blob: 9a6fbaea9245c0d6a616e5b7133ce76eb7f07a42 [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/spmi.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/log2.h>
#include <linux/qpnp/power-on.h>
/* Common PNP defines */
#define QPNP_PON_REVISION2(base) (base + 0x01)
/* PON common register addresses */
#define QPNP_PON_RT_STS(base) (base + 0x10)
#define QPNP_PON_PULL_CTL(base) (base + 0x70)
#define QPNP_PON_DBC_CTL(base) (base + 0x71)
/* PON/RESET sources register addresses */
#define QPNP_PON_REASON1(base) (base + 0x8)
#define QPNP_PON_WARM_RESET_REASON1(base) (base + 0xA)
#define QPNP_PON_WARM_RESET_REASON2(base) (base + 0xB)
#define QPNP_POFF_REASON1(base) (base + 0xC)
#define QPNP_PON_KPDPWR_S1_TIMER(base) (base + 0x40)
#define QPNP_PON_KPDPWR_S2_TIMER(base) (base + 0x41)
#define QPNP_PON_KPDPWR_S2_CNTL(base) (base + 0x42)
#define QPNP_PON_KPDPWR_S2_CNTL2(base) (base + 0x43)
#define QPNP_PON_RESIN_S1_TIMER(base) (base + 0x44)
#define QPNP_PON_RESIN_S2_TIMER(base) (base + 0x45)
#define QPNP_PON_RESIN_S2_CNTL(base) (base + 0x46)
#define QPNP_PON_RESIN_S2_CNTL2(base) (base + 0x47)
#define QPNP_PON_KPDPWR_RESIN_S1_TIMER(base) (base + 0x48)
#define QPNP_PON_KPDPWR_RESIN_S2_TIMER(base) (base + 0x49)
#define QPNP_PON_KPDPWR_RESIN_S2_CNTL(base) (base + 0x4A)
#define QPNP_PON_KPDPWR_RESIN_S2_CNTL2(base) (base + 0x4B)
#define QPNP_PON_PS_HOLD_RST_CTL(base) (base + 0x5A)
#define QPNP_PON_PS_HOLD_RST_CTL2(base) (base + 0x5B)
#define QPNP_PON_WD_RST_S2_CTL(base) (base + 0x56)
#define QPNP_PON_WD_RST_S2_CTL2(base) (base + 0x57)
#define QPNP_PON_TRIGGER_EN(base) (base + 0x80)
#define QPNP_PON_S3_DBC_CTL(base) (base + 0x75)
#define QPNP_PON_XVDD_RB_SPARE(base) (base + 0x8E)
/* spared registers for storing extra reset information */
#define QPNP_PON_EXTRA_RESET_INFO_1(base) (base + 0x8D)
#define QPNP_PON_EXTRA_RESET_INFO_2(base) (base + 0x8E)
#define QPNP_PON_WARM_RESET_TFT BIT(4)
#define QPNP_PON_RESIN_PULL_UP BIT(0)
#define QPNP_PON_KPDPWR_PULL_UP BIT(1)
#define QPNP_PON_CBLPWR_PULL_UP BIT(2)
#define QPNP_PON_S2_CNTL_EN BIT(7)
#define QPNP_PON_S2_RESET_ENABLE BIT(7)
#define QPNP_PON_DELAY_BIT_SHIFT 6
#define QPNP_PON_S1_TIMER_MASK (0xF)
#define QPNP_PON_S2_TIMER_MASK (0x7)
#define QPNP_PON_S2_CNTL_TYPE_MASK (0xF)
#define QPNP_PON_DBC_DELAY_MASK (0x7)
#define QPNP_PON_KPDPWR_N_SET BIT(0)
#define QPNP_PON_RESIN_N_SET BIT(1)
#define QPNP_PON_CBLPWR_N_SET BIT(2)
#define QPNP_PON_RESIN_BARK_N_SET BIT(4)
#define QPNP_PON_KPDPWR_RESIN_BARK_N_SET BIT(5)
#define QPNP_PON_WD_EN BIT(7)
#define QPNP_PON_RESET_EN BIT(7)
#define QPNP_PON_POWER_OFF_MASK 0xF
#define QPNP_PON_UVLO_DLOAD_EN BIT(7)
/* Ranges */
#define QPNP_PON_S1_TIMER_MAX 10256
#define QPNP_PON_S2_TIMER_MAX 2000
#define QPNP_PON_S3_TIMER_SECS_MAX 128
#define QPNP_PON_S3_DBC_DELAY_MASK 0x07
#define QPNP_PON_RESET_TYPE_MAX 0xF
#define PON_S1_COUNT_MAX 0xF
#define QPNP_PON_MIN_DBC_US (USEC_PER_SEC / 64)
#define QPNP_PON_MAX_DBC_US (USEC_PER_SEC * 2)
#define QPNP_KEY_STATUS_DELAY msecs_to_jiffies(250)
#define QPNP_PON_REV_B 0x01
#define QPNP_PON_BUFFER_SIZE 9
enum pon_type {
PON_KPDPWR,
PON_RESIN,
PON_CBLPWR,
PON_KPDPWR_RESIN,
};
struct qpnp_pon_config {
u32 pon_type;
u32 support_reset;
u32 key_code;
u32 s1_timer;
u32 s2_timer;
u32 s2_type;
u32 pull_up;
u32 state_irq;
u32 bark_irq;
u16 s2_cntl_addr;
u16 s2_cntl2_addr;
bool old_state;
bool use_bark;
};
struct qpnp_pon {
struct spmi_device *spmi;
struct input_dev *pon_input;
struct qpnp_pon_config *pon_cfg;
int num_pon_config;
u16 base;
struct delayed_work bark_work;
u32 dbc;
};
static struct qpnp_pon *sys_reset_dev;
static u32 s1_delay[PON_S1_COUNT_MAX + 1] = {
0 , 32, 56, 80, 138, 184, 272, 408, 608, 904, 1352, 2048,
3072, 4480, 6720, 10256
};
static const char * const qpnp_pon_reason[] = {
[0] = "Triggered from Hard Reset",
[1] = "Triggered from SMPL (sudden momentary power loss)",
[2] = "Triggered from RTC (RTC alarm expiry)",
