blob: e9a883c9e39b8700373f4e488f42ef10f70a2058 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "dex_file.h"
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <map>
#include "UniquePtr.h"
#include "class_linker.h"
#include "globals.h"
#include "leb128.h"
#include "logging.h"
#include "object.h"
#include "os.h"
#include "stringprintf.h"
#include "thread.h"
#include "utf.h"
#include "utils.h"
#include "zip_archive.h"
namespace art {
const byte DexFile::kDexMagic[] = { 'd', 'e', 'x', '\n' };
const byte DexFile::kDexMagicVersion[] = { '0', '3', '5', '\0' };
DexFile::ClassPathEntry DexFile::FindInClassPath(const StringPiece& descriptor,
const ClassPath& class_path) {
for (size_t i = 0; i != class_path.size(); ++i) {
const DexFile* dex_file = class_path[i];
const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor);
if (dex_class_def != NULL) {
return ClassPathEntry(dex_file, dex_class_def);
}
}
// TODO: remove reinterpret_cast when issue with -std=gnu++0x host issue resolved
return ClassPathEntry(reinterpret_cast<const DexFile*>(NULL),
reinterpret_cast<const DexFile::ClassDef*>(NULL));
}
void DexFile::OpenDexFiles(std::vector<const char*>& dex_filenames,
std::vector<const DexFile*>& dex_files,
const std::string& strip_location_prefix) {
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i];
const DexFile* dex_file = Open(dex_filename, strip_location_prefix);
if (dex_file == NULL) {
fprintf(stderr, "could not open .dex from file %s\n", dex_filename);
exit(EXIT_FAILURE);
}
dex_files.push_back(dex_file);
}
}
const DexFile* DexFile::Open(const std::string& filename,
const std::string& strip_location_prefix) {
if (IsValidZipFilename(filename)) {
return DexFile::OpenZip(filename, strip_location_prefix);
}
if (!IsValidDexFilename(filename)) {
LOG(WARNING) << "Attempting to open dex file with unknown extension '" << filename << "'";
}
return DexFile::OpenFile(filename, filename, strip_location_prefix);
}
void DexFile::ChangePermissions(int prot) const {
if (mprotect(mem_map_->GetAddress(), mem_map_->GetLength(), prot) != 0) {
PLOG(FATAL) << "Failed to change dex file permissions to " << prot;
}
}
const DexFile* DexFile::OpenFile(const std::string& filename,
const std::string& original_location,
const std::string& strip_location_prefix) {
StringPiece location = original_location;
if (!location.starts_with(strip_location_prefix)) {
LOG(ERROR) << filename << " does not start with " << strip_location_prefix;
return NULL;
}
location.remove_prefix(strip_location_prefix.size());
int fd = open(filename.c_str(), O_RDONLY); // TODO: scoped_fd
if (fd == -1) {
PLOG(ERROR) << "open(\"" << filename << "\", O_RDONLY) failed";
return NULL;
}
struct stat sbuf;
memset(&sbuf, 0, sizeof(sbuf));
if (fstat(fd, &sbuf) == -1) {
PLOG(ERROR) << "fstat \"" << filename << "\" failed";
close(fd);
return NULL;
}
size_t length = sbuf.st_size;
UniquePtr<MemMap> map(MemMap::Map(length, PROT_READ, MAP_PRIVATE, fd, 0));
if (map.get() == NULL) {
LOG(ERROR) << "mmap \"" << filename << "\" failed";
close(fd);
return NULL;
}
close(fd);
byte* dex_file = map->GetAddress();
return OpenMemory(dex_file, length, location.ToString(), map.release());
}
const char* DexFile::kClassesDex = "classes.dex";
class LockedFd {
public:
static LockedFd* CreateAndLock(std::string& name, mode_t mode) {
int fd = open(name.c_str(), O_CREAT | O_RDWR, mode);
if (fd == -1) {
PLOG(ERROR) << "Failed to open file '" << name << "'";
return NULL;
}
fchmod(fd, mode);
LOG(INFO) << "locking file " << name << " (fd=" << fd << ")";
int result = flock(fd, LOCK_EX | LOCK_NB);
if (result == -1) {
LOG(WARNING) << "sleeping while locking file " << name;
result = flock(fd, LOCK_EX);
}
if (result == -1) {
PLOG(ERROR) << "Failed to lock file '" << name << "'";
close(fd);
return NULL;
}
return new LockedFd(fd);
}
int GetFd() const {
return fd_;
}
~LockedFd() {
if (fd_ != -1) {
int result = flock(fd_, LOCK_UN);
if (result == -1) {
PLOG(WARNING) << "flock(" << fd_ << ", LOCK_UN) failed";
}
close(fd_);
}
}
private:
explicit LockedFd(int fd) : fd_(fd) {}
int fd_;
};
class TmpFile {
public:
explicit TmpFile(const std::string& name) : name_(name) {}
~TmpFile() {
unlink(name_.c_str());
}
private:
const std::string name_;
};
// Open classes.dex from within a .zip, .jar, .apk, ...
