blob: eef71db9574d030cfc6b1fba4fc834f0dfe22239 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "method_compiler.h"
#include "backend_types.h"
#include "compilation_unit.h"
#include "compiler.h"
#include "dalvik_reg.h"
#include "inferred_reg_category_map.h"
#include "ir_builder.h"
#include "logging.h"
#include "oat_compilation_unit.h"
#include "object.h"
#include "object_utils.h"
#include "runtime_support_func.h"
#include "runtime_support_llvm.h"
#include "stl_util.h"
#include "stringprintf.h"
#include "utils_llvm.h"
#include "verifier/method_verifier.h"
#include <iomanip>
#include <llvm/BasicBlock.h>
#include <llvm/Function.h>
#include <llvm/GlobalVariable.h>
#include <llvm/Intrinsics.h>
namespace art {
namespace compiler_llvm {
using namespace runtime_support;
MethodCompiler::MethodCompiler(CompilationUnit* cunit,
Compiler* compiler,
OatCompilationUnit* oat_compilation_unit)
: cunit_(cunit), compiler_(compiler),
class_linker_(oat_compilation_unit->class_linker_),
class_loader_(oat_compilation_unit->class_loader_),
dex_file_(oat_compilation_unit->dex_file_),
dex_cache_(oat_compilation_unit->dex_cache_),
code_item_(oat_compilation_unit->code_item_),
oat_compilation_unit_(oat_compilation_unit),
method_idx_(oat_compilation_unit->method_idx_),
access_flags_(oat_compilation_unit->access_flags_),
module_(cunit->GetModule()),
context_(cunit->GetLLVMContext()),
irb_(*cunit->GetIRBuilder()),
func_(NULL),
regs_(code_item_->registers_size_),
shadow_frame_entries_(code_item_->registers_size_),
reg_to_shadow_frame_index_(code_item_->registers_size_, -1),
retval_reg_(NULL),
basic_block_alloca_(NULL), basic_block_shadow_frame_(NULL),
basic_block_reg_arg_init_(NULL),
basic_blocks_(code_item_->insns_size_in_code_units_),
basic_block_landing_pads_(code_item_->tries_size_, NULL),
basic_block_unwind_(NULL), basic_block_unreachable_(NULL),
shadow_frame_(NULL), old_shadow_frame_(NULL),
already_pushed_shadow_frame_(NULL), shadow_frame_size_(0),
elf_func_idx_(cunit_->AcquireUniqueElfFuncIndex()) {
}
MethodCompiler::~MethodCompiler() {
STLDeleteElements(&regs_);
}
void MethodCompiler::CreateFunction() {
// LLVM function name
std::string func_name(ElfFuncName(elf_func_idx_));
// Get function type
llvm::FunctionType* func_type =
GetFunctionType(method_idx_, oat_compilation_unit_->IsStatic());
// Create function
func_ = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage,
func_name, module_);
#if !defined(NDEBUG)
// Set argument name
llvm::Function::arg_iterator arg_iter(func_->arg_begin());
llvm::Function::arg_iterator arg_end(func_->arg_end());
DCHECK_NE(arg_iter, arg_end);
arg_iter->setName("method");
++arg_iter;
if (!oat_compilation_unit_->IsStatic()) {
DCHECK_NE(arg_iter, arg_end);
arg_iter->setName("this");
++arg_iter;
}
for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) {
arg_iter->setName(StringPrintf("a%u", i));
}
#endif
}
llvm::FunctionType* MethodCompiler::GetFunctionType(uint32_t method_idx,
bool is_static) {
// Get method signature
DexFile::MethodId const& method_id = dex_file_->GetMethodId(method_idx);
uint32_t shorty_size;
char const* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size);
CHECK_GE(shorty_size, 1u);
// Get return type
llvm::Type* ret_type = irb_.getJType(shorty[0], kAccurate);
// Get argument type
std::vector<llvm::Type*> args_type;
args_type.push_back(irb_.getJObjectTy()); // method object pointer
if (!is_static) {
args_type.push_back(irb_.getJType('L', kAccurate)); // "this" object pointer
}
for (uint32_t i = 1; i < shorty_size; ++i) {
args_type.push_back(irb_.getJType(shorty[i], kAccurate));
}
return llvm::FunctionType::get(ret_type, args_type, false);
}
void MethodCompiler::EmitPrologue() {
// Create basic blocks for prologue
#if !defined(NDEBUG)
// Add a BasicBlock named as PrettyMethod for debugging.
llvm::BasicBlock* entry =
llvm::BasicBlock::Create(*context_, PrettyMethod(method_idx_, *dex_file_), func_);
#endif
basic_block_alloca_ =
llvm::BasicBlock::Create(*context_, "prologue.alloca", func_);
basic_block_shadow_frame_ =
llvm::BasicBlock::Create(*context_, "prologue.shadowframe", func_);
basic_block_reg_arg_init_ =
llvm::BasicBlock::Create(*context_, "prologue.arginit", func_);
#if !defined(NDEBUG)
irb_.SetInsertPoint(entry);
irb_.CreateBr(basic_block_alloca_);
#endif
irb_.SetInsertPoint(basic_block_alloca_);
// Create Shadow Frame
if (method_info_.need_shadow_frame) {
EmitPrologueAllocShadowFrame();
}
// Create register array
for (uint16_t r = 0; r < code_item_->registers_size_; ++r) {
std::string name;
#if !defined(NDEBUG)
name = StringPrintf("%u", r);
#endif
regs_[r] = new DalvikReg(*this, name);
// Cache shadow frame entry address
shadow_frame_entries_[r] = GetShadowFrameEntry(r);
}
std::string name;
#if !defined(NDEBUG)
name = "_res";
#endif
retval_reg_.reset(new DalvikReg(*this, name));
// Store argument to dalvik register
irb_.SetInsertPoint(basic_block_reg_arg_init_);
EmitPrologueAssignArgRegister();
// Branch to start address
irb_.CreateBr(GetBasicBlock(0));
}
void MethodCompiler::EmitStackOverflowCheck() {
// Call llvm intrinsic function to get frame address.
llvm::Function* frameaddress =
llvm::Intrinsic::getDeclaration(module_, llvm::Intrinsic::frameaddress);
// The type of llvm::frameaddress is: i8* @llvm.frameaddress(i32)
llvm::Value* frame_address = irb_.CreateCall(frameaddress, irb_.getInt32(0));
// Cast i8* to int
frame_address = irb_.CreatePtrToInt(frame_address, irb_.getPtrEquivIntTy());
// Get thread.stack_end_
llvm::Value* stack_end =
irb_.Runtime().EmitLoadFromThreadOffset(Thread::StackEndOffset().Int32Value(),
irb_.getPtrEquivIntTy(),
kTBAARuntimeInfo);
// Check the frame address < thread.stack_end_ ?
llvm::Value* is_stack_overflow = irb_.CreateICmpULT(frame_address, stack_end);
llvm::BasicBlock* block_exception =
llvm::BasicBlock::Create(*context_, "stack_overflow", func_);
llvm::BasicBlock* block_continue =
llvm::BasicBlock::Create(*context_, "stack_overflow_cont", func_);
irb_.CreateCondBr(is_stack_overflow, block_exception, block_continue, kUnlikely);
// If stack overflow, throw exception.
irb_.SetInsertPoint(block_exception);
irb_.CreateCall(irb_.GetRuntime(ThrowStackOverflowException));
// Unwind.
char ret_shorty = oat_compilation_unit_->GetShorty()[0];
if (ret_shorty == 'V') {
irb_.CreateRetVoid();
} else {
irb_.CreateRet(irb_.getJZero(ret_shorty));
}
irb_.SetInsertPoint(block_continue);
}
void MethodCompiler::EmitPrologueLastBranch() {
llvm::BasicBlock* basic_block_stack_overflow =
llvm::BasicBlock::Create(*context_, "prologue.stack_overflow_check", func_);
irb_.SetInsertPoint(basic_block_alloca_);
irb_.CreateBr(basic_block_stack_overflow);
irb_.SetInsertPoint(basic_block_stack_overflow);
// If a method will not call to other method, and the method is small, we can avoid stack overflow
// check.
if (method_info_.has_invoke ||
code_item_->registers_size_ > 32) { // Small leaf function is OK given
// the 8KB reserved at Stack End
EmitStackOverflowCheck();
}
// Garbage collection safe-point
EmitGuard_GarbageCollectionSuspend();
irb_.CreateBr(basic_block_shadow_frame_);
irb_.SetInsertPoint(basic_block_shadow_frame_);
irb_.CreateBr(basic_block_reg_arg_init_);
}
void MethodCompiler::EmitPrologueAllocShadowFrame() {
irb_.SetInsertPoint(basic_block_alloca_);
// Allocate the shadow frame now!
shadow_frame_size_ = 0;
uint16_t arg_reg_start = code_item_->registers_size_ - code_item_->ins_size_;
if (method_info_.need_shadow_frame_entry) {
for (uint32_t i = 0, num_of_regs = code_item_->registers_size_; i < num_of_regs; ++i) {
if (i >= arg_reg_start && !method_info_.set_to_another_object[i]) {
// If we don't set argument registers to another object, we don't need the shadow frame
// entry for it. Because the arguments must have been in the caller's shadow frame.
continue;
}
if (IsRegCanBeObject(i)) {
reg_to_shadow_frame_index_[i] = shadow_frame_size_++;
}
}
}
llvm::StructType* shadow_frame_type = irb_.getShadowFrameTy(shadow_frame_size_);
shadow_frame_ = irb_.CreateAlloca(shadow_frame_type);
// Alloca a pointer to old shadow frame
old_shadow_frame_ = irb_.CreateAlloca(shadow_frame_type->getElementType(0)->getPointerTo());
irb_.SetInsertPoint(basic_block_shadow_frame_);
// Zero-initialization of the shadow frame table
llvm::Value* shadow_frame_table = irb_.CreateConstGEP2_32(shadow_frame_, 0, 1);
llvm::Type* table_type = shadow_frame_type->getElementType(1);
llvm::ConstantAggregateZero* zero_initializer =
llvm::ConstantAggregateZero::get(table_type);
irb_.CreateStore(zero_initializer, shadow_frame_table, kTBAAShadowFrame);
// Lazy pushing shadow frame
if (method_info_.lazy_push_shadow_frame) {
irb_.SetInsertPoint(basic_block_alloca_);
already_pushed_shadow_frame_ = irb_.CreateAlloca(irb_.getInt1Ty());
irb_.SetInsertPoint(basic_block_shadow_frame_);
irb_.CreateStore(irb_.getFalse(), already_pushed_shadow_frame_, kTBAARegister);
return;
}
EmitPushShadowFrame(true);
}
void MethodCompiler::EmitPrologueAssignArgRegister() {
uint16_t arg_reg = code_item_->registers_size_ - code_item_->ins_size_;
llvm::Function::arg_iterator arg_iter(func_->arg_begin());
llvm::Function::arg_iterator arg_end(func_->arg_end());
uint32_t shorty_size = 0;
char const* shorty = oat_compilation_unit_->GetShorty(&shorty_size);
CHECK_GE(shorty_size, 1u);
++arg_iter; // skip method object
if (!oat_compilation_unit_->IsStatic()) {
regs_[arg_reg]->SetValue(kObject, kAccurate, arg_iter);
++arg_iter;
++arg_reg;
}
for (uint32_t i = 1; i < shorty_size; ++i, ++arg_iter) {
regs_[arg_reg]->SetValue(shorty[i], kAccurate, arg_iter);
++arg_reg;
if (shorty[i] == 'J' || shorty[i] == 'D') {
// Wide types, such as long and double, are using a pair of registers
// to store the value, so we have to increase arg_reg again.