[3] = "Triggered from DC (DC charger insertion)",
[4] = "Triggered from USB (USB charger insertion)",
[5] = "Triggered from PON1 (secondary PMIC)",
[6] = "Triggered from CBL (external power supply)",
[7] = "Triggered from KPD (power key press)",
};
static const char * const qpnp_poff_reason[] = {
[0] = "Triggered from SOFT (Software)",
[1] = "Triggered from PS_HOLD (PS_HOLD/MSM controlled shutdown)",
[2] = "Triggered from PMIC_WD (PMIC watchdog)",
[3] = "Triggered from GP1 (Keypad_Reset1)",
[4] = "Triggered from GP2 (Keypad_Reset2)",
[5] = "Triggered from KPDPWR_AND_RESIN"
"(Simultaneous power key and reset line)",
[6] = "Triggered from RESIN_N (Reset line/Volume Down Key)",
[7] = "Triggered from KPDPWR_N (Long Power Key hold)",
[8] = "N/A",
[9] = "N/A",
[10] = "N/A",
[11] = "Triggered from CHARGER (Charger ENUM_TIMER, BOOT_DONE)",
[12] = "Triggered from TFT (Thermal Fault Tolerance)",
[13] = "Triggered from UVLO (Under Voltage Lock Out)",
[14] = "Triggered from OTST3 (Overtemp)",
[15] = "Triggered from STAGE3 (Stage 3 reset)",
};
static int
qpnp_pon_masked_write(struct qpnp_pon *pon, u16 addr, u8 mask, u8 val)
{
int rc;
u8 reg;
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
addr, &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read from addr=%x, rc(%d)\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = spmi_ext_register_writel(pon->spmi->ctrl, pon->spmi->sid,
addr, &reg, 1);
if (rc)
dev_err(&pon->spmi->dev,
"Unable to write to addr=%x, rc(%d)\n", addr, rc);
return rc;
}
static int qpnp_pon_set_dbc(struct qpnp_pon *pon, u32 delay)
{
int rc = 0;
u32 delay_reg;
mutex_lock(&pon->pon_input->mutex);
if (delay == pon->dbc)
goto unlock;
if (delay < QPNP_PON_MIN_DBC_US)
delay = QPNP_PON_MIN_DBC_US;
else if (delay > QPNP_PON_MAX_DBC_US)
delay = QPNP_PON_MAX_DBC_US;
delay_reg = (delay << QPNP_PON_DELAY_BIT_SHIFT) / USEC_PER_SEC;
delay_reg = ilog2(delay_reg);
rc = qpnp_pon_masked_write(pon, QPNP_PON_DBC_CTL(pon->base),
QPNP_PON_DBC_DELAY_MASK, delay_reg);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to set PON debounce\n");
goto unlock;
}
pon->dbc = delay;
unlock:
mutex_unlock(&pon->pon_input->mutex);
return rc;
}
static ssize_t qpnp_pon_dbc_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct qpnp_pon *pon = dev_get_drvdata(dev);
return snprintf(buf, QPNP_PON_BUFFER_SIZE, "%d\n", pon->dbc);
}
static ssize_t qpnp_pon_dbc_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct qpnp_pon *pon = dev_get_drvdata(dev);
unsigned long value;
int rc;
if (size > QPNP_PON_BUFFER_SIZE)
return -EINVAL;
rc = kstrtoul(buf, 10, &value);
if (rc)
return rc;
rc = qpnp_pon_set_dbc(pon, value);
if (rc < 0)
return rc;
return size;
}
static DEVICE_ATTR(debounce_us, 0664, qpnp_pon_dbc_show, qpnp_pon_dbc_store);
int qpnp_pon_store_extra_reset_info(u16 mask, u16 val)
{
int rc = 0;
u16 extra_reset_info_reg;
struct qpnp_pon *pon = sys_reset_dev;
if (!pon)
return -ENODEV;
if (mask & 0xFF) {
extra_reset_info_reg = QPNP_PON_EXTRA_RESET_INFO_1(pon->base);
rc = qpnp_pon_masked_write(pon, extra_reset_info_reg,
mask & 0xFF, val & 0xFF);
if (rc) {
pr_err("Failed to store extra reset info to 0x%x\n",
extra_reset_info_reg);
return rc;
}
}
if (mask & 0xFF00) {
extra_reset_info_reg = QPNP_PON_EXTRA_RESET_INFO_2(pon->base);
rc = qpnp_pon_masked_write(pon, extra_reset_info_reg,
(mask & 0xFF00) >> 8, (val & 0xFF00) >> 8);
if (rc) {
pr_err("Failed to store extra reset info to 0x%x\n",
extra_reset_info_reg);
return rc;
}
}
return 0;
}
EXPORT_SYMBOL(qpnp_pon_store_extra_reset_info);
/**
* qpnp_pon_system_pwr_off - Configure system-reset PMIC for shutdown or reset
* @type: Determines the type of power off to perform - shutdown, reset, etc
*
* This function will only configure a single PMIC. The other PMICs in the
* system are slaved off of it and require no explicit configuration. Once
* the system-reset PMIC is configured properly, the MSM can drop PS_HOLD to
* activate the specified configuration.
