blob: f3683f9990c2dba7dcaf67260ba87e9a1843edfb [file] [log] [blame]
/*
* net/key/af_key.c An implementation of PF_KEYv2 sockets.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Maxim Giryaev <gem@asplinux.ru>
* David S. Miller <davem@redhat.com>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
* Kunihiro Ishiguro <kunihiro@ipinfusion.com>
* Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
* Derek Atkins <derek@ihtfp.com>
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/socket.h>
#include <linux/pfkeyv2.h>
#include <linux/ipsec.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/xfrm.h>
#include <net/sock.h>
#define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
#define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
static int pfkey_net_id __read_mostly;
struct netns_pfkey {
/* List of all pfkey sockets. */
struct hlist_head table;
atomic_t socks_nr;
};
static DEFINE_MUTEX(pfkey_mutex);
#define DUMMY_MARK 0
static const struct xfrm_mark dummy_mark = {0, 0};
struct pfkey_sock {
/* struct sock must be the first member of struct pfkey_sock */
struct sock sk;
int registered;
int promisc;
struct {
uint8_t msg_version;
uint32_t msg_portid;
int (*dump)(struct pfkey_sock *sk);
void (*done)(struct pfkey_sock *sk);
union {
struct xfrm_policy_walk policy;
struct xfrm_state_walk state;
} u;
struct sk_buff *skb;
} dump;
struct mutex dump_lock;
};
static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
xfrm_address_t *saddr, xfrm_address_t *daddr,
u16 *family);
static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
{
return (struct pfkey_sock *)sk;
}
static int pfkey_can_dump(const struct sock *sk)
{
if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
return 1;
return 0;
}
static void pfkey_terminate_dump(struct pfkey_sock *pfk)
{
if (pfk->dump.dump) {
if (pfk->dump.skb) {
kfree_skb(pfk->dump.skb);
pfk->dump.skb = NULL;
}
pfk->dump.done(pfk);
pfk->dump.dump = NULL;
pfk->dump.done = NULL;
}
}
static void pfkey_sock_destruct(struct sock *sk)
{
struct net *net = sock_net(sk);
struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
pfkey_terminate_dump(pfkey_sk(sk));
skb_queue_purge(&sk->sk_receive_queue);
if (!sock_flag(sk, SOCK_DEAD)) {
pr_err("Attempt to release alive pfkey socket: %p\n", sk);
return;
}
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(atomic_read(&sk->sk_wmem_alloc));
atomic_dec(&net_pfkey->socks_nr);
}
static const struct proto_ops pfkey_ops;
static void pfkey_insert(struct sock *sk)
{
struct net *net = sock_net(sk);
struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
mutex_lock(&pfkey_mutex);
sk_add_node_rcu(sk, &net_pfkey->table);
mutex_unlock(&pfkey_mutex);
}
static void pfkey_remove(struct sock *sk)
{
mutex_lock(&pfkey_mutex);
sk_del_node_init_rcu(sk);
mutex_unlock(&pfkey_mutex);
}
static struct proto key_proto = {
.name = "KEY",
.owner = THIS_MODULE,
.obj_size = sizeof(struct pfkey_sock),
};
static int pfkey_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
struct sock *sk;
struct pfkey_sock *pfk;
int err;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (protocol != PF_KEY_V2)
return -EPROTONOSUPPORT;
err = -ENOMEM;
sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
if (sk == NULL)
goto out;
pfk = pfkey_sk(sk);
mutex_init(&pfk->dump_lock);
sock->ops = &pfkey_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_KEY;
sk->sk_destruct = pfkey_sock_destruct;
atomic_inc(&net_pfkey->socks_nr);
pfkey_insert(sk);
return 0;
out:
return err;
}
static int pfkey_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (!sk)
return 0;
pfkey_remove(sk);
sock_orphan(sk);
sock->sk = NULL;
skb_queue_purge(&sk->sk_write_queue);
synchronize_rcu();
sock_put(sk);
return 0;
}
static int pfkey_broadcast_one(struct sk_buff *skb, gfp_t allocation,
struct sock *sk)
{
int err = -ENOBUFS;
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
return err;
skb = skb_clone(skb, allocation);
if (skb) {
skb_set_owner_r(skb, sk);
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk);
err = 0;
}
return err;
}
/* Send SKB to all pfkey sockets matching selected criteria. */
#define BROADCAST_ALL 0
#define BROADCAST_ONE 1
#define BROADCAST_REGISTERED 2
#define BROADCAST_PROMISC_ONLY 4
static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
int broadcast_flags, struct sock *one_sk,
struct net *net)
{
struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
struct sock *sk;
int err = -ESRCH;
/* XXX Do we need something like netlink_overrun? I think
* XXX PF_KEY socket apps will not mind current behavior.
*/
if (!skb)
return -ENOMEM;
rcu_read_lock();
sk_for_each_rcu(sk, &net_pfkey->table) {
struct pfkey_sock *pfk = pfkey_sk(sk);
int err2;
/* Yes, it means that if you are meant to receive this
* pfkey message you receive it twice as promiscuous
* socket.
*/
if (pfk->promisc)
pfkey_broadcast_one(skb, allocation, sk);
/* the exact target will be processed later */
if (sk == one_sk)
continue;
if (broadcast_flags != BROADCAST_ALL) {
if (broadcast_flags & BROADCAST_PROMISC_ONLY)
continue;
if ((broadcast_flags & BROADCAST_REGISTERED) &&
!pfk->registered)
continue;
if (broadcast_flags & BROADCAST_ONE)
continue;
}
err2 = pfkey_broadcast_one(skb, allocation, sk);
/* Error is cleare after succecful sending to at least one
* registered KM */
if ((broadcast_flags & BROADCAST_REGISTERED) && err)
err = err2;
}
rcu_read_unlock();
if (one_sk != NULL)
err = pfkey_broadcast_one(skb, allocation, one_sk);
kfree_skb(skb);
return err;
}
static int pfkey_do_dump(struct pfkey_sock *pfk)
{
struct sadb_msg *hdr;
int rc;
mutex_lock(&pfk->dump_lock);
if (!pfk->dump.dump) {
rc = 0;
goto out;
}
rc = pfk->dump.dump(pfk);
if (rc == -ENOBUFS) {
rc = 0;
goto out;
}
if (pfk->dump.skb) {
if (!pfkey_can_dump(&pfk->sk)) {
rc = 0;
goto out;
}
hdr = (struct sadb_msg *) pfk->dump.skb->data;
hdr->sadb_msg_seq = 0;
hdr->sadb_msg_errno = rc;
pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
&pfk->sk, sock_net(&pfk->sk));
pfk->dump.skb = NULL;
}
pfkey_terminate_dump(pfk);
out:
mutex_unlock(&pfk->dump_lock);
return rc;
}
static inline void pfkey_hdr_dup(struct sadb_msg *new,
const struct sadb_msg *orig)
{
*new = *orig;
}
static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
{
struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
struct sadb_msg *hdr;
if (!skb)
return -ENOBUFS;
/* Woe be to the platform trying to support PFKEY yet
* having normal errnos outside the 1-255 range, inclusive.
