blob: 5fa5352db50b379de7ee45dc4a620e464343e77e [file] [log] [blame]
#!/usr/bin/python3
#
# Copyright 2017 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from errno import * # pylint: disable=wildcard-import,g-importing-member
import itertools
import os
from socket import * # pylint: disable=wildcard-import,g-importing-member
import threading
import time
import unittest
import net_test
from scapy import all as scapy
from tun_twister import TapTwister
import util
import xfrm
import xfrm_base
import xfrm_test
ANY_KVER = net_test.LINUX_ANY_VERSION
# List of encryption algorithms for use in ParamTests.
CRYPT_ALGOS = [
(xfrm.XfrmAlgo((xfrm.XFRM_EALG_CBC_AES, 128)), ANY_KVER),
(xfrm.XfrmAlgo((xfrm.XFRM_EALG_CBC_AES, 192)), ANY_KVER),
(xfrm.XfrmAlgo((xfrm.XFRM_EALG_CBC_AES, 256)), ANY_KVER),
# RFC 3686 specifies that key length must be 128, 192 or 256 bits, with
# an additional 4 bytes (32 bits) of nonce. A fresh nonce value MUST be
# assigned for each SA.
# CTR-AES is enforced since kernel version 5.8
(xfrm.XfrmAlgo((xfrm.XFRM_EALG_CTR_AES, 128+32)), (5, 8)),
(xfrm.XfrmAlgo((xfrm.XFRM_EALG_CTR_AES, 192+32)), (5, 8)),
(xfrm.XfrmAlgo((xfrm.XFRM_EALG_CTR_AES, 256+32)), (5, 8)),
]
# List of auth algorithms for use in ParamTests.
AUTH_ALGOS = [
# RFC 4868 specifies that the only supported truncation length is half the
# hash size.
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_MD5, 128, 96)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA1, 160, 96)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA256, 256, 128)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA384, 384, 192)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA512, 512, 256)), ANY_KVER),
# Test larger truncation lengths for good measure.
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_MD5, 128, 128)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA1, 160, 160)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA256, 256, 256)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA384, 384, 384)), ANY_KVER),
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_HMAC_SHA512, 512, 512)), ANY_KVER),
# RFC 3566 specifies that the only supported truncation length
# is 96 bits.
# XCBC-AES is enforced since kernel version 5.8
(xfrm.XfrmAlgoAuth((xfrm.XFRM_AALG_AUTH_XCBC_AES, 128, 96)), (5, 8)),
]
# List of aead algorithms for use in ParamTests.
AEAD_ALGOS = [
# RFC 4106 specifies that key length must be 128, 192 or 256 bits,
# with an additional 4 bytes (32 bits) of salt. The salt must be unique
# for each new SA using the same key.
# RFC 4106 specifies that ICV length must be 8, 12, or 16 bytes
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 128+32, 8*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 128+32, 12*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 128+32, 16*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 192+32, 8*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 192+32, 12*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 192+32, 16*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 256+32, 8*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 256+32, 12*8)), ANY_KVER),
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_GCM_AES, 256+32, 16*8)), ANY_KVER),
# RFC 7634 specifies that key length must be 256 bits, with an additional
# 4 bytes (32 bits) of nonce. A fresh nonce value MUST be assigned for
# each SA. RFC 7634 also specifies that ICV length must be 16 bytes.
# ChaCha20-Poly1305 is enforced since kernel version 5.8
(xfrm.XfrmAlgoAead((xfrm.XFRM_AEAD_CHACHA20_POLY1305, 256+32, 16*8)),
(5, 8)),
]
def GenerateKey(key_len):
if key_len % 8 != 0:
raise ValueError("Invalid key length in bits: " + str(key_len))
return os.urandom(key_len // 8)
# Does the kernel support this algorithm?
def HaveAlgo(crypt_algo, auth_algo, aead_algo):
try:
test_xfrm = xfrm.Xfrm()
test_xfrm.FlushSaInfo()
test_xfrm.FlushPolicyInfo()
test_xfrm.AddSaInfo(
src=xfrm_test.TEST_ADDR1,
dst=xfrm_test.TEST_ADDR2,
spi=xfrm_test.TEST_SPI,
mode=xfrm.XFRM_MODE_TRANSPORT,
reqid=100,
encryption=(crypt_algo,
GenerateKey(crypt_algo.key_len)) if crypt_algo else None,
auth_trunc=(auth_algo,
GenerateKey(auth_algo.key_len)) if auth_algo else None,
aead=(aead_algo, GenerateKey(aead_algo.key_len)) if aead_algo else None,
encap=None,
mark=None,
output_mark=None)
test_xfrm.FlushSaInfo()
test_xfrm.FlushPolicyInfo()
return True
except IOError as err:
if err.errno == ENOSYS:
return False
else:
print("Unexpected error:", err.errno)
