blob: bee9a3d82eeb53f231e233028469ed8a134cfa53 [file] [log] [blame]
/* Copyright (c) 2016-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "OLEDB: %s: " fmt, __func__
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/spmi.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/qpnp-labibb-regulator.h>
#include <linux/qpnp/qpnp-pbs.h>
#include <linux/qpnp/qpnp-revid.h>
#define QPNP_OLEDB_REGULATOR_DRIVER_NAME "qcom,qpnp-oledb-regulator"
#define OLEDB_VOUT_STEP_MV 100
#define OLEDB_VOUT_MIN_MV 5000
#define OLEDB_VOUT_MAX_MV 8100
#define OLEDB_VOUT_HW_DEFAULT 6400
#define OLEDB_MODULE_RDY 0x45
#define OLEDB_MODULE_RDY_BIT BIT(7)
#define OLEDB_MODULE_ENABLE 0x46
#define OLEDB_MODULE_ENABLE_BIT BIT(7)
#define OLEDB_EXT_PIN_CTL 0x47
#define OLEDB_EXT_PIN_CTL_BIT BIT(7)
#define OLEDB_SWIRE_CONTROL 0x48
#define OLEDB_EN_SWIRE_VOUT_UPD_BIT BIT(6)
#define OLEDB_EN_SWIRE_PD_UPD_BIT BIT(7)
#define OLEDB_VOUT_PGM 0x49
#define OLEDB_VOUT_PGM_MASK GENMASK(4, 0)
#define OLEDB_VOUT_DEFAULT 0x4A
#define OLEDB_VOUT_DEFAULT_MASK GENMASK(4, 0)
#define OLEDB_PD_CTL 0x4B
#define OLEDB_ILIM_NFET 0x4E
#define OLEDB_ILIMIT_NFET_MASK GENMASK(2, 0)
#define OLEDB_BIAS_GEN_WARMUP_DELAY 0x52
#define OLEDB_BIAS_GEN_WARMUP_DELAY_MASK GENMASK(1, 0)
#define OLEDB_SHORT_PROTECT 0x59
#define OLEDB_ENABLE_SC_DETECTION_BIT BIT(7)
#define OLEDB_DBNC_SHORT_DETECTION_MASK GENMASK(1, 0)
#define OLEDB_FAST_PRECHARGE 0x5A
#define OLEDB_FAST_PRECHG_PPULSE_EN_BIT BIT(7)
#define OLEDB_DBNC_PRECHARGE_MASK GENMASK(5, 4)
#define OLEDB_DBNC_PRECHARGE_SHIFT 4
#define OLEDB_PRECHARGE_PULSE_PERIOD_MASK GENMASK(3, 2)
#define OLEDB_PRECHARGE_PULSE_PERIOD_SHIFT 2
#define OLEDB_PRECHARGE_PULSE_TON_MASK GENMASK(1, 0)
#define OLEDB_EN_PSM 0x5B
#define OLEDB_PSM_ENABLE_BIT BIT(7)
#define OLEDB_PSM_CTL 0x5C
#define OLEDB_PSM_HYSTERYSIS_CTL_BIT BIT(3)
#define OLEDB_PSM_HYSTERYSIS_CTL_BIT_SHIFT 3
#define OLEDB_VREF_PSM_MASK GENMASK(2, 0)
#define OLEDB_PFM_CTL 0x5D
#define OLEDB_PFM_ENABLE_BIT BIT(7)
#define OLEDB_PFM_HYSTERYSIS_CTRL_BIT_MASK BIT(4)
#define OLEDB_PFM_HYSTERYSIS_CTL_BIT_SHIFT 4
#define OLEDB_PFM_CURR_LIMIT_MASK GENMASK(3, 2)
#define OLEDB_PFM_CURR_LIMIT_SHIFT 2
#define OLEDB_PFM_OFF_TIME_NS_MASK GENMASK(1, 0)
#define OLEDB_NLIMIT 0x64
#define OLEDB_ENABLE_NLIMIT_BIT BIT(7)
#define OLEDB_ENABLE_NLIMIT_BIT_SHIFT 7
#define OLEDB_NLIMIT_PGM_MASK GENMASK(1, 0)
#define OLEDB_SPARE_CTL 0xE9
#define OLEDB_FORCE_PD_CTL_SPARE_BIT BIT(7)
#define OLEDB_PD_PBS_TRIGGER_BIT BIT(0)
#define OLEDB_SEC_UNLOCK_CODE 0xA5
#define OLEDB_PSM_HYS_CTRL_MIN 13
#define OLEDB_PSM_HYS_CTRL_MAX 26
#define OLEDB_PFM_HYS_CTRL_MIN 13
#define OLEDB_PFM_HYS_CTRL_MAX 26
#define OLEDB_PFM_OFF_TIME_MIN 110
#define OLEDB_PFM_OFF_TIME_MAX 480
#define OLEDB_PRECHG_TIME_MIN 1
#define OLEDB_PRECHG_TIME_MAX 8
#define OLEDB_PRECHG_PULSE_PERIOD_MIN 3
#define OLEDB_PRECHG_PULSE_PERIOD_MAX 12
#define OLEDB_MIN_SC_DBNC_TIME_FSW 2
#define OLEDB_MAX_SC_DBNC_TIME_FSW 16
#define OLEDB_PRECHG_PULSE_ON_TIME_MIN 1200
#define OLEDB_PRECHG_PULSE_ON_TIME_MAX 3000
#define PSM_HYSTERYSIS_MV_TO_VAL(val_mv) ((val_mv/13) - 1)
#define PFM_HYSTERYSIS_MV_TO_VAL(val_mv) ((val_mv/13) - 1)
#define PFM_OFF_TIME_NS_TO_VAL(val_ns) ((val_ns/110) - 1)
#define PRECHG_DEBOUNCE_TIME_MS_TO_VAL(val_ms) ((val_ms/2) - \
(val_ms/8))
#define PRECHG_PULSE_PERIOD_US_TO_VAL(val_us) ((val_us/3) - 1)
#define PRECHG_PULSE_ON_TIME_NS_TO_VAL(val_ns) (val_ns/600 - 2)
#define SHORT_CIRCUIT_DEBOUNCE_TIME_TO_VAL(val) ((val/4) - (val/16))
struct qpnp_oledb_psm_ctl {
int psm_enable;
int psm_hys_ctl;
int psm_vref;
};
struct qpnp_oledb_pfm_ctl {
int pfm_enable;
int pfm_hys_ctl;
int pfm_curr_limit;
int pfm_off_time;
};