const DexFile* DexFile::OpenZip(const std::string& filename,
const std::string& strip_location_prefix) {
// First, look for a ".dex" alongside the jar file. It will have
// the same name/path except for the extension.
// Example filename = dir/foo.jar
std::string adjacent_dex_filename(filename);
size_t found = adjacent_dex_filename.find_last_of(".");
if (found == std::string::npos) {
LOG(ERROR) << "No . in filename" << filename;
return NULL;
}
adjacent_dex_filename.replace(adjacent_dex_filename.begin() + found,
adjacent_dex_filename.end(),
".dex");
// Example adjacent_dex_filename = dir/foo.dex
if (OS::FileExists(adjacent_dex_filename.c_str())) {
const DexFile* adjacent_dex_file = DexFile::OpenFile(adjacent_dex_filename,
filename,
strip_location_prefix);
if (adjacent_dex_file != NULL) {
// We don't verify anything in this case, because we aren't in
// the cache and typically the file is in the readonly /system
// area, so if something is wrong, there is nothing we can do.
return adjacent_dex_file;
}
return NULL;
}
UniquePtr<char[]> resolved(new char[PATH_MAX]);
char* absolute_path = realpath(filename.c_str(), resolved.get());
if (absolute_path == NULL) {
LOG(ERROR) << "Failed to create absolute path for " << filename
<< " when looking for classes.dex";
return NULL;
}
std::string cache_path_tmp(GetArtCacheFilenameOrDie(absolute_path));
cache_path_tmp.push_back('@');
cache_path_tmp.append(kClassesDex);
// Example cache_path_tmp = /data/art-cache/parent@dir@foo.jar@classes.dex
UniquePtr<ZipArchive> zip_archive(ZipArchive::Open(filename));
if (zip_archive.get() == NULL) {
LOG(ERROR) << "Failed to open " << filename << " when looking for classes.dex";
return NULL;
}
UniquePtr<ZipEntry> zip_entry(zip_archive->Find(kClassesDex));
if (zip_entry.get() == NULL) {
LOG(ERROR) << "Failed to find classes.dex within " << filename;
return NULL;
}
std::string cache_path = StringPrintf("%s.%08x", cache_path_tmp.c_str(), zip_entry->GetCrc32());
// Example cache_path = /data/art-cache/parent@dir@foo.jar@classes.dex.1a2b3c4d
while (true) {
if (OS::FileExists(cache_path.c_str())) {
const DexFile* cached_dex_file = DexFile::OpenFile(cache_path,
filename,
strip_location_prefix);
if (cached_dex_file != NULL) {
return cached_dex_file;
}
}
// Try to open the temporary cache file, grabbing an exclusive
// lock. If somebody else is working on it, we'll block here until
// they complete. Because we're waiting on an external resource,
// we go into native mode.
// Note that self can be NULL if we're parsing the bootclasspath
// during JNI_CreateJavaVM.
Thread* self = Thread::Current();
UniquePtr<ScopedThreadStateChange> state_changer;
if (self != NULL) {
state_changer.reset(new ScopedThreadStateChange(self, Thread::kNative));
}
UniquePtr<LockedFd> fd(LockedFd::CreateAndLock(cache_path_tmp, 0644));
state_changer.reset(NULL);
if (fd.get() == NULL) {
PLOG(ERROR) << "Failed to lock file '" << cache_path_tmp << "'";
return NULL;
}
// Check to see if the fd we opened and locked matches the file in
// the filesystem. If they don't, then somebody else unlinked
// ours and created a new file, and we need to use that one
// instead. (If we caught them between the unlink and the create,
// we'll get an ENOENT from the file stat.)