++arg_reg;
}
}
DCHECK_EQ(arg_end, arg_iter);
}
void MethodCompiler::EmitInstructions() {
uint32_t dex_pc = 0;
while (dex_pc < code_item_->insns_size_in_code_units_) {
Instruction const* insn = Instruction::At(code_item_->insns_ + dex_pc);
EmitInstruction(dex_pc, insn);
dex_pc += insn->SizeInCodeUnits();
}
}
void MethodCompiler::EmitInstruction(uint32_t dex_pc,
Instruction const* insn) {
// Set the IRBuilder insertion point
irb_.SetInsertPoint(GetBasicBlock(dex_pc));
#define ARGS dex_pc, insn
// Dispatch the instruction
switch (insn->Opcode()) {
case Instruction::NOP:
EmitInsn_Nop(ARGS);
break;
case Instruction::MOVE:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_16:
EmitInsn_Move(ARGS, kInt);
break;
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_FROM16:
case Instruction::MOVE_WIDE_16:
EmitInsn_Move(ARGS, kLong);
break;
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_FROM16:
case Instruction::MOVE_OBJECT_16:
EmitInsn_Move(ARGS, kObject);
break;
case Instruction::MOVE_RESULT:
EmitInsn_MoveResult(ARGS, kInt);
break;
case Instruction::MOVE_RESULT_WIDE:
EmitInsn_MoveResult(ARGS, kLong);
break;
case Instruction::MOVE_RESULT_OBJECT:
EmitInsn_MoveResult(ARGS, kObject);
break;
case Instruction::MOVE_EXCEPTION:
EmitInsn_MoveException(ARGS);
break;
case Instruction::RETURN_VOID:
EmitInsn_ReturnVoid(ARGS);
break;
case Instruction::RETURN:
case Instruction::RETURN_WIDE:
case Instruction::RETURN_OBJECT:
EmitInsn_Return(ARGS);
break;
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
case Instruction::CONST_HIGH16:
EmitInsn_LoadConstant(ARGS, kInt);
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
case Instruction::CONST_WIDE:
case Instruction::CONST_WIDE_HIGH16:
EmitInsn_LoadConstant(ARGS, kLong);
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
EmitInsn_LoadConstantString(ARGS);
break;
case Instruction::CONST_CLASS:
EmitInsn_LoadConstantClass(ARGS);
break;
case Instruction::MONITOR_ENTER:
EmitInsn_MonitorEnter(ARGS);
break;
case Instruction::MONITOR_EXIT:
EmitInsn_MonitorExit(ARGS);
break;
case Instruction::CHECK_CAST:
EmitInsn_CheckCast(ARGS);
break;
case Instruction::INSTANCE_OF:
EmitInsn_InstanceOf(ARGS);
break;
case Instruction::ARRAY_LENGTH:
EmitInsn_ArrayLength(ARGS);
break;
case Instruction::NEW_INSTANCE:
EmitInsn_NewInstance(ARGS);
break;
case Instruction::NEW_ARRAY:
EmitInsn_NewArray(ARGS);
break;
case Instruction::FILLED_NEW_ARRAY:
EmitInsn_FilledNewArray(ARGS, false);
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
EmitInsn_FilledNewArray(ARGS, true);
break;
case Instruction::FILL_ARRAY_DATA:
EmitInsn_FillArrayData(ARGS);
break;
case Instruction::THROW:
EmitInsn_ThrowException(ARGS);
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
EmitInsn_UnconditionalBranch(ARGS);
break;
case Instruction::PACKED_SWITCH:
EmitInsn_PackedSwitch(ARGS);
break;
case Instruction::SPARSE_SWITCH:
EmitInsn_SparseSwitch(ARGS);
break;
case Instruction::CMPL_FLOAT:
EmitInsn_FPCompare(ARGS, kFloat, false);
break;
case Instruction::CMPG_FLOAT:
EmitInsn_FPCompare(ARGS, kFloat, true);
break;
case Instruction::CMPL_DOUBLE:
EmitInsn_FPCompare(ARGS, kDouble, false);
break;
case Instruction::CMPG_DOUBLE:
EmitInsn_FPCompare(ARGS, kDouble, true);
break;
case Instruction::CMP_LONG:
EmitInsn_LongCompare(ARGS);
break;
case Instruction::IF_EQ:
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_EQ);
break;
case Instruction::IF_NE:
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_NE);
break;
case Instruction::IF_LT:
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LT);
break;
case Instruction::IF_GE:
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GE);
break;
case Instruction::IF_GT:
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GT);
break;
case Instruction::IF_LE:
EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LE);
break;
case Instruction::IF_EQZ:
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_EQ);
break;
case Instruction::IF_NEZ:
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_NE);
break;
case Instruction::IF_LTZ:
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LT);
break;
case Instruction::IF_GEZ:
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GE);
break;
case Instruction::IF_GTZ:
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GT);
break;
case Instruction::IF_LEZ:
EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LE);
break;
case Instruction::AGET:
EmitInsn_AGet(ARGS, kInt);
break;
case Instruction::AGET_WIDE:
EmitInsn_AGet(ARGS, kLong);
break;
case Instruction::AGET_OBJECT:
EmitInsn_AGet(ARGS, kObject);
break;
case Instruction::AGET_BOOLEAN:
EmitInsn_AGet(ARGS, kBoolean);
break;
case Instruction::AGET_BYTE:
EmitInsn_AGet(ARGS, kByte);
break;
case Instruction::AGET_CHAR:
EmitInsn_AGet(ARGS, kChar);
break;
case Instruction::AGET_SHORT:
EmitInsn_AGet(ARGS, kShort);
break;
case Instruction::APUT:
EmitInsn_APut(ARGS, kInt);
break;
case Instruction::APUT_WIDE:
EmitInsn_APut(ARGS, kLong);
break;
case Instruction::APUT_OBJECT:
EmitInsn_APut(ARGS, kObject);
break;
case Instruction::APUT_BOOLEAN:
EmitInsn_APut(ARGS, kBoolean);
break;
case Instruction::APUT_BYTE:
EmitInsn_APut(ARGS, kByte);
break;
case Instruction::APUT_CHAR:
EmitInsn_APut(ARGS, kChar);
break;
case Instruction::APUT_SHORT:
EmitInsn_APut(ARGS, kShort);
break;
case Instruction::IGET:
EmitInsn_IGet(ARGS, kInt);
break;
case Instruction::IGET_WIDE:
EmitInsn_IGet(ARGS, kLong);
break;
case Instruction::IGET_OBJECT:
EmitInsn_IGet(ARGS, kObject);
break;
case Instruction::IGET_BOOLEAN:
EmitInsn_IGet(ARGS, kBoolean);
break;
case Instruction::IGET_BYTE:
EmitInsn_IGet(ARGS, kByte);
break;
case Instruction::IGET_CHAR:
EmitInsn_IGet(ARGS, kChar);
break;
case Instruction::IGET_SHORT:
EmitInsn_IGet(ARGS, kShort);
break;
case Instruction::IPUT:
EmitInsn_IPut(ARGS, kInt);
break;
case Instruction::IPUT_WIDE:
EmitInsn_IPut(ARGS, kLong);
break;
case Instruction::IPUT_OBJECT:
EmitInsn_IPut(ARGS, kObject);
break;
case Instruction::IPUT_BOOLEAN:
EmitInsn_IPut(ARGS, kBoolean);
break;
case Instruction::IPUT_BYTE:
EmitInsn_IPut(ARGS, kByte);
break;
case Instruction::IPUT_CHAR:
EmitInsn_IPut(ARGS, kChar);
break;
case Instruction::IPUT_SHORT:
EmitInsn_IPut(ARGS, kShort);
break;
case Instruction::SGET:
EmitInsn_SGet(ARGS, kInt);
break;
case Instruction::SGET_WIDE:
EmitInsn_SGet(ARGS, kLong);
break;
case Instruction::SGET_OBJECT:
EmitInsn_SGet(ARGS, kObject);
break;
case Instruction::SGET_BOOLEAN:
EmitInsn_SGet(ARGS, kBoolean);
break;
case Instruction::SGET_BYTE:
EmitInsn_SGet(ARGS, kByte);
break;
case Instruction::SGET_CHAR:
EmitInsn_SGet(ARGS, kChar);
break;
case Instruction::SGET_SHORT:
EmitInsn_SGet(ARGS, kShort);
break;
case Instruction::SPUT:
EmitInsn_SPut(ARGS, kInt);
break;
case Instruction::SPUT_WIDE:
EmitInsn_SPut(ARGS, kLong);
break;
case Instruction::SPUT_OBJECT:
EmitInsn_SPut(ARGS, kObject);
break;
case Instruction::SPUT_BOOLEAN:
EmitInsn_SPut(ARGS, kBoolean);
break;
case Instruction::SPUT_BYTE:
EmitInsn_SPut(ARGS, kByte);
break;
case Instruction::SPUT_CHAR:
EmitInsn_SPut(ARGS, kChar);
break;
case Instruction::SPUT_SHORT:
EmitInsn_SPut(ARGS, kShort);
break;
case Instruction::INVOKE_VIRTUAL:
EmitInsn_Invoke(ARGS, kVirtual, kArgReg);
break;
case Instruction::INVOKE_SUPER:
EmitInsn_Invoke(ARGS, kSuper, kArgReg);
break;
case Instruction::INVOKE_DIRECT:
EmitInsn_Invoke(ARGS, kDirect, kArgReg);
break;
case Instruction::INVOKE_STATIC:
EmitInsn_Invoke(ARGS, kStatic, kArgReg);
break;
case Instruction::INVOKE_INTERFACE:
EmitInsn_Invoke(ARGS, kInterface, kArgReg);
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
EmitInsn_Invoke(ARGS, kVirtual, kArgRange);
break;
case Instruction::INVOKE_SUPER_RANGE:
EmitInsn_Invoke(ARGS, kSuper, kArgRange);
break;
case Instruction::INVOKE_DIRECT_RANGE:
EmitInsn_Invoke(ARGS, kDirect, kArgRange);
break;
case Instruction::INVOKE_STATIC_RANGE:
EmitInsn_Invoke(ARGS, kStatic, kArgRange);
break;
case Instruction::INVOKE_INTERFACE_RANGE:
EmitInsn_Invoke(ARGS, kInterface, kArgRange);
break;
case Instruction::NEG_INT:
EmitInsn_Neg(ARGS, kInt);
break;
case Instruction::NOT_INT:
EmitInsn_Not(ARGS, kInt);
break;
case Instruction::NEG_LONG:
EmitInsn_Neg(ARGS, kLong);
break;
case Instruction::NOT_LONG:
EmitInsn_Not(ARGS, kLong);
break;
case Instruction::NEG_FLOAT:
EmitInsn_FNeg(ARGS, kFloat);
break;
case Instruction::NEG_DOUBLE:
EmitInsn_FNeg(ARGS, kDouble);
break;
case Instruction::INT_TO_LONG:
EmitInsn_SExt(ARGS);
break;
case Instruction::INT_TO_FLOAT:
EmitInsn_IntToFP(ARGS, kInt, kFloat);
break;
case Instruction::INT_TO_DOUBLE:
EmitInsn_IntToFP(ARGS, kInt, kDouble);
break;
case Instruction::LONG_TO_INT:
EmitInsn_Trunc(ARGS);
break;
case Instruction::LONG_TO_FLOAT:
EmitInsn_IntToFP(ARGS, kLong, kFloat);
break;
case Instruction::LONG_TO_DOUBLE:
EmitInsn_IntToFP(ARGS, kLong, kDouble);
break;
case Instruction::FLOAT_TO_INT:
EmitInsn_FPToInt(ARGS, kFloat, kInt, art_f2i);
break;
case Instruction::FLOAT_TO_LONG:
EmitInsn_FPToInt(ARGS, kFloat, kLong, art_f2l);
break;
case Instruction::FLOAT_TO_DOUBLE:
EmitInsn_FExt(ARGS);
break;
case Instruction::DOUBLE_TO_INT:
EmitInsn_FPToInt(ARGS, kDouble, kInt, art_d2i);
break;
case Instruction::DOUBLE_TO_LONG:
EmitInsn_FPToInt(ARGS, kDouble, kLong, art_d2l);
break;
case Instruction::DOUBLE_TO_FLOAT:
EmitInsn_FTrunc(ARGS);
break;
case Instruction::INT_TO_BYTE:
EmitInsn_TruncAndSExt(ARGS, 8);
break;
case Instruction::INT_TO_CHAR:
EmitInsn_TruncAndZExt(ARGS, 16);
break;
case Instruction::INT_TO_SHORT:
EmitInsn_TruncAndSExt(ARGS, 16);
break;
case Instruction::ADD_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, false);
break;
case Instruction::SUB_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, false);
break;
case Instruction::MUL_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, false);
break;
case Instruction::DIV_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, false);
break;
case Instruction::REM_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, false);
break;
case Instruction::AND_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, false);
break;
case Instruction::OR_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, false);
break;
case Instruction::XOR_INT:
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, false);
break;
case Instruction::SHL_INT:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, false);
break;
case Instruction::SHR_INT:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, false);
break;
case Instruction::USHR_INT:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, false);
break;
case Instruction::ADD_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, false);
break;
case Instruction::SUB_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, false);
break;
case Instruction::MUL_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, false);
break;
case Instruction::DIV_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, false);
break;
case Instruction::REM_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, false);
break;
case Instruction::AND_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, false);
break;
case Instruction::OR_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, false);
break;
case Instruction::XOR_LONG:
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, false);
break;
case Instruction::SHL_LONG:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, false);
break;
case Instruction::SHR_LONG:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, false);
break;
case Instruction::USHR_LONG:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, false);
break;
case Instruction::ADD_FLOAT:
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, false);
break;
case Instruction::SUB_FLOAT:
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, false);
break;
case Instruction::MUL_FLOAT:
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, false);
break;
case Instruction::DIV_FLOAT:
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, false);
break;
case Instruction::REM_FLOAT:
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, false);
break;
case Instruction::ADD_DOUBLE:
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, false);
break;
case Instruction::SUB_DOUBLE:
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, false);
break;
case Instruction::MUL_DOUBLE:
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, false);
break;
case Instruction::DIV_DOUBLE:
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, false);
break;
case Instruction::REM_DOUBLE:
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, false);
break;
case Instruction::ADD_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, true);
break;
case Instruction::SUB_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, true);
break;
case Instruction::MUL_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, true);
break;
case Instruction::DIV_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, true);
break;
case Instruction::REM_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, true);
break;
case Instruction::AND_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, true);
break;
case Instruction::OR_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, true);
break;
case Instruction::XOR_INT_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, true);
break;
case Instruction::SHL_INT_2ADDR:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, true);
break;
case Instruction::SHR_INT_2ADDR:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, true);
break;
case Instruction::USHR_INT_2ADDR:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, true);
break;
case Instruction::ADD_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, true);
break;
case Instruction::SUB_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, true);
break;
case Instruction::MUL_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, true);
break;
case Instruction::DIV_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, true);
break;
case Instruction::REM_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, true);
break;
case Instruction::AND_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, true);
break;
case Instruction::OR_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, true);
break;
case Instruction::XOR_LONG_2ADDR:
EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, true);
break;
case Instruction::SHL_LONG_2ADDR:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, true);
break;
case Instruction::SHR_LONG_2ADDR:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, true);
break;
case Instruction::USHR_LONG_2ADDR:
EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, true);
break;
case Instruction::ADD_FLOAT_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, true);
break;
case Instruction::SUB_FLOAT_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, true);
break;
case Instruction::MUL_FLOAT_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, true);
break;
case Instruction::DIV_FLOAT_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, true);
break;
case Instruction::REM_FLOAT_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, true);
break;
case Instruction::ADD_DOUBLE_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, true);
break;
case Instruction::SUB_DOUBLE_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, true);
break;
case Instruction::MUL_DOUBLE_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, true);
break;
case Instruction::DIV_DOUBLE_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, true);
break;
case Instruction::REM_DOUBLE_2ADDR:
EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, true);
break;
case Instruction::ADD_INT_LIT16:
case Instruction::ADD_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Add);
break;
case Instruction::RSUB_INT:
case Instruction::RSUB_INT_LIT8:
EmitInsn_RSubImmediate(ARGS);
break;
case Instruction::MUL_INT_LIT16:
case Instruction::MUL_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Mul);
break;
case Instruction::DIV_INT_LIT16:
case Instruction::DIV_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Div);
break;
case Instruction::REM_INT_LIT16:
case Instruction::REM_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Rem);
break;
case Instruction::AND_INT_LIT16:
case Instruction::AND_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_And);
break;
case Instruction::OR_INT_LIT16:
case Instruction::OR_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Or);
break;
case Instruction::XOR_INT_LIT16:
case Instruction::XOR_INT_LIT8:
EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Xor);
break;
case Instruction::SHL_INT_LIT8:
EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shl);
break;
case Instruction::SHR_INT_LIT8:
EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shr);
break;
case Instruction::USHR_INT_LIT8:
EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_UShr);
break;
case Instruction::THROW_VERIFICATION_ERROR:
EmitInsn_ThrowVerificationError(ARGS);
break;
case Instruction::UNUSED_3E:
case Instruction::UNUSED_3F:
case Instruction::UNUSED_40:
case Instruction::UNUSED_41:
case Instruction::UNUSED_42:
case Instruction::UNUSED_43:
case Instruction::UNUSED_73:
case Instruction::UNUSED_79:
case Instruction::UNUSED_7A:
case Instruction::UNUSED_E3:
case Instruction::UNUSED_E4:
case Instruction::UNUSED_E5:
case Instruction::UNUSED_E6:
case Instruction::UNUSED_E7:
case Instruction::UNUSED_E8:
case Instruction::UNUSED_E9:
case Instruction::UNUSED_EA:
case Instruction::UNUSED_EB:
case Instruction::UNUSED_EC:
case Instruction::UNUSED_EE:
case Instruction::UNUSED_EF:
case Instruction::UNUSED_F0:
case Instruction::UNUSED_F1:
case Instruction::UNUSED_F2:
case Instruction::UNUSED_F3:
case Instruction::UNUSED_F4:
case Instruction::UNUSED_F5:
case Instruction::UNUSED_F6:
case Instruction::UNUSED_F7:
case Instruction::UNUSED_F8:
case Instruction::UNUSED_F9:
case Instruction::UNUSED_FA:
case Instruction::UNUSED_FB:
case Instruction::UNUSED_FC:
case Instruction::UNUSED_FD:
case Instruction::UNUSED_FE:
case Instruction::UNUSED_FF:
LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode();
break;
}
#undef ARGS
}
void MethodCompiler::EmitInsn_Nop(uint32_t dex_pc,
Instruction const* insn) {
uint16_t insn_signature = code_item_->insns_[dex_pc];
if (insn_signature == Instruction::kPackedSwitchSignature ||
insn_signature == Instruction::kSparseSwitchSignature ||
insn_signature == Instruction::kArrayDataSignature) {
irb_.CreateUnreachable();
} else {
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
}
void MethodCompiler::EmitInsn_Move(uint32_t dex_pc,
Instruction const* insn,
JType jty) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, jty, kReg);
EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_MoveResult(uint32_t dex_pc,
Instruction const* insn,
JType jty) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikRetValReg(jty, kReg);
EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_MoveException(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
// Get thread-local exception field address
llvm::Value* exception_object_addr =
irb_.Runtime().EmitLoadFromThreadOffset(Thread::ExceptionOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAJRuntime);
// Set thread-local exception field address to NULL
irb_.Runtime().EmitStoreToThreadOffset(Thread::ExceptionOffset().Int32Value(),
irb_.getJNull(),
kTBAAJRuntime);
// Keep the exception object in the Dalvik register
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, exception_object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_ThrowException(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* exception_addr =
EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall(irb_.GetRuntime(ThrowException), exception_addr);
EmitBranchExceptionLandingPad(dex_pc);
}
void MethodCompiler::EmitInsn_ThrowVerificationError(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
EmitUpdateDexPC(dex_pc);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* kind_value = irb_.getInt32(dec_insn.vA);
llvm::Value* ref_value = irb_.getInt32(dec_insn.vB);
irb_.CreateCall3(irb_.GetRuntime(ThrowVerificationError),
method_object_addr, kind_value, ref_value);
EmitBranchExceptionLandingPad(dex_pc);
}
void MethodCompiler::EmitInsn_ReturnVoid(uint32_t dex_pc,
Instruction const* insn) {
// Pop the shadow frame
EmitPopShadowFrame();
// Return!