struct qpnp_oledb_fast_precharge_ctl {
int fast_prechg_ppulse_en;
int prechg_debounce_time;
int prechg_pulse_period;
int prechg_pulse_on_time;
};
struct qpnp_oledb {
struct platform_device *pdev;
struct device *dev;
struct regmap *regmap;
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct qpnp_oledb_psm_ctl psm_ctl;
struct qpnp_oledb_pfm_ctl pfm_ctl;
struct qpnp_oledb_fast_precharge_ctl fast_prechg_ctl;
struct notifier_block oledb_nb;
struct mutex bus_lock;
struct device_node *pbs_dev_node;
struct pmic_revid_data *pmic_rev_id;
u32 base;
u8 mod_enable;
u8 ext_pinctl_state;
int current_voltage;
int default_voltage;
int vout_mv;
int warmup_delay;
int peak_curr_limit;
int pd_ctl;
int negative_curr_limit;
int nlimit_enable;
int sc_en;
int sc_dbnc_time;
bool swire_control;
bool ext_pin_control;
bool dynamic_ext_pinctl_config;
bool pbs_control;
bool force_pd_control;
bool handle_lab_sc_notification;
bool lab_sc_detected;
};
static const u16 oledb_warmup_dly_ns[] = {6700, 13300, 26700, 53400};
static const u16 oledb_peak_curr_limit_ma[] = {115, 265, 415, 570,
720, 870, 1020, 1170};
static const u16 oledb_psm_vref_mv[] = {440, 510, 580, 650, 715,
780, 850, 920};
static const u16 oledb_pfm_curr_limit_ma[] = {130, 200, 270, 340};
static const u16 oledb_nlimit_ma[] = {170, 300, 420, 550};
static int qpnp_oledb_read(struct qpnp_oledb *oledb, u32 address,
u8 *val, int count)
{
int rc = 0;
struct platform_device *pdev = oledb->pdev;
mutex_lock(&oledb->bus_lock);
rc = regmap_bulk_read(oledb->regmap, address, val, count);
if (rc)
pr_err("Failed to read address=0x%02x sid=0x%02x rc=%d\n",
address, to_spmi_device(pdev->dev.parent)->usid, rc);
mutex_unlock(&oledb->bus_lock);
return rc;
}
static int qpnp_oledb_masked_write(struct qpnp_oledb *oledb,
u32 address, u8 mask, u8 val)
{
int rc;
mutex_lock(&oledb->bus_lock);
rc = regmap_update_bits(oledb->regmap, address, mask, val);
if (rc < 0)
pr_err("Failed to write address 0x%04X, rc = %d\n",
address, rc);
else
pr_debug("Wrote 0x%02X to addr 0x%04X\n",
val, address);
mutex_unlock(&oledb->bus_lock);
return rc;
}
#define OLEDB_SEC_ACCESS 0xD0
static int qpnp_oledb_sec_masked_write(struct qpnp_oledb *oledb, u16 address,
u8 mask, u8 val)
{
int rc = 0;
u8 sec_val = OLEDB_SEC_UNLOCK_CODE;
u16 sec_reg_addr = (address & 0xFF00) | OLEDB_SEC_ACCESS;
mutex_lock(&oledb->bus_lock);
rc = regmap_write(oledb->regmap, sec_reg_addr, sec_val);
if (rc < 0) {
pr_err("register %x failed rc = %d\n", sec_reg_addr, rc);
goto error;
}
rc = regmap_update_bits(oledb->regmap, address, mask, val);
if (rc < 0)
pr_err("spmi write failed: addr=%03X, rc=%d\n", address, rc);
error:
mutex_unlock(&oledb->bus_lock);
return rc;
}
static int qpnp_oledb_write(struct qpnp_oledb *oledb, u16 address, u8 *val,
int count)
{
int rc = 0;
struct platform_device *pdev = oledb->pdev;
mutex_lock(&oledb->bus_lock);
rc = regmap_bulk_write(oledb->regmap, address, val, count);
if (rc)
pr_err("Failed to write address=0x%02x sid=0x%02x rc=%d\n",
address, to_spmi_device(pdev->dev.parent)->usid, rc);
else
pr_debug("Wrote 0x%02X to addr 0x%04X\n",
*val, address);
mutex_unlock(&oledb->bus_lock);
return rc;
}
static int qpnp_oledb_regulator_enable(struct regulator_dev *rdev)
{
int rc = 0;
u8 val = 0;
struct qpnp_oledb *oledb = rdev_get_drvdata(rdev);
if (oledb->lab_sc_detected == true) {
pr_info("Short circuit detected: Disabled OLEDB rail\n");
return 0;
}
if (oledb->ext_pin_control) {
rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_EXT_PIN_CTL,
&val, 1);
if (rc < 0) {
pr_err("Failed to read EXT_PIN_CTL rc=%d\n", rc);
return rc;
}
/*
* Enable ext-pin-ctl after display-supply is turned on.
* This is to avoid glitches on the external pin.