struct stat fd_stat;
int fd_stat_result = fstat(fd->GetFd(), &fd_stat);
if (fd_stat_result == -1) {
PLOG(ERROR) << "Failed to stat open file '" << cache_path_tmp << "'";
return NULL;
}
struct stat file_stat;
int file_stat_result = stat(cache_path_tmp.c_str(), &file_stat);
if (file_stat_result == -1 ||
fd_stat.st_dev != file_stat.st_dev || fd_stat.st_ino != file_stat.st_ino) {
LOG(WARNING) << "our open cache file is stale; sleeping and retrying";
usleep(250 * 1000); // if something is hosed, don't peg machine
continue;
}
// We have the correct file open and locked. Extract classes.dex
TmpFile tmp_file(cache_path_tmp);
UniquePtr<File> file(OS::FileFromFd(cache_path_tmp.c_str(), fd->GetFd()));
if (file.get() == NULL) {
LOG(ERROR) << "Failed to create file for '" << cache_path_tmp << "'";
return NULL;
}
bool success = zip_entry->Extract(*file);
if (!success) {
LOG(ERROR) << "Failed to extract classes.dex to '" << cache_path_tmp << "'";
return NULL;
}
// TODO: restat and check length against zip_entry->GetUncompressedLength()?
// Compute checksum and compare to zip. If things look okay, rename from tmp.
off_t lseek_result = lseek(fd->GetFd(), 0, SEEK_SET);
if (lseek_result == -1) {
PLOG(ERROR) << "Failed to seek to start of '" << cache_path_tmp << "'";
return NULL;
}
const size_t kBufSize = 32768;
UniquePtr<uint8_t[]> buf(new uint8_t[kBufSize]);
if (buf.get() == NULL) {
LOG(ERROR) << "Failed to allocate buffer to checksum '" << cache_path_tmp << "'";
return NULL;
}
uint32_t computed_crc = crc32(0L, Z_NULL, 0);
while (true) {
ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd->GetFd(), buf.get(), kBufSize));
if (bytes_read == -1) {
PLOG(ERROR) << "Problem computing CRC of '" << cache_path_tmp << "'";
return NULL;
}
if (bytes_read == 0) {
break;
}
computed_crc = crc32(computed_crc, buf.get(), bytes_read);
}
if (computed_crc != zip_entry->GetCrc32()) {
LOG(ERROR) << "Failed to validate checksum for '" << cache_path_tmp << "'";
return NULL;
}
int rename_result = rename(cache_path_tmp.c_str(), cache_path.c_str());
if (rename_result == -1) {
PLOG(ERROR) << "Failed to install dex cache file '" << cache_path << "'"
<< " from '" << cache_path_tmp << "'";
unlink(cache_path.c_str());
}
}
// NOTREACHED
}
const DexFile* DexFile::OpenMemory(const byte* dex_bytes, size_t length,
const std::string& location, MemMap* mem_map) {
UniquePtr<DexFile> dex_file(new DexFile(dex_bytes, length, location, mem_map));
if (!dex_file->Init()) {
return NULL;
} else {
return dex_file.release();
}
}
DexFile::~DexFile() {
// We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and
// that's only called after DetachCurrentThread, which means there's no JNIEnv. We could
// re-attach, but cleaning up these global references is not obviously useful. It's not as if
// the global reference table is otherwise empty!