*/
err = -err;
if (err == ERESTARTSYS ||
err == ERESTARTNOHAND ||
err == ERESTARTNOINTR)
err = EINTR;
if (err >= 512)
err = EINVAL;
BUG_ON(err <= 0 || err >= 256);
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
pfkey_hdr_dup(hdr, orig);
hdr->sadb_msg_errno = (uint8_t) err;
hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
sizeof(uint64_t));
pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
return 0;
}
static const u8 sadb_ext_min_len[] = {
[SADB_EXT_RESERVED] = (u8) 0,
[SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
[SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
[SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
[SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
[SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
[SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
[SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
[SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
[SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
[SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
[SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
[SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
[SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
[SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
[SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
[SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
[SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
[SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
[SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
[SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
[SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
[SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
[SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
[SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
[SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
[SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
};
/* Verify sadb_address_{len,prefixlen} against sa_family. */
static int verify_address_len(const void *p)
{
const struct sadb_address *sp = p;
const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
const struct sockaddr_in *sin;
#if IS_ENABLED(CONFIG_IPV6)
const struct sockaddr_in6 *sin6;
#endif
int len;
if (sp->sadb_address_len <
DIV_ROUND_UP(sizeof(*sp) + offsetofend(typeof(*addr), sa_family),
sizeof(uint64_t)))
return -EINVAL;
switch (addr->sa_family) {
case AF_INET:
len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
if (sp->sadb_address_len != len ||
sp->sadb_address_prefixlen > 32)
return -EINVAL;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
if (sp->sadb_address_len != len ||
sp->sadb_address_prefixlen > 128)
return -EINVAL;
break;
#endif
default:
/* It is user using kernel to keep track of security
* associations for another protocol, such as
* OSPF/RSVP/RIPV2/MIP. It is user's job to verify
* lengths.
*
* XXX Actually, association/policy database is not yet
* XXX able to cope with arbitrary sockaddr families.
* XXX When it can, remove this -EINVAL. -DaveM
*/
return -EINVAL;
}
return 0;
}
static inline int sadb_key_len(const struct sadb_key *key)
{
int key_bytes = DIV_ROUND_UP(key->sadb_key_bits, 8);
return DIV_ROUND_UP(sizeof(struct sadb_key) + key_bytes,
sizeof(uint64_t));
}
static int verify_key_len(const void *p)
{
const struct sadb_key *key = p;
if (sadb_key_len(key) > key->sadb_key_len)
return -EINVAL;
return 0;
}
static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
{
return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
sec_ctx->sadb_x_ctx_len,
sizeof(uint64_t));
}
static inline int verify_sec_ctx_len(const void *p)
{
const struct sadb_x_sec_ctx *sec_ctx = p;
int len = sec_ctx->sadb_x_ctx_len;
if (len > PAGE_SIZE)
return -EINVAL;
len = pfkey_sec_ctx_len(sec_ctx);
if (sec_ctx->sadb_x_sec_len != len)
return -EINVAL;
return 0;
}
static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
gfp_t gfp)
{
struct xfrm_user_sec_ctx *uctx = NULL;
int ctx_size = sec_ctx->sadb_x_ctx_len;
uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
if (!uctx)
return NULL;
uctx->len = pfkey_sec_ctx_len(sec_ctx);
uctx->exttype = sec_ctx->sadb_x_sec_exttype;
uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
memcpy(uctx + 1, sec_ctx + 1,
uctx->ctx_len);
return uctx;
}
static int present_and_same_family(const struct sadb_address *src,
const struct sadb_address *dst)
{
const struct sockaddr *s_addr, *d_addr;
if (!src || !dst)
return 0;
s_addr = (const struct sockaddr *)(src + 1);
d_addr = (const struct sockaddr *)(dst + 1);
if (s_addr->sa_family != d_addr->sa_family)
return 0;
if (s_addr->sa_family != AF_INET
#if IS_ENABLED(CONFIG_IPV6)
&& s_addr->sa_family != AF_INET6
#endif
)
return 0;
return 1;
}
static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
{
const char *p = (char *) hdr;
int len = skb->len;
len -= sizeof(*hdr);
p += sizeof(*hdr);
while (len > 0) {
const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
uint16_t ext_type;
int ext_len;
if (len < sizeof(*ehdr))
return -EINVAL;
ext_len = ehdr->sadb_ext_len;
ext_len *= sizeof(uint64_t);
ext_type = ehdr->sadb_ext_type;
if (ext_len < sizeof(uint64_t) ||
ext_len > len ||
ext_type == SADB_EXT_RESERVED)
return -EINVAL;
if (ext_type <= SADB_EXT_MAX) {
int min = (int) sadb_ext_min_len[ext_type];
if (ext_len < min)
return -EINVAL;
if (ext_hdrs[ext_type-1] != NULL)
return -EINVAL;
switch (ext_type) {
case SADB_EXT_ADDRESS_SRC:
case SADB_EXT_ADDRESS_DST:
case SADB_EXT_ADDRESS_PROXY:
case SADB_X_EXT_NAT_T_OA:
if (verify_address_len(p))
return -EINVAL;
break;
case SADB_X_EXT_SEC_CTX:
if (verify_sec_ctx_len(p))
return -EINVAL;
break;
case SADB_EXT_KEY_AUTH:
case SADB_EXT_KEY_ENCRYPT:
if (verify_key_len(p))
return -EINVAL;
break;
default:
break;
}
ext_hdrs[ext_type-1] = (void *) p;
}
p += ext_len;
len -= ext_len;
}
return 0;
}
static uint16_t
pfkey_satype2proto(uint8_t satype)
{
switch (satype) {
case SADB_SATYPE_UNSPEC:
return IPSEC_PROTO_ANY;
case SADB_SATYPE_AH:
return IPPROTO_AH;
case SADB_SATYPE_ESP:
return IPPROTO_ESP;
case SADB_X_SATYPE_IPCOMP:
return IPPROTO_COMP;
default:
return 0;
}
/* NOTREACHED */
}
static uint8_t
pfkey_proto2satype(uint16_t proto)
{
switch (proto) {
case IPPROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_ESP:
return SADB_SATYPE_ESP;
case IPPROTO_COMP:
return SADB_X_SATYPE_IPCOMP;
default:
return 0;
}
/* NOTREACHED */
}
/* BTW, this scheme means that there is no way with PFKEY2 sockets to
* say specifically 'just raw sockets' as we encode them as 255.
