rl_src.s_reg_low);
int v_dst_reg = mir_graph_->SRegToVReg(rl_dest.s_reg_low);
// If the left operand is in memory and the right operand is in a register
// and both belong to the same dalvik register then we should clobber the
// right one because it doesn't hold valid data anymore.
if (v_src_reg == v_dst_reg) {
Clobber(rl_src.reg);
}
}
void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, Instruction::Code op,
bool is_commutative) {
// Is this really a 2 operand operation?
switch (op) {
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
if (GenerateTwoOperandInstructions()) {
GenLongArith(rl_dest, rl_src2, op);
return;
}
break;
default:
break;
}
if (rl_dest.location == kLocPhysReg) {
RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
// We are about to clobber the LHS, so it needs to be a temp.
rl_result = ForceTempWide(rl_result);
// Perform the operation using the RHS.
rl_src2 = UpdateLocWideTyped(rl_src2);
GenLongRegOrMemOp(rl_result, rl_src2, op);
// And now record that the result is in the temp.
StoreFinalValueWide(rl_dest, rl_result);
return;
}
// It wasn't in registers, so it better be in memory.
DCHECK((rl_dest.location == kLocDalvikFrame) || (rl_dest.location == kLocCompilerTemp));
rl_src1 = UpdateLocWideTyped(rl_src1);
rl_src2 = UpdateLocWideTyped(rl_src2);
// Get one of the source operands into temporary register.
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
if (cu_->target64) {
if (IsTemp(rl_src1.reg)) {
GenLongRegOrMemOp(rl_src1, rl_src2, op);
} else if (is_commutative) {
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
// We need at least one of them to be a temporary.
if (!IsTemp(rl_src2.reg)) {
rl_src1 = ForceTempWide(rl_src1);
GenLongRegOrMemOp(rl_src1, rl_src2, op);
} else {
GenLongRegOrMemOp(rl_src2, rl_src1, op);
StoreFinalValueWide(rl_dest, rl_src2);
return;
}
} else {
// Need LHS to be the temp.
rl_src1 = ForceTempWide(rl_src1);
GenLongRegOrMemOp(rl_src1, rl_src2, op);
}
} else {
if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
GenLongRegOrMemOp(rl_src1, rl_src2, op);
} else if (is_commutative) {
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
// We need at least one of them to be a temporary.
if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
rl_src1 = ForceTempWide(rl_src1);
GenLongRegOrMemOp(rl_src1, rl_src2, op);
} else {
GenLongRegOrMemOp(rl_src2, rl_src1, op);
StoreFinalValueWide(rl_dest, rl_src2);
return;
}
} else {
// Need LHS to be the temp.
rl_src1 = ForceTempWide(rl_src1);
GenLongRegOrMemOp(rl_src1, rl_src2, op);
}
}
StoreFinalValueWide(rl_dest, rl_src1);
}
void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
if (cu_->target64) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result;
rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegCopy(rl_result.reg, rl_src.reg);
OpReg(kOpNot, rl_result.reg);
StoreValueWide(rl_dest, rl_result);
} else {
LOG(FATAL) << "Unexpected use GenNotLong()";
}
}
void X86Mir2Lir::GenDivRemLongLit(RegLocation rl_dest, RegLocation rl_src,
int64_t imm, bool is_div) {
if (imm == 0) {
GenDivZeroException();
} else if (imm == 1) {
if (is_div) {
// x / 1 == x.
StoreValueWide(rl_dest, rl_src);
} else {
// x % 1 == 0.
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
LoadConstantWide(rl_result.reg, 0);
StoreValueWide(rl_dest, rl_result);
}
} else if (imm == -1) { // handle 0x8000000000000000 / -1 special case.
if (is_div) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
RegStorage rs_temp = AllocTempWide();
OpRegCopy(rl_result.reg, rl_src.reg);
LoadConstantWide(rs_temp, 0x8000000000000000);
// If x == MIN_LONG, return MIN_LONG.
OpRegReg(kOpCmp, rl_src.reg, rs_temp);
LIR *minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
// For x != MIN_LONG, x / -1 == -x.
OpReg(kOpNeg, rl_result.reg);
minint_branch->target = NewLIR0(kPseudoTargetLabel);
FreeTemp(rs_temp);
StoreValueWide(rl_dest, rl_result);
} else {
// x % -1 == 0.
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
LoadConstantWide(rl_result.reg, 0);
StoreValueWide(rl_dest, rl_result);
}
} else if (is_div && IsPowerOfTwo(std::abs(imm))) {
// Division using shifting.