irb_.CreateRetVoid();
}
void MethodCompiler::EmitInsn_Return(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
// Pop the shadow frame
EmitPopShadowFrame();
// NOTE: It is important to keep this AFTER the GC safe-point. Otherwise,
// the return value might be collected since the shadow stack is popped.
// Return!
char ret_shorty = oat_compilation_unit_->GetShorty()[0];
llvm::Value* retval = EmitLoadDalvikReg(dec_insn.vA, ret_shorty, kAccurate);
irb_.CreateRet(retval);
}
void MethodCompiler::EmitInsn_LoadConstant(uint32_t dex_pc,
Instruction const* insn,
JType imm_jty) {
DecodedInstruction dec_insn(insn);
DCHECK(imm_jty == kInt || imm_jty == kLong) << imm_jty;
int64_t imm = 0;
switch (insn->Opcode()) {
// 32-bit Immediate
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
imm = static_cast<int64_t>(static_cast<int32_t>(dec_insn.vB));
break;
case Instruction::CONST_HIGH16:
imm = static_cast<int64_t>(static_cast<int32_t>(
static_cast<uint32_t>(static_cast<uint16_t>(dec_insn.vB)) << 16));
break;
// 64-bit Immediate
case Instruction::CONST_WIDE:
imm = static_cast<int64_t>(dec_insn.vB_wide);
break;
case Instruction::CONST_WIDE_HIGH16:
imm = static_cast<int64_t>(
static_cast<uint64_t>(static_cast<uint16_t>(dec_insn.vB)) << 48);
break;
// Unknown opcode for load constant (unreachable)
default:
LOG(FATAL) << "Unknown opcode for load constant: " << insn->Opcode();
break;
}
// Store the non-object register
llvm::Type* imm_type = irb_.getJType(imm_jty, kAccurate);
llvm::Constant* imm_value = llvm::ConstantInt::getSigned(imm_type, imm);
EmitStoreDalvikReg(dec_insn.vA, imm_jty, kAccurate, imm_value);
// Store the object register if it is possible to be null.
if (imm_jty == kInt && imm == 0) {
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, irb_.getJNull());
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_LoadConstantString(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
uint32_t string_idx = dec_insn.vB;
llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx);
llvm::Value* string_addr = irb_.CreateLoad(string_field_addr, kTBAAJRuntime);
if (!compiler_->CanAssumeStringIsPresentInDexCache(dex_cache_, string_idx)) {
llvm::BasicBlock* block_str_exist =
CreateBasicBlockWithDexPC(dex_pc, "str_exist");
llvm::BasicBlock* block_str_resolve =
CreateBasicBlockWithDexPC(dex_pc, "str_resolve");
// Test: Is the string resolved and in the dex cache?
llvm::Value* equal_null = irb_.CreateICmpEQ(string_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_str_resolve, block_str_exist, kUnlikely);
// String is resolved, go to next basic block.
irb_.SetInsertPoint(block_str_exist);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
// String is not resolved yet, resolve it now.
irb_.SetInsertPoint(block_str_resolve);
llvm::Function* runtime_func = irb_.GetRuntime(ResolveString);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* string_idx_value = irb_.getInt32(string_idx);
EmitUpdateDexPC(dex_pc);
string_addr = irb_.CreateCall2(runtime_func, method_object_addr,
string_idx_value);
EmitGuard_ExceptionLandingPad(dex_pc, true);
}
// Store the string object to the Dalvik register
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value* MethodCompiler::EmitLoadConstantClass(uint32_t dex_pc,
uint32_t type_idx) {
if (!compiler_->CanAccessTypeWithoutChecks(method_idx_, dex_cache_,
*dex_file_, type_idx)) {
llvm::Value* type_idx_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
llvm::Function* runtime_func =
irb_.GetRuntime(InitializeTypeAndVerifyAccess);
EmitUpdateDexPC(dex_pc);
llvm::Value* type_object_addr =
irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, false);
return type_object_addr;
} else {
// Try to load the class (type) object from the test cache.
llvm::Value* type_field_addr =
EmitLoadDexCacheResolvedTypeFieldAddr(type_idx);
llvm::Value* type_object_addr = irb_.CreateLoad(type_field_addr, kTBAAJRuntime);
if (compiler_->CanAssumeTypeIsPresentInDexCache(dex_cache_, type_idx)) {
return type_object_addr;
}
llvm::BasicBlock* block_original = irb_.GetInsertBlock();
// Test whether class (type) object is in the dex cache or not
llvm::Value* equal_null =
irb_.CreateICmpEQ(type_object_addr, irb_.getJNull());
llvm::BasicBlock* block_cont =
CreateBasicBlockWithDexPC(dex_pc, "cont");
llvm::BasicBlock* block_load_class =
CreateBasicBlockWithDexPC(dex_pc, "load_class");
irb_.CreateCondBr(equal_null, block_load_class, block_cont, kUnlikely);
// Failback routine to load the class object
irb_.SetInsertPoint(block_load_class);
llvm::Function* runtime_func = irb_.GetRuntime(InitializeType);
llvm::Constant* type_idx_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* loaded_type_object_addr =
irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, false);
llvm::BasicBlock* block_after_load_class = irb_.GetInsertBlock();
irb_.CreateBr(block_cont);
// Now the class object must be loaded
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2);
phi->addIncoming(type_object_addr, block_original);
phi->addIncoming(loaded_type_object_addr, block_after_load_class);
return phi;
}
}
void MethodCompiler::EmitInsn_LoadConstantClass(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vB);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, type_object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_MonitorEnter(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* object_addr =
EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
if (!(method_info_.this_will_not_be_null && dec_insn.vA == method_info_.this_reg_idx)) {
EmitGuard_NullPointerException(dex_pc, object_addr);
}
irb_.Runtime().EmitLockObject(object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_MonitorExit(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* object_addr =
EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
if (!(method_info_.this_will_not_be_null && dec_insn.vA == method_info_.this_reg_idx)) {
EmitGuard_NullPointerException(dex_pc, object_addr);
}
EmitUpdateDexPC(dex_pc);
irb_.Runtime().EmitUnlockObject(object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, true);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_CheckCast(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::BasicBlock* block_test_class =
CreateBasicBlockWithDexPC(dex_pc, "test_class");
llvm::BasicBlock* block_test_sub_class =
CreateBasicBlockWithDexPC(dex_pc, "test_sub_class");
llvm::Value* object_addr =
EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
// Test: Is the reference equal to null? Act as no-op when it is null.
llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null,
GetNextBasicBlock(dex_pc),
block_test_class);
// Test: Is the object instantiated from the given class?
irb_.SetInsertPoint(block_test_class);
llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vB);
DCHECK_EQ(Object::ClassOffset().Int32Value(), 0);
llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy();
llvm::Value* object_type_field_addr =
irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo());
llvm::Value* object_type_object_addr =
irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject);
llvm::Value* equal_class =
irb_.CreateICmpEQ(type_object_addr, object_type_object_addr);
irb_.CreateCondBr(equal_class,
GetNextBasicBlock(dex_pc),
block_test_sub_class);
// Test: Is the object instantiated from the subclass of the given class?
irb_.SetInsertPoint(block_test_sub_class);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall2(irb_.GetRuntime(CheckCast),
type_object_addr, object_type_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, true);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_InstanceOf(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Constant* zero = irb_.getJInt(0);
llvm::Constant* one = irb_.getJInt(1);
llvm::BasicBlock* block_nullp = CreateBasicBlockWithDexPC(dex_pc, "nullp");
llvm::BasicBlock* block_test_class =
CreateBasicBlockWithDexPC(dex_pc, "test_class");
llvm::BasicBlock* block_class_equals =
CreateBasicBlockWithDexPC(dex_pc, "class_eq");
llvm::BasicBlock* block_test_sub_class =
CreateBasicBlockWithDexPC(dex_pc, "test_sub_class");
llvm::Value* object_addr =
EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
// Overview of the following code :
// We check for null, if so, then false, otherwise check for class == . If so
// then true, otherwise do callout slowpath.
//
// Test: Is the reference equal to null? Set 0 when it is null.
llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_nullp, block_test_class);
irb_.SetInsertPoint(block_nullp);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, zero);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
// Test: Is the object instantiated from the given class?
irb_.SetInsertPoint(block_test_class);
llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vC);
DCHECK_EQ(Object::ClassOffset().Int32Value(), 0);
llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy();
llvm::Value* object_type_field_addr =
irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo());
llvm::Value* object_type_object_addr =
irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject);
llvm::Value* equal_class =
irb_.CreateICmpEQ(type_object_addr, object_type_object_addr);
irb_.CreateCondBr(equal_class, block_class_equals, block_test_sub_class);
irb_.SetInsertPoint(block_class_equals);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, one);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
// Test: Is the object instantiated from the subclass of the given class?
irb_.SetInsertPoint(block_test_sub_class);
llvm::Value* result =
irb_.CreateCall2(irb_.GetRuntime(IsAssignable),
type_object_addr, object_type_object_addr);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value* MethodCompiler::EmitLoadArrayLength(llvm::Value* array) {
// Load array length
return irb_.LoadFromObjectOffset(array,
Array::LengthOffset().Int32Value(),
irb_.getJIntTy(),
kTBAAConstJObject);
}
void MethodCompiler::EmitInsn_ArrayLength(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
// Get the array object address
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
EmitGuard_NullPointerException(dex_pc, array_addr);
// Get the array length and store it to the register
llvm::Value* array_len = EmitLoadArrayLength(array_addr);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, array_len);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_NewInstance(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Function* runtime_func;
if (compiler_->CanAccessInstantiableTypeWithoutChecks(
method_idx_, dex_cache_, *dex_file_, dec_insn.vB)) {
runtime_func = irb_.GetRuntime(AllocObject);
} else {
runtime_func = irb_.GetRuntime(AllocObjectWithAccessCheck);
}
llvm::Constant* type_index_value = irb_.getInt32(dec_insn.vB);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* object_addr =
irb_.CreateCall3(runtime_func, type_index_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, true);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value* MethodCompiler::EmitAllocNewArray(uint32_t dex_pc,
int32_t length,
uint32_t type_idx,
bool is_filled_new_array) {
llvm::Function* runtime_func;
bool skip_access_check =
compiler_->CanAccessTypeWithoutChecks(method_idx_, dex_cache_,
*dex_file_, type_idx);
llvm::Value* array_length_value;
if (is_filled_new_array) {
runtime_func = skip_access_check ?
irb_.GetRuntime(CheckAndAllocArray) :
irb_.GetRuntime(CheckAndAllocArrayWithAccessCheck);
array_length_value = irb_.getInt32(length);
} else {
runtime_func = skip_access_check ?
irb_.GetRuntime(AllocArray) :
irb_.GetRuntime(AllocArrayWithAccessCheck);
array_length_value = EmitLoadDalvikReg(length, kInt, kAccurate);
}
llvm::Constant* type_index_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* object_addr =
irb_.CreateCall4(runtime_func, type_index_value, method_object_addr,
array_length_value, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, false);
return object_addr;
}
void MethodCompiler::EmitInsn_NewArray(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* object_addr =
EmitAllocNewArray(dex_pc, dec_insn.vB, dec_insn.vC, false);
EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FilledNewArray(uint32_t dex_pc,
Instruction const* insn,
bool is_range) {
DecodedInstruction dec_insn(insn);
llvm::Value* object_addr =
EmitAllocNewArray(dex_pc, dec_insn.vA, dec_insn.vB, true);
if (dec_insn.vA > 0) {
// Check for the element type
uint32_t type_desc_len = 0;
const char* type_desc =
dex_file_->StringByTypeIdx(dec_insn.vB, &type_desc_len);
DCHECK_GE(type_desc_len, 2u); // should be guaranteed by verifier
DCHECK_EQ(type_desc[0], '['); // should be guaranteed by verifier
bool is_elem_int_ty = (type_desc[1] == 'I');
uint32_t alignment;
llvm::Constant* elem_size;
llvm::PointerType* field_type;
// NOTE: Currently filled-new-array only supports 'L', '[', and 'I'
// as the element, thus we are only checking 2 cases: primitive int and
// non-primitive type.
if (is_elem_int_ty) {
alignment = sizeof(int32_t);
elem_size = irb_.getPtrEquivInt(sizeof(int32_t));
field_type = irb_.getJIntTy()->getPointerTo();
} else {
alignment = irb_.getSizeOfPtrEquivInt();
elem_size = irb_.getSizeOfPtrEquivIntValue();
field_type = irb_.getJObjectTy()->getPointerTo();
}
llvm::Value* data_field_offset =
irb_.getPtrEquivInt(Array::DataOffset(alignment).Int32Value());
llvm::Value* data_field_addr =
irb_.CreatePtrDisp(object_addr, data_field_offset, field_type);
// TODO: Tune this code. Currently we are generating one instruction for
// one element which may be very space consuming. Maybe changing to use
// memcpy may help; however, since we can't guarantee that the alloca of
// dalvik register are continuous, we can't perform such optimization yet.
for (uint32_t i = 0; i < dec_insn.vA; ++i) {
int reg_index;
if (is_range) {
reg_index = dec_insn.vC + i;
} else {
reg_index = dec_insn.arg[i];
}
llvm::Value* reg_value;
if (is_elem_int_ty) {
reg_value = EmitLoadDalvikReg(reg_index, kInt, kAccurate);
} else {
reg_value = EmitLoadDalvikReg(reg_index, kObject, kAccurate);
}
irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray);
data_field_addr =
irb_.CreatePtrDisp(data_field_addr, elem_size, field_type);
}
}
EmitStoreDalvikRetValReg(kObject, kAccurate, object_addr);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FillArrayData(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
// Read the payload
int32_t payload_offset = static_cast<int32_t>(dex_pc) +
static_cast<int32_t>(dec_insn.vB);
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(
code_item_->insns_ + payload_offset);
// Load array object
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
if (payload->element_count == 0) {
// When the number of the elements in the payload is zero, we don't have
// to copy any numbers. However, we should check whether the array object
// address is equal to null or not.