*/
int qpnp_pon_system_pwr_off(enum pon_power_off_type type)
{
int rc;
u8 reg;
u16 rst_en_reg;
struct qpnp_pon *pon = sys_reset_dev;
if (!pon)
return -ENODEV;
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_REVISION2(pon->base), &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read addr=%x, rc(%d)\n",
QPNP_PON_REVISION2(pon->base), rc);
return rc;
}
if (reg == 0x00)
rst_en_reg = QPNP_PON_PS_HOLD_RST_CTL(pon->base);
else
rst_en_reg = QPNP_PON_PS_HOLD_RST_CTL2(pon->base);
rc = qpnp_pon_masked_write(pon, rst_en_reg, QPNP_PON_RESET_EN, 0);
if (rc)
dev_err(&pon->spmi->dev,
"Unable to write to addr=%x, rc(%d)\n", rst_en_reg, rc);
/*
* We need 10 sleep clock cycles here. But since the clock is
* internally generated, we need to add 50% tolerance to be
* conservative.
*/
udelay(500);
rc = qpnp_pon_masked_write(pon, QPNP_PON_PS_HOLD_RST_CTL(pon->base),
QPNP_PON_POWER_OFF_MASK, type);
if (rc)
dev_err(&pon->spmi->dev,
"Unable to write to addr=%x, rc(%d)\n",
QPNP_PON_PS_HOLD_RST_CTL(pon->base), rc);
rc = qpnp_pon_masked_write(pon, rst_en_reg, QPNP_PON_RESET_EN,
QPNP_PON_RESET_EN);
if (rc)
dev_err(&pon->spmi->dev,
"Unable to write to addr=%x, rc(%d)\n", rst_en_reg, rc);
dev_dbg(&pon->spmi->dev, "power off type = 0x%02X\n", type);
return rc;
}
EXPORT_SYMBOL(qpnp_pon_system_pwr_off);
/**
* qpnp_pon_is_warm_reset - Checks if the PMIC went through a warm reset.
*
* Returns > 0 for warm resets, 0 for not warm reset, < 0 for errors
*
* Note that this function will only return the warm vs not-warm reset status
* of the PMIC that is configured as the system-reset device.
*/
int qpnp_pon_is_warm_reset(void)
{
struct qpnp_pon *pon = sys_reset_dev;
int rc;
u8 reg;
if (!pon)
return -EPROBE_DEFER;
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_WARM_RESET_REASON1(pon->base), &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read addr=%x, rc(%d)\n",
QPNP_PON_WARM_RESET_REASON1(pon->base), rc);
return rc;
}
if (reg)
return 1;
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_WARM_RESET_REASON2(pon->base), &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read addr=%x, rc(%d)\n",
QPNP_PON_WARM_RESET_REASON2(pon->base), rc);
return rc;
}
if (reg & QPNP_PON_WARM_RESET_TFT)
return 1;
return 0;
}
EXPORT_SYMBOL(qpnp_pon_is_warm_reset);
/**
* qpnp_pon_wd_config - Disable the wd in a warm reset.
* @enable: to enable or disable the PON watch dog
*
* Returns = 0 for operate successfully, < 0 for errors
*/
int qpnp_pon_wd_config(bool enable)
{
struct qpnp_pon *pon = sys_reset_dev;
int rc = 0;
if (!pon)
return -EPROBE_DEFER;
rc = qpnp_pon_masked_write(pon, QPNP_PON_WD_RST_S2_CTL2(pon->base),
QPNP_PON_WD_EN, enable ? QPNP_PON_WD_EN : 0);
if (rc)
dev_err(&pon->spmi->dev,
"Unable to write to addr=%x, rc(%d)\n",
QPNP_PON_WD_RST_S2_CTL2(pon->base), rc);
return rc;
}
EXPORT_SYMBOL(qpnp_pon_wd_config);
/**
* qpnp_pon_trigger_config - Configures (enable/disable) the PON trigger source
* @pon_src: PON source to be configured
* @enable: to enable or disable the PON trigger
*
* This function configures the power-on trigger capability of a
* PON source. If a specific PON trigger is disabled it cannot act
* as a power-on source to the PMIC.
*/
int qpnp_pon_trigger_config(enum pon_trigger_source pon_src, bool enable)
{
struct qpnp_pon *pon = sys_reset_dev;
int rc;
if (!pon)
return -EPROBE_DEFER;
if (pon_src < PON_SMPL || pon_src > PON_KPDPWR_N) {
dev_err(&pon->spmi->dev, "Invalid PON source\n");
return -EINVAL;
}
rc = qpnp_pon_masked_write(pon, QPNP_PON_TRIGGER_EN(pon->base),
BIT(pon_src), enable ? BIT(pon_src) : 0);
if (rc)
dev_err(&pon->spmi->dev, "Unable to write to addr=%x, rc(%d)\n",
QPNP_PON_TRIGGER_EN(pon->base), rc);
return rc;
}
EXPORT_SYMBOL(qpnp_pon_trigger_config);
static struct qpnp_pon_config *
qpnp_get_cfg(struct qpnp_pon *pon, u32 pon_type)
{
int i;
for (i = 0; i < pon->num_pon_config; i++) {
if (pon_type == pon->pon_cfg[i].pon_type)
return &pon->pon_cfg[i];
}
return NULL;
}
static int
qpnp_pon_input_dispatch(struct qpnp_pon *pon, u32 pon_type)
{
int rc;
struct qpnp_pon_config *cfg = NULL;
u8 pon_rt_sts = 0, pon_rt_bit = 0;
u32 key_status;
cfg = qpnp_get_cfg(pon, pon_type);
if (!cfg)
return -EINVAL;
/* Check if key reporting is supported */
if (!cfg->key_code)
return 0;
/* check the RT status to get the current status of the line */
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_RT_STS(pon->base), &pon_rt_sts, 1);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to read PON RT status\n");
return rc;
}
switch (cfg->pon_type) {
case PON_KPDPWR:
pon_rt_bit = QPNP_PON_KPDPWR_N_SET;
pr_info("Report pwrkey %s event\n", pon_rt_bit & pon_rt_sts ?
