| /* drivers/serial/msm_serial_hs.c |
| * |
| * MSM 7k High speed uart driver |
| * |
| * Copyright (c) 2008 Google Inc. |
| * Copyright (c) 2007-2015, The Linux Foundation. All rights reserved. |
| * Modified: Nick Pelly <npelly@google.com> |
| * |
| * All source code in this file is licensed under the following license |
| * except where indicated. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * See the GNU General Public License for more details. |
| * |
| * Has optional support for uart power management independent of linux |
| * suspend/resume: |
| * |
| * RX wakeup. |
| * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the |
| * UART RX pin). This should only be used if there is not a wakeup |
| * GPIO on the UART CTS, and the first RX byte is known (for example, with the |
| * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will |
| * always be lost. RTS will be asserted even while the UART is off in this mode |
| * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq. |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/atomic.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/clk.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/tty_flip.h> |
| #include <linux/wait.h> |
| #include <linux/sysfs.h> |
| #include <linux/stat.h> |
| #include <linux/device.h> |
| #include <linux/wakelock.h> |
| #include <linux/debugfs.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_gpio.h> |
| #include <linux/gpio.h> |
| #include <linux/ipc_logging.h> |
| #include <asm/irq.h> |
| #include <linux/kthread.h> |
| |
| #include <linux/msm-sps.h> |
| #include <linux/platform_data/msm_serial_hs.h> |
| #include <linux/msm-bus.h> |
| |
| #include "msm_serial_hs_hwreg.h" |
| #define UART_SPS_CONS_PERIPHERAL 0 |
| #define UART_SPS_PROD_PERIPHERAL 1 |
| |
| static void *ipc_msm_hs_log_ctxt; |
| #define IPC_MSM_HS_LOG_PAGES 5 |
| #define UART_DMA_DESC_NR 8 |
| |
| /* If the debug_mask gets set to FATAL_LEV, |
| * a fatal error has happened and further IPC logging |
| * is disabled so that this problem can be detected |
| */ |
| enum { |
| FATAL_LEV = 0U, |
| ERR_LEV = 1U, |
| WARN_LEV = 2U, |
| INFO_LEV = 3U, |
| DBG_LEV = 4U, |
| }; |
| |
| /* Default IPC log level INFO */ |
| static int hs_serial_debug_mask = INFO_LEV; |
| module_param_named(debug_mask, hs_serial_debug_mask, |
| int, S_IRUGO | S_IWUSR | S_IWGRP); |
| |
| #define MSM_HS_DBG(x...) do { \ |
| if (hs_serial_debug_mask >= DBG_LEV) { \ |
| if (ipc_msm_hs_log_ctxt) \ |
| ipc_log_string(ipc_msm_hs_log_ctxt, x); \ |
| } \ |
| } while (0) |
| |
| #define MSM_HS_INFO(x...) do { \ |
| if (hs_serial_debug_mask >= INFO_LEV) {\ |
| if (ipc_msm_hs_log_ctxt) \ |
| ipc_log_string(ipc_msm_hs_log_ctxt, x); \ |
| } \ |
| } while (0) |
| |
| /* warnings and errors show up on console always */ |
| #define MSM_HS_WARN(x...) do { \ |
| pr_warn(x); \ |
| if (ipc_msm_hs_log_ctxt && hs_serial_debug_mask >= WARN_LEV) \ |
| ipc_log_string(ipc_msm_hs_log_ctxt, x); \ |
| } while (0) |
| |
| /* ERROR condition in the driver sets the hs_serial_debug_mask |
| * to ERR_FATAL level, so that this message can be seen |
| * in IPC logging. Further errors continue to log on the console |
| */ |
| #define MSM_HS_ERR(x...) do { \ |
| pr_err(x); \ |
| if (ipc_msm_hs_log_ctxt && hs_serial_debug_mask >= ERR_LEV) { \ |
| ipc_log_string(ipc_msm_hs_log_ctxt, x); \ |
| hs_serial_debug_mask = FATAL_LEV; \ |
| } \ |
| } while (0) |
| |
| /* |
| * There are 3 different kind of UART Core available on MSM. |
| * High Speed UART (i.e. Legacy HSUART), GSBI based HSUART |
| * and BSLP based HSUART. |
| */ |
| enum uart_core_type { |
| LEGACY_HSUART, |
| GSBI_HSUART, |
| BLSP_HSUART, |
| }; |
| |
| enum flush_reason { |
| FLUSH_NONE, |
| FLUSH_DATA_READY, |
| FLUSH_DATA_INVALID, /* values after this indicate invalid data */ |
| FLUSH_IGNORE, |
| FLUSH_STOP, |
| FLUSH_SHUTDOWN, |
| }; |
| |
| /* |
| * SPS data structures to support HSUART with BAM |
| * @sps_pipe - This struct defines BAM pipe descriptor |
| * @sps_connect - This struct defines a connection's end point |
| * @sps_register - This struct defines a event registration parameters |
| */ |
| struct msm_hs_sps_ep_conn_data { |
| struct sps_pipe *pipe_handle; |
| struct sps_connect config; |
| struct sps_register_event event; |
| }; |
| |
| struct msm_hs_tx { |
| bool dma_in_flight; /* tx dma in progress */ |
| enum flush_reason flush; |
| wait_queue_head_t wait; |
| int tx_count; |
| dma_addr_t dma_base; |
| struct kthread_work kwork; |
| struct kthread_worker kworker; |
| struct task_struct *task; |
| struct msm_hs_sps_ep_conn_data cons; |
| struct timer_list tx_timeout_timer; |
| }; |
| |
| struct msm_hs_rx { |
| enum flush_reason flush; |
| wait_queue_head_t wait; |
| dma_addr_t rbuffer; |
| unsigned char *buffer; |
| unsigned int buffer_pending; |
| struct delayed_work flip_insert_work; |
| struct kthread_work kwork; |
| struct kthread_worker kworker; |
| struct task_struct *task; |
| struct msm_hs_sps_ep_conn_data prod; |
| unsigned long queued_flag; |
| unsigned long pending_flag; |
| int rx_inx; |
| struct sps_iovec iovec[UART_DMA_DESC_NR]; /* track descriptors */ |
| }; |
| enum buffer_states { |
| NONE_PENDING = 0x0, |
| FIFO_OVERRUN = 0x1, |
| PARITY_ERROR = 0x2, |
| CHARS_NORMAL = 0x4, |
| }; |
| |
| enum msm_hs_pm_state { |
| MSM_HS_PM_ACTIVE, |
| MSM_HS_PM_SUSPENDED, |
| MSM_HS_PM_SYS_SUSPENDED, |
| }; |
| |
| /* optional low power wakeup, typically on a GPIO RX irq */ |
| struct msm_hs_wakeup { |
| int irq; /* < 0 indicates low power wakeup disabled */ |
| unsigned char ignore; /* bool */ |
| |
| /* bool: inject char into rx tty on wakeup */ |
| bool inject_rx; |
| unsigned char rx_to_inject; |
| bool enabled; |
| bool freed; |
| }; |
| |
| struct msm_hs_port { |
| struct uart_port uport; |
| unsigned long imr_reg; /* shadow value of UARTDM_IMR */ |
| struct clk *clk; |
| struct clk *pclk; |
| struct msm_hs_tx tx; |
| struct msm_hs_rx rx; |
| atomic_t clk_count; |
| struct msm_hs_wakeup wakeup; |
| struct wakeup_source ws; |
| |
| struct dentry *loopback_dir; |
| struct work_struct clock_off_w; /* work for actual clock off */ |
| struct workqueue_struct *hsuart_wq; /* hsuart workqueue */ |
| struct mutex mtx; /* resource access mutex */ |
| enum uart_core_type uart_type; |
| unsigned long bam_handle; |
| resource_size_t bam_mem; |
| int bam_irq; |
| unsigned char __iomem *bam_base; |
| unsigned int bam_tx_ep_pipe_index; |
| unsigned int bam_rx_ep_pipe_index; |
| /* struct sps_event_notify is an argument passed when triggering a |
| * callback event object registered for an SPS connection end point. |
| */ |
| struct sps_event_notify notify; |
| /* bus client handler */ |
| u32 bus_perf_client; |
| /* BLSP UART required BUS Scaling data */ |
| struct msm_bus_scale_pdata *bus_scale_table; |
| bool rx_bam_inprogress; |
| wait_queue_head_t bam_disconnect_wait; |
| bool use_pinctrl; |
| struct pinctrl *pinctrl; |
| struct pinctrl_state *gpio_state_active; |
| struct pinctrl_state *gpio_state_suspend; |
| bool flow_control; |
| enum msm_hs_pm_state pm_state; |
| atomic_t ioctl_count; |
| bool obs; /* out of band sleep flag */ |
| atomic_t client_req_state; |
| }; |
| |
| static struct of_device_id msm_hs_match_table[] = { |
| { .compatible = "qcom,msm-hsuart-v14"}, |
| {} |
| }; |
| |
| |
| #define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */ |
| #define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE |
| #define UARTDM_RX_BUF_SIZE 512 |
| #define RETRY_TIMEOUT 5 |
| #define UARTDM_NR 256 |
| #define BAM_PIPE_MIN 0 |
| #define BAM_PIPE_MAX 11 |
| #define BUS_SCALING 1 |
| #define BUS_RESET 0 |
| #define RX_FLUSH_COMPLETE_TIMEOUT 300 /* In jiffies */ |
| #define BLSP_UART_CLK_FMAX 63160000 |
| |
| static struct dentry *debug_base; |
| static struct platform_driver msm_serial_hs_platform_driver; |