}
jobject DexFile::GetDexObject(JNIEnv* env) const {
MutexLock mu(dex_object_lock_);
if (dex_object_ != NULL) {
return dex_object_;
}
void* address = const_cast<void*>(reinterpret_cast<const void*>(base_));
jobject byte_buffer = env->NewDirectByteBuffer(address, length_);
if (byte_buffer == NULL) {
return NULL;
}
jclass c = env->FindClass("com/android/dex/Dex");
if (c == NULL) {
return NULL;
}
jmethodID mid = env->GetStaticMethodID(c, "create", "(Ljava/nio/ByteBuffer;)Lcom/android/dex/Dex;");
if (mid == NULL) {
return NULL;
}
jvalue args[1];
args[0].l = byte_buffer;
jobject local = env->CallStaticObjectMethodA(c, mid, args);
if (local == NULL) {
return NULL;
}
dex_object_ = env->NewGlobalRef(local);
return dex_object_;
}
bool DexFile::Init() {
InitMembers();
if (!IsMagicValid()) {
return false;
}
InitIndex();
return true;
}
void DexFile::InitMembers() {
const byte* b = base_;
header_ = reinterpret_cast<const Header*>(b);
const Header* h = header_;
string_ids_ = reinterpret_cast<const StringId*>(b + h->string_ids_off_);
type_ids_ = reinterpret_cast<const TypeId*>(b + h->type_ids_off_);
field_ids_ = reinterpret_cast<const FieldId*>(b + h->field_ids_off_);
method_ids_ = reinterpret_cast<const MethodId*>(b + h->method_ids_off_);
proto_ids_ = reinterpret_cast<const ProtoId*>(b + h->proto_ids_off_);
class_defs_ = reinterpret_cast<const ClassDef*>(b + h->class_defs_off_);
}
bool DexFile::IsMagicValid() {
return CheckMagic(header_->magic_);
}
bool DexFile::CheckMagic(const byte* magic) {
CHECK(magic != NULL);
if (memcmp(magic, kDexMagic, sizeof(kDexMagic)) != 0) {
LOG(ERROR) << "Unrecognized magic number:"
<< " " << magic[0]
<< " " << magic[1]
<< " " << magic[2]
<< " " << magic[3];
return false;
}
const byte* version = &magic[sizeof(kDexMagic)];
if (memcmp(version, kDexMagicVersion, sizeof(kDexMagicVersion)) != 0) {
LOG(ERROR) << "Unrecognized version number:"
<< " " << version[0]
<< " " << version[1]
<< " " << version[2]
<< " " << version[3];
return false;
}
return true;
}
uint32_t DexFile::GetVersion() const {
const char* version = reinterpret_cast<const char*>(&GetHeader().magic_[sizeof(kDexMagic)]);
return atoi(version);
}
int32_t DexFile::GetStringLength(const StringId& string_id) const {
const byte* ptr = base_ + string_id.string_data_off_;
return DecodeUnsignedLeb128(&ptr);
}
// Returns a pointer to the UTF-8 string data referred to by the given string_id.
const char* DexFile::GetStringDataAndLength(const StringId& string_id, int32_t* length) const {
CHECK(length != NULL);
const byte* ptr = base_ + string_id.string_data_off_;
*length = DecodeUnsignedLeb128(&ptr);
return reinterpret_cast<const char*>(ptr);
}
void DexFile::InitIndex() {
CHECK_EQ(index_.size(), 0U);
for (size_t i = 0; i < NumClassDefs(); ++i) {
const ClassDef& class_def = GetClassDef(i);
const char* descriptor = GetClassDescriptor(class_def);
index_[descriptor] = i;
}
}
bool DexFile::FindClassDefIndex(const StringPiece& descriptor, uint32_t& idx) const {
Index::const_iterator it = index_.find(descriptor);
if (it == index_.end()) {
return false;
}
idx = it->second;
return true;
}
const DexFile::ClassDef* DexFile::FindClassDef(const StringPiece& descriptor) const {
uint32_t idx;
if (FindClassDefIndex(descriptor, idx)) {
return &GetClassDef(idx);
}
return NULL;
}
const DexFile::MethodId* DexFile::FindMethodId(const DexFile::TypeId& klass,
const DexFile::StringId& name,
const DexFile::ProtoId& signature) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const uint16_t class_idx = GetIndexForTypeId(klass);
const uint32_t name_idx = GetIndexForStringId(name);
const uint16_t proto_idx = GetIndexForProtoId(signature);
uint32_t lo = 0;
uint32_t hi = NumMethodIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const DexFile::MethodId& method = GetMethodId(mid);
if (class_idx > method.class_idx_) {
lo = mid + 1;
} else if (class_idx < method.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > method.name_idx_) {
lo = mid + 1;
} else if (name_idx < method.name_idx_) {
hi = mid - 1;
} else {
if (proto_idx > method.proto_idx_) {
lo = mid + 1;
} else if (proto_idx < method.proto_idx_) {
hi = mid - 1;
} else {
return &method;
}
}
}
}
return NULL;
}
const DexFile::StringId* DexFile::FindStringId(const std::string& string) const {