*/
if (!(val & OLEDB_EXT_PIN_CTL_BIT) &&
oledb->dynamic_ext_pinctl_config) {
val = OLEDB_EXT_PIN_CTL_BIT;
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_EXT_PIN_CTL, &val, 1);
if (rc < 0) {
pr_err("Failed to write EXT_PIN_CTL rc=%d\n",
rc);
return rc;
}
}
pr_debug("ext-pin-ctrl mode enabled\n");
} else {
val = OLEDB_MODULE_ENABLE_BIT;
rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_MODULE_ENABLE,
&val, 1);
if (rc < 0) {
pr_err("Failed to write MODULE_ENABLE rc=%d\n", rc);
return rc;
}
ndelay(oledb->warmup_delay);
pr_debug("register-control mode, module enabled\n");
}
oledb->mod_enable = true;
if (oledb->pbs_control) {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT |
OLEDB_EN_SWIRE_VOUT_UPD_BIT, 0);
if (rc < 0)
pr_err("Failed to write SWIRE_CTL for pbs mode rc=%d\n",
rc);
}
return rc;
}
static int qpnp_oledb_regulator_disable(struct regulator_dev *rdev)
{
int rc = 0;
u8 trigger_bitmap = OLEDB_PD_PBS_TRIGGER_BIT;
u8 val;
struct qpnp_oledb *oledb = rdev_get_drvdata(rdev);
/*
* Disable ext-pin-ctl after display-supply is turned off. This is to
* avoid glitches on the external pin.
*/
if (oledb->ext_pin_control) {
if (oledb->dynamic_ext_pinctl_config) {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_EXT_PIN_CTL, OLEDB_EXT_PIN_CTL_BIT, 0);
if (rc < 0) {
pr_err("Failed to write EXT_PIN_CTL rc=%d\n",
rc);
return rc;
}
}
pr_debug("ext-pin-ctrl mode disabled\n");
} else {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_MODULE_ENABLE,
OLEDB_MODULE_ENABLE_BIT, 0);
if (rc < 0) {
pr_err("Failed to write MODULE_ENABLE rc=%d\n", rc);
return rc;
}
pr_debug("Register-control mode, module disabled\n");
}
if (oledb->force_pd_control) {
rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_SPARE_CTL,
&val, 1);
if (rc < 0) {
pr_err("Failed to read OLEDB_SPARE_CTL rc=%d\n", rc);
return rc;
}
if (val & OLEDB_FORCE_PD_CTL_SPARE_BIT) {
rc = qpnp_oledb_sec_masked_write(oledb, oledb->base +
OLEDB_SPARE_CTL,
OLEDB_FORCE_PD_CTL_SPARE_BIT, 0);
if (rc < 0) {
pr_err("Failed to write SPARE_CTL rc=%d\n", rc);
return rc;
}
rc = qpnp_pbs_trigger_event(oledb->pbs_dev_node,
trigger_bitmap);
if (rc < 0)
pr_err("Failed to trigger the PBS sequence\n");
pr_debug("PBS event triggered\n");
} else {
pr_debug("OLEDB_SPARE_CTL register bit not set\n");
}
}
oledb->mod_enable = false;
return rc;
}
static int qpnp_oledb_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_oledb *oledb = rdev_get_drvdata(rdev);
return oledb->mod_enable;
}
static int qpnp_oledb_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
u8 val;
int rc = 0;
struct qpnp_oledb *oledb = rdev_get_drvdata(rdev);
if (oledb->swire_control)
return 0;
val = DIV_ROUND_UP(min_uV - OLEDB_VOUT_MIN_MV, OLEDB_VOUT_STEP_MV);
rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_VOUT_PGM,
&val, 1);
if (rc < 0) {
pr_err("Failed to write VOUT_PGM rc=%d\n", rc);
return rc;
}
oledb->current_voltage = min_uV;
pr_debug("register-control mode, current voltage %d\n",
oledb->current_voltage);
return 0;
}
static int qpnp_oledb_regulator_get_voltage(struct regulator_dev *rdev)
{
struct qpnp_oledb *oledb = rdev_get_drvdata(rdev);
if (oledb->swire_control)
return 0;
return oledb->current_voltage;
}
static struct regulator_ops qpnp_oledb_ops = {
.enable = qpnp_oledb_regulator_enable,
.disable = qpnp_oledb_regulator_disable,
.is_enabled = qpnp_oledb_regulator_is_enabled,
.set_voltage = qpnp_oledb_regulator_set_voltage,
.get_voltage = qpnp_oledb_regulator_get_voltage,
};
static int qpnp_oledb_register_regulator(struct qpnp_oledb *oledb)
{
int rc = 0;
struct platform_device *pdev = oledb->pdev;
struct regulator_init_data *init_data;
struct regulator_desc *rdesc = &oledb->rdesc;
struct regulator_config cfg = {};
init_data = of_get_regulator_init_data(&pdev->dev,
pdev->dev.of_node, rdesc);
if (!init_data) {
pr_err("Unable to get OLEDB regulator init data\n");
return -ENOMEM;
}
if (init_data->constraints.name) {
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->ops = &qpnp_oledb_ops;
rdesc->name = init_data->constraints.name;
cfg.dev = &pdev->dev;
cfg.init_data = init_data;
cfg.driver_data = oledb;
cfg.of_node = pdev->dev.of_node;
if (of_get_property(pdev->dev.of_node, "parent-supply",
NULL))
init_data->supply_regulator = "parent";
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE |
REGULATOR_CHANGE_STATUS;
oledb->rdev = devm_regulator_register(oledb->dev, rdesc, &cfg);
if (IS_ERR(oledb->rdev)) {
rc = PTR_ERR(oledb->rdev);
oledb->rdev = NULL;
pr_err("Unable to register OLEDB regulator, rc = %d\n",
rc);
return rc;
}
} else {
pr_err("OLEDB regulator name missing\n");
return -EINVAL;
}
return 0;
}
static int qpnp_oledb_get_curr_voltage(struct qpnp_oledb *oledb,
u16 *current_voltage)
{
int rc = 0;
u8 val;
if (!(oledb->mod_enable || oledb->ext_pinctl_state)) {
rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_VOUT_DEFAULT,
&val, 1);
if (rc < 0) {
pr_err("Failed to read VOUT_DEFAULT rc=%d\n", rc);
return rc;
}
} else {
rc = qpnp_oledb_read(oledb, oledb->base +
OLEDB_VOUT_PGM, &val, 1);
if (rc < 0) {
pr_err("Failed to read VOUT_PGM rc=%d\n", rc);
return rc;
}
}