| static struct uart_driver msm_hs_driver; |
| static struct uart_ops msm_hs_ops; |
| static void msm_hs_start_rx_locked(struct uart_port *uport); |
| static void msm_serial_hs_rx_work(struct kthread_work *work); |
| static void flip_insert_work(struct work_struct *work); |
| static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote); |
| static struct msm_hs_port *msm_hs_get_hs_port(int port_index); |
| static void msm_hs_queue_rx_desc(struct msm_hs_port *msm_uport); |
| static int disconnect_rx_endpoint(struct msm_hs_port *msm_uport); |
| static int msm_hs_pm_resume(struct device *dev); |
| |
| #define UARTDM_TO_MSM(uart_port) \ |
| container_of((uart_port), struct msm_hs_port, uport) |
| |
| static int msm_hs_ioctl(struct uart_port *uport, unsigned int cmd, |
| unsigned long arg) |
| { |
| int ret = 0, state = 1; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| int ioctl_count = atomic_read(&msm_uport->ioctl_count); |
| |
| switch (cmd) { |
| case MSM_ENABLE_UART_CLOCK: { |
| MSM_HS_INFO("%s():ENABLE UART CLOCK: cmd=%d, ioc %d\n", |
| __func__, cmd, ioctl_count); |
| atomic_inc(&msm_uport->ioctl_count); |
| msm_hs_request_clock_on(&msm_uport->uport); |
| break; |
| } |
| case MSM_DISABLE_UART_CLOCK: { |
| MSM_HS_INFO("%s():DISABLE UART CLOCK: cmd=%d ioc %d\n", |
| __func__, cmd, ioctl_count); |
| if (ioctl_count <= 0) { |
| MSM_HS_WARN("%s():ioctl count -ve, client check voting", |
| __func__); |
| } else { |
| atomic_dec(&msm_uport->ioctl_count); |
| msm_hs_request_clock_off(&msm_uport->uport); |
| } |
| break; |
| } |
| case MSM_GET_UART_CLOCK_STATUS: { |
| /* Return value 0 - UART CLOCK is OFF |
| * Return value 1 - UART CLOCK is ON */ |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) |
| state = 0; |
| ret = state; |
| MSM_HS_INFO("%s():GET UART CLOCK STATUS: cmd=%d state=%d\n", |
| __func__, cmd, state); |
| break; |
| } |
| default: { |
| MSM_HS_DBG("%s():Unknown cmd specified: cmd=%d\n", __func__, |
| cmd); |
| ret = -ENOIOCTLCMD; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This function is called initially during probe and then |
| * through the runtime PM framework. The function directly calls |
| * resource APIs to enable them. |
| */ |
| |
| static int msm_hs_clk_bus_vote(struct msm_hs_port *msm_uport) |
| { |
| int rc = 0; |
| |
| msm_hs_bus_voting(msm_uport, BUS_SCALING); |
| /* Turn on core clk and iface clk */ |
| if (msm_uport->pclk) { |
| rc = clk_prepare_enable(msm_uport->pclk); |
| if (rc) { |
| dev_err(msm_uport->uport.dev, |
| "%s: Could not turn on pclk [%d]\n", |
| __func__, rc); |
| goto busreset; |
| } |
| } |
| rc = clk_prepare_enable(msm_uport->clk); |
| if (rc) { |
| dev_err(msm_uport->uport.dev, |
| "%s: Could not turn on core clk [%d]\n", |
| __func__, rc); |
| goto core_unprepare; |
| } |
| MSM_HS_DBG("%s: Clock ON successful\n", __func__); |
| return rc; |
| core_unprepare: |
| clk_disable_unprepare(msm_uport->pclk); |
| busreset: |
| msm_hs_bus_voting(msm_uport, BUS_RESET); |
| return rc; |
| } |
| |
| /* |
| * This function is called initially during probe and then |
| * through the runtime PM framework. The function directly calls |
| * resource apis to disable them. |
| */ |
| static void msm_hs_clk_bus_unvote(struct msm_hs_port *msm_uport) |
| { |
| clk_disable_unprepare(msm_uport->clk); |
| if (msm_uport->pclk) |
| clk_disable_unprepare(msm_uport->pclk); |
| msm_hs_bus_voting(msm_uport, BUS_RESET); |
| MSM_HS_DBG("%s: Clock OFF successful\n", __func__); |
| } |
| |
| /* Remove vote for resources when done */ |
| static void msm_hs_resource_unvote(struct msm_hs_port *msm_uport) |
| { |
| struct uart_port *uport = &(msm_uport->uport); |
| int rc = atomic_read(&msm_uport->clk_count); |
| |
| MSM_HS_DBG("%s(): power usage count %d", __func__, rc); |
| if (rc <= 0) { |
| MSM_HS_WARN("%s(): rc zero, bailing\n", __func__); |
| WARN_ON(1); |
| return; |
| } |
| atomic_dec(&msm_uport->clk_count); |
| pm_runtime_mark_last_busy(uport->dev); |
| pm_runtime_put_autosuspend(uport->dev); |
| } |
| |
| /* Vote for resources before accessing them */ |
| static void msm_hs_resource_vote(struct msm_hs_port *msm_uport) |
| { |
| struct uart_port *uport = &(msm_uport->uport); |
| pm_runtime_get_sync(uport->dev); |
| atomic_inc(&msm_uport->clk_count); |
| } |
| |
| /* Check if the uport line number matches with user id stored in pdata. |
| * User id information is stored during initialization. This function |
| * ensues that the same device is selected */ |
| |
| static struct msm_hs_port *get_matching_hs_port(struct platform_device *pdev) |
| { |
| struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data; |
| struct msm_hs_port *msm_uport = msm_hs_get_hs_port(pdev->id); |
| |
| if ((!msm_uport) || (msm_uport->uport.line != pdev->id |
| && msm_uport->uport.line != pdata->userid)) { |
| MSM_HS_ERR("uport line number mismatch!"); |
| WARN_ON(1); |
| return NULL; |
| } |
| |
| return msm_uport; |
| } |
| |
| static ssize_t show_clock(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int state = 1; |
| ssize_t ret = 0; |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = get_matching_hs_port(pdev); |
| |
| /* This check should not fail */ |
| if (msm_uport) { |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) |
| state = 0; |
| ret = snprintf(buf, PAGE_SIZE, "%d\n", state); |
| } |
| return ret; |
| } |
| |
| static ssize_t set_clock(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int state; |
| ssize_t ret = 0; |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = get_matching_hs_port(pdev); |
| |
| /* This check should not fail */ |
| if (msm_uport) { |
| state = buf[0] - '0'; |
| switch (state) { |
| case 0: |
| msm_hs_request_clock_off(&msm_uport->uport); |
| ret = count; |
| break; |
| case 1: |
| msm_hs_request_clock_on(&msm_uport->uport); |
| ret = count; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| } |
| return ret; |
| } |
| |
| static DEVICE_ATTR(clock, S_IWUSR | S_IRUGO, show_clock, set_clock); |
| |
| static inline bool is_use_low_power_wakeup(struct msm_hs_port *msm_uport) |
| { |
| return msm_uport->wakeup.irq > 0; |
| } |
| |
| static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote) |
| { |
| int ret; |
| |
| if (msm_uport->bus_perf_client) { |
| MSM_HS_DBG("Bus voting:%d\n", vote); |
| ret = msm_bus_scale_client_update_request( |
| msm_uport->bus_perf_client, vote); |
| if (ret) |
| MSM_HS_ERR("%s(): Failed for Bus voting: %d\n", |
| __func__, vote); |
| } |
| } |
| |
| static inline unsigned int msm_hs_read(struct uart_port *uport, |
| unsigned int index) |
| { |
| return readl_relaxed(uport->membase + index); |
| } |
| |
| static inline void msm_hs_write(struct uart_port *uport, unsigned int index, |
| unsigned int value) |
| { |
| writel_relaxed(value, uport->membase + index); |
| } |
| |
| static int sps_rx_disconnect(struct sps_pipe *sps_pipe_handler) |
| { |
| struct sps_connect config; |
| int ret; |
| |
| ret = sps_get_config(sps_pipe_handler, &config); |
| if (ret) { |
| pr_err("%s: sps_get_config() failed ret %d\n", __func__, ret); |
| return ret; |
| } |
| config.options |= SPS_O_POLL; |
| ret = sps_set_config(sps_pipe_handler, &config); |
| if (ret) { |
| pr_err("%s: sps_set_config() failed ret %d\n", __func__, ret); |
| return ret; |
| } |
| return sps_disconnect(sps_pipe_handler); |
| } |
| |
| static void hex_dump_ipc(char *prefix, char *string, int size) |
| { |
| unsigned char linebuf[512]; |
| unsigned char firstbuf[40], lastbuf[40]; |
| |
| if ((hs_serial_debug_mask != DBG_LEV) && (size > 20)) { |
| hex_dump_to_buffer(string, 10, 16, 1, |
| firstbuf, sizeof(firstbuf), 1); |
| hex_dump_to_buffer(string + (size - 10), 10, 16, 1, |
| lastbuf, sizeof(lastbuf), 1); |
| MSM_HS_INFO("%s : %s...%s", prefix, firstbuf, lastbuf); |