*/
static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
{
return proto == IPSEC_PROTO_ANY ? 0 : proto;
}
static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
{
return proto ? proto : IPSEC_PROTO_ANY;
}
static inline int pfkey_sockaddr_len(sa_family_t family)
{
switch (family) {
case AF_INET:
return sizeof(struct sockaddr_in);
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
return sizeof(struct sockaddr_in6);
#endif
}
return 0;
}
static
int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
{
switch (sa->sa_family) {
case AF_INET:
xaddr->a4 =
((struct sockaddr_in *)sa)->sin_addr.s_addr;
return AF_INET;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
memcpy(xaddr->a6,
&((struct sockaddr_in6 *)sa)->sin6_addr,
sizeof(struct in6_addr));
return AF_INET6;
#endif
}
return 0;
}
static
int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
{
return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
xaddr);
}
static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
const struct sadb_sa *sa;
const struct sadb_address *addr;
uint16_t proto;
unsigned short family;
xfrm_address_t *xaddr;
sa = ext_hdrs[SADB_EXT_SA - 1];
if (sa == NULL)
return NULL;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return NULL;
/* sadb_address_len should be checked by caller */
addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
if (addr == NULL)
return NULL;
family = ((const struct sockaddr *)(addr + 1))->sa_family;
switch (family) {
case AF_INET:
xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
break;
#endif
default:
xaddr = NULL;
}
if (!xaddr)
return NULL;
return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
}
#define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
static int
pfkey_sockaddr_size(sa_family_t family)
{
return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
}
static inline int pfkey_mode_from_xfrm(int mode)
{
switch(mode) {
case XFRM_MODE_TRANSPORT:
return IPSEC_MODE_TRANSPORT;
case XFRM_MODE_TUNNEL:
return IPSEC_MODE_TUNNEL;
case XFRM_MODE_BEET:
return IPSEC_MODE_BEET;
default:
return -1;
}
}
static inline int pfkey_mode_to_xfrm(int mode)
{
switch(mode) {
case IPSEC_MODE_ANY: /*XXX*/
case IPSEC_MODE_TRANSPORT:
return XFRM_MODE_TRANSPORT;
case IPSEC_MODE_TUNNEL:
return XFRM_MODE_TUNNEL;
case IPSEC_MODE_BEET:
return XFRM_MODE_BEET;
default:
return -1;
}
}
static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
struct sockaddr *sa,
unsigned short family)
{
switch (family) {
case AF_INET:
{
struct sockaddr_in *sin = (struct sockaddr_in *)sa;
sin->sin_family = AF_INET;
sin->sin_port = port;
sin->sin_addr.s_addr = xaddr->a4;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
return 32;
}
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
sin6->sin6_family = AF_INET6;
sin6->sin6_port = port;
sin6->sin6_flowinfo = 0;
sin6->sin6_addr = *(struct in6_addr *)xaddr->a6;
sin6->sin6_scope_id = 0;
return 128;
}
#endif
}
return 0;
}
static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
int add_keys, int hsc)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
struct sadb_sa *sa;
struct sadb_lifetime *lifetime;
struct sadb_address *addr;
struct sadb_key *key;
struct sadb_x_sa2 *sa2;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *xfrm_ctx;
int ctx_size = 0;
int size;
int auth_key_size = 0;
int encrypt_key_size = 0;
int sockaddr_size;
struct xfrm_encap_tmpl *natt = NULL;
int mode;
/* address family check */
sockaddr_size = pfkey_sockaddr_size(x->props.family);
if (!sockaddr_size)
return ERR_PTR(-EINVAL);
/* base, SA, (lifetime (HSC),) address(SD), (address(P),)
key(AE), (identity(SD),) (sensitivity)> */
size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
sizeof(struct sadb_lifetime) +
((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
sizeof(struct sadb_address)*2 +
sockaddr_size*2 +
sizeof(struct sadb_x_sa2);
if ((xfrm_ctx = x->security)) {
ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
}
/* identity & sensitivity */
if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
size += sizeof(struct sadb_address) + sockaddr_size;
if (add_keys) {
if (x->aalg && x->aalg->alg_key_len) {
auth_key_size =
PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
size += sizeof(struct sadb_key) + auth_key_size;
}
if (x->ealg && x->ealg->alg_key_len) {
encrypt_key_size =
PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
size += sizeof(struct sadb_key) + encrypt_key_size;
}
}
if (x->encap)
natt = x->encap;
if (natt && natt->encap_type) {
size += sizeof(struct sadb_x_nat_t_type);
size += sizeof(struct sadb_x_nat_t_port);
size += sizeof(struct sadb_x_nat_t_port);
}
skb = alloc_skb(size + 16, GFP_ATOMIC);
if (skb == NULL)
return ERR_PTR(-ENOBUFS);
/* call should fill header later */
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
memset(hdr, 0, size); /* XXX do we need this ? */
hdr->sadb_msg_len = size / sizeof(uint64_t);
/* sa */
sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_spi = x->id.spi;
sa->sadb_sa_replay = x->props.replay_window;
switch (x->km.state) {
case XFRM_STATE_VALID:
sa->sadb_sa_state = x->km.dying ?
SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
break;
case XFRM_STATE_ACQ:
sa->sadb_sa_state = SADB_SASTATE_LARVAL;
break;
default:
sa->sadb_sa_state = SADB_SASTATE_DEAD;
break;
}
sa->sadb_sa_auth = 0;
if (x->aalg) {
struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
sa->sadb_sa_auth = (a && a->pfkey_supported) ?