uint32_t lo = 0;
uint32_t hi = NumStringIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
int32_t length;
const DexFile::StringId& str_id = GetStringId(mid);
const char* str = GetStringDataAndLength(str_id, &length);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string.c_str(), str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return NULL;
}
const DexFile::TypeId* DexFile::FindTypeId(uint32_t string_idx) const {
uint32_t lo = 0;
uint32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(mid);
if (string_idx > type_id.descriptor_idx_) {
lo = mid + 1;
} else if (string_idx < type_id.descriptor_idx_) {
hi = mid - 1;
} else {
return &type_id;
}
}
return NULL;
}
const DexFile::ProtoId* DexFile::FindProtoId(uint16_t return_type_idx,
const std::vector<uint16_t>& signature_type_ids) const {
uint32_t lo = 0;
uint32_t hi = NumProtoIds() - 1;
while (hi >= lo) {
uint32_t mid = (hi + lo) / 2;
const DexFile::ProtoId& proto = GetProtoId(mid);
int compare = return_type_idx - proto.return_type_idx_;
if (compare == 0) {
DexFileParameterIterator it(*this, proto);
size_t i = 0;
while (it.HasNext() && i < signature_type_ids.size() && compare == 0) {
compare = signature_type_ids[i] - it.GetTypeId();
it.Next();
i++;
}
if (compare == 0) {
if (it.HasNext()) {
compare = -1;
} else if (i < signature_type_ids.size()) {
compare = 1;
}
}
}
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &proto;
}
}
return NULL;
}
// Given a signature place the type ids into the given vector
bool DexFile::CreateTypeList(uint16_t* return_type_idx, std::vector<uint16_t>* param_type_idxs,
const std::string& signature) const {
if (signature[0] != '(') {
return false;
}
size_t offset = 1;
size_t end = signature.size();
bool process_return = false;
while (offset < end) {
char c = signature[offset];
offset++;
if (c == ')') {
process_return = true;
continue;
}
std::string descriptor;
descriptor += c;
while (c == '[') { // process array prefix
if (offset >= end) { // expect some descriptor following [
return false;
}
c = signature[offset];
offset++;
descriptor += c;
}
if (c == 'L') { // process type descriptors
do {
if (offset >= end) { // unexpected early termination of descriptor
return false;
}
c = signature[offset];
offset++;
descriptor += c;
} while (c != ';');
}
const DexFile::StringId* string_id = FindStringId(descriptor);
if (string_id == NULL) {
return false;
}
const DexFile::TypeId* type_id = FindTypeId(GetIndexForStringId(*string_id));
if (type_id == NULL) {
return false;
}
uint16_t type_idx = GetIndexForTypeId(*type_id);
if (!process_return) {
param_type_idxs->push_back(type_idx);
} else {
*return_type_idx = type_idx;
return offset == end; // return true if the signature had reached a sensible end
}
}
return false; // failed to correctly parse return type
}
// Materializes the method descriptor for a method prototype. Method
// descriptors are not stored directly in the dex file. Instead, one
// must assemble the descriptor from references in the prototype.
std::string DexFile::CreateMethodSignature(uint32_t proto_idx, int32_t* unicode_length) const {
const ProtoId& proto_id = GetProtoId(proto_idx);
std::string descriptor;
descriptor.push_back('(');
const TypeList* type_list = GetProtoParameters(proto_id);
size_t parameter_length = 0;
if (type_list != NULL) {
// A non-zero number of arguments. Append the type names.
for (size_t i = 0; i < type_list->Size(); ++i) {
const TypeItem& type_item = type_list->GetTypeItem(i);
uint32_t type_idx = type_item.type_idx_;
int32_t type_length;
const char* name = StringByTypeIdx(type_idx, &type_length);
parameter_length += type_length;
descriptor.append(name);
}
}
descriptor.push_back(')');
uint32_t return_type_idx = proto_id.return_type_idx_;
int32_t return_type_length;
const char* name = StringByTypeIdx(return_type_idx, &return_type_length);
descriptor.append(name);
if (unicode_length != NULL) {
*unicode_length = parameter_length + return_type_length + 2; // 2 for ( and )
}
return descriptor;
}
int32_t DexFile::GetLineNumFromPC(const art::Method* method, uint32_t rel_pc) const {
// For native method, lineno should be -2 to indicate it is native. Note that
// "line number == -2" is how libcore tells from StackTraceElement.