*current_voltage = (val * OLEDB_VOUT_STEP_MV) + OLEDB_VOUT_MIN_MV;
return rc;
}
static int qpnp_oledb_init_nlimit(struct qpnp_oledb *oledb)
{
int rc = 0, i = 0;
u32 val, mask = 0;
if (oledb->nlimit_enable != -EINVAL) {
val = oledb->nlimit_enable <<
OLEDB_ENABLE_NLIMIT_BIT_SHIFT;
mask = OLEDB_ENABLE_NLIMIT_BIT;
if (oledb->negative_curr_limit != -EINVAL) {
for (i = 0; i < ARRAY_SIZE(oledb_nlimit_ma); i++) {
if (oledb->negative_curr_limit ==
oledb_nlimit_ma[i])
break;
}
val |= i;
mask |= OLEDB_NLIMIT_PGM_MASK;
}
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_NLIMIT, mask, val);
if (rc < 0)
pr_err("Failed to write NLIMT rc=%d\n", rc);
}
return rc;
}
static int qpnp_oledb_init_psm(struct qpnp_oledb *oledb)
{
int rc = 0, i = 0;
u32 val = 0, mask = 0, temp = 0;
struct qpnp_oledb_psm_ctl *psm_ctl = &oledb->psm_ctl;
if (psm_ctl->psm_enable == -EINVAL)
return rc;
if (psm_ctl->psm_enable) {
val = OLEDB_PSM_ENABLE_BIT;
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_EN_PSM, OLEDB_PSM_ENABLE_BIT, val);
if (rc < 0) {
pr_err("Failed to write PSM_EN rc=%d\n", rc);
return rc;
}
val = 0;
if (psm_ctl->psm_vref != -EINVAL) {
for (i = 0; i < ARRAY_SIZE(oledb_psm_vref_mv); i++) {
if (psm_ctl->psm_vref ==
oledb_psm_vref_mv[i])
break;
}
val = i;
mask = OLEDB_VREF_PSM_MASK;
}
if (psm_ctl->psm_hys_ctl != -EINVAL) {
temp = PSM_HYSTERYSIS_MV_TO_VAL(psm_ctl->psm_hys_ctl);
val |= (temp << OLEDB_PSM_HYSTERYSIS_CTL_BIT_SHIFT);
mask |= OLEDB_PSM_HYSTERYSIS_CTL_BIT;
}
if (val) {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_PSM_CTL, mask, val);
if (rc < 0)
pr_err("Failed to write PSM_CTL rc=%d\n", rc);
}
} else {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_EN_PSM, OLEDB_PSM_ENABLE_BIT, 0);
if (rc < 0)
pr_err("Failed to write PSM_CTL rc=%d\n", rc);
}
return rc;
}
static int qpnp_oledb_init_pfm(struct qpnp_oledb *oledb)
{
int rc = 0, i = 0;
u32 val = 0, temp = 0, mask = 0;
struct qpnp_oledb_pfm_ctl *pfm_ctl = &oledb->pfm_ctl;
if (pfm_ctl->pfm_enable == -EINVAL)
return rc;
if (pfm_ctl->pfm_enable) {
mask = val = OLEDB_PFM_ENABLE_BIT;
if (pfm_ctl->pfm_hys_ctl != -EINVAL) {
temp = PFM_HYSTERYSIS_MV_TO_VAL(pfm_ctl->pfm_hys_ctl);
val |= temp <<
OLEDB_PFM_HYSTERYSIS_CTL_BIT_SHIFT;
mask |= OLEDB_PFM_HYSTERYSIS_CTRL_BIT_MASK;
}
if (pfm_ctl->pfm_curr_limit != -EINVAL) {
for (i = 0; i < ARRAY_SIZE(oledb_pfm_curr_limit_ma);
i++) {
if (pfm_ctl->pfm_curr_limit ==
oledb_pfm_curr_limit_ma[i])
break;
}
val |= (i << OLEDB_PFM_CURR_LIMIT_SHIFT);
mask |= OLEDB_PFM_CURR_LIMIT_MASK;
}
if (pfm_ctl->pfm_off_time != -EINVAL) {
val |= PFM_OFF_TIME_NS_TO_VAL(pfm_ctl->pfm_off_time);
mask |= OLEDB_PFM_OFF_TIME_NS_MASK;
}
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_PFM_CTL, mask, val);
if (rc < 0)
pr_err("Failed to write PFM_CTL rc=%d\n", rc);
} else {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_PFM_CTL, OLEDB_PFM_ENABLE_BIT, 0);
if (rc < 0)
pr_err("Failed to write PFM_CTL rc=%d\n", rc);
}
return rc;
}
static int qpnp_oledb_init_fast_precharge(struct qpnp_oledb *oledb)
{
int rc = 0;
u32 val = 0, temp = 0, mask = 0;
struct qpnp_oledb_fast_precharge_ctl *prechg_ctl =
&oledb->fast_prechg_ctl;
if (prechg_ctl->fast_prechg_ppulse_en == -EINVAL)
return rc;
if (prechg_ctl->fast_prechg_ppulse_en) {
mask = val = OLEDB_FAST_PRECHG_PPULSE_EN_BIT;
if (prechg_ctl->prechg_debounce_time != -EINVAL) {
temp = PRECHG_DEBOUNCE_TIME_MS_TO_VAL(
prechg_ctl->prechg_debounce_time);
val |= temp << OLEDB_DBNC_PRECHARGE_SHIFT;
mask |= OLEDB_DBNC_PRECHARGE_MASK;
}
if (prechg_ctl->prechg_pulse_period != -EINVAL) {
temp = PRECHG_PULSE_PERIOD_US_TO_VAL(
prechg_ctl->prechg_pulse_period);
val |= temp << OLEDB_PRECHARGE_PULSE_PERIOD_SHIFT;
mask |= OLEDB_PRECHARGE_PULSE_PERIOD_MASK;
}
if (prechg_ctl->prechg_pulse_on_time != -EINVAL) {
val |= PRECHG_PULSE_ON_TIME_NS_TO_VAL(
prechg_ctl->prechg_pulse_on_time);
mask |= OLEDB_PRECHARGE_PULSE_TON_MASK;
}
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_FAST_PRECHARGE, mask, val);
if (rc < 0)
pr_err("Failed to write FAST_PRECHARGE rc=%d\n", rc);
} else {
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_FAST_PRECHARGE,
OLEDB_FAST_PRECHG_PPULSE_EN_BIT, 0);
if (rc < 0)
pr_err("Failed to write FAST_PRECHARGE rc=%d\n", rc);
}
return rc;
}
static int qpnp_oledb_hw_init(struct qpnp_oledb *oledb)
{
int rc, i = 0;
u8 val = 0, mask = 0;
u16 current_voltage;
if (oledb->default_voltage != -EINVAL) {
val = (oledb->default_voltage - OLEDB_VOUT_MIN_MV) /
OLEDB_VOUT_STEP_MV;
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_VOUT_DEFAULT, &val, 1);
if (rc < 0) {
pr_err("Failed to write VOUT_DEFAULT rc=%d\n", rc);
return rc;
}
}
rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_MODULE_ENABLE,
&oledb->mod_enable, 1);
if (rc < 0) {
pr_err("Failed to read MODULE_ENABLE rc=%d\n", rc);
return rc;
}
rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_EXT_PIN_CTL,
&oledb->ext_pinctl_state, 1);
if (rc < 0) {
pr_err("Failed to read EXT_PIN_CTL rc=%d\n", rc);
return rc;
}
rc = qpnp_oledb_get_curr_voltage(oledb, &current_voltage);
if (rc < 0)
return rc;
/*
* Go through if the module is not enabled either through
* external pin control or SPMI interface.