a->desc.sadb_alg_id : 0;
}
sa->sadb_sa_encrypt = 0;
BUG_ON(x->ealg && x->calg);
if (x->ealg) {
struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
a->desc.sadb_alg_id : 0;
}
/* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
if (x->calg) {
struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
a->desc.sadb_alg_id : 0;
}
sa->sadb_sa_flags = 0;
if (x->props.flags & XFRM_STATE_NOECN)
sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
if (x->props.flags & XFRM_STATE_DECAP_DSCP)
sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
if (x->props.flags & XFRM_STATE_NOPMTUDISC)
sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
/* hard time */
if (hsc & 2) {
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
}
/* soft time */
if (hsc & 1) {
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
}
/* current time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lifetime->sadb_lifetime_allocations = x->curlft.packets;
lifetime->sadb_lifetime_bytes = x->curlft.bytes;
lifetime->sadb_lifetime_addtime = x->curlft.add_time;
lifetime->sadb_lifetime_usetime = x->curlft.use_time;
/* src address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
/* "if the ports are non-zero, then the sadb_address_proto field,
normally zero, MUST be filled in with the transport
protocol's number." - RFC2367 */
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
addr->sadb_address_prefixlen =
pfkey_sockaddr_fill(&x->props.saddr, 0,
(struct sockaddr *) (addr + 1),
x->props.family);
if (!addr->sadb_address_prefixlen)
BUG();
/* dst address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
addr->sadb_address_proto = 0;
addr->sadb_address_reserved = 0;
addr->sadb_address_prefixlen =
pfkey_sockaddr_fill(&x->id.daddr, 0,
(struct sockaddr *) (addr + 1),
x->props.family);
if (!addr->sadb_address_prefixlen)
BUG();
if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
x->props.family)) {
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
addr->sadb_address_proto =
pfkey_proto_from_xfrm(x->sel.proto);
addr->sadb_address_prefixlen = x->sel.prefixlen_s;
addr->sadb_address_reserved = 0;
pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
(struct sockaddr *) (addr + 1),
x->props.family);
}
/* auth key */
if (add_keys && auth_key_size) {
key = (struct sadb_key *) skb_put(skb,
sizeof(struct sadb_key)+auth_key_size);
key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
sizeof(uint64_t);
key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
key->sadb_key_bits = x->aalg->alg_key_len;
key->sadb_key_reserved = 0;
memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
}
/* encrypt key */
if (add_keys && encrypt_key_size) {
key = (struct sadb_key *) skb_put(skb,
sizeof(struct sadb_key)+encrypt_key_size);
key->sadb_key_len = (sizeof(struct sadb_key) +
encrypt_key_size) / sizeof(uint64_t);
key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
key->sadb_key_bits = x->ealg->alg_key_len;
key->sadb_key_reserved = 0;
memcpy(key + 1, x->ealg->alg_key,
(x->ealg->alg_key_len+7)/8);
}
/* sa */
sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
kfree_skb(skb);
return ERR_PTR(-EINVAL);
}
sa2->sadb_x_sa2_mode = mode;
sa2->sadb_x_sa2_reserved1 = 0;
sa2->sadb_x_sa2_reserved2 = 0;
sa2->sadb_x_sa2_sequence = 0;
sa2->sadb_x_sa2_reqid = x->props.reqid;
if (natt && natt->encap_type) {
struct sadb_x_nat_t_type *n_type;
struct sadb_x_nat_t_port *n_port;
/* type */
n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
n_type->sadb_x_nat_t_type_type = natt->encap_type;
n_type->sadb_x_nat_t_type_reserved[0] = 0;
n_type->sadb_x_nat_t_type_reserved[1] = 0;
n_type->sadb_x_nat_t_type_reserved[2] = 0;
/* source port */
n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
n_port->sadb_x_nat_t_port_port = natt->encap_sport;
n_port->sadb_x_nat_t_port_reserved = 0;
/* dest port */
n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
n_port->sadb_x_nat_t_port_port = natt->encap_dport;
n_port->sadb_x_nat_t_port_reserved = 0;
}
/* security context */
if (xfrm_ctx) {
sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
sizeof(struct sadb_x_sec_ctx) + ctx_size);
sec_ctx->sadb_x_sec_len =
(sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
xfrm_ctx->ctx_len);
}
return skb;
}
static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
{
struct sk_buff *skb;
skb = __pfkey_xfrm_state2msg(x, 1, 3);
return skb;
}
static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
int hsc)
{
return __pfkey_xfrm_state2msg(x, 0, hsc);
}
static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
const struct sadb_msg *hdr,
void * const *ext_hdrs)
{
struct xfrm_state *x;
const struct sadb_lifetime *lifetime;
const struct sadb_sa *sa;
const struct sadb_key *key;
const struct sadb_x_sec_ctx *sec_ctx;
uint16_t proto;
int err;
sa = ext_hdrs[SADB_EXT_SA - 1];
if (!sa ||
!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return ERR_PTR(-EINVAL);
if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
!ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
return ERR_PTR(-EINVAL);
if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
!ext_hdrs[SADB_EXT_KEY_AUTH-1])
return ERR_PTR(-EINVAL);
if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
!!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
return ERR_PTR(-EINVAL);
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return ERR_PTR(-EINVAL);
/* default error is no buffer space */
err = -ENOBUFS;
/* RFC2367:
Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
Therefore, the sadb_sa_state field of all submitted SAs MUST be
SADB_SASTATE_MATURE and the kernel MUST return an error if this is
not true.
However, KAME setkey always uses SADB_SASTATE_LARVAL.
Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
*/
if (sa->sadb_sa_auth > SADB_AALG_MAX ||
(hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
sa->sadb_sa_encrypt > SADB_EALG_MAX)
return ERR_PTR(-EINVAL);
key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
if (key != NULL &&
sa->sadb_sa_auth != SADB_X_AALG_NULL &&
key->sadb_key_bits == 0)
return ERR_PTR(-EINVAL);
key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
if (key != NULL &&
sa->sadb_sa_encrypt != SADB_EALG_NULL &&
key->sadb_key_bits == 0)
return ERR_PTR(-EINVAL);
x = xfrm_state_alloc(net);
if (x == NULL)
return ERR_PTR(-ENOBUFS);
x->id.proto = proto;
x->id.spi = sa->sadb_sa_spi;
x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
(sizeof(x->replay.bitmap) * 8));
if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
x->props.flags |= XFRM_STATE_NOECN;
if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
x->props.flags |= XFRM_STATE_DECAP_DSCP;
if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
x->props.flags |= XFRM_STATE_NOPMTUDISC;
lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
if (lifetime != NULL) {
x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
if (lifetime != NULL) {
x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
if (sec_ctx != NULL) {
struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
if (!uctx)
goto out;
err = security_xfrm_state_alloc(x, uctx);
kfree(uctx);
if (err)
goto out;
}
err = -ENOBUFS;
key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
if (sa->sadb_sa_auth) {
int keysize = 0;
struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
if (!a || !a->pfkey_supported) {
err = -ENOSYS;
goto out;
}
if (key)
keysize = (key->sadb_key_bits + 7) / 8;
x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