EmitGuard_NullPointerException(dex_pc, array_addr);
} else {
// To save the code size, we are going to call the runtime function to
// copy the content from DexFile.
// NOTE: We will check for the NullPointerException in the runtime.
llvm::Function* runtime_func = irb_.GetRuntime(FillArrayData);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
irb_.CreateCall4(runtime_func,
method_object_addr, irb_.getInt32(dex_pc),
array_addr, irb_.getInt32(payload_offset));
EmitGuard_ExceptionLandingPad(dex_pc, true);
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_UnconditionalBranch(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
int32_t branch_offset = dec_insn.vA;
irb_.CreateBr(GetBasicBlock(dex_pc + branch_offset));
}
void MethodCompiler::EmitInsn_PackedSwitch(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
int32_t payload_offset = static_cast<int32_t>(dex_pc) +
static_cast<int32_t>(dec_insn.vB);
const Instruction::PackedSwitchPayload* payload =
reinterpret_cast<const Instruction::PackedSwitchPayload*>(
code_item_->insns_ + payload_offset);
llvm::Value* value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
llvm::SwitchInst* sw =
irb_.CreateSwitch(value, GetNextBasicBlock(dex_pc), payload->case_count);
for (uint16_t i = 0; i < payload->case_count; ++i) {
sw->addCase(irb_.getInt32(payload->first_key + i),
GetBasicBlock(dex_pc + payload->targets[i]));
}
}
void MethodCompiler::EmitInsn_SparseSwitch(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
int32_t payload_offset = static_cast<int32_t>(dex_pc) +
static_cast<int32_t>(dec_insn.vB);
const Instruction::SparseSwitchPayload* payload =
reinterpret_cast<const Instruction::SparseSwitchPayload*>(
code_item_->insns_ + payload_offset);
const int32_t* keys = payload->GetKeys();
const int32_t* targets = payload->GetTargets();
llvm::Value* value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
llvm::SwitchInst* sw =
irb_.CreateSwitch(value, GetNextBasicBlock(dex_pc), payload->case_count);
for (size_t i = 0; i < payload->case_count; ++i) {
sw->addCase(irb_.getInt32(keys[i]), GetBasicBlock(dex_pc + targets[i]));
}
}
void MethodCompiler::EmitInsn_FPCompare(uint32_t dex_pc,
Instruction const* insn,
JType fp_jty,
bool gt_bias) {
DecodedInstruction dec_insn(insn);
DCHECK(fp_jty == kFloat || fp_jty == kDouble) << "JType: " << fp_jty;
llvm::Value* src1_value = EmitLoadDalvikReg(dec_insn.vB, fp_jty, kAccurate);
llvm::Value* src2_value = EmitLoadDalvikReg(dec_insn.vC, fp_jty, kAccurate);
llvm::Value* cmp_eq = irb_.CreateFCmpOEQ(src1_value, src2_value);
llvm::Value* cmp_lt;
if (gt_bias) {
cmp_lt = irb_.CreateFCmpOLT(src1_value, src2_value);
} else {
cmp_lt = irb_.CreateFCmpULT(src1_value, src2_value);
}
llvm::Value* result = EmitCompareResultSelection(cmp_eq, cmp_lt);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_LongCompare(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* src1_value = EmitLoadDalvikReg(dec_insn.vB, kLong, kAccurate);
llvm::Value* src2_value = EmitLoadDalvikReg(dec_insn.vC, kLong, kAccurate);
llvm::Value* cmp_eq = irb_.CreateICmpEQ(src1_value, src2_value);
llvm::Value* cmp_lt = irb_.CreateICmpSLT(src1_value, src2_value);
llvm::Value* result = EmitCompareResultSelection(cmp_eq, cmp_lt);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value* MethodCompiler::EmitCompareResultSelection(llvm::Value* cmp_eq,
llvm::Value* cmp_lt) {
llvm::Constant* zero = irb_.getJInt(0);
llvm::Constant* pos1 = irb_.getJInt(1);
llvm::Constant* neg1 = irb_.getJInt(-1);
llvm::Value* result_lt = irb_.CreateSelect(cmp_lt, neg1, pos1);
llvm::Value* result_eq = irb_.CreateSelect(cmp_eq, zero, result_lt);
return result_eq;
}
void MethodCompiler::EmitInsn_BinaryConditionalBranch(uint32_t dex_pc,
Instruction const* insn,
CondBranchKind cond) {
DecodedInstruction dec_insn(insn);
int8_t src1_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA);
int8_t src2_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vB);
DCHECK_NE(kRegUnknown, src1_reg_cat);
DCHECK_NE(kRegUnknown, src2_reg_cat);
DCHECK_NE(kRegCat2, src1_reg_cat);
DCHECK_NE(kRegCat2, src2_reg_cat);
int32_t branch_offset = dec_insn.vC;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (src1_reg_cat == kRegZero && src2_reg_cat == kRegZero) {
src1_value = irb_.getInt32(0);
src2_value = irb_.getInt32(0);
} else if (src1_reg_cat != kRegZero && src2_reg_cat != kRegZero) {
CHECK_EQ(src1_reg_cat, src2_reg_cat);
if (src1_reg_cat == kRegCat1nr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
}
} else {
DCHECK(src1_reg_cat == kRegZero ||
src2_reg_cat == kRegZero);
if (src1_reg_cat == kRegZero) {
if (src2_reg_cat == kRegCat1nr) {
src1_value = irb_.getJInt(0);
src2_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
} else {
src1_value = irb_.getJNull();
src2_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
}
} else { // src2_reg_cat == kRegZero
if (src2_reg_cat == kRegCat1nr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
src2_value = irb_.getJInt(0);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
src2_value = irb_.getJNull();
}
}
}
llvm::Value* cond_value =
EmitConditionResult(src1_value, src2_value, cond);
irb_.CreateCondBr(cond_value,
GetBasicBlock(dex_pc + branch_offset),
GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_UnaryConditionalBranch(uint32_t dex_pc,
Instruction const* insn,
CondBranchKind cond) {
DecodedInstruction dec_insn(insn);
int8_t src_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA);
DCHECK_NE(kRegUnknown, src_reg_cat);
DCHECK_NE(kRegCat2, src_reg_cat);
int32_t branch_offset = dec_insn.vB;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (src_reg_cat == kRegZero) {
src1_value = irb_.getInt32(0);
src2_value = irb_.getInt32(0);
} else if (src_reg_cat == kRegCat1nr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate);
src2_value = irb_.getInt32(0);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate);
src2_value = irb_.getJNull();
}
llvm::Value* cond_value =
EmitConditionResult(src1_value, src2_value, cond);
irb_.CreateCondBr(cond_value,
GetBasicBlock(dex_pc + branch_offset),
GetNextBasicBlock(dex_pc));
}
InferredRegCategoryMap const* MethodCompiler::GetInferredRegCategoryMap() {
Compiler::MethodReference mref(dex_file_, method_idx_);
InferredRegCategoryMap const* map =
verifier::MethodVerifier::GetInferredRegCategoryMap(mref);
CHECK_NE(map, static_cast<InferredRegCategoryMap*>(NULL));
return map;
}
RegCategory MethodCompiler::GetInferredRegCategory(uint32_t dex_pc,
uint16_t reg_idx) {
InferredRegCategoryMap const* map = GetInferredRegCategoryMap();
return map->GetRegCategory(dex_pc, reg_idx);
}
bool MethodCompiler::IsRegCanBeObject(uint16_t reg_idx) {
InferredRegCategoryMap const* map = GetInferredRegCategoryMap();
return map->IsRegCanBeObject(reg_idx);
}
llvm::Value* MethodCompiler::EmitConditionResult(llvm::Value* lhs,
llvm::Value* rhs,
CondBranchKind cond) {
switch (cond) {
case kCondBranch_EQ:
return irb_.CreateICmpEQ(lhs, rhs);
case kCondBranch_NE:
return irb_.CreateICmpNE(lhs, rhs);
case kCondBranch_LT:
return irb_.CreateICmpSLT(lhs, rhs);
case kCondBranch_GE:
return irb_.CreateICmpSGE(lhs, rhs);
case kCondBranch_GT:
return irb_.CreateICmpSGT(lhs, rhs);
case kCondBranch_LE:
return irb_.CreateICmpSLE(lhs, rhs);
default: // Unreachable
LOG(FATAL) << "Unknown conditional branch kind: " << cond;
return NULL;
}
}
void MethodCompiler::EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr) {
// Using runtime support, let the target can override by InlineAssembly.
llvm::Function* runtime_func = irb_.GetRuntime(MarkGCCard);
irb_.CreateCall2(runtime_func, value, target_addr);
}
void
MethodCompiler::EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc,
llvm::Value* array,
llvm::Value* index) {
llvm::Value* array_len = EmitLoadArrayLength(array);
llvm::Value* cmp = irb_.CreateICmpUGE(index, array_len);
llvm::BasicBlock* block_exception =
CreateBasicBlockWithDexPC(dex_pc, "overflow");
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(cmp, block_exception, block_continue, kUnlikely);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall2(irb_.GetRuntime(ThrowIndexOutOfBounds), index, array_len);
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
void MethodCompiler::EmitGuard_ArrayException(uint32_t dex_pc,
llvm::Value* array,
llvm::Value* index) {
EmitGuard_NullPointerException(dex_pc, array);
EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array, index);
}
// Emit Array GetElementPtr
llvm::Value* MethodCompiler::EmitArrayGEP(llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty) {
int data_offset;
if (elem_jty == kLong || elem_jty == kDouble ||
(elem_jty == kObject && sizeof(uint64_t) == sizeof(Object*))) {
data_offset = Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = Array::DataOffset(sizeof(int32_t)).Int32Value();
}
llvm::Constant* data_offset_value =
irb_.getPtrEquivInt(data_offset);
llvm::Type* elem_type = irb_.getJType(elem_jty, kArray);
llvm::Value* array_data_addr =
irb_.CreatePtrDisp(array_addr, data_offset_value,
elem_type->getPointerTo());
return irb_.CreateGEP(array_data_addr, index_value);
}
void MethodCompiler::EmitInsn_AGet(uint32_t dex_pc,
Instruction const* insn,
JType elem_jty) {
DecodedInstruction dec_insn(insn);
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate);
EmitGuard_ArrayException(dex_pc, array_addr, index_value);
llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty);
llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty);
EmitStoreDalvikReg(dec_insn.vA, elem_jty, kArray, array_elem_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_APut(uint32_t dex_pc,
Instruction const* insn,
JType elem_jty) {
DecodedInstruction dec_insn(insn);
llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate);
llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate);
EmitGuard_ArrayException(dex_pc, array_addr, index_value);
llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty);
llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, elem_jty, kArray);
if (elem_jty == kObject) { // If put an object, check the type, and mark GC card table.
llvm::Function* runtime_func = irb_.GetRuntime(CheckPutArrayElement);
irb_.CreateCall2(runtime_func, new_value, array_addr);
EmitGuard_ExceptionLandingPad(dex_pc, false);
EmitMarkGCCard(new_value, array_addr);
}
irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_IGet(uint32_t dex_pc,
Instruction const* insn,
JType field_jty) {
DecodedInstruction dec_insn(insn);
uint32_t reg_idx = dec_insn.vB;
uint32_t field_idx = dec_insn.vC;
llvm::Value* object_addr = EmitLoadDalvikReg(reg_idx, kObject, kAccurate);
if (!(method_info_.this_will_not_be_null && reg_idx == method_info_.this_reg_idx)) {
EmitGuard_NullPointerException(dex_pc, object_addr);
}
llvm::Value* field_value;
int field_offset;
bool is_volatile;
bool is_fast_path = compiler_->ComputeInstanceFieldInfo(
field_idx, oat_compilation_unit_, field_offset, is_volatile, false);
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(GetObjectInstance);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Get64Instance);
} else {
runtime_func = irb_.GetRuntime(Get32Instance);
}
llvm::ConstantInt* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
field_value = irb_.CreateCall3(runtime_func, field_idx_value,
method_object_addr, object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, true);
} else {
DCHECK_GE(field_offset, 0);
llvm::PointerType* field_type =
irb_.getJType(field_jty, kField)->getPointerTo();
llvm::ConstantInt* field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* field_addr =
irb_.CreatePtrDisp(object_addr, field_offset_value, field_type);
// TODO: Check is_volatile. We need to generate atomic load instruction
// when is_volatile is true.
field_value = irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty);
}
EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, field_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_IPut(uint32_t dex_pc,
Instruction const* insn,
JType field_jty) {
DecodedInstruction dec_insn(insn);
uint32_t reg_idx = dec_insn.vB;
uint32_t field_idx = dec_insn.vC;
llvm::Value* object_addr = EmitLoadDalvikReg(reg_idx, kObject, kAccurate);
if (!(method_info_.this_will_not_be_null && reg_idx == method_info_.this_reg_idx)) {
EmitGuard_NullPointerException(dex_pc, object_addr);
}
llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField);
int field_offset;
bool is_volatile;
bool is_fast_path = compiler_->ComputeInstanceFieldInfo(
field_idx, oat_compilation_unit_, field_offset, is_volatile, true);
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(SetObjectInstance);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Set64Instance);
} else {
runtime_func = irb_.GetRuntime(Set32Instance);
}
llvm::Value* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
irb_.CreateCall4(runtime_func, field_idx_value,
method_object_addr, object_addr, new_value);
EmitGuard_ExceptionLandingPad(dex_pc, true);
} else {
DCHECK_GE(field_offset, 0);
llvm::PointerType* field_type =
irb_.getJType(field_jty, kField)->getPointerTo();
llvm::Value* field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* field_addr =
irb_.CreatePtrDisp(object_addr, field_offset_value, field_type);
// TODO: Check is_volatile. We need to generate atomic store instruction
// when is_volatile is true.
irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty);
if (field_jty == kObject) { // If put an object, mark the GC card table.