| } else { |
| hex_dump_to_buffer(string, size, 16, 1, |
| linebuf, sizeof(linebuf), 1); |
| MSM_HS_INFO("%s : %s", prefix, linebuf); |
| } |
| } |
| |
| /* |
| * This API read and provides UART Core registers information. |
| */ |
| static void dump_uart_hs_registers(struct msm_hs_port *msm_uport) |
| { |
| struct uart_port *uport = &(msm_uport->uport); |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) { |
| MSM_HS_INFO("%s:Failed clocks are off, clk_count %d", |
| __func__, atomic_read(&msm_uport->clk_count)); |
| return; |
| } |
| |
| MSM_HS_DBG( |
| "MR1:%x MR2:%x TFWR:%x RFWR:%x DMEN:%x IMR:%x MISR:%x NCF_TX:%x\n", |
| msm_hs_read(uport, UART_DM_MR1), |
| msm_hs_read(uport, UART_DM_MR2), |
| msm_hs_read(uport, UART_DM_TFWR), |
| msm_hs_read(uport, UART_DM_RFWR), |
| msm_hs_read(uport, UART_DM_DMEN), |
| msm_hs_read(uport, UART_DM_IMR), |
| msm_hs_read(uport, UART_DM_MISR), |
| msm_hs_read(uport, UART_DM_NCF_TX)); |
| MSM_HS_INFO("SR:%x ISR:%x DMRX:%x RX_SNAP:%x TXFS:%x RXFS:%x\n", |
| msm_hs_read(uport, UART_DM_SR), |
| msm_hs_read(uport, UART_DM_ISR), |
| msm_hs_read(uport, UART_DM_DMRX), |
| msm_hs_read(uport, UART_DM_RX_TOTAL_SNAP), |
| msm_hs_read(uport, UART_DM_TXFS), |
| msm_hs_read(uport, UART_DM_RXFS)); |
| MSM_HS_DBG("rx.flush:%u\n", msm_uport->rx.flush); |
| } |
| |
| static int msm_serial_loopback_enable_set(void *data, u64 val) |
| { |
| struct msm_hs_port *msm_uport = data; |
| struct uart_port *uport = &(msm_uport->uport); |
| unsigned long flags; |
| int ret = 0; |
| |
| msm_hs_resource_vote(msm_uport); |
| |
| if (val) { |
| spin_lock_irqsave(&uport->lock, flags); |
| ret = msm_hs_read(uport, UART_DM_MR2); |
| ret |= (UARTDM_MR2_LOOP_MODE_BMSK | |
| UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK); |
| msm_hs_write(uport, UART_DM_MR2, ret); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } else { |
| spin_lock_irqsave(&uport->lock, flags); |
| ret = msm_hs_read(uport, UART_DM_MR2); |
| ret &= ~(UARTDM_MR2_LOOP_MODE_BMSK | |
| UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK); |
| msm_hs_write(uport, UART_DM_MR2, ret); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| /* Calling CLOCK API. Hence mb() requires here. */ |
| mb(); |
| |
| msm_hs_resource_unvote(msm_uport); |
| return 0; |
| } |
| |
| static int msm_serial_loopback_enable_get(void *data, u64 *val) |
| { |
| struct msm_hs_port *msm_uport = data; |
| struct uart_port *uport = &(msm_uport->uport); |
| unsigned long flags; |
| int ret = 0; |
| |
| msm_hs_resource_vote(msm_uport); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| ret = msm_hs_read(&msm_uport->uport, UART_DM_MR2); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| msm_hs_resource_unvote(msm_uport); |
| |
| *val = (ret & UARTDM_MR2_LOOP_MODE_BMSK) ? 1 : 0; |
| |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(loopback_enable_fops, msm_serial_loopback_enable_get, |
| msm_serial_loopback_enable_set, "%llu\n"); |
| |
| /* |
| * msm_serial_hs debugfs node: <debugfs_root>/msm_serial_hs/loopback.<id> |
| * writing 1 turns on internal loopback mode in HW. Useful for automation |
| * test scripts. |
| * writing 0 disables the internal loopback mode. Default is disabled. |
| */ |
| static void msm_serial_debugfs_init(struct msm_hs_port *msm_uport, |
| int id) |
| { |
| char node_name[15]; |
| snprintf(node_name, sizeof(node_name), "loopback.%d", id); |
| msm_uport->loopback_dir = debugfs_create_file(node_name, |
| S_IRUGO | S_IWUSR, |
| debug_base, |
| msm_uport, |
| &loopback_enable_fops); |
| |
| if (IS_ERR_OR_NULL(msm_uport->loopback_dir)) |
| MSM_HS_ERR("%s(): Cannot create loopback.%d debug entry", |
| __func__, id); |
| } |
| |
| static int msm_hs_remove(struct platform_device *pdev) |
| { |
| |
| struct msm_hs_port *msm_uport; |
| struct device *dev; |
| |
| if (pdev->id < 0 || pdev->id >= UARTDM_NR) { |
| MSM_HS_ERR("Invalid plaform device ID = %d\n", pdev->id); |
| return -EINVAL; |
| } |
| |
| msm_uport = get_matching_hs_port(pdev); |
| if (!msm_uport) |
| return -EINVAL; |
| |
| dev = msm_uport->uport.dev; |
| sysfs_remove_file(&pdev->dev.kobj, &dev_attr_clock.attr); |
| debugfs_remove(msm_uport->loopback_dir); |
| |
| dma_free_coherent(msm_uport->uport.dev, |
| UART_DMA_DESC_NR * UARTDM_RX_BUF_SIZE, |
| msm_uport->rx.buffer, msm_uport->rx.rbuffer); |
| |
| msm_uport->rx.buffer = NULL; |
| msm_uport->rx.rbuffer = 0; |
| |
| destroy_workqueue(msm_uport->hsuart_wq); |
| mutex_destroy(&msm_uport->mtx); |
| |
| uart_remove_one_port(&msm_hs_driver, &msm_uport->uport); |
| clk_put(msm_uport->clk); |
| if (msm_uport->pclk) |
| clk_put(msm_uport->pclk); |
| |
| iounmap(msm_uport->uport.membase); |
| |
| return 0; |
| } |
| |
| |
| /* Connect a UART peripheral's SPS endpoint(consumer endpoint) |
| * |
| * Also registers a SPS callback function for the consumer |
| * process with the SPS driver |
| * |
| * @uport - Pointer to uart uport structure |
| * |
| * @return - 0 if successful else negative value. |
| * |
| */ |
| |
| static int msm_hs_spsconnect_tx(struct msm_hs_port *msm_uport) |
| { |
| int ret; |
| struct uart_port *uport = &msm_uport->uport; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct sps_pipe *sps_pipe_handle = tx->cons.pipe_handle; |
| struct sps_connect *sps_config = &tx->cons.config; |
| struct sps_register_event *sps_event = &tx->cons.event; |
| unsigned long flags; |
| unsigned int data; |
| |
| if (tx->flush != FLUSH_SHUTDOWN) |
| return 0; |
| |
| /* Establish connection between peripheral and memory endpoint */ |
| ret = sps_connect(sps_pipe_handle, sps_config); |
| if (ret) { |
| MSM_HS_ERR("msm_serial_hs: sps_connect() failed for tx!!\n" |
| "pipe_handle=0x%p ret=%d", sps_pipe_handle, ret); |
| return ret; |
| } |
| /* Register callback event for EOT (End of transfer) event. */ |
| ret = sps_register_event(sps_pipe_handle, sps_event); |
| if (ret) { |
| MSM_HS_ERR("msm_serial_hs: sps_connect() failed for tx!!\n" |
| "pipe_handle=0x%p ret=%d", sps_pipe_handle, ret); |
| goto reg_event_err; |
| } |
| |
| spin_lock_irqsave(&(msm_uport->uport.lock), flags); |
| msm_uport->tx.flush = FLUSH_STOP; |
| spin_unlock_irqrestore(&(msm_uport->uport.lock), flags); |
| |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| /* Enable UARTDM Tx BAM Interface */ |
| data |= UARTDM_TX_BAM_ENABLE_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| msm_hs_write(uport, UART_DM_CR, START_TX_BAM_IFC); |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_EN_BMSK); |
| |
| MSM_HS_DBG("%s(): TX Connect", __func__); |
| return 0; |
| |
| reg_event_err: |
| sps_disconnect(sps_pipe_handle); |
| return ret; |
| } |
| |
| /* Connect a UART peripheral's SPS endpoint(producer endpoint) |
| * |
| * Also registers a SPS callback function for the producer |
| * process with the SPS driver |
| * |
| * @uport - Pointer to uart uport structure |
| * |
| * @return - 0 if successful else negative value. |
| * |
| */ |
| |
| static int msm_hs_spsconnect_rx(struct uart_port *uport) |
| { |
| int ret; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle; |
| struct sps_connect *sps_config = &rx->prod.config; |
| struct sps_register_event *sps_event = &rx->prod.event; |
| unsigned long flags; |
| |
| /* Establish connection between peripheral and memory endpoint */ |
| ret = sps_connect(sps_pipe_handle, sps_config); |
| if (ret) { |
| MSM_HS_ERR("msm_serial_hs: sps_connect() failed for rx!!\n" |
| "pipe_handle=0x%p ret=%d", sps_pipe_handle, ret); |
| return ret; |
| } |
| /* Register callback event for DESC_DONE event. */ |
| ret = sps_register_event(sps_pipe_handle, sps_event); |
| if (ret) { |
| MSM_HS_ERR("msm_serial_hs: sps_connect() failed for rx!!\n" |
| "pipe_handle=0x%p ret=%d", sps_pipe_handle, ret); |
| goto reg_event_err; |
| } |
| spin_lock_irqsave(&uport->lock, flags); |