if (!x->aalg) {
err = -ENOMEM;
goto out;
}
strcpy(x->aalg->alg_name, a->name);
x->aalg->alg_key_len = 0;
if (key) {
x->aalg->alg_key_len = key->sadb_key_bits;
memcpy(x->aalg->alg_key, key+1, keysize);
}
x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
x->props.aalgo = sa->sadb_sa_auth;
/* x->algo.flags = sa->sadb_sa_flags; */
}
if (sa->sadb_sa_encrypt) {
if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
if (!a || !a->pfkey_supported) {
err = -ENOSYS;
goto out;
}
x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
if (!x->calg) {
err = -ENOMEM;
goto out;
}
strcpy(x->calg->alg_name, a->name);
x->props.calgo = sa->sadb_sa_encrypt;
} else {
int keysize = 0;
struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
if (!a || !a->pfkey_supported) {
err = -ENOSYS;
goto out;
}
key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
if (key)
keysize = (key->sadb_key_bits + 7) / 8;
x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
if (!x->ealg) {
err = -ENOMEM;
goto out;
}
strcpy(x->ealg->alg_name, a->name);
x->ealg->alg_key_len = 0;
if (key) {
x->ealg->alg_key_len = key->sadb_key_bits;
memcpy(x->ealg->alg_key, key+1, keysize);
}
x->props.ealgo = sa->sadb_sa_encrypt;
}
}
/* x->algo.flags = sa->sadb_sa_flags; */
x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
&x->props.saddr);
pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
&x->id.daddr);
if (ext_hdrs[SADB_X_EXT_SA2-1]) {
const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
if (mode < 0) {
err = -EINVAL;
goto out;
}
x->props.mode = mode;
x->props.reqid = sa2->sadb_x_sa2_reqid;
}
if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
/* Nobody uses this, but we try. */
x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
x->sel.prefixlen_s = addr->sadb_address_prefixlen;
}
if (!x->sel.family)
x->sel.family = x->props.family;
if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
const struct sadb_x_nat_t_type* n_type;
struct xfrm_encap_tmpl *natt;
x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
if (!x->encap) {
err = -ENOMEM;
goto out;
}
natt = x->encap;
n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
natt->encap_type = n_type->sadb_x_nat_t_type_type;
if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
const struct sadb_x_nat_t_port *n_port =
ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
natt->encap_sport = n_port->sadb_x_nat_t_port_port;
}
if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
const struct sadb_x_nat_t_port *n_port =
ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
natt->encap_dport = n_port->sadb_x_nat_t_port_port;
}
memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
}
err = xfrm_init_state(x);
if (err)
goto out;
x->km.seq = hdr->sadb_msg_seq;
return x;
out:
x->km.state = XFRM_STATE_DEAD;
xfrm_state_put(x);
return ERR_PTR(err);
}
static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
return -EOPNOTSUPP;
}
static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
struct sk_buff *resp_skb;
struct sadb_x_sa2 *sa2;
struct sadb_address *saddr, *daddr;
struct sadb_msg *out_hdr;
struct sadb_spirange *range;
struct xfrm_state *x = NULL;
int mode;
int err;
u32 min_spi, max_spi;
u32 reqid;
u8 proto;
unsigned short family;
xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return -EINVAL;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return -EINVAL;
if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
if (mode < 0)
return -EINVAL;
reqid = sa2->sadb_x_sa2_reqid;
} else {
mode = 0;
reqid = 0;
}
saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
family = ((struct sockaddr *)(saddr + 1))->sa_family;
switch (family) {
case AF_INET:
xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
break;
#endif
}
if (hdr->sadb_msg_seq) {
x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
xfrm_state_put(x);
x = NULL;
}
}
if (!x)
x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
if (x == NULL)
return -ENOENT;
min_spi = 0x100;
max_spi = 0x0fffffff;
range = ext_hdrs[SADB_EXT_SPIRANGE-1];
if (range) {
min_spi = range->sadb_spirange_min;
max_spi = range->sadb_spirange_max;
}
err = verify_spi_info(x->id.proto, min_spi, max_spi);
if (err) {
xfrm_state_put(x);
return err;
}
err = xfrm_alloc_spi(x, min_spi, max_spi);
resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
if (IS_ERR(resp_skb)) {
xfrm_state_put(x);
return PTR_ERR(resp_skb);
}
out_hdr = (struct sadb_msg *) resp_skb->data;
out_hdr->sadb_msg_version = hdr->sadb_msg_version;
out_hdr->sadb_msg_type = SADB_GETSPI;
out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
xfrm_state_put(x);
pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
return 0;
}
static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
struct xfrm_state *x;
if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
return -EOPNOTSUPP;
if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
return 0;
x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
if (x == NULL)
return 0;
spin_lock_bh(&x->lock);
if (x->km.state == XFRM_STATE_ACQ)
x->km.state = XFRM_STATE_ERROR;
spin_unlock_bh(&x->lock);
xfrm_state_put(x);
return 0;
}
static inline int event2poltype(int event)
{
switch (event) {
case XFRM_MSG_DELPOLICY:
return SADB_X_SPDDELETE;
case XFRM_MSG_NEWPOLICY:
return SADB_X_SPDADD;
case XFRM_MSG_UPDPOLICY:
return SADB_X_SPDUPDATE;
case XFRM_MSG_POLEXPIRE:
// return SADB_X_SPDEXPIRE;
default:
pr_err("pfkey: Unknown policy event %d\n", event);
break;
}
return 0;
}
static inline int event2keytype(int event)
{
switch (event) {
case XFRM_MSG_DELSA:
return SADB_DELETE;
case XFRM_MSG_NEWSA:
return SADB_ADD;
case XFRM_MSG_UPDSA:
return SADB_UPDATE;
case XFRM_MSG_EXPIRE:
return SADB_EXPIRE;
default:
pr_err("pfkey: Unknown SA event %d\n", event);
break;
}
return 0;
}
/* ADD/UPD/DEL */
static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
skb = pfkey_xfrm_state2msg(x);
if (IS_ERR(skb))
return PTR_ERR(skb);
hdr = (struct sadb_msg *) skb->data;
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_type = event2keytype(c->event);
hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_reserved = 0;
hdr->sadb_msg_seq = c->seq;
hdr->sadb_msg_pid = c->portid;
pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
return 0;
}
static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
struct xfrm_state *x;
int err;
struct km_event c;
x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
if (IS_ERR(x))
return PTR_ERR(x);
xfrm_state_hold(x);
if (hdr->sadb_msg_type == SADB_ADD)
err = xfrm_state_add(x);
else
err = xfrm_state_update(x);
xfrm_audit_state_add(x, err ? 0 : 1, true);
if (err < 0) {
x->km.state = XFRM_STATE_DEAD;
__xfrm_state_put(x);
goto out;
}
if (hdr->sadb_msg_type == SADB_ADD)
c.event = XFRM_MSG_NEWSA;
else
c.event = XFRM_MSG_UPDSA;
c.seq = hdr->sadb_msg_seq;
c.portid = hdr->sadb_msg_pid;
km_state_notify(x, &c);
out:
xfrm_state_put(x);
return err;
}
static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
struct xfrm_state *x;
struct km_event c;
int err;
if (!ext_hdrs[SADB_EXT_SA-1] ||
!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return -EINVAL;
x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
if (x == NULL)
return -ESRCH;
if ((err = security_xfrm_state_delete(x)))
goto out;
if (xfrm_state_kern(x)) {
err = -EPERM;
goto out;
}
err = xfrm_state_delete(x);
if (err < 0)
goto out;
c.seq = hdr->sadb_msg_seq;
c.portid = hdr->sadb_msg_pid;
c.event = XFRM_MSG_DELSA;
km_state_notify(x, &c);
out:
xfrm_audit_state_delete(x, err ? 0 : 1, true);
xfrm_state_put(x);
return err;
}
static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
__u8 proto;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
struct xfrm_state *x;
if (!ext_hdrs[SADB_EXT_SA-1] ||
!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
return -EINVAL;
x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
if (x == NULL)
return -ESRCH;
out_skb = pfkey_xfrm_state2msg(x);
proto = x->id.proto;
xfrm_state_put(x);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = hdr->sadb_msg_version;
out_hdr->sadb_msg_type = SADB_GET;
out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
return 0;
}
static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
gfp_t allocation)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
int len, auth_len, enc_len, i;
auth_len = xfrm_count_pfkey_auth_supported();
if (auth_len) {
auth_len *= sizeof(struct sadb_alg);
auth_len += sizeof(struct sadb_supported);
}
enc_len = xfrm_count_pfkey_enc_supported();
if (enc_len) {
enc_len *= sizeof(struct sadb_alg);
enc_len += sizeof(struct sadb_supported);
}
len = enc_len + auth_len + sizeof(struct sadb_msg);
skb = alloc_skb(len + 16, allocation);
if (!skb)
goto out_put_algs;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
pfkey_hdr_dup(hdr, orig);
hdr->sadb_msg_errno = 0;
hdr->sadb_msg_len = len / sizeof(uint64_t);
if (auth_len) {
struct sadb_supported *sp;
struct sadb_alg *ap;
sp = (struct sadb_supported *) skb_put(skb, auth_len);
ap = (struct sadb_alg *) (sp + 1);
sp->sadb_supported_len = auth_len / sizeof(uint64_t);
sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
for (i = 0; ; i++) {
struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
if (!aalg)
break;
if (!aalg->pfkey_supported)
continue;
if (aalg->available)
*ap++ = aalg->desc;
}
}
if (enc_len) {
struct sadb_supported *sp;
struct sadb_alg *ap;
sp = (struct sadb_supported *) skb_put(skb, enc_len);
ap = (struct sadb_alg *) (sp + 1);
sp->sadb_supported_len = enc_len / sizeof(uint64_t);
sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
for (i = 0; ; i++) {
struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
if (!ealg)
break;
if (!ealg->pfkey_supported)
continue;
if (ealg->available)
*ap++ = ealg->desc;
}
}
out_put_algs:
return skb;
}
static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct pfkey_sock *pfk = pfkey_sk(sk);
struct sk_buff *supp_skb;
if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
return -EINVAL;
if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
if (pfk->registered&(1<<hdr->sadb_msg_satype))
return -EEXIST;
pfk->registered |= (1<<hdr->sadb_msg_satype);
}
xfrm_probe_algs();
supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
if (!supp_skb) {
if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
pfk->registered &= ~(1<<hdr->sadb_msg_satype);
return -ENOBUFS;
}
pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
return 0;
}
static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
if (!skb)
return -ENOBUFS;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
memcpy(hdr, ihdr, sizeof(struct sadb_msg));
hdr->sadb_msg_errno = (uint8_t) 0;
hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
}
static int key_notify_sa_flush(const struct km_event *c)
{
struct sk_buff *skb;
struct sadb_msg *hdr;
skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
if (!skb)
return -ENOBUFS;
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
hdr->sadb_msg_type = SADB_FLUSH;
hdr->sadb_msg_seq = c->seq;
hdr->sadb_msg_pid = c->portid;
hdr->sadb_msg_version = PF_KEY_V2;
hdr->sadb_msg_errno = (uint8_t) 0;
hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
hdr->sadb_msg_reserved = 0;
pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
return 0;
}
static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
unsigned int proto;
struct km_event c;
int err, err2;
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0)
return -EINVAL;
err = xfrm_state_flush(net, proto, true);
err2 = unicast_flush_resp(sk, hdr);
if (err || err2) {
if (err == -ESRCH) /* empty table - go quietly */
err = 0;
return err ? err : err2;
}
c.data.proto = proto;
c.seq = hdr->sadb_msg_seq;
c.portid = hdr->sadb_msg_pid;
c.event = XFRM_MSG_FLUSHSA;
c.net = net;
km_state_notify(NULL, &c);
return 0;
}
static int dump_sa(struct xfrm_state *x, int count, void *ptr)
{
struct pfkey_sock *pfk = ptr;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
if (!pfkey_can_dump(&pfk->sk))
return -ENOBUFS;
out_skb = pfkey_xfrm_state2msg(x);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = pfk->dump.msg_version;
out_hdr->sadb_msg_type = SADB_DUMP;
out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_reserved = 0;
out_hdr->sadb_msg_seq = count + 1;
out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
if (pfk->dump.skb)
pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
&pfk->sk, sock_net(&pfk->sk));
pfk->dump.skb = out_skb;
return 0;
}
static int pfkey_dump_sa(struct pfkey_sock *pfk)
{
struct net *net = sock_net(&pfk->sk);
return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
}
static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
{
struct net *net = sock_net(&pfk->sk);
xfrm_state_walk_done(&pfk->dump.u.state, net);
}
static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
u8 proto;
struct xfrm_address_filter *filter = NULL;
struct pfkey_sock *pfk = pfkey_sk(sk);
mutex_lock(&pfk->dump_lock);
if (pfk->dump.dump != NULL) {
mutex_unlock(&pfk->dump_lock);
return -EBUSY;
}
proto = pfkey_satype2proto(hdr->sadb_msg_satype);
if (proto == 0) {
mutex_unlock(&pfk->dump_lock);
return -EINVAL;
}
if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
filter = kmalloc(sizeof(*filter), GFP_KERNEL);
if (filter == NULL) {
mutex_unlock(&pfk->dump_lock);
return -ENOMEM;
}
memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
sizeof(xfrm_address_t));
memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
sizeof(xfrm_address_t));
filter->family = xfilter->sadb_x_filter_family;
filter->splen = xfilter->sadb_x_filter_splen;
filter->dplen = xfilter->sadb_x_filter_dplen;
}
pfk->dump.msg_version = hdr->sadb_msg_version;
pfk->dump.msg_portid = hdr->sadb_msg_pid;
pfk->dump.dump = pfkey_dump_sa;
pfk->dump.done = pfkey_dump_sa_done;
xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
mutex_unlock(&pfk->dump_lock);
return pfkey_do_dump(pfk);
}
static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct pfkey_sock *pfk = pfkey_sk(sk);
int satype = hdr->sadb_msg_satype;
bool reset_errno = false;
if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
reset_errno = true;
if (satype != 0 && satype != 1)
return -EINVAL;
pfk->promisc = satype;
}
if (reset_errno && skb_cloned(skb))
skb = skb_copy(skb, GFP_KERNEL);
else
skb = skb_clone(skb, GFP_KERNEL);
if (reset_errno && skb) {
struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
new_hdr->sadb_msg_errno = 0;
}
pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
return 0;
}
static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
{
int i;
u32 reqid = *(u32*)ptr;
for (i=0; i<xp->xfrm_nr; i++) {
if (xp->xfrm_vec[i].reqid == reqid)
return -EEXIST;
}
return 0;
}
static u32 gen_reqid(struct net *net)
{
struct xfrm_policy_walk walk;
u32 start;
int rc;
static u32 reqid = IPSEC_MANUAL_REQID_MAX;
start = reqid;
do {
++reqid;
if (reqid == 0)
reqid = IPSEC_MANUAL_REQID_MAX+1;
xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
xfrm_policy_walk_done(&walk, net);