return True
# Dictionary to record the algorithm state. Mark the state True if this
# algorithm is enforced or enabled on this kernel. Otherwise, mark it
# False.
algoState = {}
def AlgoEnforcedOrEnabled(crypt, auth, aead, target_algo, target_kernel):
if algoState.get(target_algo) is None:
algoState[target_algo] = (net_test.LINUX_VERSION >= target_kernel
or HaveAlgo(crypt, auth, aead))
return algoState.get(target_algo)
# Return true if this algorithm should be enforced or is enabled on this kernel
def AuthEnforcedOrEnabled(auth_case):
auth = auth_case[0]
crypt = xfrm.XfrmAlgo((b"ecb(cipher_null)", 0))
return AlgoEnforcedOrEnabled(crypt, auth, None, auth.name, auth_case[1])
# Return true if this algorithm should be enforced or is enabled on this kernel
def CryptEnforcedOrEnabled(crypt_case):
crypt = crypt_case[0]
auth = xfrm.XfrmAlgoAuth((b"digest_null", 0, 0))
return AlgoEnforcedOrEnabled(crypt, auth, None, crypt.name, crypt_case[1])
# Return true if this algorithm should be enforced or is enabled on this kernel
def AeadEnforcedOrEnabled(aead_case):
aead = aead_case[0]
return AlgoEnforcedOrEnabled(None, None, aead, aead.name, aead_case[1])
def InjectTests():
XfrmAlgorithmTest.InjectTests()
class XfrmAlgorithmTest(xfrm_base.XfrmLazyTest):
@classmethod
def InjectTests(cls):
versions = (4, 6)
types = (SOCK_DGRAM, SOCK_STREAM)
# Tests all combinations of auth & crypt. Mutually exclusive with aead.
param_list = itertools.product(versions, types, AUTH_ALGOS, CRYPT_ALGOS,
[None])
util.InjectParameterizedTest(cls, param_list, cls.TestNameGenerator)
# Tests all combinations of aead. Mutually exclusive with auth/crypt.
param_list = itertools.product(versions, types, [None], [None], AEAD_ALGOS)
util.InjectParameterizedTest(cls, param_list, cls.TestNameGenerator)
@staticmethod
def TestNameGenerator(version, proto, auth_case, crypt_case, aead_case):
# Produce a unique and readable name for each test. e.g.
# testSocketPolicySimple_cbc-aes_256_hmac-sha512_512_256_IPv6_UDP
param_string = ""
if crypt_case is not None:
crypt = crypt_case[0]
param_string += "%s_%d_" % (crypt.name.decode(), crypt.key_len)
if auth_case is not None:
auth = auth_case[0]
param_string += "%s_%d_%d_" % (auth.name.decode(), auth.key_len,
auth.trunc_len)
if aead_case is not None:
aead = aead_case[0]
param_string += "%s_%d_%d_" % (aead.name.decode(), aead.key_len,
aead.icv_len)
param_string += "%s_%s" % ("IPv4" if version == 4 else "IPv6",
"UDP" if proto == SOCK_DGRAM else "TCP")
return param_string
def ParamTestSocketPolicySimple(self, version, proto, auth_case, crypt_case,
aead_case):
"""Test two-way traffic using transport mode and socket policies."""
# Bypass the test if any algorithm going to be tested is not enforced
# or enabled on this kernel
if auth_case is not None and not AuthEnforcedOrEnabled(auth_case):
return
if crypt_case is not None and not CryptEnforcedOrEnabled(crypt_case):
return
if aead_case is not None and not AeadEnforcedOrEnabled(aead_case):
return
auth = auth_case[0] if auth_case else None
crypt = crypt_case[0] if crypt_case else None
aead = aead_case[0] if aead_case else None
def AssertEncrypted(packet):
# This gives a free pass to ICMP and ICMPv6 packets, which show up
# nondeterministically in tests.
self.assertEqual(None,
packet.getlayer(scapy.UDP),
"UDP packet sent in the clear")
self.assertEqual(None,
packet.getlayer(scapy.TCP),
"TCP packet sent in the clear")
# We create a pair of sockets, "left" and "right", that will talk to each
# other using transport mode ESP. Because of TapTwister, both sockets
# perceive each other as owning "remote_addr".
netid = self.RandomNetid()
family = net_test.GetAddressFamily(version)
local_addr = self.MyAddress(version, netid)
remote_addr = self.GetRemoteSocketAddress(version)
auth_left = (xfrm.XfrmAlgoAuth((auth.name, auth.key_len, auth.trunc_len)),
os.urandom(auth.key_len // 8)) if auth else None
auth_right = (xfrm.XfrmAlgoAuth((auth.name, auth.key_len, auth.trunc_len)),
os.urandom(auth.key_len // 8)) if auth else None
crypt_left = (xfrm.XfrmAlgo((crypt.name, crypt.key_len)),
os.urandom(crypt.key_len // 8)) if crypt else None
crypt_right = (xfrm.XfrmAlgo((crypt.name, crypt.key_len)),
os.urandom(crypt.key_len // 8)) if crypt else None
aead_left = (xfrm.XfrmAlgoAead((aead.name, aead.key_len, aead.icv_len)),
os.urandom(aead.key_len // 8)) if aead else None
aead_right = (xfrm.XfrmAlgoAead((aead.name, aead.key_len, aead.icv_len)),
os.urandom(aead.key_len // 8)) if aead else None
spi_left = 0xbeefface
spi_right = 0xcafed00d
req_ids = [100, 200, 300, 400] # Used to match templates and SAs.