if (method->GetCodeItemOffset() == 0) {
return -2;
}
const CodeItem* code_item = GetCodeItem(method->GetCodeItemOffset());
DCHECK(code_item != NULL);
// A method with no line number info should return -1
LineNumFromPcContext context(rel_pc, -1);
DecodeDebugInfo(code_item, method, LineNumForPcCb, NULL, &context);
return context.line_num_;
}
int32_t DexFile::FindCatchHandlerOffset(const CodeItem &code_item, int32_t tries_size,
uint32_t address){
// Note: Signed type is important for max and min.
int32_t min = 0;
int32_t max = tries_size - 1;
while (max >= min) {
int32_t mid = (min + max) / 2;
const TryItem* pTry = DexFile::GetTryItems(code_item, mid);
uint32_t start = pTry->start_addr_;
if (address < start) {
max = mid - 1;
} else {
uint32_t end = start + pTry->insn_count_;
if (address >= end) {
min = mid + 1;
} else { // We have a winner!
return (int32_t) pTry->handler_off_;
}
}
}
// No match.
return -1;
}
void DexFile::DecodeDebugInfo0(const CodeItem* code_item, const Method* method,
DexDebugNewPositionCb posCb, DexDebugNewLocalCb local_cb,
void* cnxt, const byte* stream, LocalInfo* local_in_reg) const {
uint32_t line = DecodeUnsignedLeb128(&stream);
uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
uint16_t arg_reg = code_item->registers_size_ - code_item->ins_size_;
uint32_t address = 0;
bool need_locals = (local_cb != NULL);
if (!method->IsStatic()) {
if (need_locals) {
std::string descriptor = method->GetDeclaringClass()->GetDescriptor()->ToModifiedUtf8();
const ClassDef* class_def = FindClassDef(descriptor);
CHECK(class_def != NULL) << descriptor;
local_in_reg[arg_reg].name_ = "this";
local_in_reg[arg_reg].descriptor_ = GetClassDescriptor(*class_def);
local_in_reg[arg_reg].start_address_ = 0;
local_in_reg[arg_reg].is_live_ = true;
}
arg_reg++;
}
DexFileParameterIterator it(*this, GetProtoId(method->GetProtoIdx()));
for (uint32_t i = 0; i < parameters_size && it.HasNext(); ++i, it.Next()) {
if (arg_reg >= code_item->registers_size_) {
LOG(ERROR) << "invalid stream - arg reg >= reg size (" << arg_reg
<< " >= " << code_item->registers_size_ << ")";
return;
}
int32_t id = DecodeUnsignedLeb128P1(&stream);
const char* descriptor = it.GetDescriptor();
if (need_locals) {
const char* name = StringDataByIdx(id);
local_in_reg[arg_reg].name_ = name;
local_in_reg[arg_reg].descriptor_ = descriptor;
local_in_reg[arg_reg].start_address_ = address;
local_in_reg[arg_reg].is_live_ = true;
}
switch (*descriptor) {
case 'D':
case 'J':
arg_reg += 2;
break;
default:
arg_reg += 1;
break;
}
}
if (it.HasNext()) {
LOG(ERROR) << "invalid stream - problem with parameter iterator";
return;
}
for (;;) {
uint8_t opcode = *stream++;
uint16_t reg;
uint16_t name_idx;
uint16_t descriptor_idx;
uint16_t signature_idx = 0;
switch (opcode) {
case DBG_END_SEQUENCE:
return;
case DBG_ADVANCE_PC:
address += DecodeUnsignedLeb128(&stream);
break;
case DBG_ADVANCE_LINE:
line += DecodeSignedLeb128(&stream);
break;
case DBG_START_LOCAL:
case DBG_START_LOCAL_EXTENDED:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ")";
return;
}
name_idx = DecodeUnsignedLeb128P1(&stream);
descriptor_idx = DecodeUnsignedLeb128P1(&stream);
if (opcode == DBG_START_LOCAL_EXTENDED) {
signature_idx = DecodeUnsignedLeb128P1(&stream);
}
// Emit what was previously there, if anything
if (need_locals) {
InvokeLocalCbIfLive(cnxt, reg, address, local_in_reg, local_cb);
local_in_reg[reg].name_ = StringDataByIdx(name_idx);
local_in_reg[reg].descriptor_ = StringByTypeIdx(descriptor_idx);
if (opcode == DBG_START_LOCAL_EXTENDED) {
local_in_reg[reg].signature_ = StringDataByIdx(signature_idx);
}
local_in_reg[reg].start_address_ = address;
local_in_reg[reg].is_live_ = true;
}
break;
case DBG_END_LOCAL:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ")";
return;
}
if (need_locals) {
InvokeLocalCbIfLive(cnxt, reg, address, local_in_reg, local_cb);
local_in_reg[reg].is_live_ = false;
}
break;
case DBG_RESTART_LOCAL:
reg = DecodeUnsignedLeb128(&stream);
if (reg > code_item->registers_size_) {
LOG(ERROR) << "invalid stream - reg > reg size (" << reg << " > "
<< code_item->registers_size_ << ")";
return;
}
if (need_locals) {
if (local_in_reg[reg].name_ == NULL || local_in_reg[reg].descriptor_ == NULL) {
LOG(ERROR) << "invalid stream - no name or descriptor";
return;
}
// If the register is live, the "restart" is superfluous,
// and we don't want to mess with the existing start address.