if (rc != -EEXIST)
return reqid;
} while (reqid != start);
return 0;
}
static int
parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
{
struct net *net = xp_net(xp);
struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
int mode;
if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
return -ELOOP;
if (rq->sadb_x_ipsecrequest_mode == 0)
return -EINVAL;
t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
return -EINVAL;
t->mode = mode;
if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
t->optional = 1;
else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
t->reqid = rq->sadb_x_ipsecrequest_reqid;
if (t->reqid > IPSEC_MANUAL_REQID_MAX)
t->reqid = 0;
if (!t->reqid && !(t->reqid = gen_reqid(net)))
return -ENOBUFS;
}
/* addresses present only in tunnel mode */
if (t->mode == XFRM_MODE_TUNNEL) {
int err;
err = parse_sockaddr_pair(
(struct sockaddr *)(rq + 1),
rq->sadb_x_ipsecrequest_len - sizeof(*rq),
&t->saddr, &t->id.daddr, &t->encap_family);
if (err)
return err;
} else
t->encap_family = xp->family;
/* No way to set this via kame pfkey */
t->allalgs = 1;
xp->xfrm_nr++;
return 0;
}
static int
parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
{
int err;
int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
return -EINVAL;
while (len >= sizeof(*rq)) {
if (len < rq->sadb_x_ipsecrequest_len ||
rq->sadb_x_ipsecrequest_len < sizeof(*rq))
return -EINVAL;
if ((err = parse_ipsecrequest(xp, rq)) < 0)
return err;
len -= rq->sadb_x_ipsecrequest_len;
rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
}
return 0;
}
static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
{
struct xfrm_sec_ctx *xfrm_ctx = xp->security;
if (xfrm_ctx) {
int len = sizeof(struct sadb_x_sec_ctx);
len += xfrm_ctx->ctx_len;
return PFKEY_ALIGN8(len);
}
return 0;
}
static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
{
const struct xfrm_tmpl *t;
int sockaddr_size = pfkey_sockaddr_size(xp->family);
int socklen = 0;
int i;
for (i=0; i<xp->xfrm_nr; i++) {
t = xp->xfrm_vec + i;
socklen += pfkey_sockaddr_len(t->encap_family);
}
return sizeof(struct sadb_msg) +
(sizeof(struct sadb_lifetime) * 3) +
(sizeof(struct sadb_address) * 2) +
(sockaddr_size * 2) +
sizeof(struct sadb_x_policy) +
(xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
(socklen * 2) +
pfkey_xfrm_policy2sec_ctx_size(xp);
}
static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
{
struct sk_buff *skb;
int size;
size = pfkey_xfrm_policy2msg_size(xp);
skb = alloc_skb(size + 16, GFP_ATOMIC);
if (skb == NULL)
return ERR_PTR(-ENOBUFS);
return skb;
}
static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
{
struct sadb_msg *hdr;
struct sadb_address *addr;
struct sadb_lifetime *lifetime;
struct sadb_x_policy *pol;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *xfrm_ctx;
int i;
int size;
int sockaddr_size = pfkey_sockaddr_size(xp->family);
int socklen = pfkey_sockaddr_len(xp->family);
size = pfkey_xfrm_policy2msg_size(xp);
/* call should fill header later */
hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
memset(hdr, 0, size); /* XXX do we need this ? */
/* src address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
addr->sadb_address_reserved = 0;
if (!pfkey_sockaddr_fill(&xp->selector.saddr,
xp->selector.sport,
(struct sockaddr *) (addr + 1),
xp->family))
BUG();
/* dst address */
addr = (struct sadb_address*) skb_put(skb,
sizeof(struct sadb_address)+sockaddr_size);
addr->sadb_address_len =
(sizeof(struct sadb_address)+sockaddr_size)/
sizeof(uint64_t);
addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
addr->sadb_address_reserved = 0;
pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
(struct sockaddr *) (addr + 1),
xp->family);
/* hard time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
/* soft time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
/* current time */
lifetime = (struct sadb_lifetime *) skb_put(skb,
sizeof(struct sadb_lifetime));
lifetime->sadb_lifetime_len =
sizeof(struct sadb_lifetime)/sizeof(uint64_t);
lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lifetime->sadb_lifetime_allocations = xp->curlft.packets;
lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
if (xp->action == XFRM_POLICY_ALLOW) {
if (xp->xfrm_nr)
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
else
pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
}
pol->sadb_x_policy_dir = dir+1;
pol->sadb_x_policy_reserved = 0;
pol->sadb_x_policy_id = xp->index;
pol->sadb_x_policy_priority = xp->priority;
for (i=0; i<xp->xfrm_nr; i++) {
const struct xfrm_tmpl *t = xp->xfrm_vec + i;
struct sadb_x_ipsecrequest *rq;
int req_size;
int mode;
req_size = sizeof(struct sadb_x_ipsecrequest);
if (t->mode == XFRM_MODE_TUNNEL) {
socklen = pfkey_sockaddr_len(t->encap_family);
req_size += socklen * 2;
} else {
size -= 2*socklen;
}
rq = (void*)skb_put(skb, req_size);
pol->sadb_x_policy_len += req_size/8;
memset(rq, 0, sizeof(*rq));
rq->sadb_x_ipsecrequest_len = req_size;
rq->sadb_x_ipsecrequest_proto = t->id.proto;
if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
return -EINVAL;
rq->sadb_x_ipsecrequest_mode = mode;
rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
if (t->reqid)
rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
if (t->optional)
rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
rq->sadb_x_ipsecrequest_reqid = t->reqid;
if (t->mode == XFRM_MODE_TUNNEL) {
u8 *sa = (void *)(rq + 1);
pfkey_sockaddr_fill(&t->saddr, 0,
(struct sockaddr *)sa,
t->encap_family);
pfkey_sockaddr_fill(&t->id.daddr, 0,
(struct sockaddr *) (sa + socklen),
t->encap_family);
}
}
/* security context */
if ((xfrm_ctx = xp->security)) {
int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
xfrm_ctx->ctx_len);
}
hdr->sadb_msg_len = size / sizeof(uint64_t);
hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
return 0;
}
static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
{
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
int err;
out_skb = pfkey_xfrm_policy2msg_prep(xp);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
if (err < 0)
return err;
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = PF_KEY_V2;
if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
else
out_hdr->sadb_msg_type = event2poltype(c->event);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_seq = c->seq;
out_hdr->sadb_msg_pid = c->portid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
return 0;
}
static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
int err = 0;
struct sadb_lifetime *lifetime;
struct sadb_address *sa;
struct sadb_x_policy *pol;
struct xfrm_policy *xp;
struct km_event c;
struct sadb_x_sec_ctx *sec_ctx;
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
!ext_hdrs[SADB_X_EXT_POLICY-1])
return -EINVAL;
pol = ext_hdrs[SADB_X_EXT_POLICY-1];
if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
return -EINVAL;
if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
return -EINVAL;
xp = xfrm_policy_alloc(net, GFP_KERNEL);
if (xp == NULL)
return -ENOBUFS;
xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
xp->priority = pol->sadb_x_policy_priority;
sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
xp->selector.family = xp->family;
xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (xp->selector.sport)
xp->selector.sport_mask = htons(0xffff);
sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
/* Amusing, we set this twice. KAME apps appear to set same value
* in both addresses.