"press" : "release");
break;
case PON_RESIN:
pon_rt_bit = QPNP_PON_RESIN_N_SET;
break;
case PON_CBLPWR:
pon_rt_bit = QPNP_PON_CBLPWR_N_SET;
break;
case PON_KPDPWR_RESIN:
pon_rt_bit = QPNP_PON_KPDPWR_RESIN_BARK_N_SET;
break;
default:
return -EINVAL;
}
pr_debug("PMIC input: code=%d, sts=0x%x\n",
cfg->key_code, pon_rt_sts);
key_status = pon_rt_sts & pon_rt_bit;
/* simulate press event in case release event occured
* without a press event
*/
if (!cfg->old_state && !key_status) {
input_report_key(pon->pon_input, cfg->key_code, 1);
input_sync(pon->pon_input);
}
input_report_key(pon->pon_input, cfg->key_code, key_status);
input_sync(pon->pon_input);
cfg->old_state = !!key_status;
return 0;
}
static irqreturn_t qpnp_kpdpwr_irq(int irq, void *_pon)
{
int rc;
struct qpnp_pon *pon = _pon;
rc = qpnp_pon_input_dispatch(pon, PON_KPDPWR);
if (rc)
dev_err(&pon->spmi->dev, "Unable to send input event\n");
return IRQ_HANDLED;
}
static irqreturn_t qpnp_kpdpwr_bark_irq(int irq, void *_pon)
{
return IRQ_HANDLED;
}
static irqreturn_t qpnp_resin_irq(int irq, void *_pon)
{
int rc;
struct qpnp_pon *pon = _pon;
rc = qpnp_pon_input_dispatch(pon, PON_RESIN);
if (rc)
dev_err(&pon->spmi->dev, "Unable to send input event\n");
return IRQ_HANDLED;
}
static irqreturn_t qpnp_kpdpwr_resin_bark_irq(int irq, void *_pon)
{
return IRQ_HANDLED;
}
static irqreturn_t qpnp_cblpwr_irq(int irq, void *_pon)
{
int rc;
struct qpnp_pon *pon = _pon;
rc = qpnp_pon_input_dispatch(pon, PON_CBLPWR);
if (rc)
dev_err(&pon->spmi->dev, "Unable to send input event\n");
return IRQ_HANDLED;
}
static void print_pon_reg(struct qpnp_pon *pon, u16 offset)
{
int rc;
u16 addr;
u8 reg;
addr = pon->base + offset;
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
addr, &reg, 1);
if (rc)
dev_emerg(&pon->spmi->dev,
"Unable to read reg at 0x%04x\n", addr);
else
dev_emerg(&pon->spmi->dev, "reg@0x%04x: %02x\n", addr, reg);
}
#define PON_PBL_STATUS 0x7
#define PON_PON_REASON1 0x8
#define PON_PON_REASON2 0x9
#define PON_WARM_RESET_REASON1 0xA
#define PON_WARM_RESET_REASON2 0xB
#define PON_POFF_REASON1 0xC
#define PON_POFF_REASON2 0xD
#define PON_SOFT_RESET_REASON1 0xE
#define PON_SOFT_RESET_REASON2 0xF
#define PON_PMIC_WD_RESET_S1_TIMER 0x54
#define PON_PMIC_WD_RESET_S2_TIMER 0x55
static irqreturn_t qpnp_pmic_wd_bark_irq(int irq, void *_pon)
{
struct qpnp_pon *pon = _pon;
print_pon_reg(pon, PON_PBL_STATUS);
print_pon_reg(pon, PON_PBL_STATUS);
print_pon_reg(pon, PON_PON_REASON1);
print_pon_reg(pon, PON_PON_REASON2);
print_pon_reg(pon, PON_WARM_RESET_REASON1);
print_pon_reg(pon, PON_WARM_RESET_REASON2);
print_pon_reg(pon, PON_POFF_REASON1);
print_pon_reg(pon, PON_POFF_REASON2);
print_pon_reg(pon, PON_SOFT_RESET_REASON1);
print_pon_reg(pon, PON_SOFT_RESET_REASON2);
print_pon_reg(pon, PON_PMIC_WD_RESET_S1_TIMER);
print_pon_reg(pon, PON_PMIC_WD_RESET_S2_TIMER);
panic("PMIC Watch dog triggered");
return IRQ_HANDLED;
}
static void bark_work_func(struct work_struct *work)
{
int rc;
u8 pon_rt_sts = 0;
struct qpnp_pon_config *cfg;
struct qpnp_pon *pon =
container_of(work, struct qpnp_pon, bark_work.work);
cfg = qpnp_get_cfg(pon, PON_RESIN);
if (!cfg) {
dev_err(&pon->spmi->dev, "Invalid config pointer\n");
goto err_return;
}
/* enable reset */
rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr,
QPNP_PON_S2_CNTL_EN, QPNP_PON_S2_CNTL_EN);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S2 enable\n");
goto err_return;
}
/* bark RT status update delay */
msleep(100);
/* read the bark RT status */
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_RT_STS(pon->base), &pon_rt_sts, 1);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to read PON RT status\n");
goto err_return;
}
if (!(pon_rt_sts & QPNP_PON_RESIN_BARK_N_SET)) {
/* report the key event and enable the bark IRQ */
input_report_key(pon->pon_input, cfg->key_code, 0);
input_sync(pon->pon_input);
enable_irq(cfg->bark_irq);
} else {
/* disable reset */
rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr,
QPNP_PON_S2_CNTL_EN, 0);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to configure S2 enable\n");
goto err_return;
}
/* re-arm the work */
schedule_delayed_work(&pon->bark_work, QPNP_KEY_STATUS_DELAY);
}
err_return:
return;
}
static irqreturn_t qpnp_resin_bark_irq(int irq, void *_pon)
{
int rc;
struct qpnp_pon *pon = _pon;
struct qpnp_pon_config *cfg;
/* disable the bark interrupt */
disable_irq_nosync(irq);
cfg = qpnp_get_cfg(pon, PON_RESIN);
if (!cfg) {
dev_err(&pon->spmi->dev, "Invalid config pointer\n");