*/
if (!((oledb->ext_pinctl_state & OLEDB_EXT_PIN_CTL_BIT)
|| oledb->mod_enable)) {
if (oledb->warmup_delay != -EINVAL) {
for (i = 0; i < ARRAY_SIZE(oledb_warmup_dly_ns); i++) {
if (oledb->warmup_delay ==
oledb_warmup_dly_ns[i])
break;
}
val = i;
rc = qpnp_oledb_masked_write(oledb,
oledb->base + OLEDB_BIAS_GEN_WARMUP_DELAY,
OLEDB_BIAS_GEN_WARMUP_DELAY_MASK, val);
if (rc < 0) {
pr_err("Failed to write WARMUP_DELAY rc=%d\n",
rc);
return rc;
}
} else {
rc = qpnp_oledb_read(oledb, oledb->base +
OLEDB_BIAS_GEN_WARMUP_DELAY,
&val, 1);
if (rc < 0) {
pr_err("Failed to read WARMUP_DELAY rc=%d\n",
rc);
return rc;
}
oledb->warmup_delay = oledb_warmup_dly_ns[val];
}
if (oledb->peak_curr_limit != -EINVAL) {
for (i = 0; i < ARRAY_SIZE(oledb_peak_curr_limit_ma);
i++) {
if (oledb->peak_curr_limit ==
oledb_peak_curr_limit_ma[i])
break;
}
val = i;
rc = qpnp_oledb_write(oledb,
oledb->base + OLEDB_ILIM_NFET,
&val, 1);
if (rc < 0) {
pr_err("Failed to write ILIM_NEFT rc=%d\n", rc);
return rc;
}
}
if (oledb->pd_ctl != -EINVAL) {
val = oledb->pd_ctl;
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_PD_CTL, &val, 1);
if (rc < 0) {
pr_err("Failed to write PD_CTL rc=%d\n", rc);
return rc;
}
}
if (oledb->sc_en != -EINVAL) {
val = oledb->sc_en ? OLEDB_ENABLE_SC_DETECTION_BIT : 0;
mask = OLEDB_ENABLE_SC_DETECTION_BIT;
if (oledb->sc_dbnc_time != -EINVAL) {
val |= SHORT_CIRCUIT_DEBOUNCE_TIME_TO_VAL(
oledb->sc_dbnc_time);
mask |= OLEDB_DBNC_PRECHARGE_MASK;
}
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_SHORT_PROTECT, &val, 1);
if (rc < 0) {
pr_err("Failed to write SHORT_PROTECT rc=%d\n",
rc);
return rc;
}
}
rc = qpnp_oledb_init_nlimit(oledb);
if (rc < 0)
return rc;
rc = qpnp_oledb_init_psm(oledb);
if (rc < 0)
return rc;
rc = qpnp_oledb_init_pfm(oledb);
if (rc < 0)
return rc;
rc = qpnp_oledb_init_fast_precharge(oledb);
if (rc < 0)
return rc;
if (oledb->swire_control) {
val = OLEDB_EN_SWIRE_PD_UPD_BIT |
OLEDB_EN_SWIRE_VOUT_UPD_BIT;
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT |
OLEDB_EN_SWIRE_VOUT_UPD_BIT, val);
if (rc < 0)
return rc;
}
rc = qpnp_oledb_read(oledb, oledb->base + OLEDB_MODULE_RDY,
&val, 1);
if (rc < 0) {
pr_err("Failed to read MODULE_RDY rc=%d\n", rc);
return rc;
}
if (!(val & OLEDB_MODULE_RDY_BIT)) {
val = OLEDB_MODULE_RDY_BIT;
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_MODULE_RDY, &val, 1);
if (rc < 0) {
pr_err("Failed to write MODULE_RDY rc=%d\n",
rc);
return rc;
}
}
if (!oledb->dynamic_ext_pinctl_config) {
if (oledb->ext_pin_control) {
val = OLEDB_EXT_PIN_CTL_BIT;
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_EXT_PIN_CTL, &val, 1);
if (rc < 0) {
pr_err("Failed to write EXT_PIN_CTL rc=%d\n",
rc);
return rc;
}
} else {
val = OLEDB_MODULE_ENABLE_BIT;
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_MODULE_ENABLE, &val, 1);
if (rc < 0) {
pr_err("Failed to write MODULE_ENABLE rc=%d\n",
rc);
return rc;
}
ndelay(oledb->warmup_delay);
}
oledb->mod_enable = true;
if (oledb->pbs_control) {
rc = qpnp_oledb_masked_write(oledb,
oledb->base + OLEDB_SWIRE_CONTROL,
OLEDB_EN_SWIRE_PD_UPD_BIT |
OLEDB_EN_SWIRE_VOUT_UPD_BIT, 0);
if (rc < 0) {
pr_err("Failed to write SWIRE_CTL rc=%d\n",
rc);
return rc;
}
}
}
oledb->current_voltage = current_voltage;
} else {
/* module is enabled */
if (oledb->current_voltage == -EINVAL) {
oledb->current_voltage = current_voltage;
} else if (!oledb->swire_control) {
if (oledb->current_voltage < OLEDB_VOUT_MIN_MV) {
pr_err("current_voltage %d is less than min_volt %d\n",
oledb->current_voltage, OLEDB_VOUT_MIN_MV);
return -EINVAL;
}
val = DIV_ROUND_UP(oledb->current_voltage -
OLEDB_VOUT_MIN_MV, OLEDB_VOUT_STEP_MV);
rc = qpnp_oledb_write(oledb, oledb->base +
OLEDB_VOUT_PGM, &val, 1);
if (rc < 0) {
pr_err("Failed to write VOUT_PGM rc=%d\n",
rc);
return rc;
}
}
oledb->mod_enable = true;
}
return rc;
}
static int qpnp_oledb_parse_nlimit(struct qpnp_oledb *oledb)
{
int rc = 0;
struct device_node *of_node = oledb->dev->of_node;
oledb->nlimit_enable = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,negative-curr-limit-enable",