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
if (IsSameReg(rl_result.reg, rl_src.reg)) {
RegStorage rs_temp = AllocTypedTempWide(false, kCoreReg);
rl_result.reg.SetReg(rs_temp.GetReg());
}
LoadConstantWide(rl_result.reg, std::abs(imm) - 1);
OpRegReg(kOpAdd, rl_result.reg, rl_src.reg);
NewLIR2(kX86Test64RR, rl_src.reg.GetReg(), rl_src.reg.GetReg());
OpCondRegReg(kOpCmov, kCondPl, rl_result.reg, rl_src.reg);
int shift_amount = CTZ(imm);
OpRegImm(kOpAsr, rl_result.reg, shift_amount);
if (imm < 0) {
OpReg(kOpNeg, rl_result.reg);
}
StoreValueWide(rl_dest, rl_result);
} else {
CHECK(imm <= -2 || imm >= 2);
FlushReg(rs_r0q);
Clobber(rs_r0q);
LockTemp(rs_r0q);
FlushReg(rs_r2q);
Clobber(rs_r2q);
LockTemp(rs_r2q);
RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
is_div ? rs_r2q : rs_r0q, INVALID_SREG, INVALID_SREG};
// Use H.S.Warren's Hacker's Delight Chapter 10 and
// T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
int64_t magic;
int shift;
CalculateMagicAndShift(imm, magic, shift, true /* is_long */);
/*
* For imm >= 2,
* int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
* int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
* For imm <= -2,
* int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
* int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
* We implement this algorithm in the following way:
* 1. multiply magic number m and numerator n, get the higher 64bit result in RDX
* 2. if imm > 0 and magic < 0, add numerator to RDX
* if imm < 0 and magic > 0, sub numerator from RDX
* 3. if S !=0, SAR S bits for RDX
* 4. add 1 to RDX if RDX < 0
* 5. Thus, RDX is the quotient
*/
// RAX = magic.
LoadConstantWide(rs_r0q, magic);
// Multiply by numerator.
RegStorage numerator_reg;
if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
// We will need the value later.
rl_src = LoadValueWide(rl_src, kCoreReg);
numerator_reg = rl_src.reg;
// RDX:RAX = magic * numerator.
NewLIR1(kX86Imul64DaR, numerator_reg.GetReg());
} else {
// Only need this once. Multiply directly from the value.
rl_src = UpdateLocWideTyped(rl_src);
if (rl_src.location != kLocPhysReg) {
// Okay, we can do this from memory.
ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
int displacement = SRegOffset(rl_src.s_reg_low);
// RDX:RAX = magic * numerator.
LIR *m = NewLIR2(kX86Imul64DaM, rs_rX86_SP_32.GetReg(), displacement);
AnnotateDalvikRegAccess(m, displacement >> 2,
true /* is_load */, true /* is_64bit */);
} else {
// RDX:RAX = magic * numerator.
NewLIR1(kX86Imul64DaR, rl_src.reg.GetReg());
}
}
if (imm > 0 && magic < 0) {
// Add numerator to RDX.
DCHECK(numerator_reg.Valid());
OpRegReg(kOpAdd, rs_r2q, numerator_reg);
} else if (imm < 0 && magic > 0) {
DCHECK(numerator_reg.Valid());
OpRegReg(kOpSub, rs_r2q, numerator_reg);
}
// Do we need the shift?
if (shift != 0) {
// Shift RDX by 'shift' bits.
OpRegImm(kOpAsr, rs_r2q, shift);
}
// Move RDX to RAX.
OpRegCopyWide(rs_r0q, rs_r2q);
// Move sign bit to bit 0, zeroing the rest.
OpRegImm(kOpLsr, rs_r2q, 63);
// RDX = RDX + RAX.
OpRegReg(kOpAdd, rs_r2q, rs_r0q);
// Quotient is in RDX.
if (!is_div) {
// We need to compute the remainder.
// Remainder is divisor - (quotient * imm).
DCHECK(numerator_reg.Valid());
OpRegCopyWide(rs_r0q, numerator_reg);
// Imul doesn't support 64-bit imms.
if (imm > std::numeric_limits<int32_t>::max() ||
imm < std::numeric_limits<int32_t>::min()) {
RegStorage rs_temp = AllocTempWide();
LoadConstantWide(rs_temp, imm);
// RAX = numerator * imm.
NewLIR2(kX86Imul64RR, rs_r2q.GetReg(), rs_temp.GetReg());
FreeTemp(rs_temp);
} else {
// RAX = numerator * imm.
int short_imm = static_cast<int>(imm);
NewLIR3(kX86Imul64RRI, rs_r2q.GetReg(), rs_r2q.GetReg(), short_imm);
}
// RAX -= RDX.
OpRegReg(kOpSub, rs_r0q, rs_r2q);
// Result in RAX.
} else {
// Result in RDX.
}
StoreValueWide(rl_dest, rl_result);
FreeTemp(rs_r0q);
FreeTemp(rs_r2q);
}
}
void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div, int flags) {
if (!cu_->target64) {
LOG(FATAL) << "Unexpected use GenDivRemLong()";
return;
}
if (rl_src2.is_const) {
DCHECK(rl_src2.wide);
int64_t imm = mir_graph_->ConstantValueWide(rl_src2);
GenDivRemLongLit(rl_dest, rl_src1, imm, is_div);
return;
}
// We have to use fixed registers, so flush all the temps.