| if (msm_uport->rx.pending_flag) |
| MSM_HS_WARN("%s(): Buffers may be pending 0x%lx", |
| __func__, msm_uport->rx.pending_flag); |
| msm_uport->rx.queued_flag = 0; |
| msm_uport->rx.pending_flag = 0; |
| msm_uport->rx.rx_inx = 0; |
| msm_uport->rx.flush = FLUSH_STOP; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| MSM_HS_DBG("%s(): RX Connect\n", __func__); |
| return 0; |
| |
| reg_event_err: |
| sps_disconnect(sps_pipe_handle); |
| return ret; |
| } |
| |
| /* |
| * programs the UARTDM_CSR register with correct bit rates |
| * |
| * Interrupts should be disabled before we are called, as |
| * we modify Set Baud rate |
| * Set receive stale interrupt level, dependant on Bit Rate |
| * Goal is to have around 8 ms before indicate stale. |
| * roundup (((Bit Rate * .008) / 10) + 1 |
| */ |
| static void msm_hs_set_bps_locked(struct uart_port *uport, |
| unsigned int bps) |
| { |
| unsigned long rxstale; |
| unsigned long data; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| switch (bps) { |
| case 300: |
| msm_hs_write(uport, UART_DM_CSR, 0x00); |
| rxstale = 1; |
| break; |
| case 600: |
| msm_hs_write(uport, UART_DM_CSR, 0x11); |
| rxstale = 1; |
| break; |
| case 1200: |
| msm_hs_write(uport, UART_DM_CSR, 0x22); |
| rxstale = 1; |
| break; |
| case 2400: |
| msm_hs_write(uport, UART_DM_CSR, 0x33); |
| rxstale = 1; |
| break; |
| case 4800: |
| msm_hs_write(uport, UART_DM_CSR, 0x44); |
| rxstale = 1; |
| break; |
| case 9600: |
| msm_hs_write(uport, UART_DM_CSR, 0x55); |
| rxstale = 2; |
| break; |
| case 14400: |
| msm_hs_write(uport, UART_DM_CSR, 0x66); |
| rxstale = 3; |
| break; |
| case 19200: |
| msm_hs_write(uport, UART_DM_CSR, 0x77); |
| rxstale = 4; |
| break; |
| case 28800: |
| msm_hs_write(uport, UART_DM_CSR, 0x88); |
| rxstale = 6; |
| break; |
| case 38400: |
| msm_hs_write(uport, UART_DM_CSR, 0x99); |
| rxstale = 8; |
| break; |
| case 57600: |
| msm_hs_write(uport, UART_DM_CSR, 0xaa); |
| rxstale = 16; |
| break; |
| case 76800: |
| msm_hs_write(uport, UART_DM_CSR, 0xbb); |
| rxstale = 16; |
| break; |
| case 115200: |
| msm_hs_write(uport, UART_DM_CSR, 0xcc); |
| rxstale = 31; |
| break; |
| case 230400: |
| msm_hs_write(uport, UART_DM_CSR, 0xee); |
| rxstale = 31; |
| break; |
| case 460800: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| rxstale = 31; |
| break; |
| case 4000000: |
| case 3686400: |
| case 3200000: |
| case 3500000: |
| case 3000000: |
| case 2500000: |
| case 1500000: |
| case 1152000: |
| case 1000000: |
| case 921600: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| rxstale = 31; |
| break; |
| default: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| /* default to 9600 */ |
| bps = 9600; |
| rxstale = 2; |
| break; |
| } |
| /* |
| * uart baud rate depends on CSR and MND Values |
| * we are updating CSR before and then calling |
| * clk_set_rate which updates MND Values. Hence |
| * dsb requires here. |
| */ |
| mb(); |
| if (bps > 460800) { |
| uport->uartclk = bps * 16; |
| /* BLSP based UART supports maximum clock frequency |
| * of 63.16 Mhz. With this (63.16 Mhz) clock frequency |
| * UART can support baud rate of 3.94 Mbps which is |
| * equivalent to 4 Mbps. |
| * UART hardware is robust enough to handle this |
| * deviation to achieve baud rate ~4 Mbps. |
| */ |
| if (bps == 4000000) |
| uport->uartclk = BLSP_UART_CLK_FMAX; |
| } else { |
| uport->uartclk = 7372800; |
| } |
| |
| if (clk_set_rate(msm_uport->clk, uport->uartclk)) { |
| MSM_HS_WARN("Error setting clock rate on UART\n"); |
| WARN_ON(1); |
| } |
| |
| data = rxstale & UARTDM_IPR_STALE_LSB_BMSK; |
| data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2); |
| |
| msm_hs_write(uport, UART_DM_IPR, data); |
| /* |
| * It is suggested to do reset of transmitter and receiver after |
| * changing any protocol configuration. Here Baud rate and stale |
| * timeout are getting updated. Hence reset transmitter and receiver. |
| */ |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| } |
| |
| |
| static void msm_hs_set_std_bps_locked(struct uart_port *uport, |
| unsigned int bps) |
| { |
| unsigned long rxstale; |
| unsigned long data; |
| |
| switch (bps) { |
| case 9600: |
| msm_hs_write(uport, UART_DM_CSR, 0x99); |
| rxstale = 2; |
| break; |
| case 14400: |
| msm_hs_write(uport, UART_DM_CSR, 0xaa); |
| rxstale = 3; |
| break; |
| case 19200: |
| msm_hs_write(uport, UART_DM_CSR, 0xbb); |
| rxstale = 4; |
| break; |
| case 28800: |
| msm_hs_write(uport, UART_DM_CSR, 0xcc); |
| rxstale = 6; |
| break; |
| case 38400: |
| msm_hs_write(uport, UART_DM_CSR, 0xdd); |
| rxstale = 8; |
| break; |
| case 57600: |
| msm_hs_write(uport, UART_DM_CSR, 0xee); |
| rxstale = 16; |
| break; |
| case 115200: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| rxstale = 31; |
| break; |
| default: |
| msm_hs_write(uport, UART_DM_CSR, 0x99); |
| /* default to 9600 */ |
| bps = 9600; |
| rxstale = 2; |
| break; |
| } |
| |
| data = rxstale & UARTDM_IPR_STALE_LSB_BMSK; |
| data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2); |
| |
| msm_hs_write(uport, UART_DM_IPR, data); |
| } |
| |
| static void msm_hs_enable_flow_control(struct uart_port *uport, bool override) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int data; |
| |
| if (msm_uport->flow_control || override) { |
| /* Enable RFR line */ |
| msm_hs_write(uport, UART_DM_CR, RFR_LOW); |
| /* Enable auto RFR */ |
| data = msm_hs_read(uport, UART_DM_MR1); |
| data |= UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UART_DM_MR1, data); |
| /* Ensure register IO completion */ |
| mb(); |
| } |
| } |
| |
| static void msm_hs_disable_flow_control(struct uart_port *uport, bool override) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int data; |
| |
| /* |
| * Clear the Rx Ready Ctl bit - This ensures that |
| * flow control lines stop the other side from sending |
| * data while we change the parameters |
| */ |
| |
| if (msm_uport->flow_control || override) { |
| data = msm_hs_read(uport, UART_DM_MR1); |
| /* disable auto ready-for-receiving */ |
| data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UART_DM_MR1, data); |
| /* Disable RFR line */ |
| msm_hs_write(uport, UART_DM_CR, RFR_HIGH); |
| /* Ensure register IO completion */ |
| mb(); |
| } |
| } |
| |
| /* |
| * termios : new ktermios |
| * oldtermios: old ktermios previous setting |
| * |
| * Configure the serial port |
| */ |
| static void msm_hs_set_termios(struct uart_port *uport, |
| struct ktermios *termios, |
| struct ktermios *oldtermios) |
| { |
| unsigned int bps; |
| unsigned long data; |
| unsigned int c_cflag = termios->c_cflag; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| /** |
| * set_termios can be invoked from the framework when |
| * the clocks are off and the client has not had a chance |
| * to turn them on. Make sure that they are on |
| */ |
| msm_hs_resource_vote(msm_uport); |
| mutex_lock(&msm_uport->mtx); |
| msm_hs_write(uport, UART_DM_IMR, 0); |
| |
| MSM_HS_DBG("Entering %s\n", __func__); |
| msm_hs_disable_flow_control(uport, true); |
| |
| /* |
| * Disable Rx channel of UARTDM |
| * DMA Rx Stall happens if enqueue and flush of Rx command happens |
| * concurrently. Hence before changing the baud rate/protocol |
| * configuration and sending flush command to ADM, disable the Rx |
| * channel of UARTDM. |
| * Note: should not reset the receiver here immediately as it is not |
| * suggested to do disable/reset or reset/disable at the same time. |
| */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| /* Disable UARTDM RX BAM Interface */ |
| data &= ~UARTDM_RX_BAM_ENABLE_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| |
| /* |
| * Reset RX and TX. |
| * Resetting the RX enables it, therefore we must reset and disable. |