goto err_exit;
}
/* disable reset */
rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr,
QPNP_PON_S2_CNTL_EN, 0);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S2 enable\n");
goto err_exit;
}
/* report the key event */
input_report_key(pon->pon_input, cfg->key_code, 1);
input_sync(pon->pon_input);
/* schedule work to check the bark status for key-release */
schedule_delayed_work(&pon->bark_work, QPNP_KEY_STATUS_DELAY);
err_exit:
return IRQ_HANDLED;
}
static int
qpnp_config_pull(struct qpnp_pon *pon, struct qpnp_pon_config *cfg)
{
int rc;
u8 pull_bit;
switch (cfg->pon_type) {
case PON_KPDPWR:
pull_bit = QPNP_PON_KPDPWR_PULL_UP;
break;
case PON_RESIN:
pull_bit = QPNP_PON_RESIN_PULL_UP;
break;
case PON_CBLPWR:
pull_bit = QPNP_PON_CBLPWR_PULL_UP;
break;
case PON_KPDPWR_RESIN:
pull_bit = QPNP_PON_KPDPWR_PULL_UP | QPNP_PON_RESIN_PULL_UP;
break;
default:
return -EINVAL;
}
rc = qpnp_pon_masked_write(pon, QPNP_PON_PULL_CTL(pon->base),
pull_bit, cfg->pull_up ? pull_bit : 0);
if (rc)
dev_err(&pon->spmi->dev, "Unable to config pull-up\n");
return rc;
}
static int
qpnp_config_reset(struct qpnp_pon *pon, struct qpnp_pon_config *cfg)
{
int rc;
u8 i;
u16 s1_timer_addr, s2_timer_addr;
switch (cfg->pon_type) {
case PON_KPDPWR:
s1_timer_addr = QPNP_PON_KPDPWR_S1_TIMER(pon->base);
s2_timer_addr = QPNP_PON_KPDPWR_S2_TIMER(pon->base);
break;
case PON_RESIN:
s1_timer_addr = QPNP_PON_RESIN_S1_TIMER(pon->base);
s2_timer_addr = QPNP_PON_RESIN_S2_TIMER(pon->base);
break;
case PON_KPDPWR_RESIN:
s1_timer_addr = QPNP_PON_KPDPWR_RESIN_S1_TIMER(pon->base);
s2_timer_addr = QPNP_PON_KPDPWR_RESIN_S2_TIMER(pon->base);
break;
default:
return -EINVAL;
}
/* disable S2 reset */
rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr,
QPNP_PON_S2_CNTL_EN, 0);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S2 enable\n");
return rc;
}
usleep(100);
/* configure s1 timer, s2 timer and reset type */
for (i = 0; i < PON_S1_COUNT_MAX + 1; i++) {
if (cfg->s1_timer <= s1_delay[i])
break;
}
rc = qpnp_pon_masked_write(pon, s1_timer_addr,
QPNP_PON_S1_TIMER_MASK, i);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S1 timer\n");
return rc;
}
i = 0;
if (cfg->s2_timer) {
i = cfg->s2_timer / 10;
i = ilog2(i + 1);
}
rc = qpnp_pon_masked_write(pon, s2_timer_addr,
QPNP_PON_S2_TIMER_MASK, i);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S2 timer\n");
return rc;
}
rc = qpnp_pon_masked_write(pon, cfg->s2_cntl_addr,
QPNP_PON_S2_CNTL_TYPE_MASK, (u8)cfg->s2_type);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S2 reset type\n");
return rc;
}
/* enable S2 reset */
rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr,
QPNP_PON_S2_CNTL_EN, QPNP_PON_S2_CNTL_EN);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to configure S2 enable\n");
return rc;
}
return 0;
}
static int
qpnp_pon_request_irqs(struct qpnp_pon *pon, struct qpnp_pon_config *cfg)
{
int rc = 0;
switch (cfg->pon_type) {
case PON_KPDPWR:
rc = devm_request_irq(&pon->spmi->dev, cfg->state_irq,
qpnp_kpdpwr_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"qpnp_kpdpwr_status", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev, "Can't request %d IRQ\n",
cfg->state_irq);
return rc;
}
if (cfg->use_bark) {
rc = devm_request_irq(&pon->spmi->dev, cfg->bark_irq,
qpnp_kpdpwr_bark_irq,
IRQF_TRIGGER_RISING,
"qpnp_kpdpwr_bark", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev,
"Can't request %d IRQ\n",
cfg->bark_irq);
return rc;
}
}
break;
case PON_RESIN:
rc = devm_request_irq(&pon->spmi->dev, cfg->state_irq,
qpnp_resin_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"qpnp_resin_status", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev, "Can't request %d IRQ\n",
cfg->state_irq);
return rc;
}
if (cfg->use_bark) {
rc = devm_request_irq(&pon->spmi->dev, cfg->bark_irq,
qpnp_resin_bark_irq,
IRQF_TRIGGER_RISING,
"qpnp_resin_bark", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev,
"Can't request %d IRQ\n",
cfg->bark_irq);
return rc;
}
}
break;
case PON_CBLPWR:
rc = devm_request_irq(&pon->spmi->dev, cfg->state_irq,
qpnp_cblpwr_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"qpnp_cblpwr_status", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev, "Can't request %d IRQ\n",
cfg->state_irq);
return rc;
}
break;
case PON_KPDPWR_RESIN:
if (cfg->use_bark) {
rc = devm_request_irq(&pon->spmi->dev, cfg->bark_irq,
qpnp_kpdpwr_resin_bark_irq,
IRQF_TRIGGER_RISING,
"qpnp_kpdpwr_resin_bark", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev,