EmitMarkGCCard(new_value, object_addr);
}
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value* MethodCompiler::EmitLoadStaticStorage(uint32_t dex_pc,
uint32_t type_idx) {
llvm::BasicBlock* block_load_static =
CreateBasicBlockWithDexPC(dex_pc, "load_static");
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
// Load static storage from dex cache
llvm::Value* storage_field_addr =
EmitLoadDexCacheStaticStorageFieldAddr(type_idx);
llvm::Value* storage_object_addr = irb_.CreateLoad(storage_field_addr, kTBAAJRuntime);
llvm::BasicBlock* block_original = irb_.GetInsertBlock();
// Test: Is the static storage of this class initialized?
llvm::Value* equal_null =
irb_.CreateICmpEQ(storage_object_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_load_static, block_cont, kUnlikely);
// Failback routine to load the class object
irb_.SetInsertPoint(block_load_static);
llvm::Function* runtime_func =
irb_.GetRuntime(InitializeStaticStorage);
llvm::Constant* type_idx_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* loaded_storage_object_addr =
irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, false);
llvm::BasicBlock* block_after_load_static = irb_.GetInsertBlock();
irb_.CreateBr(block_cont);
// Now the class object must be loaded
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2);
phi->addIncoming(storage_object_addr, block_original);
phi->addIncoming(loaded_storage_object_addr, block_after_load_static);
return phi;
}
void MethodCompiler::EmitInsn_SGet(uint32_t dex_pc,
Instruction const* insn,
JType field_jty) {
DecodedInstruction dec_insn(insn);
uint32_t field_idx = dec_insn.vB;
int field_offset;
int ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_fast_path = compiler_->ComputeStaticFieldInfo(
field_idx, oat_compilation_unit_, field_offset, ssb_index,
is_referrers_class, is_volatile, false);
llvm::Value* static_field_value;
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(GetObjectStatic);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Get64Static);
} else {
runtime_func = irb_.GetRuntime(Get32Static);
}
llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
static_field_value =
irb_.CreateCall2(runtime_func, field_idx_value, method_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, true);
} else {
DCHECK_GE(field_offset, 0);
llvm::Value* static_storage_addr = NULL;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_storage_addr =
irb_.LoadFromObjectOffset(method_object_addr,
Method::DeclaringClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_GE(ssb_index, 0);
static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index);
}
llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* static_field_addr =
irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value,
irb_.getJType(field_jty, kField)->getPointerTo());
// TODO: Check is_volatile. We need to generate atomic load instruction
// when is_volatile is true.
static_field_value = irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty);
}
EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, static_field_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_SPut(uint32_t dex_pc,
Instruction const* insn,
JType field_jty) {
DecodedInstruction dec_insn(insn);
uint32_t field_idx = dec_insn.vB;
llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField);
int field_offset;
int ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_fast_path = compiler_->ComputeStaticFieldInfo(
field_idx, oat_compilation_unit_, field_offset, ssb_index,
is_referrers_class, is_volatile, true);
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(SetObjectStatic);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Set64Static);
} else {
runtime_func = irb_.GetRuntime(Set32Static);
}
llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
irb_.CreateCall3(runtime_func, field_idx_value,
method_object_addr, new_value);
EmitGuard_ExceptionLandingPad(dex_pc, true);
} else {
DCHECK_GE(field_offset, 0);
llvm::Value* static_storage_addr = NULL;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_storage_addr =
irb_.LoadFromObjectOffset(method_object_addr,
Method::DeclaringClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_GE(ssb_index, 0);
static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index);
}
llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* static_field_addr =
irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value,
irb_.getJType(field_jty, kField)->getPointerTo());
// TODO: Check is_volatile. We need to generate atomic store instruction
// when is_volatile is true.
irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty);
if (field_jty == kObject) { // If put an object, mark the GC card table.
EmitMarkGCCard(new_value, static_storage_addr);
}
}
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::
EmitLoadActualParameters(std::vector<llvm::Value*>& args,
uint32_t callee_method_idx,
DecodedInstruction const& dec_insn,
InvokeArgFmt arg_fmt,
bool is_static) {
// Get method signature
DexFile::MethodId const& method_id =
dex_file_->GetMethodId(callee_method_idx);
uint32_t shorty_size;
char const* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size);
CHECK_GE(shorty_size, 1u);
// Load argument values according to the shorty (without "this")
uint16_t reg_count = 0;
if (!is_static) {
++reg_count; // skip the "this" pointer
}
bool is_range = (arg_fmt == kArgRange);
for (uint32_t i = 1; i < shorty_size; ++i) {
uint32_t reg_idx = (is_range) ? (dec_insn.vC + reg_count)
: (dec_insn.arg[reg_count]);
args.push_back(EmitLoadDalvikReg(reg_idx, shorty[i], kAccurate));
++reg_count;
if (shorty[i] == 'J' || shorty[i] == 'D') {
// Wide types, such as long and double, are using a pair of registers
// to store the value, so we have to increase arg_reg again.
++reg_count;
}
}
DCHECK_EQ(reg_count, dec_insn.vA)
<< "Actual argument mismatch for callee: "
<< PrettyMethod(callee_method_idx, *dex_file_);
}
llvm::Value* MethodCompiler::EmitFixStub(llvm::Value* callee_method_object_addr,
uint32_t method_idx,
bool is_static) {
// TODO: Remove this after we solve the link and trampoline related problems.
llvm::Value* code_addr = irb_.CreateCall(irb_.GetRuntime(FixStub), callee_method_object_addr);
llvm::FunctionType* method_type = GetFunctionType(method_idx, is_static);
return irb_.CreatePointerCast(code_addr, method_type->getPointerTo());
}
void MethodCompiler::EmitInsn_Invoke(uint32_t dex_pc,
Instruction const* insn,
InvokeType invoke_type,
InvokeArgFmt arg_fmt) {
DecodedInstruction dec_insn(insn);
bool is_static = (invoke_type == kStatic);
uint32_t callee_method_idx = dec_insn.vB;
// Compute invoke related information for compiler decision
int vtable_idx = -1;
uintptr_t direct_code = 0; // Currently unused
uintptr_t direct_method = 0;
bool is_fast_path = compiler_->
ComputeInvokeInfo(callee_method_idx, oat_compilation_unit_,
invoke_type, vtable_idx, direct_code, direct_method);
// Load *this* actual parameter
uint32_t this_reg = -1u;
llvm::Value* this_addr = NULL;
if (!is_static) {
// Test: Is *this* parameter equal to null?
this_reg = (arg_fmt == kArgReg) ? dec_insn.arg[0] : (dec_insn.vC + 0);
this_addr = EmitLoadDalvikReg(this_reg, kObject, kAccurate);
}
// Load the method object
llvm::Value* callee_method_object_addr = NULL;
if (!is_fast_path) {
callee_method_object_addr =
EmitCallRuntimeForCalleeMethodObjectAddr(callee_method_idx, invoke_type,
this_addr, dex_pc, is_fast_path);
if (!is_static && (!method_info_.this_will_not_be_null ||
this_reg != method_info_.this_reg_idx)) {
// NOTE: The null pointer test should come after the method resolution.
// So that the "NoSuchMethodError" can be thrown before the
// "NullPointerException".
EmitGuard_NullPointerException(dex_pc, this_addr);
}
} else {
if (!is_static && (!method_info_.this_will_not_be_null ||
this_reg != method_info_.this_reg_idx)) {
// NOTE: In the fast path, we should do the null pointer check
// before the access to the class object and/or direct invocation.
EmitGuard_NullPointerException(dex_pc, this_addr);
}
switch (invoke_type) {
case kStatic:
case kDirect:
if (direct_method != 0u &&
direct_method != static_cast<uintptr_t>(-1)) {
callee_method_object_addr =
irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_method),
irb_.getJObjectTy());
} else {
callee_method_object_addr =
EmitLoadSDCalleeMethodObjectAddr(callee_method_idx);
}
break;
case kVirtual:
DCHECK(vtable_idx != -1);
callee_method_object_addr =
EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr);
break;
case kSuper:
LOG(FATAL) << "invoke-super should be promoted to invoke-direct in "
"the fast path.";
break;
case kInterface:
callee_method_object_addr =
EmitCallRuntimeForCalleeMethodObjectAddr(callee_method_idx,
invoke_type, this_addr,
dex_pc, is_fast_path);
break;
}
}
// Load the actual parameter
std::vector<llvm::Value*> args;
args.push_back(callee_method_object_addr); // method object for callee
if (!is_static) {
DCHECK(this_addr != NULL);
args.push_back(this_addr); // "this" object for callee
}
EmitLoadActualParameters(args, callee_method_idx, dec_insn,
arg_fmt, is_static);
if (is_fast_path && (invoke_type == kDirect || invoke_type == kStatic)) {
bool need_retry = EmitInlineJavaIntrinsic(PrettyMethod(callee_method_idx, *dex_file_),
args,
GetNextBasicBlock(dex_pc));
if (!need_retry) {
return;
}
}
llvm::Value* code_addr =
irb_.LoadFromObjectOffset(callee_method_object_addr,
Method::GetCodeOffset().Int32Value(),
GetFunctionType(callee_method_idx, is_static)->getPointerTo(),
kTBAAJRuntime);
#if 0
// Invoke callee
EmitUpdateDexPC(dex_pc);
llvm::Value* retval = irb_.CreateCall(code_addr, args);
EmitGuard_ExceptionLandingPad(dex_pc, true);
uint32_t callee_access_flags = is_static ? kAccStatic : 0;
UniquePtr<OatCompilationUnit> callee_oat_compilation_unit(
oat_compilation_unit_->GetCallee(callee_method_idx, callee_access_flags));
char ret_shorty = callee_oat_compilation_unit->GetShorty()[0];
if (ret_shorty != 'V') {
EmitStoreDalvikRetValReg(ret_shorty, kAccurate, retval);
}
#else
uint32_t callee_access_flags = is_static ? kAccStatic : 0;
UniquePtr<OatCompilationUnit> callee_oat_compilation_unit(
oat_compilation_unit_->GetCallee(callee_method_idx, callee_access_flags));
char ret_shorty = callee_oat_compilation_unit->GetShorty()[0];
EmitUpdateDexPC(dex_pc);
llvm::BasicBlock* block_normal = CreateBasicBlockWithDexPC(dex_pc, "normal");
llvm::BasicBlock* block_stub = CreateBasicBlockWithDexPC(dex_pc, "stub");
llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(irb_.CreateIsNull(code_addr), block_stub, block_normal, kUnlikely);
irb_.SetInsertPoint(block_normal);
{
// Invoke callee
llvm::Value* retval = irb_.CreateCall(code_addr, args);
if (ret_shorty != 'V') {
EmitStoreDalvikRetValReg(ret_shorty, kAccurate, retval);
}
}
irb_.CreateBr(block_continue);
irb_.SetInsertPoint(block_stub);
{ // lazy link
// TODO: Remove this after we solve the link problem.