# Left outbound SA
self.xfrm.AddSaInfo(
src=local_addr,
dst=remote_addr,
spi=spi_right,
mode=xfrm.XFRM_MODE_TRANSPORT,
reqid=req_ids[0],
encryption=crypt_right,
auth_trunc=auth_right,
aead=aead_right,
encap=None,
mark=None,
output_mark=None)
# Right inbound SA
self.xfrm.AddSaInfo(
src=remote_addr,
dst=local_addr,
spi=spi_right,
mode=xfrm.XFRM_MODE_TRANSPORT,
reqid=req_ids[1],
encryption=crypt_right,
auth_trunc=auth_right,
aead=aead_right,
encap=None,
mark=None,
output_mark=None)
# Right outbound SA
self.xfrm.AddSaInfo(
src=local_addr,
dst=remote_addr,
spi=spi_left,
mode=xfrm.XFRM_MODE_TRANSPORT,
reqid=req_ids[2],
encryption=crypt_left,
auth_trunc=auth_left,
aead=aead_left,
encap=None,
mark=None,
output_mark=None)
# Left inbound SA
self.xfrm.AddSaInfo(
src=remote_addr,
dst=local_addr,
spi=spi_left,
mode=xfrm.XFRM_MODE_TRANSPORT,
reqid=req_ids[3],
encryption=crypt_left,
auth_trunc=auth_left,
aead=aead_left,
encap=None,
mark=None,
output_mark=None)
# Make two sockets.
sock_left = socket(family, proto, 0)
sock_left.settimeout(2.0)
sock_left.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
self.SelectInterface(sock_left, netid, "mark")
sock_right = socket(family, proto, 0)
sock_right.settimeout(2.0)
sock_right.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
self.SelectInterface(sock_right, netid, "mark")
# For UDP, set SO_LINGER to 0, to prevent TCP sockets from hanging around
# in a TIME_WAIT state.
if proto == SOCK_STREAM:
net_test.DisableFinWait(sock_left)
net_test.DisableFinWait(sock_right)
# Apply the left outbound socket policy.
xfrm_base.ApplySocketPolicy(sock_left, family, xfrm.XFRM_POLICY_OUT,
spi_right, req_ids[0], None)
# Apply right inbound socket policy.
xfrm_base.ApplySocketPolicy(sock_right, family, xfrm.XFRM_POLICY_IN,
spi_right, req_ids[1], None)
# Apply right outbound socket policy.
xfrm_base.ApplySocketPolicy(sock_right, family, xfrm.XFRM_POLICY_OUT,
spi_left, req_ids[2], None)
# Apply left inbound socket policy.
xfrm_base.ApplySocketPolicy(sock_left, family, xfrm.XFRM_POLICY_IN,
spi_left, req_ids[3], None)
server_ready = threading.Event()
server_error = None # Save exceptions thrown by the server.
def TcpServer(sock, client_port):
try:
sock.listen(1)
server_ready.set()
accepted, peer = sock.accept()
self.assertEqual(remote_addr, peer[0])
self.assertEqual(client_port, peer[1])
data = accepted.recv(2048)
self.assertEqual(b"hello request", data)
accepted.send(b"hello response")
time.sleep(0.1)
accepted.close()
except Exception as e: # pylint: disable=broad-exception-caught
nonlocal server_error
server_error = e
finally:
sock.close()
def UdpServer(sock, client_port):
try:
server_ready.set()
data, peer = sock.recvfrom(2048)
self.assertEqual(remote_addr, peer[0])
self.assertEqual(client_port, peer[1])
self.assertEqual(b"hello request", data)
sock.sendto(b"hello response", peer)
except Exception as e: # pylint: disable=broad-exception-caught
nonlocal server_error
server_error = e
finally:
sock.close()
# Server and client need to know each other's port numbers in advance.
wildcard_addr = net_test.GetWildcardAddress(version)
sock_left.bind((wildcard_addr, 0))
sock_right.bind((wildcard_addr, 0))
left_port = sock_left.getsockname()[1]
right_port = sock_right.getsockname()[1]
# Start the appropriate server type on sock_right.
target = TcpServer if proto == SOCK_STREAM else UdpServer
server = threading.Thread(
target=target,
args=(sock_right, left_port),
name="SocketServer")
server.start()
# Wait for server to be ready before attempting to connect. TCP retries
# hide this problem, but UDP will fail outright if the server socket has
# not bound when we send.
self.assertTrue(server_ready.wait(3.0),
"Timed out waiting for server thread")
with TapTwister(fd=self.tuns[netid].fileno(), validator=AssertEncrypted):
sock_left.connect((remote_addr, right_port))
sock_left.send(b"hello request")
data = sock_left.recv(2048)
self.assertEqual(b"hello response", data)
sock_left.close()
server.join(timeout=3.0)
self.assertFalse(server.is_alive(), "Timed out waiting for server exit")
if server_error:
raise server_error
if __name__ == "__main__":
XfrmAlgorithmTest.InjectTests()
unittest.main()