| */ |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_DISABLE_BMSK); |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| |
| /* 300 is the minimum baud support by the driver */ |
| bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000); |
| |
| /* Temporary remapping 200 BAUD to 3.2 mbps */ |
| if (bps == 200) |
| bps = 3200000; |
| |
| uport->uartclk = clk_get_rate(msm_uport->clk); |
| if (!uport->uartclk) |
| msm_hs_set_std_bps_locked(uport, bps); |
| else |
| msm_hs_set_bps_locked(uport, bps); |
| |
| data = msm_hs_read(uport, UART_DM_MR2); |
| data &= ~UARTDM_MR2_PARITY_MODE_BMSK; |
| /* set parity */ |
| if (c_cflag & PARENB) { |
| if (c_cflag & PARODD) |
| data |= ODD_PARITY; |
| else if (c_cflag & CMSPAR) |
| data |= SPACE_PARITY; |
| else |
| data |= EVEN_PARITY; |
| } |
| |
| /* Set bits per char */ |
| data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK; |
| |
| switch (c_cflag & CSIZE) { |
| case CS5: |
| data |= FIVE_BPC; |
| break; |
| case CS6: |
| data |= SIX_BPC; |
| break; |
| case CS7: |
| data |= SEVEN_BPC; |
| break; |
| default: |
| data |= EIGHT_BPC; |
| break; |
| } |
| /* stop bits */ |
| if (c_cflag & CSTOPB) { |
| data |= STOP_BIT_TWO; |
| } else { |
| /* otherwise 1 stop bit */ |
| data |= STOP_BIT_ONE; |
| } |
| data |= UARTDM_MR2_ERROR_MODE_BMSK; |
| /* write parity/bits per char/stop bit configuration */ |
| msm_hs_write(uport, UART_DM_MR2, data); |
| |
| uport->ignore_status_mask = termios->c_iflag & INPCK; |
| uport->ignore_status_mask |= termios->c_iflag & IGNPAR; |
| uport->ignore_status_mask |= termios->c_iflag & IGNBRK; |
| |
| uport->read_status_mask = (termios->c_cflag & CREAD); |
| |
| /* Set Transmit software time out */ |
| uart_update_timeout(uport, c_cflag, bps); |
| |
| /* Enable UARTDM Rx BAM Interface */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| data |= UARTDM_RX_BAM_ENABLE_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_EN_BMSK); |
| /* Issue TX,RX BAM Start IFC command */ |
| msm_hs_write(uport, UART_DM_CR, START_TX_BAM_IFC); |
| msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC); |
| /* Ensure Register Writes Complete */ |
| mb(); |
| |
| /* Configure HW flow control |
| * UART Core would see status of CTS line when it is sending data |
| * to remote uart to confirm that it can receive or not. |
| * UART Core would trigger RFR if it is not having any space with |
| * RX FIFO. |
| */ |
| /* Pulling RFR line high */ |
| msm_hs_write(uport, UART_DM_CR, RFR_LOW); |
| data = msm_hs_read(uport, UART_DM_MR1); |
| data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK); |
| if (c_cflag & CRTSCTS) { |
| data |= UARTDM_MR1_CTS_CTL_BMSK; |
| data |= UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_uport->flow_control = false; |
| } |
| msm_hs_write(uport, UART_DM_MR1, data); |
| |
| mutex_unlock(&msm_uport->mtx); |
| |
| MSM_HS_DBG("Exit %s\n", __func__); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| |
| /* |
| * Standard API, Transmitter |
| * Any character in the transmit shift register is sent |
| */ |
| unsigned int msm_hs_tx_empty(struct uart_port *uport) |
| { |
| unsigned int data; |
| unsigned int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_resource_vote(msm_uport); |
| data = msm_hs_read(uport, UART_DM_SR); |
| msm_hs_resource_unvote(msm_uport); |
| MSM_HS_DBG("%s(): SR Reg Read 0x%x", __func__, data); |
| |
| if (data & UARTDM_SR_TXEMT_BMSK) |
| ret = TIOCSER_TEMT; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(msm_hs_tx_empty); |
| |
| /* |
| * Standard API, Stop transmitter. |
| * Any character in the transmit shift register is sent as |
| * well as the current data mover transfer . |
| */ |
| static void msm_hs_stop_tx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| |
| tx->flush = FLUSH_STOP; |
| } |
| |
| static int disconnect_rx_endpoint(struct msm_hs_port *msm_uport) |
| { |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle; |
| int ret = 0; |
| |
| ret = sps_rx_disconnect(sps_pipe_handle); |
| |
| if (msm_uport->rx.pending_flag) |
| MSM_HS_WARN("%s(): Buffers may be pending 0x%lx", |
| __func__, msm_uport->rx.pending_flag); |
| MSM_HS_DBG("%s(): clearing desc usage flag", __func__); |
| msm_uport->rx.queued_flag = 0; |
| msm_uport->rx.pending_flag = 0; |
| msm_uport->rx.rx_inx = 0; |
| |
| if (ret) |
| MSM_HS_ERR("%s(): sps_disconnect failed\n", __func__); |
| msm_uport->rx.flush = FLUSH_SHUTDOWN; |
| MSM_HS_DBG("%s: Calling Completion\n", __func__); |
| wake_up(&msm_uport->bam_disconnect_wait); |
| MSM_HS_DBG("%s: Done Completion\n", __func__); |
| wake_up(&msm_uport->rx.wait); |
| return ret; |
| } |
| |
| static int sps_tx_disconnect(struct msm_hs_port *msm_uport) |
| { |
| struct uart_port *uport = &msm_uport->uport; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct sps_pipe *tx_pipe = tx->cons.pipe_handle; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (msm_uport->tx.flush == FLUSH_SHUTDOWN) { |
| MSM_HS_DBG("%s(): pipe already disonnected", __func__); |
| return ret; |
| } |
| |
| ret = sps_disconnect(tx_pipe); |
| |
| if (ret) { |
| MSM_HS_ERR("%s(): sps_disconnect failed %d", __func__, ret); |
| return ret; |
| } |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_uport->tx.flush = FLUSH_SHUTDOWN; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| MSM_HS_DBG("%s(): TX Disconnect", __func__); |
| return ret; |
| } |
| |
| static void msm_hs_disable_rx(struct uart_port *uport) |
| { |
| unsigned int data; |
| |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| data &= ~UARTDM_RX_BAM_ENABLE_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| } |
| |
| /* |
| * Standard API, Stop receiver as soon as possible. |
| * |
| * Function immediately terminates the operation of the |
| * channel receiver and any incoming characters are lost. None |
| * of the receiver status bits are affected by this command and |
| * characters that are already in the receive FIFO there. |
| */ |
| static void msm_hs_stop_rx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) |
| MSM_HS_WARN("%s(): Clocks are off\n", __func__); |
| else |
| msm_hs_disable_rx(uport); |
| |
| if (msm_uport->rx.flush == FLUSH_NONE) |
| msm_uport->rx.flush = FLUSH_STOP; |
| } |
| |
| static void msm_hs_disconnect_rx(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_disable_rx(uport); |
| /* Disconnect the BAM RX pipe */ |
| if (msm_uport->rx.flush == FLUSH_NONE) |
| msm_uport->rx.flush = FLUSH_STOP; |
| disconnect_rx_endpoint(msm_uport); |
| MSM_HS_DBG("%s(): rx->flush %d", __func__, msm_uport->rx.flush); |
| } |
| |
| /* Tx timeout callback function */ |
| void tx_timeout_handler(unsigned long arg) |
| { |
| struct msm_hs_port *msm_uport = (struct msm_hs_port *) arg; |
| struct uart_port *uport = &msm_uport->uport; |
| int isr; |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) { |
| MSM_HS_WARN("%s(): clocks are off", __func__); |
| return; |
| } |
| |
| isr = msm_hs_read(uport, UART_DM_ISR); |
| if (UARTDM_ISR_CURRENT_CTS_BMSK & isr) |
| MSM_HS_WARN("%s(): CTS Disabled, ISR 0x%x", __func__, isr); |
| dump_uart_hs_registers(msm_uport); |
| } |
| |
| /* Transmit the next chunk of data */ |
| static void msm_hs_submit_tx_locked(struct uart_port *uport) |
| { |
| int left; |
| int tx_count; |
| int aligned_tx_count; |
| dma_addr_t src_addr; |
| dma_addr_t aligned_src_addr; |
| u32 flags = SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_INT; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct circ_buf *tx_buf = &msm_uport->uport.state->xmit; |
| struct sps_pipe *sps_pipe_handle; |
| int ret; |
| |
| if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) { |
| tx->dma_in_flight = false; |
| msm_hs_stop_tx_locked(uport); |
| return; |
| } |
| |
| tx_count = uart_circ_chars_pending(tx_buf); |
| |
| if (UARTDM_TX_BUF_SIZE < tx_count) |
| tx_count = UARTDM_TX_BUF_SIZE; |