*/
xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (xp->selector.dport)
xp->selector.dport_mask = htons(0xffff);
sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
if (sec_ctx != NULL) {
struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
if (!uctx) {
err = -ENOBUFS;
goto out;
}
err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
kfree(uctx);
if (err)
goto out;
}
xp->lft.soft_byte_limit = XFRM_INF;
xp->lft.hard_byte_limit = XFRM_INF;
xp->lft.soft_packet_limit = XFRM_INF;
xp->lft.hard_packet_limit = XFRM_INF;
if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
}
xp->xfrm_nr = 0;
if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
(err = parse_ipsecrequests(xp, pol)) < 0)
goto out;
err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
hdr->sadb_msg_type != SADB_X_SPDUPDATE);
xfrm_audit_policy_add(xp, err ? 0 : 1, true);
if (err)
goto out;
if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
c.event = XFRM_MSG_UPDPOLICY;
else
c.event = XFRM_MSG_NEWPOLICY;
c.seq = hdr->sadb_msg_seq;
c.portid = hdr->sadb_msg_pid;
km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
xfrm_pol_put(xp);
return 0;
out:
xp->walk.dead = 1;
xfrm_policy_destroy(xp);
return err;
}
static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
{
struct net *net = sock_net(sk);
int err;
struct sadb_address *sa;
struct sadb_x_policy *pol;
struct xfrm_policy *xp;
struct xfrm_selector sel;
struct km_event c;
struct sadb_x_sec_ctx *sec_ctx;
struct xfrm_sec_ctx *pol_ctx = NULL;
if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
!ext_hdrs[SADB_X_EXT_POLICY-1])
return -EINVAL;
pol = ext_hdrs[SADB_X_EXT_POLICY-1];
if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
return -EINVAL;
memset(&sel, 0, sizeof(sel));
sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
sel.prefixlen_s = sa->sadb_address_prefixlen;
sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (sel.sport)
sel.sport_mask = htons(0xffff);
sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
sel.prefixlen_d = sa->sadb_address_prefixlen;
sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
if (sel.dport)
sel.dport_mask = htons(0xffff);
sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
if (sec_ctx != NULL) {
struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
if (!uctx)
return -ENOMEM;
err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
kfree(uctx);
if (err)
return err;
}
xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
1, &err);
security_xfrm_policy_free(pol_ctx);
if (xp == NULL)
return -ENOENT;
xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
if (err)
goto out;
c.seq = hdr->sadb_msg_seq;
c.portid = hdr->sadb_msg_pid;
c.data.byid = 0;
c.event = XFRM_MSG_DELPOLICY;
km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
out:
xfrm_pol_put(xp);
if (err == 0)
xfrm_garbage_collect(net);
return err;
}
static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
{
int err;
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
err = 0;
out_skb = pfkey_xfrm_policy2msg_prep(xp);
if (IS_ERR(out_skb)) {
err = PTR_ERR(out_skb);
goto out;
}
err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
if (err < 0)
goto out;
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = hdr->sadb_msg_version;
out_hdr->sadb_msg_type = hdr->sadb_msg_type;
out_hdr->sadb_msg_satype = 0;
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
err = 0;
out:
return err;
}
static int pfkey_sockaddr_pair_size(sa_family_t family)
{
return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
}
static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
xfrm_address_t *saddr, xfrm_address_t *daddr,
u16 *family)
{
int af, socklen;
if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
return -EINVAL;
af = pfkey_sockaddr_extract(sa, saddr);
if (!af)
return -EINVAL;
socklen = pfkey_sockaddr_len(af);
if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
daddr) != af)
return -EINVAL;
*family = af;
return 0;
}
#ifdef CONFIG_NET_KEY_MIGRATE
static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
struct xfrm_migrate *m)
{
int err;
struct sadb_x_ipsecrequest *rq2;
int mode;
if (len < sizeof(*rq1) ||
len < rq1->sadb_x_ipsecrequest_len ||
rq1->sadb_x_ipsecrequest_len < sizeof(*rq1))
return -EINVAL;
/* old endoints */
err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
rq1->sadb_x_ipsecrequest_len - sizeof(*rq1),
&m->old_saddr, &m->old_daddr,
&m->old_family);
if (err)
return err;
rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
len -= rq1->sadb_x_ipsecrequest_len;
if (len <= sizeof(*rq2) ||
len < rq2->sadb_x_ipsecrequest_len ||
rq2->sadb_x_ipsecrequest_len < sizeof(*rq2))
return -EINVAL;
/* new endpoints */
err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
rq2->sadb_x_ipsecrequest_len - sizeof(*rq2),
&m->new_saddr, &m->new_daddr,
&m->new_family);
if (err)
return err;
if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
return -EINVAL;
m->proto = rq1->sadb_x_ipsecrequest_proto;
if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
return -EINVAL;
m->mode = mode;
m->reqid = rq1->sadb_x_ipsecrequest_reqid;
return ((int)(rq1->sadb_x_ipsecrequest_len +
rq2->sadb_x_ipsecrequest_len));
}
static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
const struct sadb_msg *hdr, void * const *ext_hdrs)
{
int i, len, ret, err = -EINVAL;
u8 dir;
struct sadb_address *sa;
struct sadb_x_kmaddress *kma;
struct sadb_x_policy *pol;
struct sadb_x_ipsecrequest *rq;