&oledb->nlimit_enable);
if (!rc) {
oledb->negative_curr_limit = -EINVAL;
rc = of_property_read_u32(of_node,
"qcom,negative-curr-limit-ma",
&oledb->negative_curr_limit);
if (!rc) {
u16 min_curr_limit = oledb_nlimit_ma[0];
u16 max_curr_limit = oledb_nlimit_ma[ARRAY_SIZE(
oledb_nlimit_ma) - 1];
if (oledb->negative_curr_limit < min_curr_limit ||
oledb->negative_curr_limit > max_curr_limit) {
pr_err("Invalid value in qcom,negative-curr-limit-ma\n");
return -EINVAL;
}
}
}
return 0;
}
static int qpnp_oledb_parse_psm(struct qpnp_oledb *oledb)
{
int rc = 0;
struct qpnp_oledb_psm_ctl *psm_ctl = &oledb->psm_ctl;
struct device_node *of_node = oledb->dev->of_node;
psm_ctl->psm_enable = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,psm-enable",
&psm_ctl->psm_enable);
if (!rc) {
psm_ctl->psm_hys_ctl = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,psm-hys-mv",
&psm_ctl->psm_hys_ctl);
if (!rc) {
if (psm_ctl->psm_hys_ctl < OLEDB_PSM_HYS_CTRL_MIN ||
psm_ctl->psm_hys_ctl > OLEDB_PSM_HYS_CTRL_MAX) {
pr_err("Invalid value in qcom,psm-hys-mv\n");
return -EINVAL;
}
}
psm_ctl->psm_vref = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,psm-vref-mv",
&psm_ctl->psm_vref);
if (!rc) {
u16 min_vref = oledb_psm_vref_mv[0];
u16 max_vref = oledb_psm_vref_mv[ARRAY_SIZE(
oledb_psm_vref_mv) - 1];
if (psm_ctl->psm_vref < min_vref ||
psm_ctl->psm_vref > max_vref) {
pr_err("Invalid value in qcom,psm-vref-mv\n");
return -EINVAL;
}
}
}
return 0;
}
static int qpnp_oledb_parse_pfm(struct qpnp_oledb *oledb)
{
int rc = 0;
struct qpnp_oledb_pfm_ctl *pfm_ctl = &oledb->pfm_ctl;
struct device_node *of_node = oledb->dev->of_node;
pfm_ctl->pfm_enable = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,pfm-enable",
&pfm_ctl->pfm_enable);
if (!rc) {
pfm_ctl->pfm_hys_ctl = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,pfm-hys-mv",
&pfm_ctl->pfm_hys_ctl);
if (!rc) {
if (pfm_ctl->pfm_hys_ctl < OLEDB_PFM_HYS_CTRL_MIN ||
pfm_ctl->pfm_hys_ctl > OLEDB_PFM_HYS_CTRL_MAX) {
pr_err("Invalid value in qcom,pfm-hys-mv\n");
return -EINVAL;
}
}
pfm_ctl->pfm_curr_limit = -EINVAL;
rc = of_property_read_u32(of_node,
"qcom,pfm-curr-limit-ma", &pfm_ctl->pfm_curr_limit);
if (!rc) {
u16 min_limit = oledb_pfm_curr_limit_ma[0];
u16 max_limit = oledb_pfm_curr_limit_ma[ARRAY_SIZE(
oledb_pfm_curr_limit_ma) - 1];
if (pfm_ctl->pfm_curr_limit < min_limit ||
pfm_ctl->pfm_curr_limit > max_limit) {
pr_err("Invalid value in qcom,pfm-curr-limit-ma\n");
return -EINVAL;
}
}
pfm_ctl->pfm_off_time = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,pfm-off-time-ns",
&pfm_ctl->pfm_off_time);
if (!rc) {
if (pfm_ctl->pfm_off_time < OLEDB_PFM_OFF_TIME_MIN ||
pfm_ctl->pfm_off_time > OLEDB_PFM_OFF_TIME_MAX) {
pr_err("Invalid value in qcom,pfm-off-time-ns\n");
return -EINVAL;
}
}
}
return 0;
}
static int qpnp_oledb_parse_fast_precharge(struct qpnp_oledb *oledb)
{
int rc = 0;
struct device_node *of_node = oledb->dev->of_node;
struct qpnp_oledb_fast_precharge_ctl *fast_prechg =
&oledb->fast_prechg_ctl;
fast_prechg->fast_prechg_ppulse_en = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,fast-precharge-ppulse-enable",
&fast_prechg->fast_prechg_ppulse_en);
if (!rc) {
fast_prechg->prechg_debounce_time = -EINVAL;
rc = of_property_read_u32(of_node,
"qcom,precharge-debounce-time-ms",
&fast_prechg->prechg_debounce_time);
if (!rc) {
int dbnc_time = fast_prechg->prechg_debounce_time;
if (dbnc_time < OLEDB_PRECHG_TIME_MIN || dbnc_time >
OLEDB_PRECHG_TIME_MAX) {
pr_err("Invalid value in qcom,precharge-debounce-time-ms\n");
return -EINVAL;
}
}
fast_prechg->prechg_pulse_period = -EINVAL;
rc = of_property_read_u32(of_node,
"qcom,precharge-pulse-period-us",
&fast_prechg->prechg_pulse_period);
if (!rc) {
int pulse_period = fast_prechg->prechg_pulse_period;
if (pulse_period < OLEDB_PRECHG_PULSE_PERIOD_MIN ||
pulse_period > OLEDB_PRECHG_PULSE_PERIOD_MAX) {
pr_err("Invalid value in qcom,precharge-pulse-period-us\n");
return -EINVAL;
}
}
fast_prechg->prechg_pulse_on_time = -EINVAL;
rc = of_property_read_u32(of_node,