"Can't request %d IRQ\n",
cfg->bark_irq);
return rc;
}
}
break;
default:
return -EINVAL;
}
/* mark the interrupts wakeable if they support linux-key */
if (cfg->key_code) {
enable_irq_wake(cfg->state_irq);
/* special handling for RESIN due to a hardware bug */
if (cfg->pon_type == PON_RESIN && cfg->support_reset)
enable_irq_wake(cfg->bark_irq);
}
return rc;
}
static int
qpnp_pon_config_input(struct qpnp_pon *pon, struct qpnp_pon_config *cfg)
{
if (!pon->pon_input) {
pon->pon_input = input_allocate_device();
if (!pon->pon_input) {
dev_err(&pon->spmi->dev,
"Can't allocate pon input device\n");
return -ENOMEM;
}
pon->pon_input->name = "qpnp_pon";
pon->pon_input->phys = "qpnp_pon/input0";
}
/* don't send dummy release event when system resumes */
__set_bit(INPUT_PROP_NO_DUMMY_RELEASE, pon->pon_input->propbit);
input_set_capability(pon->pon_input, EV_KEY, cfg->key_code);
return 0;
}
static int qpnp_pon_config_init(struct qpnp_pon *pon)
{
int rc = 0, i = 0, pmic_wd_bark_irq;
struct device_node *pp = NULL;
struct qpnp_pon_config *cfg;
u8 pon_ver;
/* Check if it is rev B */
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_REVISION2(pon->base), &pon_ver, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read addr=%x, rc(%d)\n",
QPNP_PON_REVISION2(pon->base), rc);
return rc;
}
/* iterate through the list of pon configs */
while ((pp = of_get_next_child(pon->spmi->dev.of_node, pp))) {
cfg = &pon->pon_cfg[i++];
rc = of_property_read_u32(pp, "qcom,pon-type", &cfg->pon_type);
if (rc) {
dev_err(&pon->spmi->dev, "PON type not specified\n");
return rc;
}
switch (cfg->pon_type) {
case PON_KPDPWR:
cfg->state_irq = spmi_get_irq_byname(pon->spmi,
NULL, "kpdpwr");
if (cfg->state_irq < 0) {
dev_err(&pon->spmi->dev,
"Unable to get kpdpwr irq\n");
return cfg->state_irq;
}
rc = of_property_read_u32(pp, "qcom,support-reset",
&cfg->support_reset);
if (rc && rc != -EINVAL) {
dev_err(&pon->spmi->dev,
"Unable to read 'support-reset'\n");
return rc;
}
cfg->use_bark = of_property_read_bool(pp,
"qcom,use-bark");
if (cfg->use_bark) {
cfg->bark_irq = spmi_get_irq_byname(pon->spmi,
NULL, "kpdpwr-bark");
if (cfg->bark_irq < 0) {
dev_err(&pon->spmi->dev,
"Unable to get kpdpwr-bark irq\n");
return cfg->bark_irq;
}
}
if (pon_ver == QPNP_PON_REV_B) {
cfg->s2_cntl_addr =
QPNP_PON_KPDPWR_S2_CNTL(pon->base);
cfg->s2_cntl2_addr =
QPNP_PON_KPDPWR_S2_CNTL2(pon->base);
} else {
cfg->s2_cntl_addr = cfg->s2_cntl2_addr =
QPNP_PON_KPDPWR_S2_CNTL(pon->base);
}
break;
case PON_RESIN:
cfg->state_irq = spmi_get_irq_byname(pon->spmi,
NULL, "resin");
if (cfg->state_irq < 0) {
dev_err(&pon->spmi->dev,
"Unable to get resin irq\n");
return cfg->bark_irq;
}
rc = of_property_read_u32(pp, "qcom,support-reset",
&cfg->support_reset);
if (rc && rc != -EINVAL) {
dev_err(&pon->spmi->dev,
"Unable to read 'support-reset'\n");
return rc;
}
cfg->use_bark = of_property_read_bool(pp,
"qcom,use-bark");
if (cfg->use_bark) {
cfg->bark_irq = spmi_get_irq_byname(pon->spmi,
NULL, "resin-bark");
if (cfg->bark_irq < 0) {
dev_err(&pon->spmi->dev,
"Unable to get resin-bark irq\n");
return cfg->bark_irq;
}
}
if (pon_ver == QPNP_PON_REV_B) {
cfg->s2_cntl_addr =
QPNP_PON_RESIN_S2_CNTL(pon->base);
cfg->s2_cntl2_addr =
QPNP_PON_RESIN_S2_CNTL2(pon->base);
} else {
cfg->s2_cntl_addr = cfg->s2_cntl2_addr =
QPNP_PON_RESIN_S2_CNTL(pon->base);
}
break;
case PON_CBLPWR:
cfg->state_irq = spmi_get_irq_byname(pon->spmi,
NULL, "cblpwr");
if (cfg->state_irq < 0) {
dev_err(&pon->spmi->dev,
"Unable to get cblpwr irq\n");
return rc;
}
break;
case PON_KPDPWR_RESIN:
rc = of_property_read_u32(pp, "qcom,support-reset",
&cfg->support_reset);
if (rc && rc != -EINVAL) {
dev_err(&pon->spmi->dev,
"Unable to read 'support-reset'\n");
return rc;
}
cfg->use_bark = of_property_read_bool(pp,
"qcom,use-bark");
if (cfg->use_bark) {
cfg->bark_irq = spmi_get_irq_byname(pon->spmi,
NULL, "kpdpwr-resin-bark");
if (cfg->bark_irq < 0) {
dev_err(&pon->spmi->dev,
"Unable to get kpdpwr-resin-bark irq\n");
return cfg->bark_irq;
}
}
if (pon_ver == QPNP_PON_REV_B) {
cfg->s2_cntl_addr =
QPNP_PON_KPDPWR_RESIN_S2_CNTL(pon->base);
cfg->s2_cntl2_addr =
QPNP_PON_KPDPWR_RESIN_S2_CNTL2(pon->base);
} else {
cfg->s2_cntl_addr = cfg->s2_cntl2_addr =
QPNP_PON_KPDPWR_RESIN_S2_CNTL(pon->base);
}
break;
default:
dev_err(&pon->spmi->dev, "PON RESET %d not supported",
cfg->pon_type);
return -EINVAL;
}
if (cfg->support_reset) {
/*
* Get the reset parameters (bark debounce time and
* reset debounce time) for the reset line.