| |
| left = UART_XMIT_SIZE - tx_buf->tail; |
| |
| if (tx_count > left) |
| tx_count = left; |
| MSM_HS_INFO("%s(): [UART_TX]<%d>\n", __func__, tx_count); |
| hex_dump_ipc("HSUART write: ", &tx_buf->buf[tx_buf->tail], tx_count); |
| src_addr = tx->dma_base + tx_buf->tail; |
| /* Mask the src_addr to align on a cache |
| * and add those bytes to tx_count */ |
| aligned_src_addr = src_addr & ~(dma_get_cache_alignment() - 1); |
| aligned_tx_count = tx_count + src_addr - aligned_src_addr; |
| |
| dma_sync_single_for_device(uport->dev, aligned_src_addr, |
| aligned_tx_count, DMA_TO_DEVICE); |
| |
| tx->tx_count = tx_count; |
| |
| sps_pipe_handle = tx->cons.pipe_handle; |
| /* Queue transfer request to SPS */ |
| ret = sps_transfer_one(sps_pipe_handle, src_addr, tx_count, |
| msm_uport, flags); |
| |
| /* Set 1 second timeout */ |
| mod_timer(&tx->tx_timeout_timer, |
| jiffies + msecs_to_jiffies(MSEC_PER_SEC)); |
| |
| MSM_HS_DBG("%s:Enqueue Tx Cmd, ret %d\n", __func__, ret); |
| } |
| |
| /* This function queues the rx descriptor for BAM transfer */ |
| static void msm_hs_post_rx_desc(struct msm_hs_port *msm_uport, int inx) |
| { |
| u32 flags = SPS_IOVEC_FLAG_INT; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| int ret; |
| |
| phys_addr_t rbuff_addr = rx->rbuffer + (UARTDM_RX_BUF_SIZE * inx); |
| u8 *virt_addr = rx->buffer + (UARTDM_RX_BUF_SIZE * inx); |
| |
| MSM_HS_DBG("%s: %d:Queue desc %d, 0x%llx, base 0x%llx virtaddr %p", |
| __func__, msm_uport->uport.line, inx, |
| (u64)rbuff_addr, (u64)rx->rbuffer, virt_addr); |
| |
| rx->iovec[inx].size = 0; |
| ret = sps_transfer_one(rx->prod.pipe_handle, rbuff_addr, |
| UARTDM_RX_BUF_SIZE, msm_uport, flags); |
| |
| if (ret) |
| MSM_HS_ERR("Error processing descriptor %d", ret); |
| return; |
| } |
| |
| /* Update the rx descriptor index to specify the next one to be processed */ |
| static void msm_hs_mark_next(struct msm_hs_port *msm_uport, int inx) |
| { |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| int prev; |
| |
| inx %= UART_DMA_DESC_NR; |
| MSM_HS_DBG("%s(): inx %d, pending 0x%lx", __func__, inx, |
| rx->pending_flag); |
| |
| if (!inx) |
| prev = UART_DMA_DESC_NR - 1; |
| else |
| prev = inx - 1; |
| |
| if (!test_bit(prev, &rx->pending_flag)) |
| msm_uport->rx.rx_inx = inx; |
| MSM_HS_DBG("%s(): prev %d pending flag 0x%lx, next %d", __func__, |
| prev, rx->pending_flag, msm_uport->rx.rx_inx); |
| return; |
| } |
| |
| /* |
| * Queue the rx descriptor that has just been processed or |
| * all of them if queueing for the first time |
| */ |
| static void msm_hs_queue_rx_desc(struct msm_hs_port *msm_uport) |
| { |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| int i, flag = 0; |
| |
| /* At first, queue all, if not, queue only one */ |
| if (rx->queued_flag || rx->pending_flag) { |
| if (!test_bit(rx->rx_inx, &rx->queued_flag) && |
| !test_bit(rx->rx_inx, &rx->pending_flag)) { |
| msm_hs_post_rx_desc(msm_uport, rx->rx_inx); |
| set_bit(rx->rx_inx, &rx->queued_flag); |
| MSM_HS_DBG("%s(): Set Queued Bit %d", |
| __func__, rx->rx_inx); |
| } else |
| MSM_HS_ERR("%s(): rx_inx pending or queued", __func__); |
| return; |
| } |
| |
| for (i = 0; i < UART_DMA_DESC_NR; i++) { |
| if (!test_bit(i, &rx->queued_flag) && |
| !test_bit(i, &rx->pending_flag)) { |
| MSM_HS_DBG("%s(): Calling post rx %d", __func__, i); |
| msm_hs_post_rx_desc(msm_uport, i); |
| set_bit(i, &rx->queued_flag); |
| flag = 1; |
| } |
| } |
| |
| if (!flag) |
| MSM_HS_ERR("%s(): error queueing descriptor", __func__); |
| } |
| |
| /* Start to receive the next chunk of data */ |
| static void msm_hs_start_rx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| unsigned int buffer_pending = msm_uport->rx.buffer_pending; |
| unsigned int data; |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) { |
| MSM_HS_WARN("%s(): Clocks are off\n", __func__); |
| return; |
| } |
| if (rx->pending_flag) { |
| MSM_HS_INFO("%s: Rx Cmd got executed, wait for rx_tlet\n", |
| __func__); |
| rx->flush = FLUSH_IGNORE; |
| return; |
| } |
| if (buffer_pending) |
| MSM_HS_ERR("Error: rx started in buffer state =%x", |
| buffer_pending); |
| |
| msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT); |
| msm_hs_write(uport, UART_DM_DMRX, UARTDM_RX_BUF_SIZE); |
| msm_hs_write(uport, UART_DM_CR, STALE_EVENT_ENABLE); |
| /* |
| * Enable UARTDM Rx Interface as previously it has been |
| * disable in set_termios before configuring baud rate. |
| */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| /* Enable UARTDM Rx BAM Interface */ |
| data |= UARTDM_RX_BAM_ENABLE_BMSK; |
| |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* Calling next DMOV API. Hence mb() here. */ |
| mb(); |
| |
| /* |
| * RX-transfer will be automatically re-activated |
| * after last data of previous transfer was read. |
| */ |
| data = (RX_STALE_AUTO_RE_EN | RX_TRANS_AUTO_RE_ACTIVATE | |
| RX_DMRX_CYCLIC_EN); |
| msm_hs_write(uport, UART_DM_RX_TRANS_CTRL, data); |
| /* Issue RX BAM Start IFC command */ |
| msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC); |
| /* Ensure register IO completion */ |
| mb(); |
| |
| msm_uport->rx.flush = FLUSH_NONE; |
| msm_uport->rx_bam_inprogress = true; |
| msm_hs_queue_rx_desc(msm_uport); |
| msm_uport->rx_bam_inprogress = false; |
| wake_up(&msm_uport->rx.wait); |
| MSM_HS_DBG("%s:Enqueue Rx Cmd\n", __func__); |
| } |
| |
| static void flip_insert_work(struct work_struct *work) |
| { |
| unsigned long flags; |
| int retval; |
| struct msm_hs_port *msm_uport = |
| container_of(work, struct msm_hs_port, |
| rx.flip_insert_work.work); |
| struct tty_struct *tty = msm_uport->uport.state->port.tty; |
| |
| spin_lock_irqsave(&msm_uport->uport.lock, flags); |
| if (msm_uport->rx.buffer_pending == NONE_PENDING) { |
| MSM_HS_ERR("Error: No buffer pending in %s", __func__); |
| spin_unlock_irqrestore(&msm_uport->uport.lock, flags); |
| return; |
| } |
| if (msm_uport->rx.buffer_pending & FIFO_OVERRUN) { |
| retval = tty_insert_flip_char(tty->port, 0, TTY_OVERRUN); |
| if (retval) |
| msm_uport->rx.buffer_pending &= ~FIFO_OVERRUN; |
| } |
| if (msm_uport->rx.buffer_pending & PARITY_ERROR) { |
| retval = tty_insert_flip_char(tty->port, 0, TTY_PARITY); |
| if (retval) |
| msm_uport->rx.buffer_pending &= ~PARITY_ERROR; |
| } |
| if (msm_uport->rx.buffer_pending & CHARS_NORMAL) { |
| int rx_count, rx_offset; |
| rx_count = (msm_uport->rx.buffer_pending & 0xFFFF0000) >> 16; |
| rx_offset = (msm_uport->rx.buffer_pending & 0xFFD0) >> 5; |
| retval = tty_insert_flip_string(tty->port, |
| msm_uport->rx.buffer + |
| (msm_uport->rx.rx_inx * UARTDM_RX_BUF_SIZE) |
| + rx_offset, rx_count); |
| msm_uport->rx.buffer_pending &= (FIFO_OVERRUN | |
| PARITY_ERROR); |
| if (retval != rx_count) |
| msm_uport->rx.buffer_pending |= CHARS_NORMAL | |
| retval << 8 | (rx_count - retval) << 16; |
| } |
| if (msm_uport->rx.buffer_pending) { |
| schedule_delayed_work(&msm_uport->rx.flip_insert_work, |
| msecs_to_jiffies(RETRY_TIMEOUT)); |
| } else if (msm_uport->rx.flush <= FLUSH_IGNORE) { |
| MSM_HS_WARN("Pending buffers cleared, restarting"); |
| clear_bit(msm_uport->rx.rx_inx, |
| &msm_uport->rx.pending_flag); |
| msm_hs_start_rx_locked(&msm_uport->uport); |
| msm_hs_mark_next(msm_uport, msm_uport->rx.rx_inx+1); |
| } |
| spin_unlock_irqrestore(&msm_uport->uport.lock, flags); |
| tty_flip_buffer_push(tty->port); |
| } |
| |
| static void msm_serial_hs_rx_work(struct kthread_work *work) |
| { |
| int retval; |
| int rx_count = 0; |
| unsigned long status; |
| unsigned long flags; |
| unsigned int error_f = 0; |
| struct uart_port *uport; |
| struct msm_hs_port *msm_uport; |
| unsigned int flush = FLUSH_DATA_INVALID; |
| struct tty_struct *tty; |
| struct sps_event_notify *notify; |
| struct msm_hs_rx *rx; |
| struct sps_pipe *sps_pipe_handle; |