if (!local_in_reg[reg].is_live_) {
local_in_reg[reg].start_address_ = address;
local_in_reg[reg].is_live_ = true;
}
}
break;
case DBG_SET_PROLOGUE_END:
case DBG_SET_EPILOGUE_BEGIN:
case DBG_SET_FILE:
break;
default: {
int adjopcode = opcode - DBG_FIRST_SPECIAL;
address += adjopcode / DBG_LINE_RANGE;
line += DBG_LINE_BASE + (adjopcode % DBG_LINE_RANGE);
if (posCb != NULL) {
if (posCb(cnxt, address, line)) {
// early exit
return;
}
}
break;
}
}
}
}
void DexFile::DecodeDebugInfo(const CodeItem* code_item, const art::Method* method,
DexDebugNewPositionCb posCb, DexDebugNewLocalCb local_cb,
void* cnxt) const {
const byte* stream = GetDebugInfoStream(code_item);
LocalInfo local_in_reg[code_item->registers_size_];
if (stream != NULL) {
DecodeDebugInfo0(code_item, method, posCb, local_cb, cnxt, stream, local_in_reg);
}
for (int reg = 0; reg < code_item->registers_size_; reg++) {
InvokeLocalCbIfLive(cnxt, reg, code_item->insns_size_in_code_units_, local_in_reg, local_cb);
}
}
bool DexFile::LineNumForPcCb(void* cnxt, uint32_t address, uint32_t line_num) {
LineNumFromPcContext* context = (LineNumFromPcContext*) cnxt;
// We know that this callback will be called in
// ascending address order, so keep going until we find
// a match or we've just gone past it.
if (address > context->address_) {
// The line number from the previous positions callback
// wil be the final result.
return true;
} else {
context->line_num_ = line_num;
return address == context->address_;
}
}
// Decodes the header section from the class data bytes.
void ClassDataItemIterator::ReadClassDataHeader() {
CHECK(ptr_pos_ != NULL);
header_.static_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.instance_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.direct_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.virtual_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
}
void ClassDataItemIterator::ReadClassDataField() {
field_.field_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
field_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
}
void ClassDataItemIterator::ReadClassDataMethod() {
method_.method_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.code_off_ = DecodeUnsignedLeb128(&ptr_pos_);
}
// Read a signed integer. "zwidth" is the zero-based byte count.
static int32_t ReadSignedInt(const byte* ptr, int zwidth) {
int32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
return val;
}
// Read an unsigned integer. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint32_t ReadUnsignedInt(const byte* ptr, int zwidth, bool fill_on_right) {
uint32_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
}
return val;
}
// Read a signed long. "zwidth" is the zero-based byte count.