*/
rc = of_property_read_u32(pp, "qcom,s1-timer",
&cfg->s1_timer);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read s1-timer\n");
return rc;
}
if (cfg->s1_timer > QPNP_PON_S1_TIMER_MAX) {
dev_err(&pon->spmi->dev,
"Incorrect S1 debounce time\n");
return -EINVAL;
}
rc = of_property_read_u32(pp, "qcom,s2-timer",
&cfg->s2_timer);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read s2-timer\n");
return rc;
}
if (cfg->s2_timer > QPNP_PON_S2_TIMER_MAX) {
dev_err(&pon->spmi->dev,
"Incorrect S2 debounce time\n");
return -EINVAL;
}
rc = of_property_read_u32(pp, "qcom,s2-type",
&cfg->s2_type);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read s2-type\n");
return rc;
}
if (cfg->s2_type > QPNP_PON_RESET_TYPE_MAX) {
dev_err(&pon->spmi->dev,
"Incorrect reset type specified\n");
return -EINVAL;
}
}
/*
* Get the standard-key parameters. This might not be
* specified if there is no key mapping on the reset line.
*/
rc = of_property_read_u32(pp, "linux,code", &cfg->key_code);
if (rc && rc != -EINVAL) {
dev_err(&pon->spmi->dev,
"Unable to read key-code\n");
return rc;
}
/* Register key configuration */
if (cfg->key_code) {
rc = qpnp_pon_config_input(pon, cfg);
if (rc < 0)
return rc;
}
/* get the pull-up configuration */
rc = of_property_read_u32(pp, "qcom,pull-up", &cfg->pull_up);
if (rc && rc != -EINVAL) {
dev_err(&pon->spmi->dev, "Unable to read pull-up\n");
return rc;
}
}
pmic_wd_bark_irq = spmi_get_irq_byname(pon->spmi, NULL, "pmic-wd-bark");
/* request the pmic-wd-bark irq only if it is defined */
if (pmic_wd_bark_irq >= 0) {
rc = devm_request_irq(&pon->spmi->dev, pmic_wd_bark_irq,
qpnp_pmic_wd_bark_irq,
IRQF_TRIGGER_RISING,
"qpnp_pmic_wd_bark", pon);
if (rc < 0) {
dev_err(&pon->spmi->dev,
"Can't request %d IRQ\n",
pmic_wd_bark_irq);
goto free_input_dev;
}
}
/* register the input device */
if (pon->pon_input) {
rc = input_register_device(pon->pon_input);
if (rc) {
dev_err(&pon->spmi->dev,
"Can't register pon key: %d\n", rc);
goto free_input_dev;
}
}
for (i = 0; i < pon->num_pon_config; i++) {
cfg = &pon->pon_cfg[i];
/* Configure the pull-up */
rc = qpnp_config_pull(pon, cfg);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to config pull-up\n");
goto unreg_input_dev;
}
/* Configure the reset-configuration */
if (cfg->support_reset) {
rc = qpnp_config_reset(pon, cfg);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to config pon reset\n");
goto unreg_input_dev;
}
}
rc = qpnp_pon_request_irqs(pon, cfg);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to request-irq's\n");
goto unreg_input_dev;
}
}
device_init_wakeup(&pon->spmi->dev, 1);
return rc;
unreg_input_dev:
if (pon->pon_input)
input_unregister_device(pon->pon_input);
free_input_dev:
if (pon->pon_input)
input_free_device(pon->pon_input);
return rc;
}
static bool dload_on_uvlo;
static int qpnp_pon_debugfs_uvlo_dload_get(char *buf,
const struct kernel_param *kp)
{
struct qpnp_pon *pon = sys_reset_dev;
int rc = 0;
u8 reg;
if (!pon)
return -ENODEV;
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_XVDD_RB_SPARE(pon->base), &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read addr=%x, rc(%d)\n",
QPNP_PON_XVDD_RB_SPARE(pon->base), rc);
return rc;
}
return snprintf(buf, PAGE_SIZE, "%d",
!!(QPNP_PON_UVLO_DLOAD_EN & reg));
}
static int qpnp_pon_debugfs_uvlo_dload_set(const char *val,
const struct kernel_param *kp)
{
struct qpnp_pon *pon = sys_reset_dev;
int rc = 0;
u8 reg;
if (!pon)
return -ENODEV;
rc = param_set_bool(val, kp);
if (rc) {
pr_err("Unable to set bms_reset: %d\n", rc);
return rc;
}
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_XVDD_RB_SPARE(pon->base), &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to read addr=%x, rc(%d)\n",
QPNP_PON_XVDD_RB_SPARE(pon->base), rc);
return rc;
}
reg &= ~QPNP_PON_UVLO_DLOAD_EN;
if (*(bool *)kp->arg)
reg |= QPNP_PON_UVLO_DLOAD_EN;
rc = spmi_ext_register_writel(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_XVDD_RB_SPARE(pon->base), &reg, 1);
if (rc) {
dev_err(&pon->spmi->dev,
"Unable to write to addr=%hx, rc(%d)\n",
QPNP_PON_XVDD_RB_SPARE(pon->base), rc);
return rc;
}
return 0;
}
static struct kernel_param_ops dload_on_uvlo_ops = {
.set = qpnp_pon_debugfs_uvlo_dload_set,
.get = qpnp_pon_debugfs_uvlo_dload_get,
};
module_param_cb(dload_on_uvlo, &dload_on_uvlo_ops, &dload_on_uvlo, 0644);
static int qpnp_pon_probe(struct spmi_device *spmi)
{
struct qpnp_pon *pon;
struct resource *pon_resource;
struct device_node *itr = NULL;