| struct platform_device *pdev; |
| const struct msm_serial_hs_platform_data *pdata; |
| |
| msm_uport = container_of((struct kthread_work *) work, |
| struct msm_hs_port, rx.kwork); |
| msm_hs_resource_vote(msm_uport); |
| uport = &msm_uport->uport; |
| tty = uport->state->port.tty; |
| notify = &msm_uport->notify; |
| rx = &msm_uport->rx; |
| pdev = to_platform_device(uport->dev); |
| pdata = pdev->dev.platform_data; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| /* Make sure the UART is ready when RX triggered. */ |
| if (NULL == tty) { |
| MSM_HS_WARN("%s(): invalid tty", __func__); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_resource_unvote(msm_uport); |
| return; |
| } |
| |
| /* |
| * Process all pending descs or if nothing is |
| * queued - called from termios |
| */ |
| while (!rx->buffer_pending && |
| (rx->pending_flag || !rx->queued_flag)) { |
| MSM_HS_DBG("%s(): Loop P 0x%lx Q 0x%lx", __func__, |
| rx->pending_flag, rx->queued_flag); |
| |
| status = msm_hs_read(uport, UART_DM_SR); |
| |
| MSM_HS_DBG("In %s\n", __func__); |
| |
| /* overflow is not connect to data in a FIFO */ |
| if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) && |
| (uport->read_status_mask & CREAD))) { |
| retval = tty_insert_flip_char(tty->port, |
| 0, TTY_OVERRUN); |
| MSM_HS_WARN("%s(): RX Buffer Overrun Detected\n", |
| __func__); |
| if (!retval) |
| msm_uport->rx.buffer_pending |= TTY_OVERRUN; |
| uport->icount.buf_overrun++; |
| error_f = 1; |
| } |
| |
| if (!(uport->ignore_status_mask & INPCK)) |
| status = status & ~(UARTDM_SR_PAR_FRAME_BMSK); |
| |
| if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) { |
| /* Can not tell diff between parity & frame error */ |
| MSM_HS_WARN("msm_serial_hs: parity error\n"); |
| uport->icount.parity++; |
| error_f = 1; |
| if (!(uport->ignore_status_mask & IGNPAR)) { |
| retval = tty_insert_flip_char(tty->port, |
| 0, TTY_PARITY); |
| if (!retval) |
| msm_uport->rx.buffer_pending |
| |= TTY_PARITY; |
| } |
| } |
| |
| if (unlikely(status & UARTDM_SR_RX_BREAK_BMSK)) { |
| MSM_HS_DBG("msm_serial_hs: Rx break\n"); |
| uport->icount.brk++; |
| error_f = 1; |
| if (!(uport->ignore_status_mask & IGNBRK)) { |
| retval = tty_insert_flip_char(tty->port, |
| 0, TTY_BREAK); |
| if (!retval) |
| msm_uport->rx.buffer_pending |
| |= TTY_BREAK; |
| } |
| } |
| |
| if (error_f) |
| msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS); |
| flush = msm_uport->rx.flush; |
| if (flush == FLUSH_IGNORE) |
| if (!msm_uport->rx.buffer_pending) { |
| MSM_HS_DBG("%s: calling start_rx_locked\n", |
| __func__); |
| msm_hs_start_rx_locked(uport); |
| } |
| if (flush >= FLUSH_DATA_INVALID) |
| goto out; |
| |
| rx_count = msm_uport->rx.iovec[msm_uport->rx.rx_inx].size; |
| |
| MSM_HS_INFO("%s():[UART_RX]<%d>\n", __func__, rx_count); |
| hex_dump_ipc("HSUART Read: ", |
| (msm_uport->rx.buffer + |
| (msm_uport->rx.rx_inx * UARTDM_RX_BUF_SIZE)), |
| rx_count); |
| |
| /* |
| * We are in a spin locked context, spin lock taken at |
| * other places where these flags are updated |
| */ |
| if (0 != (uport->read_status_mask & CREAD)) { |
| if (!test_bit(msm_uport->rx.rx_inx, |
| &msm_uport->rx.pending_flag) && |
| !test_bit(msm_uport->rx.rx_inx, |
| &msm_uport->rx.queued_flag)) |
| MSM_HS_ERR("RX INX not set"); |
| else if (test_bit(msm_uport->rx.rx_inx, |
| &msm_uport->rx.pending_flag) && |
| !test_bit(msm_uport->rx.rx_inx, |
| &msm_uport->rx.queued_flag)) { |
| MSM_HS_DBG("%s(): Clear Pending Bit %d", |
| __func__, msm_uport->rx.rx_inx); |
| |
| retval = tty_insert_flip_string(tty->port, |
| msm_uport->rx.buffer + |
| (msm_uport->rx.rx_inx * |
| UARTDM_RX_BUF_SIZE), |
| rx_count); |
| |
| if (retval != rx_count) { |
| MSM_HS_DBG("%s(): ret %d rx_count %d", |
| __func__, retval, rx_count); |
| msm_uport->rx.buffer_pending |= |
| CHARS_NORMAL | retval << 5 | |
| (rx_count - retval) << 16; |
| } |
| } else |
| MSM_HS_ERR("Error in inx %d", |
| msm_uport->rx.rx_inx); |
| } |
| |
| if (!msm_uport->rx.buffer_pending) { |
| msm_uport->rx.flush = FLUSH_NONE; |
| msm_uport->rx_bam_inprogress = true; |
| sps_pipe_handle = rx->prod.pipe_handle; |
| MSM_HS_DBG("Queing bam descriptor\n"); |
| /* Queue transfer request to SPS */ |
| clear_bit(msm_uport->rx.rx_inx, |
| &msm_uport->rx.pending_flag); |
| msm_hs_queue_rx_desc(msm_uport); |
| msm_hs_mark_next(msm_uport, msm_uport->rx.rx_inx+1); |
| msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC); |
| msm_uport->rx_bam_inprogress = false; |
| wake_up(&msm_uport->rx.wait); |
| } else |
| break; |
| |
| } |
| out: |
| if (msm_uport->rx.buffer_pending) { |
| MSM_HS_WARN("tty buffer exhausted. Stalling\n"); |
| schedule_delayed_work(&msm_uport->rx.flip_insert_work |
| , msecs_to_jiffies(RETRY_TIMEOUT)); |
| } |
| /* tty_flip_buffer_push() might call msm_hs_start(), so unlock */ |
| spin_unlock_irqrestore(&uport->lock, flags); |
| if (flush < FLUSH_DATA_INVALID) |
| tty_flip_buffer_push(tty->port); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| |
| static void msm_hs_start_tx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| |
| /* Bail if transfer in progress */ |
| if (tx->flush < FLUSH_STOP || tx->dma_in_flight) { |
| MSM_HS_DBG("%s(): retry, flush %d, dma_in_flight %d\n", |
| __func__, tx->flush, tx->dma_in_flight); |
| return; |
| } |
| |
| if (!tx->dma_in_flight) { |
| tx->dma_in_flight = true; |
| queue_kthread_work(&msm_uport->tx.kworker, |
| &msm_uport->tx.kwork); |
| } |
| } |
| |
| /** |
| * Callback notification from SPS driver |
| * |
| * This callback function gets triggered called from |
| * SPS driver when requested SPS data transfer is |
| * completed. |
| * |
| */ |
| |
| static void msm_hs_sps_tx_callback(struct sps_event_notify *notify) |
| { |
| struct msm_hs_port *msm_uport = |
| (struct msm_hs_port *) |
| ((struct sps_event_notify *)notify)->user; |
| |
| msm_uport->notify = *notify; |
| MSM_HS_DBG("%s: ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x, line=%d\n", |
| __func__, notify->event_id, |
| notify->data.transfer.iovec.addr, |
| notify->data.transfer.iovec.size, |
| notify->data.transfer.iovec.flags, |
| msm_uport->uport.line); |
| |
| del_timer(&msm_uport->tx.tx_timeout_timer); |
| MSM_HS_DBG("%s(): Queue kthread work", __func__); |
| queue_kthread_work(&msm_uport->tx.kworker, &msm_uport->tx.kwork); |
| } |
| |
| static void msm_serial_hs_tx_work(struct kthread_work *work) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = |
| container_of((struct kthread_work *)work, |
| struct msm_hs_port, tx.kwork); |
| struct uart_port *uport = &msm_uport->uport; |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| |
| /* |
| * Do the work buffer related work in BAM |
| * mode that is equivalent to legacy mode |
| */ |
| msm_hs_resource_vote(msm_uport); |
| if (tx->flush >= FLUSH_STOP) { |
| spin_lock_irqsave(&(msm_uport->uport.lock), flags); |
| tx->flush = FLUSH_NONE; |
| MSM_HS_DBG("%s(): calling submit_tx", __func__); |
| msm_hs_submit_tx_locked(uport); |
| spin_unlock_irqrestore(&(msm_uport->uport.lock), flags); |
| msm_hs_resource_unvote(msm_uport); |
| return; |
| } |
| |
| spin_lock_irqsave(&(msm_uport->uport.lock), flags); |
| if (!uart_circ_empty(tx_buf)) |
| tx_buf->tail = (tx_buf->tail + |
| tx->tx_count) & ~UART_XMIT_SIZE; |
| else |
| MSM_HS_DBG("%s:circ buffer is empty\n", __func__); |
| |
| wake_up(&msm_uport->tx.wait); |
| |
| uport->icount.tx += tx->tx_count; |
| |
| /* |
| * Calling to send next chunk of data |
| * If the circ buffer is empty, we stop |
| * If the clock off was requested, the clock |
| * off sequence is kicked off |
| */ |
| MSM_HS_DBG("%s(): calling submit_tx", __func__); |
| msm_hs_submit_tx_locked(uport); |
| |
| if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS) |
| uart_write_wakeup(uport); |
| |