"qcom,precharge-pulse-on-time-ns",
&fast_prechg->prechg_pulse_on_time);
if (!rc) {
int pulse_on_time = fast_prechg->prechg_pulse_on_time;
if (pulse_on_time < OLEDB_PRECHG_PULSE_ON_TIME_MIN ||
pulse_on_time > OLEDB_PRECHG_PULSE_ON_TIME_MAX) {
pr_err("Invalid value in qcom,precharge-pulse-on-time-ns\n");
return -EINVAL;
}
}
}
return 0;
}
static int qpnp_oledb_parse_dt(struct qpnp_oledb *oledb)
{
int rc = 0;
struct device_node *revid_dev_node;
struct device_node *of_node = oledb->dev->of_node;
revid_dev_node = of_parse_phandle(oledb->dev->of_node,
"qcom,pmic-revid", 0);
if (!revid_dev_node) {
pr_err("Missing qcom,pmic-revid property - driver failed\n");
return -EINVAL;
}
oledb->pmic_rev_id = get_revid_data(revid_dev_node);
if (IS_ERR(oledb->pmic_rev_id)) {
pr_debug("Unable to get revid data\n");
return -EPROBE_DEFER;
}
oledb->swire_control =
of_property_read_bool(of_node, "qcom,swire-control");
oledb->ext_pin_control =
of_property_read_bool(of_node, "qcom,ext-pin-control");
if (oledb->ext_pin_control)
oledb->dynamic_ext_pinctl_config =
of_property_read_bool(of_node,
"qcom,dynamic-ext-pinctl-config");
oledb->pbs_control =
of_property_read_bool(of_node, "qcom,pbs-control");
/* Use the force_pd_control only for PM660A versions <= v2.0 */
if (oledb->pmic_rev_id->pmic_subtype == PM660L_SUBTYPE &&
oledb->pmic_rev_id->rev4 <= PM660L_V2P0_REV4) {
if (!(oledb->pmic_rev_id->rev4 == PM660L_V2P0_REV4 &&
oledb->pmic_rev_id->rev2 > PM660L_V2P0_REV2)) {
oledb->force_pd_control = true;
}
}
if (oledb->force_pd_control) {
oledb->pbs_dev_node = of_parse_phandle(of_node,
"qcom,pbs-client", 0);
if (!oledb->pbs_dev_node) {
pr_err("Missing qcom,pbs-client property\n");
return -EINVAL;
}
}
oledb->current_voltage = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,oledb-init-voltage-mv",
&oledb->current_voltage);
if (!rc && (oledb->current_voltage < OLEDB_VOUT_MIN_MV ||
oledb->current_voltage > OLEDB_VOUT_MAX_MV)) {
pr_err("Invalid value in qcom,oledb-init-voltage-mv\n");
return -EINVAL;
}
oledb->default_voltage = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,oledb-default-voltage-mv",
&oledb->default_voltage);
if (!rc && (oledb->default_voltage < OLEDB_VOUT_MIN_MV ||
oledb->default_voltage > OLEDB_VOUT_MAX_MV)) {
pr_err("Invalid value in qcom,oledb-default-voltage-mv\n");
return -EINVAL;
}
oledb->warmup_delay = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,bias-gen-warmup-delay-ns",
&oledb->warmup_delay);
if (!rc) {
u16 min_delay = oledb_warmup_dly_ns[0];
u16 max_delay = oledb_warmup_dly_ns[ARRAY_SIZE(
oledb_warmup_dly_ns) - 1];
if (oledb->warmup_delay < min_delay ||
oledb->warmup_delay > max_delay) {
pr_err("Invalid value in qcom,bias-gen-warmup-delay-ns\n");
return -EINVAL;
}
}
oledb->peak_curr_limit = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,peak-curr-limit-ma",
&oledb->peak_curr_limit);
if (!rc) {
u16 min_limit = oledb_peak_curr_limit_ma[0];
u16 max_limit = oledb_peak_curr_limit_ma[ARRAY_SIZE(
oledb_peak_curr_limit_ma) - 1];
if (oledb->peak_curr_limit < min_limit ||
oledb->peak_curr_limit > max_limit) {
pr_err("Invalid value in qcom,peak-curr-limit-ma\n");
return -EINVAL;
}
}
oledb->pd_ctl = -EINVAL;
of_property_read_u32(of_node, "qcom,pull-down-enable", &oledb->pd_ctl);
oledb->sc_en = -EINVAL;
rc = of_property_read_u32(of_node, "qcom,enable-short-circuit",
&oledb->sc_en);
if (!rc) {
oledb->sc_dbnc_time = -EINVAL;
rc = of_property_read_u32(of_node,
"qcom,short-circuit-dbnc-time", &oledb->sc_dbnc_time);
if (!rc) {
if (oledb->sc_dbnc_time < OLEDB_MIN_SC_DBNC_TIME_FSW ||
oledb->sc_dbnc_time > OLEDB_MAX_SC_DBNC_TIME_FSW) {
pr_err("Invalid value in qcom,short-circuit-dbnc-time\n");
return -EINVAL;
}
}
}
rc = qpnp_oledb_parse_nlimit(oledb);
if (rc < 0)
return rc;
rc = qpnp_oledb_parse_psm(oledb);
if (rc < 0)
return rc;
rc = qpnp_oledb_parse_pfm(oledb);
if (rc < 0)
return rc;
rc = qpnp_oledb_parse_fast_precharge(oledb);
return rc;
}
static int qpnp_oledb_force_pulldown_config(struct qpnp_oledb *oledb)
{
int rc = 0;
u8 val;