// Prepare for explicit register usage.
ExplicitTempRegisterLock(this, 4, &rs_r0q, &rs_r1q, &rs_r2q, &rs_r6q);
// Load LHS into RAX.
LoadValueDirectWideFixed(rl_src1, rs_r0q);
// Load RHS into RCX.
LoadValueDirectWideFixed(rl_src2, rs_r1q);
// Copy LHS sign bit into RDX.
NewLIR0(kx86Cqo64Da);
// Handle division by zero case.
if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) {
GenDivZeroCheckWide(rs_r1q);
}
// Have to catch 0x8000000000000000/-1 case, or we will get an exception!
NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
LIR* minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
// RHS is -1.
LoadConstantWide(rs_r6q, 0x8000000000000000);
NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r6q.GetReg());
LIR *minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
// In 0x8000000000000000/-1 case.
if (!is_div) {
// For DIV, RAX is already right. For REM, we need RDX 0.
NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
}
LIR* done = NewLIR1(kX86Jmp8, 0);
// Expected case.
minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
minint_branch->target = minus_one_branch->target;
NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
done->target = NewLIR0(kPseudoTargetLabel);
// Result is in RAX for div and RDX for rem.
RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
if (!is_div) {
rl_result.reg.SetReg(r2q);
}
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result;
if (cu_->target64) {
rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
} else {
rl_result = ForceTempWide(rl_src);
OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow()); // rLow = -rLow
OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0); // rHigh = rHigh + CF
OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh()); // rHigh = -rHigh
}
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
DCHECK_EQ(kX86, cu_->instruction_set);
X86OpCode opcode = kX86Bkpt;
switch (op) {
case kOpCmp: opcode = kX86Cmp32RT; break;
case kOpMov: opcode = kX86Mov32RT; break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
}
void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
DCHECK_EQ(kX86_64, cu_->instruction_set);
X86OpCode opcode = kX86Bkpt;
if (cu_->target64 && r_dest.Is64BitSolo()) {
switch (op) {
case kOpCmp: opcode = kX86Cmp64RT; break;
case kOpMov: opcode = kX86Mov64RT; break;
default:
LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
break;
}
} else {
switch (op) {
case kOpCmp: opcode = kX86Cmp32RT; break;
case kOpMov: opcode = kX86Mov32RT; break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
}
NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
}
/*
* Generate array load
*/
void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_dest, int scale) {
RegisterClass reg_class = RegClassForFieldLoadStore(size, false);
int len_offset = mirror::Array::LengthOffset().Int32Value();
RegLocation rl_result;
rl_array = LoadValue(rl_array, kRefReg);
int data_offset;
if (size == k64 || size == kDouble) {
data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
bool constant_index = rl_index.is_const;
int32_t constant_index_value = 0;
if (!constant_index) {
rl_index = LoadValue(rl_index, kCoreReg);
} else {
constant_index_value = mir_graph_->ConstantValue(rl_index);
// If index is constant, just fold it into the data offset
data_offset += constant_index_value << scale;
// treat as non array below
rl_index.reg = RegStorage::InvalidReg();
}
/* null object? */
GenNullCheck(rl_array.reg, opt_flags);
if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
if (constant_index) {
GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
} else {
GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
}
}
rl_result = EvalLoc(rl_dest, reg_class, true);
LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
if ((size == k64) || (size == kDouble)) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
}
/*
* Generate array store
*
*/
void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
RegisterClass reg_class = RegClassForFieldLoadStore(size, false);
int len_offset = mirror::Array::LengthOffset().Int32Value();
int data_offset;
if (size == k64 || size == kDouble) {
data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
rl_array = LoadValue(rl_array, kRefReg);
bool constant_index = rl_index.is_const;
int32_t constant_index_value = 0;
if (!constant_index) {
rl_index = LoadValue(rl_index, kCoreReg);
} else {
// If index is constant, just fold it into the data offset
constant_index_value = mir_graph_->ConstantValue(rl_index);
data_offset += constant_index_value << scale;
// treat as non array below
rl_index.reg = RegStorage::InvalidReg();
}
/* null object? */
GenNullCheck(rl_array.reg, opt_flags);
if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
if (constant_index) {
GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
} else {
GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
}
}
if ((size == k64) || (size == kDouble)) {
rl_src = LoadValueWide(rl_src, reg_class);
} else {
rl_src = LoadValue(rl_src, reg_class);
}
// If the src reg can't be byte accessed, move it to a temp first.
if ((size == kSignedByte || size == kUnsignedByte) && !IsByteRegister(rl_src.reg)) {
RegStorage temp = AllocTemp();