static int64_t ReadSignedLong(const byte* ptr, int zwidth) {
int64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
return val;
}
// Read an unsigned long. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
static uint64_t ReadUnsignedLong(const byte* ptr, int zwidth, bool fill_on_right) {
uint64_t val = 0;
if (!fill_on_right) {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
} else {
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
}
return val;
}
EncodedStaticFieldValueIterator::EncodedStaticFieldValueIterator(const DexFile& dex_file,
DexCache* dex_cache, ClassLinker* linker, const DexFile::ClassDef& class_def) :
dex_file_(dex_file), dex_cache_(dex_cache), linker_(linker), array_size_(), pos_(-1), type_(0) {
ptr_ = dex_file.GetEncodedStaticFieldValuesArray(class_def);
if (ptr_ == NULL) {
array_size_ = 0;
} else {
array_size_ = DecodeUnsignedLeb128(&ptr_);
}
if (array_size_ > 0) {
Next();
}
}
void EncodedStaticFieldValueIterator::Next() {
pos_++;
if (pos_ >= array_size_) {
return;
}
byte value_type = *ptr_++;
byte value_arg = value_type >> kEncodedValueArgShift;
size_t width = value_arg + 1; // assume and correct later
type_ = value_type & kEncodedValueTypeMask;
switch (type_) {
case kBoolean:
jval_.i = (value_arg != 0) ? 1 : 0;
width = 0;
break;
case kByte:
jval_.i = ReadSignedInt(ptr_, value_arg);
CHECK(IsInt(8, jval_.i));
break;
case kShort:
jval_.i = ReadSignedInt(ptr_, value_arg);
CHECK(IsInt(16, jval_.i));
break;
case kChar:
jval_.i = ReadUnsignedInt(ptr_, value_arg, false);
CHECK(IsUint(16, jval_.i));
break;
case kInt:
jval_.i = ReadSignedInt(ptr_, value_arg);
break;
case kLong:
jval_.j = ReadSignedLong(ptr_, value_arg);
break;
case kFloat:
jval_.i = ReadUnsignedInt(ptr_, value_arg, true);
break;
case kDouble:
jval_.j = ReadUnsignedLong(ptr_, value_arg, true);
break;
case kString:
case kType:
case kMethod:
case kEnum:
jval_.i = ReadUnsignedInt(ptr_, value_arg, false);
break;
case kField:
case kArray:
case kAnnotation:
UNIMPLEMENTED(FATAL) << ": type " << type_;
break;
case kNull:
jval_.l = NULL;
width = 0;
break;
default:
LOG(FATAL) << "Unreached";
}
ptr_ += width;
}
void EncodedStaticFieldValueIterator::ReadValueToField(Field* field) const {
switch (type_) {
case kBoolean: field->SetBoolean(NULL, jval_.z); break;
case kByte: field->SetByte(NULL, jval_.b); break;
case kShort: field->SetShort(NULL, jval_.s); break;
case kChar: field->SetChar(NULL, jval_.c); break;
case kInt: field->SetInt(NULL, jval_.i); break;
case kLong: field->SetLong(NULL, jval_.j); break;
case kFloat: field->SetFloat(NULL, jval_.f); break;
case kDouble: field->SetDouble(NULL, jval_.d); break;
case kNull: field->SetObject(NULL, NULL); break;
case kString: {
String* resolved = linker_->ResolveString(dex_file_, jval_.i, dex_cache_);
field->SetObject(NULL, resolved);
break;
}
default: UNIMPLEMENTED(FATAL) << ": type " << type_;
}
}
CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, uint32_t address) {
handler_.address_ = -1;
int32_t offset = -1;
// Short-circuit the overwhelmingly common cases.
switch (code_item.tries_size_) {
case 0:
break;
case 1: {
const DexFile::TryItem* tries = DexFile::GetTryItems(code_item, 0);
uint32_t start = tries->start_addr_;
if (address >= start) {
uint32_t end = start + tries->insn_count_;
if (address < end) {
offset = tries->handler_off_;
}
}
break;
}
default:
offset = DexFile::FindCatchHandlerOffset(code_item, code_item.tries_size_, address);
}
if (offset >= 0) {
const byte* handler_data = DexFile::GetCatchHandlerData(code_item, offset);
Init(handler_data);
} else {
// Not found, initialize as empty
current_data_ = NULL;
remaining_count_ = -1;
catch_all_ = false;
DCHECK(!HasNext());
}
}
void CatchHandlerIterator::Init(const byte* handler_data) {
current_data_ = handler_data;
remaining_count_ = DecodeSignedLeb128(&current_data_);
// If remaining_count_ is non-positive, then it is the negative of
// the number of catch types, and the catches are followed by a
// catch-all handler.
if (remaining_count_ <= 0) {
catch_all_ = true;
remaining_count_ = -remaining_count_;
} else {
catch_all_ = false;
}
Next();
}
void CatchHandlerIterator::Next() {
if (remaining_count_ > 0) {
handler_.type_idx_ = DecodeUnsignedLeb128(&current_data_);
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
remaining_count_--;
return;
}
if (catch_all_) {
handler_.type_idx_ = DexFile::kDexNoIndex16;
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
catch_all_ = false;
return;
}
// no more handler
remaining_count_ = -1;
}
} // namespace art