code_addr = EmitFixStub(callee_method_object_addr, callee_method_idx, is_static);
EmitGuard_ExceptionLandingPad(dex_pc, false);
llvm::Value* retval = irb_.CreateCall(code_addr, args);
if (ret_shorty != 'V') {
EmitStoreDalvikRetValReg(ret_shorty, kAccurate, retval);
}
}
irb_.CreateBr(block_continue);
irb_.SetInsertPoint(block_continue);
EmitGuard_ExceptionLandingPad(dex_pc, true);
#endif
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value* MethodCompiler::
EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx) {
llvm::Value* callee_method_object_field_addr =
EmitLoadDexCacheResolvedMethodFieldAddr(callee_method_idx);
return irb_.CreateLoad(callee_method_object_field_addr, kTBAAJRuntime);
}
llvm::Value* MethodCompiler::
EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx,
llvm::Value* this_addr) {
// Load class object of *this* pointer
llvm::Value* class_object_addr =
irb_.LoadFromObjectOffset(this_addr,
Object::ClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
// Load vtable address
llvm::Value* vtable_addr =
irb_.LoadFromObjectOffset(class_object_addr,
Class::VTableOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
// Load callee method object
llvm::Value* vtable_idx_value =
irb_.getPtrEquivInt(static_cast<uint64_t>(vtable_idx));
llvm::Value* method_field_addr =
EmitArrayGEP(vtable_addr, vtable_idx_value, kObject);
return irb_.CreateLoad(method_field_addr, kTBAAConstJObject);
}
llvm::Value* MethodCompiler::
EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx,
InvokeType invoke_type,
llvm::Value* this_addr,
uint32_t dex_pc,
bool is_fast_path) {
llvm::Function* runtime_func = NULL;
switch (invoke_type) {
case kStatic:
runtime_func = irb_.GetRuntime(FindStaticMethodWithAccessCheck);
break;
case kDirect:
runtime_func = irb_.GetRuntime(FindDirectMethodWithAccessCheck);
break;
case kVirtual:
runtime_func = irb_.GetRuntime(FindVirtualMethodWithAccessCheck);
break;
case kSuper:
runtime_func = irb_.GetRuntime(FindSuperMethodWithAccessCheck);
break;
case kInterface:
if (is_fast_path) {
runtime_func = irb_.GetRuntime(FindInterfaceMethod);
} else {
runtime_func = irb_.GetRuntime(FindInterfaceMethodWithAccessCheck);
}
break;
}
llvm::Value* callee_method_idx_value = irb_.getInt32(callee_method_idx);
if (this_addr == NULL) {
DCHECK_EQ(invoke_type, kStatic);
this_addr = irb_.getJNull();
}
llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* callee_method_object_addr =
irb_.CreateCall4(runtime_func,
callee_method_idx_value,
this_addr,
caller_method_object_addr,
thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc, false);
return callee_method_object_addr;
}
void MethodCompiler::EmitInsn_Neg(uint32_t dex_pc,
Instruction const* insn,
JType op_jty) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
llvm::Value* result_value = irb_.CreateNeg(src_value);
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_Not(uint32_t dex_pc,
Instruction const* insn,
JType op_jty) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
llvm::Value* result_value =
irb_.CreateXor(src_value, static_cast<uint64_t>(-1));
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_SExt(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* result_value = irb_.CreateSExt(src_value, irb_.getJLongTy());
EmitStoreDalvikReg(dec_insn.vA, kLong, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_Trunc(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kLong, kAccurate);
llvm::Value* result_value = irb_.CreateTrunc(src_value, irb_.getJIntTy());
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_TruncAndSExt(uint32_t dex_pc,
Instruction const* insn,
unsigned N) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* trunc_value =
irb_.CreateTrunc(src_value, llvm::Type::getIntNTy(*context_, N));
llvm::Value* result_value = irb_.CreateSExt(trunc_value, irb_.getJIntTy());
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_TruncAndZExt(uint32_t dex_pc,
Instruction const* insn,
unsigned N) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* trunc_value =
irb_.CreateTrunc(src_value, llvm::Type::getIntNTy(*context_, N));
llvm::Value* result_value = irb_.CreateZExt(trunc_value, irb_.getJIntTy());
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FNeg(uint32_t dex_pc,
Instruction const* insn,
JType op_jty) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty;
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
llvm::Value* result_value = irb_.CreateFNeg(src_value);
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_IntToFP(uint32_t dex_pc,
Instruction const* insn,
JType src_jty,
JType dest_jty) {
DecodedInstruction dec_insn(insn);
DCHECK(src_jty == kInt || src_jty == kLong) << src_jty;
DCHECK(dest_jty == kFloat || dest_jty == kDouble) << dest_jty;
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, src_jty, kAccurate);
llvm::Type* dest_type = irb_.getJType(dest_jty, kAccurate);
llvm::Value* dest_value = irb_.CreateSIToFP(src_value, dest_type);
EmitStoreDalvikReg(dec_insn.vA, dest_jty, kAccurate, dest_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FPToInt(uint32_t dex_pc,
Instruction const* insn,
JType src_jty,
JType dest_jty,
runtime_support::RuntimeId runtime_func_id) {
DecodedInstruction dec_insn(insn);
DCHECK(src_jty == kFloat || src_jty == kDouble) << src_jty;
DCHECK(dest_jty == kInt || dest_jty == kLong) << dest_jty;
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, src_jty, kAccurate);
llvm::Value* dest_value = irb_.CreateCall(irb_.GetRuntime(runtime_func_id), src_value);
EmitStoreDalvikReg(dec_insn.vA, dest_jty, kAccurate, dest_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FExt(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kFloat, kAccurate);
llvm::Value* result_value = irb_.CreateFPExt(src_value, irb_.getJDoubleTy());
EmitStoreDalvikReg(dec_insn.vA, kDouble, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FTrunc(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kDouble, kAccurate);
llvm::Value* result_value = irb_.CreateFPTrunc(src_value, irb_.getJFloatTy());
EmitStoreDalvikReg(dec_insn.vA, kFloat, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_IntArithm(uint32_t dex_pc,
Instruction const* insn,
IntArithmKind arithm,
JType op_jty,
bool is_2addr) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (is_2addr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate);
}
llvm::Value* result_value =
EmitIntArithmResultComputation(dex_pc, src1_value, src2_value,
arithm, op_jty);
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_IntArithmImmediate(uint32_t dex_pc,
Instruction const* insn,
IntArithmKind arithm) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* imm_value = irb_.getInt32(dec_insn.vC);
llvm::Value* result_value =
EmitIntArithmResultComputation(dex_pc, src_value, imm_value, arithm, kInt);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value*
MethodCompiler::EmitIntArithmResultComputation(uint32_t dex_pc,
llvm::Value* lhs,
llvm::Value* rhs,
IntArithmKind arithm,
JType op_jty) {
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
switch (arithm) {
case kIntArithm_Add:
return irb_.CreateAdd(lhs, rhs);
case kIntArithm_Sub:
return irb_.CreateSub(lhs, rhs);
case kIntArithm_Mul:
return irb_.CreateMul(lhs, rhs);
case kIntArithm_Div:
case kIntArithm_Rem:
return EmitIntDivRemResultComputation(dex_pc, lhs, rhs, arithm, op_jty);
case kIntArithm_And:
return irb_.CreateAnd(lhs, rhs);
case kIntArithm_Or:
return irb_.CreateOr(lhs, rhs);
case kIntArithm_Xor:
return irb_.CreateXor(lhs, rhs);
default:
LOG(FATAL) << "Unknown integer arithmetic kind: " << arithm;
return NULL;
}
}
llvm::Value*
MethodCompiler::EmitIntDivRemResultComputation(uint32_t dex_pc,
llvm::Value* dividend,
llvm::Value* divisor,
IntArithmKind arithm,
JType op_jty) {
// Throw exception if the divisor is 0.
EmitGuard_DivZeroException(dex_pc, divisor, op_jty);
// Check the special case: MININT / -1 = MININT
// That case will cause overflow, which is undefined behavior in llvm.
// So we check the divisor is -1 or not, if the divisor is -1, we do
// the special path to avoid undefined behavior.
llvm::Type* op_type = irb_.getJType(op_jty, kAccurate);
llvm::Value* zero = irb_.getJZero(op_jty);
llvm::Value* neg_one = llvm::ConstantInt::getSigned(op_type, -1);
llvm::Value* result = irb_.CreateAlloca(op_type);
llvm::BasicBlock* eq_neg_one = CreateBasicBlockWithDexPC(dex_pc, "eq_neg_one");
llvm::BasicBlock* ne_neg_one = CreateBasicBlockWithDexPC(dex_pc, "ne_neg_one");
llvm::BasicBlock* neg_one_cont = CreateBasicBlockWithDexPC(dex_pc, "neg_one_cont");
llvm::Value* is_equal_neg_one = EmitConditionResult(divisor, neg_one, kCondBranch_EQ);
irb_.CreateCondBr(is_equal_neg_one, eq_neg_one, ne_neg_one, kUnlikely);
// If divisor == -1
irb_.SetInsertPoint(eq_neg_one);
llvm::Value* eq_result;
if (arithm == kIntArithm_Div) {
// We can just change from "dividend div -1" to "neg dividend".
// The sub don't care the sign/unsigned because of two's complement representation.
// And the behavior is what we want:
// -(2^n) (2^n)-1
// MININT < k <= MAXINT -> mul k -1 = -k
// MININT == k -> mul k -1 = k
//
// LLVM use sub to represent 'neg'
eq_result = irb_.CreateSub(zero, dividend);
} else {
// Everything modulo -1 will be 0.
eq_result = zero;
}
irb_.CreateStore(eq_result, result, kTBAAStackTemp);
irb_.CreateBr(neg_one_cont);
// If divisor != -1, just do the division.
irb_.SetInsertPoint(ne_neg_one);
llvm::Value* ne_result;
if (arithm == kIntArithm_Div) {
ne_result = irb_.CreateSDiv(dividend, divisor);
} else {
ne_result = irb_.CreateSRem(dividend, divisor);
}
irb_.CreateStore(ne_result, result, kTBAAStackTemp);
irb_.CreateBr(neg_one_cont);
irb_.SetInsertPoint(neg_one_cont);
return irb_.CreateLoad(result, kTBAAStackTemp);
}
void MethodCompiler::EmitInsn_IntShiftArithm(uint32_t dex_pc,
Instruction const* insn,
IntShiftArithmKind arithm,
JType op_jty,
bool is_2addr) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Value* src1_value;
llvm::Value* src2_value;
// NOTE: The 2nd operand of the shift arithmetic instruction is
// 32-bit integer regardless of the 1st operand.
if (is_2addr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate);
}
llvm::Value* result_value =
EmitIntShiftArithmResultComputation(dex_pc, src1_value, src2_value,
arithm, op_jty);
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::
EmitInsn_IntShiftArithmImmediate(uint32_t dex_pc,
Instruction const* insn,
IntShiftArithmKind arithm) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* imm_value = irb_.getInt32(dec_insn.vC);
llvm::Value* result_value =
EmitIntShiftArithmResultComputation(dex_pc, src_value, imm_value,
arithm, kInt);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value*
MethodCompiler::EmitIntShiftArithmResultComputation(uint32_t dex_pc,
llvm::Value* lhs,
llvm::Value* rhs,
IntShiftArithmKind arithm,
JType op_jty) {
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
if (op_jty == kInt) {
rhs = irb_.CreateAnd(rhs, 0x1f);
} else {
llvm::Value* masked_rhs = irb_.CreateAnd(rhs, 0x3f);
rhs = irb_.CreateZExt(masked_rhs, irb_.getJLongTy());
}
switch (arithm) {
case kIntArithm_Shl:
return irb_.CreateShl(lhs, rhs);
case kIntArithm_Shr:
return irb_.CreateAShr(lhs, rhs);
case kIntArithm_UShr:
return irb_.CreateLShr(lhs, rhs);
default:
LOG(FATAL) << "Unknown integer shift arithmetic kind: " << arithm;
return NULL;
}
}
void MethodCompiler::EmitInsn_RSubImmediate(uint32_t dex_pc,
Instruction const* insn) {
DecodedInstruction dec_insn(insn);
llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate);
llvm::Value* imm_value = irb_.getInt32(dec_insn.vC);
llvm::Value* result_value = irb_.CreateSub(imm_value, src_value);
EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
void MethodCompiler::EmitInsn_FPArithm(uint32_t dex_pc,
Instruction const* insn,
FPArithmKind arithm,
JType op_jty,
bool is_2addr) {
DecodedInstruction dec_insn(insn);
DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty;
llvm::Value* src1_value;
llvm::Value* src2_value;
if (is_2addr) {
src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
} else {
src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate);
src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate);
}
llvm::Value* result_value =
EmitFPArithmResultComputation(dex_pc, src1_value, src2_value, arithm);
EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value);
irb_.CreateBr(GetNextBasicBlock(dex_pc));
}
llvm::Value*
MethodCompiler::EmitFPArithmResultComputation(uint32_t dex_pc,
llvm::Value *lhs,
llvm::Value *rhs,
FPArithmKind arithm) {
switch (arithm) {
case kFPArithm_Add:
return irb_.CreateFAdd(lhs, rhs);
case kFPArithm_Sub:
return irb_.CreateFSub(lhs, rhs);
case kFPArithm_Mul:
return irb_.CreateFMul(lhs, rhs);
case kFPArithm_Div:
return irb_.CreateFDiv(lhs, rhs);
case kFPArithm_Rem:
return irb_.CreateFRem(lhs, rhs);
default:
LOG(FATAL) << "Unknown floating-point arithmetic kind: " << arithm;
return NULL;
}
}
void MethodCompiler::EmitGuard_DivZeroException(uint32_t dex_pc,
llvm::Value* denominator,
JType op_jty) {
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Constant* zero = irb_.getJZero(op_jty);
llvm::Value* equal_zero = irb_.CreateICmpEQ(denominator, zero);
llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "div0");
llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(equal_zero, block_exception, block_continue, kUnlikely);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall(irb_.GetRuntime(ThrowDivZeroException));
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
void MethodCompiler::EmitGuard_NullPointerException(uint32_t dex_pc,
llvm::Value* object) {
llvm::Value* equal_null = irb_.CreateICmpEQ(object, irb_.getJNull());
llvm::BasicBlock* block_exception =
CreateBasicBlockWithDexPC(dex_pc, "nullp");
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(equal_null, block_exception, block_continue, kUnlikely);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall(irb_.GetRuntime(ThrowNullPointerException), irb_.getInt32(dex_pc));
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
llvm::Value* MethodCompiler::EmitLoadDexCacheAddr(MemberOffset offset) {
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
return irb_.LoadFromObjectOffset(method_object_addr,
offset.Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
}
llvm::Value* MethodCompiler::
EmitLoadDexCacheStaticStorageFieldAddr(uint32_t type_idx) {
llvm::Value* static_storage_dex_cache_addr =
EmitLoadDexCacheAddr(Method::DexCacheInitializedStaticStorageOffset());
llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx);
return EmitArrayGEP(static_storage_dex_cache_addr, type_idx_value, kObject);
}
llvm::Value* MethodCompiler::
EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx) {
llvm::Value* resolved_type_dex_cache_addr =
EmitLoadDexCacheAddr(Method::DexCacheResolvedTypesOffset());
llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx);
return EmitArrayGEP(resolved_type_dex_cache_addr, type_idx_value, kObject);
}
llvm::Value* MethodCompiler::
EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx) {
llvm::Value* resolved_method_dex_cache_addr =
EmitLoadDexCacheAddr(Method::DexCacheResolvedMethodsOffset());
llvm::Value* method_idx_value = irb_.getPtrEquivInt(method_idx);
return EmitArrayGEP(resolved_method_dex_cache_addr, method_idx_value, kObject);
}
llvm::Value* MethodCompiler::
EmitLoadDexCacheStringFieldAddr(uint32_t string_idx) {
llvm::Value* string_dex_cache_addr =
EmitLoadDexCacheAddr(Method::DexCacheStringsOffset());
llvm::Value* string_idx_value = irb_.getPtrEquivInt(string_idx);
return EmitArrayGEP(string_dex_cache_addr, string_idx_value, kObject);
}
CompiledMethod *MethodCompiler::Compile() {
// TODO: Use high-level IR to do this
// Compute method info
ComputeMethodInfo();
// Code generation
CreateFunction();
EmitPrologue();
EmitInstructions();
EmitPrologueLastBranch();
// Verify the generated bitcode
VERIFY_LLVM_FUNCTION(*func_);
// Add the memory usage approximation of the compilation unit
cunit_->AddMemUsageApproximation(code_item_->insns_size_in_code_units_ * 900);
// NOTE: From statistics, the bitcode size is 4.5 times bigger than the
// Dex file. Besides, we have to convert the code unit into bytes.
// Thus, we got our magic number 9.