u32 delay = 0, s3_debounce = 0;
int rc, sys_reset, index;
u8 pon_sts = 0, buf[2];
u16 poff_sts = 0;
pon = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_pon),
GFP_KERNEL);
if (!pon) {
dev_err(&spmi->dev, "Can't allocate qpnp_pon\n");
return -ENOMEM;
}
sys_reset = of_property_read_bool(spmi->dev.of_node,
"qcom,system-reset");
if (sys_reset && sys_reset_dev) {
dev_err(&spmi->dev, "qcom,system-reset property can only be specified for one device on the system\n");
return -EINVAL;
} else if (sys_reset) {
sys_reset_dev = pon;
}
pon->spmi = spmi;
/* get the total number of pon configurations */
while ((itr = of_get_next_child(spmi->dev.of_node, itr)))
pon->num_pon_config++;
if (!pon->num_pon_config) {
/* No PON config., do not register the driver */
dev_err(&spmi->dev, "No PON config. specified\n");
return -EINVAL;
}
pon->pon_cfg = devm_kzalloc(&spmi->dev,
sizeof(struct qpnp_pon_config) * pon->num_pon_config,
GFP_KERNEL);
pon_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!pon_resource) {
dev_err(&spmi->dev, "Unable to get PON base address\n");
return -ENXIO;
}
pon->base = pon_resource->start;
/* PON reason */
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_PON_REASON1(pon->base), &pon_sts, 1);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to read PON_RESASON1 reg\n");
return rc;
}
boot_reason = ffs(pon_sts);
index = ffs(pon_sts) - 1;
cold_boot = !qpnp_pon_is_warm_reset();
if (index >= ARRAY_SIZE(qpnp_pon_reason) || index < 0)
dev_info(&pon->spmi->dev,
"PMIC@SID%d Power-on reason: Unknown and '%s' boot\n",
pon->spmi->sid, cold_boot ? "cold" : "warm");
else
dev_info(&pon->spmi->dev,
"PMIC@SID%d Power-on reason: %s and '%s' boot\n",
pon->spmi->sid, qpnp_pon_reason[index],
cold_boot ? "cold" : "warm");
/* POFF reason */
rc = spmi_ext_register_readl(pon->spmi->ctrl, pon->spmi->sid,
QPNP_POFF_REASON1(pon->base),
buf, 2);
if (rc) {
dev_err(&pon->spmi->dev, "Unable to read POFF_RESASON regs\n");
return rc;
}
poff_sts = buf[0] | (buf[1] << 8);
index = ffs(poff_sts) - 1;
if (index >= ARRAY_SIZE(qpnp_poff_reason) || index < 0)
dev_info(&pon->spmi->dev,
"PMIC@SID%d: Unknown power-off reason\n",
pon->spmi->sid);
else
dev_info(&pon->spmi->dev,
"PMIC@SID%d: Power-off reason: %s\n",
pon->spmi->sid,
qpnp_poff_reason[index]);
/* program s3 debounce */
rc = of_property_read_u32(pon->spmi->dev.of_node,
"qcom,s3-debounce", &s3_debounce);
if (rc) {
if (rc != -EINVAL) {
dev_err(&pon->spmi->dev, "Unable to read s3 timer\n");
return rc;
}
} else {
if (s3_debounce > QPNP_PON_S3_TIMER_SECS_MAX) {
dev_info(&pon->spmi->dev,
"Exceeded S3 max value, set it to max\n");
s3_debounce = QPNP_PON_S3_TIMER_SECS_MAX;
}
/* 0 is a special value to indicate instant s3 reset */
if (s3_debounce != 0)
s3_debounce = ilog2(s3_debounce);
rc = qpnp_pon_masked_write(pon, QPNP_PON_S3_DBC_CTL(pon->base),
QPNP_PON_S3_DBC_DELAY_MASK, s3_debounce);
if (rc) {
dev_err(&spmi->dev, "Unable to set S3 debounce\n");
return rc;
}
}
dev_set_drvdata(&spmi->dev, pon);
INIT_DELAYED_WORK(&pon->bark_work, bark_work_func);
/* register the PON configurations */
rc = qpnp_pon_config_init(pon);
if (rc) {
dev_err(&spmi->dev,
"Unable to intialize PON configurations\n");
return rc;
}
rc = of_property_read_u32(pon->spmi->dev.of_node,
"qcom,pon-dbc-delay", &delay);
if (rc) {
if (rc != -EINVAL) {
dev_err(&spmi->dev, "Unable to read debounce delay\n");
return rc;
}
} else {
rc = qpnp_pon_set_dbc(pon, delay);
if (rc)
return rc;
}
rc = device_create_file(&spmi->dev, &dev_attr_debounce_us);
if (rc) {
dev_err(&spmi->dev, "sys file creation failed\n");
return rc;
}
return rc;
}
static int qpnp_pon_remove(struct spmi_device *spmi)
{
struct qpnp_pon *pon = dev_get_drvdata(&spmi->dev);
device_remove_file(&spmi->dev, &dev_attr_debounce_us);
cancel_delayed_work_sync(&pon->bark_work);
if (pon->pon_input)
input_unregister_device(pon->pon_input);
return 0;
}
static struct of_device_id spmi_match_table[] = {
{ .compatible = "qcom,qpnp-power-on", },
{}
};
static struct spmi_driver qpnp_pon_driver = {
.driver = {
.name = "qcom,qpnp-power-on",
.of_match_table = spmi_match_table,
},
.probe = qpnp_pon_probe,
.remove = qpnp_pon_remove,
};
static int __init qpnp_pon_init(void)
{
return spmi_driver_register(&qpnp_pon_driver);
}
module_init(qpnp_pon_init);
static void __exit qpnp_pon_exit(void)
{
return spmi_driver_unregister(&qpnp_pon_driver);
}
module_exit(qpnp_pon_exit);
MODULE_DESCRIPTION("QPNP PMIC POWER-ON driver");
MODULE_LICENSE("GPL v2");