val = 1;
rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_PD_CTL,
&val, 1);
if (rc < 0) {
pr_err("Failed to write PD_CTL rc=%d\n", rc);
return rc;
}
rc = qpnp_oledb_masked_write(oledb, oledb->base +
OLEDB_SWIRE_CONTROL, OLEDB_EN_SWIRE_PD_UPD_BIT, 0);
if (rc < 0)
pr_err("Failed to write SWIRE_CTL for pbs mode rc=%d\n",
rc);
return rc;
}
static int qpnp_labibb_notifier_cb(struct notifier_block *nb,
unsigned long action, void *data)
{
int rc = 0;
u8 val;
struct qpnp_oledb *oledb = container_of(nb, struct qpnp_oledb,
oledb_nb);
if (action == LAB_VREG_NOT_OK) {
/* short circuit detected. Disable OLEDB module */
val = 0;
rc = qpnp_oledb_write(oledb, oledb->base + OLEDB_MODULE_RDY,
&val, 1);
if (rc < 0) {
pr_err("Failed to write MODULE_RDY rc=%d\n", rc);
return NOTIFY_STOP;
}
oledb->lab_sc_detected = true;
oledb->mod_enable = false;
pr_crit("LAB SC detected, disabling OLEDB forever!\n");
}
if (action == LAB_VREG_OK) {
/* Disable SWIRE pull down control and enable via spmi mode */
rc = qpnp_oledb_force_pulldown_config(oledb);
if (rc < 0) {
pr_err("Failed to config force pull down\n");
return NOTIFY_STOP;
}
}
return NOTIFY_OK;
}
static int qpnp_oledb_regulator_probe(struct platform_device *pdev)
{
int rc = 0;
u32 val;
struct qpnp_oledb *oledb;
struct device_node *of_node = pdev->dev.of_node;
oledb = devm_kzalloc(&pdev->dev,
sizeof(struct qpnp_oledb), GFP_KERNEL);
if (!oledb)
return -ENOMEM;
oledb->pdev = pdev;
oledb->dev = &pdev->dev;
oledb->regmap = dev_get_regmap(pdev->dev.parent, NULL);
dev_set_drvdata(&pdev->dev, oledb);
if (!oledb->regmap) {
pr_err("Couldn't get parent's regmap\n");
return -EINVAL;
}
rc = of_property_read_u32(of_node, "reg", &val);
if (rc < 0) {
pr_err("Couldn't find reg in node, rc = %d\n", rc);
return rc;
}
mutex_init(&(oledb->bus_lock));
oledb->base = val;
rc = qpnp_oledb_parse_dt(oledb);
if (rc < 0) {
pr_err("Failed to parse common OLEDB device tree\n");
return rc;
}
rc = qpnp_oledb_hw_init(oledb);
if (rc < 0) {
pr_err("Failed to initialize OLEDB, rc=%d\n", rc);
return rc;
}
/* Enable LAB short circuit notification support */
if (oledb->pmic_rev_id->pmic_subtype == PM660L_SUBTYPE)
oledb->handle_lab_sc_notification = true;
if (oledb->force_pd_control || oledb->handle_lab_sc_notification) {
oledb->oledb_nb.notifier_call = qpnp_labibb_notifier_cb;
rc = qpnp_labibb_notifier_register(&oledb->oledb_nb);
if (rc < 0) {
pr_err("Failed to register qpnp_labibb_notifier_cb\n");
return rc;
}
}
rc = qpnp_oledb_register_regulator(oledb);
if (rc < 0) {
pr_err("Failed to register regulator rc=%d\n", rc);
goto out;
}
pr_info("OLEDB registered successfully, ext_pin_en=%d mod_en=%d current_voltage=%d mV\n",
oledb->ext_pin_control, oledb->mod_enable,
oledb->current_voltage);
return 0;
out:
if (oledb->force_pd_control) {
rc = qpnp_labibb_notifier_unregister(&oledb->oledb_nb);
if (rc < 0)
pr_err("Failed to unregister lab_vreg_ok notifier\n");
}
return rc;
}
static int qpnp_oledb_regulator_remove(struct platform_device *pdev)
{
int rc = 0;
struct qpnp_oledb *oledb = platform_get_drvdata(pdev);
if (oledb->force_pd_control) {
rc = qpnp_labibb_notifier_unregister(&oledb->oledb_nb);
if (rc < 0)
pr_err("Failed to unregister lab_vreg_ok notifier\n");
}
return rc;
}
const struct of_device_id qpnp_oledb_regulator_match_table[] = {
{ .compatible = QPNP_OLEDB_REGULATOR_DRIVER_NAME,},
{ },
};
static struct platform_driver qpnp_oledb_regulator_driver = {
.driver = {
.name = QPNP_OLEDB_REGULATOR_DRIVER_NAME,
.of_match_table = qpnp_oledb_regulator_match_table,
},
.probe = qpnp_oledb_regulator_probe,
.remove = qpnp_oledb_regulator_remove,
};
static int __init qpnp_oledb_regulator_init(void)
{
return platform_driver_register(&qpnp_oledb_regulator_driver);
}
arch_initcall(qpnp_oledb_regulator_init);
static void __exit qpnp_oledb_regulator_exit(void)
{
platform_driver_unregister(&qpnp_oledb_regulator_driver);
}
module_exit(qpnp_oledb_regulator_exit);
MODULE_DESCRIPTION("QPNP OLEDB driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("qpnp-oledb-regulator");