CompiledMethod* compiled_method =
new CompiledMethod(cunit_->GetInstructionSet(),
cunit_->GetElfIndex(),
elf_func_idx_);
cunit_->RegisterCompiledMethod(func_, compiled_method);
return compiled_method;
}
llvm::Value* MethodCompiler::EmitLoadMethodObjectAddr() {
return func_->arg_begin();
}
void MethodCompiler::EmitBranchExceptionLandingPad(uint32_t dex_pc) {
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
irb_.CreateBr(lpad);
} else {
irb_.CreateBr(GetUnwindBasicBlock());
}
}
void MethodCompiler::EmitGuard_ExceptionLandingPad(uint32_t dex_pc, bool can_skip_unwind) {
llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc);
Instruction const* insn = Instruction::At(code_item_->insns_ + dex_pc);
if (lpad == NULL && can_skip_unwind &&
IsInstructionDirectToReturn(dex_pc + insn->SizeInCodeUnits())) {
return;
}
llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending();
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
if (lpad) {
irb_.CreateCondBr(exception_pending, lpad, block_cont, kUnlikely);
} else {
irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont, kUnlikely);
}
irb_.SetInsertPoint(block_cont);
}
void MethodCompiler::EmitGuard_GarbageCollectionSuspend() {
// Loop suspend will be added by our llvm pass.
if (!method_info_.has_invoke) {
return;
}
irb_.Runtime().EmitTestSuspend();
}
llvm::BasicBlock* MethodCompiler::
CreateBasicBlockWithDexPC(uint32_t dex_pc, char const* postfix) {
std::string name;
#if !defined(NDEBUG)
if (postfix) {
StringAppendF(&name, "B%04x.%s", dex_pc, postfix);
} else {
StringAppendF(&name, "B%04x", dex_pc);
}
#endif
return llvm::BasicBlock::Create(*context_, name, func_);
}
llvm::BasicBlock* MethodCompiler::GetBasicBlock(uint32_t dex_pc) {
DCHECK(dex_pc < code_item_->insns_size_in_code_units_);
llvm::BasicBlock* basic_block = basic_blocks_[dex_pc];
if (!basic_block) {
basic_block = CreateBasicBlockWithDexPC(dex_pc);
basic_blocks_[dex_pc] = basic_block;
}
return basic_block;
}
llvm::BasicBlock*
MethodCompiler::GetNextBasicBlock(uint32_t dex_pc) {
Instruction const* insn = Instruction::At(code_item_->insns_ + dex_pc);
return GetBasicBlock(dex_pc + insn->SizeInCodeUnits());
}
int32_t MethodCompiler::GetTryItemOffset(uint32_t dex_pc) {
// TODO: Since we are emitting the dex instructions in ascending order
// w.r.t. address, we can cache the lastest try item offset so that we
// don't have to do binary search for every query.
int32_t min = 0;
int32_t max = code_item_->tries_size_ - 1;
while (min <= max) {
int32_t mid = min + (max - min) / 2;
DexFile::TryItem const* ti = DexFile::GetTryItems(*code_item_, mid);
uint32_t start = ti->start_addr_;
uint32_t end = start + ti->insn_count_;
if (dex_pc < start) {
max = mid - 1;
} else if (dex_pc >= end) {
min = mid + 1;
} else {
return mid; // found
}
}
return -1; // not found
}
llvm::BasicBlock* MethodCompiler::GetLandingPadBasicBlock(uint32_t dex_pc) {
// Find the try item for this address in this method
int32_t ti_offset = GetTryItemOffset(dex_pc);
if (ti_offset == -1) {
return NULL; // No landing pad is available for this address.
}
// Check for the existing landing pad basic block
DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset));
llvm::BasicBlock* block_lpad = basic_block_landing_pads_[ti_offset];
if (block_lpad) {
// We have generated landing pad for this try item already. Return the
// same basic block.
return block_lpad;
}
// Get try item from code item
DexFile::TryItem const* ti = DexFile::GetTryItems(*code_item_, ti_offset);
std::string lpadname;
#if !defined(NDEBUG)
StringAppendF(&lpadname, "lpad%d_%04x_to_%04x", ti_offset, ti->start_addr_, ti->handler_off_);
#endif
// Create landing pad basic block
block_lpad = llvm::BasicBlock::Create(*context_, lpadname, func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(block_lpad);
// Find catch block with matching type
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* ti_offset_value = irb_.getInt32(ti_offset);
llvm::Value* catch_handler_index_value =
irb_.CreateCall2(irb_.GetRuntime(FindCatchBlock),
method_object_addr, ti_offset_value);
// Switch instruction (Go to unwind basic block by default)
llvm::SwitchInst* sw =
irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock());
// Cases with matched catch block
CatchHandlerIterator iter(*code_item_, ti->start_addr_);
for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) {
sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress()));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
// Cache this landing pad
DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset));
basic_block_landing_pads_[ti_offset] = block_lpad;
return block_lpad;
}
llvm::BasicBlock* MethodCompiler::GetUnwindBasicBlock() {
// Check the existing unwinding baisc block block
if (basic_block_unwind_ != NULL) {
return basic_block_unwind_;
}
// Create new basic block for unwinding
basic_block_unwind_ =
llvm::BasicBlock::Create(*context_, "exception_unwind", func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(basic_block_unwind_);
// Pop the shadow frame
EmitPopShadowFrame();
// Emit the code to return default value (zero) for the given return type.
char ret_shorty = oat_compilation_unit_->GetShorty()[0];
if (ret_shorty == 'V') {
irb_.CreateRetVoid();
} else {
irb_.CreateRet(irb_.getJZero(ret_shorty));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
return basic_block_unwind_;
}
llvm::Value* MethodCompiler::AllocDalvikReg(RegCategory cat, const std::string& name) {
// Get reg_type and reg_name from DalvikReg
llvm::Type* reg_type = DalvikReg::GetRegCategoryEquivSizeTy(irb_, cat);
std::string reg_name;
#if !defined(NDEBUG)
StringAppendF(&reg_name, "%c%s", DalvikReg::GetRegCategoryNamePrefix(cat), name.c_str());
#endif
// Save current IR builder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(basic_block_alloca_);
// Alloca
llvm::Value* reg_addr = irb_.CreateAlloca(reg_type, 0, reg_name);
// Restore IRBuilder insert point
irb_.restoreIP(irb_ip_original);
DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL));
return reg_addr;
}
llvm::Value* MethodCompiler::GetShadowFrameEntry(uint32_t reg_idx) {
if (reg_to_shadow_frame_index_[reg_idx] == -1) {
// This register dosen't need ShadowFrame entry
return NULL;
}
if (!method_info_.need_shadow_frame_entry) {
return NULL;
}
std::string reg_name;
#if !defined(NDEBUG)
StringAppendF(&reg_name, "s%u", reg_idx);
#endif
// Save current IR builder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(basic_block_shadow_frame_);
llvm::Value* gep_index[] = {
irb_.getInt32(0), // No pointer displacement
irb_.getInt32(1), // SIRT
irb_.getInt32(reg_to_shadow_frame_index_[reg_idx]) // Pointer field
};
llvm::Value* reg_addr = irb_.CreateGEP(shadow_frame_, gep_index, reg_name);
// Restore IRBuilder insert point
irb_.restoreIP(irb_ip_original);
DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL));
return reg_addr;
}
void MethodCompiler::EmitPushShadowFrame(bool is_inline) {
if (!method_info_.need_shadow_frame) {
return;
}
DCHECK(shadow_frame_ != NULL);
DCHECK(old_shadow_frame_ != NULL);
// Get method object
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
// Push the shadow frame
llvm::Value* shadow_frame_upcast =
irb_.CreateConstGEP2_32(shadow_frame_, 0, 0);
llvm::Value* result;
if (is_inline) {
result = irb_.Runtime().EmitPushShadowFrame(shadow_frame_upcast, method_object_addr,
shadow_frame_size_);
} else {
DCHECK(shadow_frame_size_ == 0);
result = irb_.Runtime().EmitPushShadowFrameNoInline(shadow_frame_upcast, method_object_addr,
shadow_frame_size_);
}
irb_.CreateStore(result, old_shadow_frame_, kTBAARegister);
}
void MethodCompiler::EmitPopShadowFrame() {
if (!method_info_.need_shadow_frame) {
return;
}
DCHECK(old_shadow_frame_ != NULL);
if (method_info_.lazy_push_shadow_frame) {
llvm::BasicBlock* bb_pop = llvm::BasicBlock::Create(*context_, "pop", func_);
llvm::BasicBlock* bb_cont = llvm::BasicBlock::Create(*context_, "cont", func_);
llvm::Value* need_pop = irb_.CreateLoad(already_pushed_shadow_frame_, kTBAARegister);
irb_.CreateCondBr(need_pop, bb_pop, bb_cont, kUnlikely);
irb_.SetInsertPoint(bb_pop);
irb_.Runtime().EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister));
irb_.CreateBr(bb_cont);
irb_.SetInsertPoint(bb_cont);
} else {
irb_.Runtime().EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister));
}
}
void MethodCompiler::EmitUpdateDexPC(uint32_t dex_pc) {
if (!method_info_.need_shadow_frame) {
return;
}
irb_.StoreToObjectOffset(shadow_frame_,
ShadowFrame::DexPCOffset(),
irb_.getInt32(dex_pc),
kTBAAShadowFrame);
// Lazy pushing shadow frame
if (method_info_.lazy_push_shadow_frame) {
llvm::BasicBlock* bb_push = CreateBasicBlockWithDexPC(dex_pc, "push");
llvm::BasicBlock* bb_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
llvm::Value* no_need_push = irb_.CreateLoad(already_pushed_shadow_frame_, kTBAARegister);
irb_.CreateCondBr(no_need_push, bb_cont, bb_push, kLikely);
irb_.SetInsertPoint(bb_push);
EmitPushShadowFrame(false);
irb_.CreateStore(irb_.getTrue(), already_pushed_shadow_frame_, kTBAARegister);
irb_.CreateBr(bb_cont);
irb_.SetInsertPoint(bb_cont);
}
}
llvm::Value* MethodCompiler::EmitLoadDalvikReg(uint32_t reg_idx, JType jty,
JTypeSpace space) {
return regs_[reg_idx]->GetValue(jty, space);
}
llvm::Value* MethodCompiler::EmitLoadDalvikReg(uint32_t reg_idx, char shorty,
JTypeSpace space) {
return EmitLoadDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space);
}
void MethodCompiler::EmitStoreDalvikReg(uint32_t reg_idx, JType jty,
JTypeSpace space, llvm::Value* new_value) {
regs_[reg_idx]->SetValue(jty, space, new_value);
if (jty == kObject && shadow_frame_entries_[reg_idx] != NULL) {
irb_.CreateStore(new_value, shadow_frame_entries_[reg_idx], kTBAAShadowFrame);
}
}
void MethodCompiler::EmitStoreDalvikReg(uint32_t reg_idx, char shorty,
JTypeSpace space, llvm::Value* new_value) {
EmitStoreDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space, new_value);
}
llvm::Value* MethodCompiler::EmitLoadDalvikRetValReg(JType jty, JTypeSpace space) {
return retval_reg_->GetValue(jty, space);
}
llvm::Value* MethodCompiler::EmitLoadDalvikRetValReg(char shorty, JTypeSpace space) {
return EmitLoadDalvikRetValReg(GetJTypeFromShorty(shorty), space);
}
void MethodCompiler::EmitStoreDalvikRetValReg(JType jty, JTypeSpace space,
llvm::Value* new_value) {
retval_reg_->SetValue(jty, space, new_value);
}
void MethodCompiler::EmitStoreDalvikRetValReg(char shorty, JTypeSpace space,
llvm::Value* new_value) {
EmitStoreDalvikRetValReg(GetJTypeFromShorty(shorty), space, new_value);
}
// TODO: Use high-level IR to do this
bool MethodCompiler::EmitInlineJavaIntrinsic(const std::string& callee_method_name,
const std::vector<llvm::Value*>& args,
llvm::BasicBlock* after_invoke) {
if (callee_method_name == "char java.lang.String.charAt(int)") {
return EmitInlinedStringCharAt(args, after_invoke);
}
if (callee_method_name == "int java.lang.String.length()") {
return EmitInlinedStringLength(args, after_invoke);
}
if (callee_method_name == "int java.lang.String.indexOf(int, int)") {
return EmitInlinedStringIndexOf(args, after_invoke, false /* base 0 */);
}
if (callee_method_name == "int java.lang.String.indexOf(int)") {
return EmitInlinedStringIndexOf(args, after_invoke, true /* base 0 */);
}
if (callee_method_name == "int java.lang.String.compareTo(java.lang.String)") {
return EmitInlinedStringCompareTo(args, after_invoke);
}
return true;
}
bool MethodCompiler::EmitInlinedStringCharAt(const std::vector<llvm::Value*>& args,
llvm::BasicBlock* after_invoke) {
DCHECK_EQ(args.size(), 3U) <<
"char java.lang.String.charAt(int) has 3 args: method, this, char_index";
llvm::Value* this_object = args[1];
llvm::Value* char_index = args[2];
llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "CharAtRetry", func_);
llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "CharAtCont", func_);
llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object,
String::CountOffset().Int32Value(),
irb_.getJIntTy(),
kTBAAConstJObject);
// Two's complement, so we can use only one "less than" to check "in bounds"
llvm::Value* in_bounds = irb_.CreateICmpULT(char_index, string_count);
irb_.CreateCondBr(in_bounds, block_cont, block_retry, kLikely);
irb_.SetInsertPoint(block_cont);
llvm::Value* string_offset = irb_.LoadFromObjectOffset(this_object,
String::OffsetOffset().Int32Value(),
irb_.getJIntTy(),
kTBAAConstJObject);
llvm::Value* string_value = irb_.LoadFromObjectOffset(this_object,
String::ValueOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
// index_value = string.offset + char_index
llvm::Value* index_value = irb_.CreateAdd(string_offset, char_index);
// array_elem_value = string.value[index_value]
llvm::Value* array_elem_addr = EmitArrayGEP(string_value, index_value, kChar);
llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, kChar);
EmitStoreDalvikRetValReg(kChar, kArray, array_elem_value);
irb_.CreateBr(after_invoke);
irb_.SetInsertPoint(block_retry);
return true;
}
bool MethodCompiler::EmitInlinedStringLength(const std::vector<llvm::Value*>& args,
llvm::BasicBlock* after_invoke) {
DCHECK_EQ(args.size(), 2U) <<
"int java.lang.String.length() has 2 args: method, this";
llvm::Value* this_object = args[1];
llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object,
String::CountOffset().Int32Value(),
irb_.getJIntTy(),
kTBAAConstJObject);
EmitStoreDalvikRetValReg(kInt, kAccurate, string_count);
irb_.CreateBr(after_invoke);
return false;
}
bool MethodCompiler::EmitInlinedStringIndexOf(const std::vector<llvm::Value*>& args,
llvm::BasicBlock* after_invoke,
bool zero_based) {
// TODO: Don't generate target specific bitcode, using intrinsic to delay to codegen.
if (compiler_->GetInstructionSet() == kArm || compiler_->GetInstructionSet() == kThumb2) {
DCHECK_EQ(args.size(), (zero_based ? 3U : 4U)) <<
"int java.lang.String.indexOf(int, int = 0) has 3~4 args: method, this, char, start";
llvm::Value* this_object = args[1];
llvm::Value* char_target = args[2];
llvm::Value* start_index = (zero_based ? irb_.getJInt(0) : args[3]);
llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "IndexOfRetry", func_);
llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "IndexOfCont", func_);
llvm::Value* slowpath = irb_.CreateICmpSGT(char_target, irb_.getJInt(0xFFFF));
irb_.CreateCondBr(slowpath, block_retry, block_cont, kUnlikely);
irb_.SetInsertPoint(block_cont);
llvm::Type* args_type[] = { irb_.getJObjectTy(), irb_.getJIntTy(), irb_.getJIntTy() };
llvm::FunctionType* func_ty = llvm::FunctionType::get(irb_.getJIntTy(), args_type, false);
llvm::Value* func =
irb_.Runtime().EmitLoadFromThreadOffset(ENTRYPOINT_OFFSET(pIndexOf),
func_ty->getPointerTo(),
kTBAAConstJObject);
llvm::Value* result = irb_.CreateCall3(func, this_object, char_target, start_index);
EmitStoreDalvikRetValReg(kInt, kAccurate, result);
irb_.CreateBr(after_invoke);
irb_.SetInsertPoint(block_retry);
}
return true;
}
bool MethodCompiler::EmitInlinedStringCompareTo(const std::vector<llvm::Value*>& args,
llvm::BasicBlock* after_invoke) {
// TODO: Don't generate target specific bitcode, using intrinsic to delay to codegen.
if (compiler_->GetInstructionSet() == kArm || compiler_->GetInstructionSet() == kThumb2) {
DCHECK_EQ(args.size(), 3U) <<
"int java.lang.String.compareTo(java.lang.String) has 3 args: method, this, cmpto";
llvm::Value* this_object = args[1];
llvm::Value* cmp_object = args[2];
llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "CompareToRetry", func_);
llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "CompareToCont", func_);
llvm::Value* is_null = irb_.CreateICmpEQ(cmp_object, irb_.getJNull());
irb_.CreateCondBr(is_null, block_retry, block_cont, kUnlikely);
irb_.SetInsertPoint(block_cont);
llvm::Type* args_type[] = { irb_.getJObjectTy(), irb_.getJObjectTy() };
llvm::FunctionType* func_ty = llvm::FunctionType::get(irb_.getJIntTy(), args_type, false);
llvm::Value* func =
irb_.Runtime().EmitLoadFromThreadOffset(ENTRYPOINT_OFFSET(pStringCompareTo),
func_ty->getPointerTo(),
kTBAAConstJObject);
llvm::Value* result = irb_.CreateCall2(func, this_object, cmp_object);
EmitStoreDalvikRetValReg(kInt, kAccurate, result);
irb_.CreateBr(after_invoke);
irb_.SetInsertPoint(block_retry);
}
return true;
}
bool MethodCompiler::IsInstructionDirectToReturn(uint32_t dex_pc) {
for (int i = 0; i < 8; ++i) { // Trace at most 8 instructions.
if (dex_pc >= code_item_->insns_size_in_code_units_) {
return false;
}
Instruction const* insn = Instruction::At(code_item_->insns_ + dex_pc);
if (insn->IsReturn()) {
return true;
}
// Is throw, switch, invoke or conditional branch.
if (insn->IsThrow() || insn->IsSwitch() || insn->IsInvoke() ||
(insn->IsBranch() && !insn->IsUnconditional())) {
return false;
}
switch (insn->Opcode()) {
default:
dex_pc += insn->SizeInCodeUnits();
break;
// This instruction will remove the exception. Consider as a side effect.
case Instruction::MOVE_EXCEPTION:
return false;
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
{
DecodedInstruction dec_insn(insn);
int32_t branch_offset = dec_insn.vA;
dex_pc += branch_offset;
}
break;
}
}
return false;
}
// TODO: Use high-level IR to do this
void MethodCompiler::ComputeMethodInfo() {
// If this method is static, we set the "this" register index to -1. So we don't worry about this
// method is static or not in the following comparison.
int64_t this_reg_idx = (oat_compilation_unit_->IsStatic()) ?
(-1) :
(code_item_->registers_size_ - code_item_->ins_size_);
bool has_invoke = false;
bool may_have_loop = false;
bool may_throw_exception = false;
bool assume_this_non_null = false;
std::vector<bool>& set_to_another_object = method_info_.set_to_another_object;
set_to_another_object.resize(code_item_->registers_size_, false);
Instruction const* insn;
for (uint32_t dex_pc = 0;
dex_pc < code_item_->insns_size_in_code_units_;
dex_pc += insn->SizeInCodeUnits()) {
insn = Instruction::At(code_item_->insns_ + dex_pc);
DecodedInstruction dec_insn(insn);
switch (insn->Opcode()) {
case Instruction::NOP:
break;
case Instruction::MOVE:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_16:
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_FROM16:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_WIDE:
break;
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_FROM16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_RESULT_OBJECT:
case Instruction::MOVE_EXCEPTION:
set_to_another_object[dec_insn.vA] = true;
break;
case Instruction::RETURN_VOID:
case Instruction::RETURN:
case Instruction::RETURN_WIDE:
case Instruction::RETURN_OBJECT:
break;
case Instruction::CONST_4:
case Instruction::CONST_16:
case Instruction::CONST:
case Instruction::CONST_HIGH16:
set_to_another_object[dec_insn.vA] = true;
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
case Instruction::CONST_WIDE:
case Instruction::CONST_WIDE_HIGH16:
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
// TODO: Will the ResolveString throw exception?
if (!compiler_->CanAssumeStringIsPresentInDexCache(dex_cache_, dec_insn.vB)) {
may_throw_exception = true;
}
set_to_another_object[dec_insn.vA] = true;
break;
case Instruction::CONST_CLASS:
may_throw_exception = true;
set_to_another_object[dec_insn.vA] = true;
break;
case Instruction::MONITOR_ENTER:
case Instruction::MONITOR_EXIT:
case Instruction::CHECK_CAST:
may_throw_exception = true;
break;
case Instruction::ARRAY_LENGTH:
may_throw_exception = true;
break;
case Instruction::INSTANCE_OF:
case Instruction::NEW_INSTANCE:
case Instruction::NEW_ARRAY:
may_throw_exception = true;
set_to_another_object[dec_insn.vA] = true;
break;
case Instruction::FILLED_NEW_ARRAY:
case Instruction::FILLED_NEW_ARRAY_RANGE:
case Instruction::FILL_ARRAY_DATA:
case Instruction::THROW:
may_throw_exception = true;
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
{
int32_t branch_offset = dec_insn.vA;
if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) {
may_have_loop = true;
}
}
break;
case Instruction::PACKED_SWITCH:
case Instruction::SPARSE_SWITCH:
case Instruction::CMPL_FLOAT:
case Instruction::CMPG_FLOAT:
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
case Instruction::CMP_LONG:
break;
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE:
{
int32_t branch_offset = dec_insn.vC;
if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) {
may_have_loop = true;
}
}
break;
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ:
{
int32_t branch_offset = dec_insn.vB;
if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) {
may_have_loop = true;
}
}
break;
case Instruction::AGET:
case Instruction::AGET_WIDE:
case Instruction::AGET_OBJECT:
case Instruction::AGET_BOOLEAN:
case Instruction::AGET_BYTE:
case Instruction::AGET_CHAR:
case Instruction::AGET_SHORT:
may_throw_exception = true;
if (insn->Opcode() == Instruction::AGET_OBJECT) {
set_to_another_object[dec_insn.vA] = true;
}
break;
case Instruction::APUT:
case Instruction::APUT_WIDE:
case Instruction::APUT_OBJECT:
case Instruction::APUT_BOOLEAN:
case Instruction::APUT_BYTE:
case Instruction::APUT_CHAR:
case Instruction::APUT_SHORT:
may_throw_exception = true;
break;
case Instruction::IGET:
case Instruction::IGET_WIDE:
case Instruction::IGET_OBJECT:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT:
{
if (insn->Opcode() == Instruction::IGET_OBJECT) {
set_to_another_object[dec_insn.vA] = true;
}
uint32_t reg_idx = dec_insn.vB;
uint32_t field_idx = dec_insn.vC;
int field_offset;
bool is_volatile;
bool is_fast_path = compiler_->ComputeInstanceFieldInfo(
field_idx, oat_compilation_unit_, field_offset, is_volatile, false);
if (!is_fast_path) {
may_throw_exception = true;
} else {
// Fast-path, may throw NullPointerException
if (reg_idx == this_reg_idx) {
// We assume "this" will not be null at first.
assume_this_non_null = true;
} else {
may_throw_exception = true;
}
}
}
break;
case Instruction::IPUT:
case Instruction::IPUT_WIDE:
case Instruction::IPUT_OBJECT:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT:
{
uint32_t reg_idx = dec_insn.vB;
uint32_t field_idx = dec_insn.vC;
int field_offset;
bool is_volatile;
bool is_fast_path = compiler_->ComputeInstanceFieldInfo(
field_idx, oat_compilation_unit_, field_offset, is_volatile, true);
if (!is_fast_path) {
may_throw_exception = true;
} else {
// Fast-path, may throw NullPointerException
if (reg_idx == this_reg_idx) {
// We assume "this" will not be null at first.
assume_this_non_null = true;
} else {
may_throw_exception = true;
}
}
}
break;
case Instruction::SGET:
case Instruction::SGET_WIDE:
case Instruction::SGET_OBJECT:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT:
{
if (insn->Opcode() == Instruction::AGET_OBJECT) {
set_to_another_object[dec_insn.vA] = true;
}
uint32_t field_idx = dec_insn.vB;
int field_offset;
int ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_fast_path = compiler_->ComputeStaticFieldInfo(
field_idx, oat_compilation_unit_, field_offset, ssb_index,
is_referrers_class, is_volatile, false);
if (!is_fast_path || !is_referrers_class) {
may_throw_exception = true;
}
}
break;
case Instruction::SPUT:
case Instruction::SPUT_WIDE:
case Instruction::SPUT_OBJECT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT:
{
uint32_t field_idx = dec_insn.vB;
int field_offset;
int ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_fast_path = compiler_->ComputeStaticFieldInfo(
field_idx, oat_compilation_unit_, field_offset, ssb_index,
is_referrers_class, is_volatile, true);
if (!is_fast_path || !is_referrers_class) {
may_throw_exception = true;
}
}
break;
case Instruction::INVOKE_VIRTUAL:
case Instruction::INVOKE_SUPER:
case Instruction::INVOKE_DIRECT:
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_INTERFACE:
case Instruction::INVOKE_VIRTUAL_RANGE:
case Instruction::INVOKE_SUPER_RANGE:
case Instruction::INVOKE_DIRECT_RANGE:
case Instruction::INVOKE_STATIC_RANGE:
case Instruction::INVOKE_INTERFACE_RANGE:
has_invoke = true;
may_throw_exception = true;
break;
case Instruction::NEG_INT:
case Instruction::NOT_INT:
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
case Instruction::NEG_FLOAT:
case Instruction::NEG_DOUBLE:
case Instruction::INT_TO_LONG:
case Instruction::INT_TO_FLOAT:
case Instruction::INT_TO_DOUBLE:
case Instruction::LONG_TO_INT:
case Instruction::LONG_TO_FLOAT:
case Instruction::LONG_TO_DOUBLE:
case Instruction::FLOAT_TO_INT:
case Instruction::FLOAT_TO_LONG:
case Instruction::FLOAT_TO_DOUBLE:
case Instruction::DOUBLE_TO_INT:
case Instruction::DOUBLE_TO_LONG:
case Instruction::DOUBLE_TO_FLOAT:
case Instruction::INT_TO_BYTE:
case Instruction::INT_TO_CHAR:
case Instruction::INT_TO_SHORT:
case Instruction::ADD_INT:
case Instruction::SUB_INT:
case Instruction::MUL_INT:
case Instruction::AND_INT:
case Instruction::OR_INT:
case Instruction::XOR_INT:
case Instruction::SHL_INT:
case Instruction::SHR_INT:
case Instruction::USHR_INT:
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::MUL_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
case Instruction::ADD_INT_2ADDR:
case Instruction::SUB_INT_2ADDR:
case Instruction::MUL_INT_2ADDR:
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT_2ADDR:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT_2ADDR:
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::MUL_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR:
break;
case Instruction::DIV_INT:
case Instruction::REM_INT:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::DIV_INT_2ADDR:
case Instruction::REM_INT_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
may_throw_exception = true;
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR:
break;
case Instruction::ADD_INT_LIT16:
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT16:
case Instruction::MUL_INT_LIT8:
case Instruction::AND_INT_LIT16:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT16:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT16:
case Instruction::XOR_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8:
break;
case Instruction::DIV_INT_LIT16:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT16:
case Instruction::REM_INT_LIT8:
if (dec_insn.vC == 0) {
may_throw_exception = true;
}
break;
case Instruction::THROW_VERIFICATION_ERROR:
may_throw_exception = true;
break;
case Instruction::UNUSED_3E:
case Instruction::UNUSED_3F:
case Instruction::UNUSED_40:
case Instruction::UNUSED_41:
case Instruction::UNUSED_42:
case Instruction::UNUSED_43:
case Instruction::UNUSED_73:
case Instruction::UNUSED_79:
case Instruction::UNUSED_7A:
case Instruction::UNUSED_E3:
case Instruction::UNUSED_E4:
case Instruction::UNUSED_E5:
case Instruction::UNUSED_E6:
case Instruction::UNUSED_E7:
case Instruction::UNUSED_E8:
case Instruction::UNUSED_E9:
case Instruction::UNUSED_EA:
case Instruction::UNUSED_EB:
case Instruction::UNUSED_EC:
case Instruction::UNUSED_EE:
case Instruction::UNUSED_EF:
case Instruction::UNUSED_F0:
case Instruction::UNUSED_F1:
case Instruction::UNUSED_F2:
case Instruction::UNUSED_F3:
case Instruction::UNUSED_F4:
case Instruction::UNUSED_F5:
case Instruction::UNUSED_F6:
case Instruction::UNUSED_F7:
case Instruction::UNUSED_F8:
case Instruction::UNUSED_F9:
case Instruction::UNUSED_FA:
case Instruction::UNUSED_FB:
case Instruction::UNUSED_FC:
case Instruction::UNUSED_FD:
case Instruction::UNUSED_FE:
case Instruction::UNUSED_FF:
LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode();
break;
}
}
method_info_.this_reg_idx = this_reg_idx;
// According to the statistics, there are few methods that modify the "this" pointer. So this is a
// simple way to avoid data flow analysis. After we have a high-level IR before IRBuilder, we
// should remove this trick.
method_info_.this_will_not_be_null =
(oat_compilation_unit_->IsStatic()) ? (true) : (!set_to_another_object[this_reg_idx]);
method_info_.has_invoke = has_invoke;
// If this method has loop or invoke instruction, it may suspend. Thus we need a shadow frame entry
// for GC.
method_info_.need_shadow_frame_entry = has_invoke || may_have_loop;
// If this method may throw an exception, we need a shadow frame for stack trace (dexpc).
method_info_.need_shadow_frame = method_info_.need_shadow_frame_entry || may_throw_exception ||
(assume_this_non_null && !method_info_.this_will_not_be_null);
// If can only throw exception, but can't suspend check (no loop, no invoke),
// then there is no shadow frame entry. Only Shadow frame is needed.
method_info_.lazy_push_shadow_frame =
method_info_.need_shadow_frame && !method_info_.need_shadow_frame_entry;
}
} // namespace compiler_llvm
} // namespace art