| spin_unlock_irqrestore(&(msm_uport->uport.lock), flags); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| |
| static void |
| msm_hs_mark_proc_rx_desc(struct msm_hs_port *msm_uport, |
| struct sps_event_notify *notify) |
| { |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| /* divide by UARTDM_RX_BUF_SIZE */ |
| int inx = (notify->data.transfer.iovec.addr - rx->rbuffer) >> 9; |
| |
| set_bit(inx, &rx->pending_flag); |
| clear_bit(inx, &rx->queued_flag); |
| rx->iovec[inx] = notify->data.transfer.iovec; |
| MSM_HS_DBG("Clear Q, Set P Bit %d, Q 0x%lx P 0x%lx", |
| inx, rx->queued_flag, rx->pending_flag); |
| } |
| |
| /** |
| * Callback notification from SPS driver |
| * |
| * This callback function gets triggered called from |
| * SPS driver when requested SPS data transfer is |
| * completed. |
| * |
| */ |
| |
| static void msm_hs_sps_rx_callback(struct sps_event_notify *notify) |
| { |
| |
| struct msm_hs_port *msm_uport = |
| (struct msm_hs_port *) |
| ((struct sps_event_notify *)notify)->user; |
| struct uart_port *uport; |
| unsigned long flags; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| /* divide by UARTDM_RX_BUF_SIZE */ |
| int inx = (notify->data.transfer.iovec.addr - rx->rbuffer) >> 9; |
| |
| uport = &(msm_uport->uport); |
| msm_uport->notify = *notify; |
| MSM_HS_DBG("\n%s: sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n", |
| __func__, notify->event_id, |
| notify->data.transfer.iovec.addr, |
| notify->data.transfer.iovec.size, |
| notify->data.transfer.iovec.flags); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_mark_proc_rx_desc(msm_uport, notify); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| if (msm_uport->rx.flush == FLUSH_NONE) { |
| /* Test if others are queued */ |
| if (msm_uport->rx.pending_flag & ~(1 << inx)) { |
| MSM_HS_DBG("%s(): inx 0x%x, 0x%lx not processed", |
| __func__, inx, |
| msm_uport->rx.pending_flag & ~(1<<inx)); |
| } |
| queue_kthread_work(&msm_uport->rx.kworker, |
| &msm_uport->rx.kwork); |
| MSM_HS_DBG("%s(): Scheduled rx_tlet", __func__); |
| } |
| } |
| |
| /* |
| * Standard API, Current states of modem control inputs |
| * |
| * Since CTS can be handled entirely by HARDWARE we always |
| * indicate clear to send and count on the TX FIFO to block when |
| * it fills up. |
| * |
| * - TIOCM_DCD |
| * - TIOCM_CTS |
| * - TIOCM_DSR |
| * - TIOCM_RI |
| * (Unsupported) DCD and DSR will return them high. RI will return low. |
| */ |
| static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport) |
| { |
| return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS; |
| } |
| |
| /* |
| * Standard API, Set or clear RFR_signal |
| * |
| * Set RFR high, (Indicate we are not ready for data), we disable auto |
| * ready for receiving and then set RFR_N high. To set RFR to low we just turn |
| * back auto ready for receiving and it should lower RFR signal |
| * when hardware is ready |
| */ |
| void msm_hs_set_mctrl_locked(struct uart_port *uport, |
| unsigned int mctrl) |
| { |
| unsigned int set_rts; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| MSM_HS_DBG("%s()", __func__); |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) { |
| MSM_HS_WARN("%s(): Clocks are off\n", __func__); |
| return; |
| } |
| /* RTS is active low */ |
| set_rts = TIOCM_RTS & mctrl ? 0 : 1; |
| |
| if (set_rts) |
| msm_hs_disable_flow_control(uport, true); |
| else |
| msm_hs_enable_flow_control(uport, true); |
| } |
| |
| void msm_hs_set_mctrl(struct uart_port *uport, |
| unsigned int mctrl) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_resource_vote(msm_uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_set_mctrl_locked(uport, mctrl); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| EXPORT_SYMBOL(msm_hs_set_mctrl); |
| |
| /* Standard API, Enable modem status (CTS) interrupt */ |
| static void msm_hs_enable_ms_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) { |
| MSM_HS_WARN("%s(): Clocks are off\n", __func__); |
| return; |
| } |
| |
| /* Enable DELTA_CTS Interrupt */ |
| msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* Ensure register IO completion */ |
| mb(); |
| |
| } |
| |
| /* |
| * Standard API, Break Signal |
| * |
| * Control the transmission of a break signal. ctl eq 0 => break |
| * signal terminate ctl ne 0 => start break signal |
| */ |
| static void msm_hs_break_ctl(struct uart_port *uport, int ctl) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_resource_vote(msm_uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_write(uport, UART_DM_CR, ctl ? START_BREAK : STOP_BREAK); |
| /* Ensure register IO completion */ |
| mb(); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| |
| static void msm_hs_config_port(struct uart_port *uport, int cfg_flags) |
| { |
| if (cfg_flags & UART_CONFIG_TYPE) |
| uport->type = PORT_MSM; |
| |
| } |
| |
| /* Handle CTS changes (Called from interrupt handler) */ |
| static void msm_hs_handle_delta_cts_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| msm_hs_resource_vote(msm_uport); |
| /* clear interrupt */ |
| msm_hs_write(uport, UART_DM_CR, RESET_CTS); |
| /* Calling CLOCK API. Hence mb() requires here. */ |
| mb(); |
| uport->icount.cts++; |
| |
| /* clear the IOCTL TIOCMIWAIT if called */ |
| wake_up_interruptible(&uport->state->port.delta_msr_wait); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| |
| static irqreturn_t msm_hs_isr(int irq, void *dev) |
| { |
| unsigned long flags; |
| unsigned int isr_status; |
| struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev; |
| struct uart_port *uport = &msm_uport->uport; |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| isr_status = msm_hs_read(uport, UART_DM_MISR); |
| MSM_HS_INFO("%s: DM_ISR: 0x%x\n", __func__, isr_status); |
| dump_uart_hs_registers(msm_uport); |
| |
| /* Uart RX starting */ |
| if (isr_status & UARTDM_ISR_RXLEV_BMSK) { |
| MSM_HS_DBG("%s:UARTDM_ISR_RXLEV_BMSK\n", __func__); |
| msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* Complete device write for IMR. Hence mb() requires. */ |
| mb(); |
| } |
| /* Stale rx interrupt */ |
| if (isr_status & UARTDM_ISR_RXSTALE_BMSK) { |
| msm_hs_write(uport, UART_DM_CR, STALE_EVENT_DISABLE); |
| msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT); |
| /* |
| * Complete device write before calling DMOV API. Hence |
| * mb() requires here. |
| */ |
| mb(); |
| MSM_HS_DBG("%s:Stal Interrupt\n", __func__); |
| } |
| /* tx ready interrupt */ |
| if (isr_status & UARTDM_ISR_TX_READY_BMSK) { |
| MSM_HS_DBG("%s: ISR_TX_READY Interrupt\n", __func__); |
| /* Clear TX Ready */ |
| msm_hs_write(uport, UART_DM_CR, CLEAR_TX_READY); |
| |
| /* |
| * Complete both writes before starting new TX. |
| * Hence mb() requires here. |
| */ |
| mb(); |
| /* Complete DMA TX transactions and submit new transactions */ |
| |
| /* Do not update tx_buf.tail if uart_flush_buffer already |
| * called in serial core |
| */ |
| if (!uart_circ_empty(tx_buf)) |
| tx_buf->tail = (tx_buf->tail + |
| tx->tx_count) & ~UART_XMIT_SIZE; |
| |
| tx->dma_in_flight = false; |
| |
| uport->icount.tx += tx->tx_count; |
| |
| if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS) |
| uart_write_wakeup(uport); |
| } |
| if (isr_status & UARTDM_ISR_TXLEV_BMSK) { |
| /* TX FIFO is empty */ |
| msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| MSM_HS_DBG("%s: TXLEV Interrupt\n", __func__); |
| /* |
| * Complete device write before starting clock_off request. |
| * Hence mb() requires here. |
| */ |
| mb(); |
| queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w); |
| } |
| |
| /* Change in CTS interrupt */ |
| if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK) |
| msm_hs_handle_delta_cts_locked(uport); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* The following two functions provide interfaces to get the underlying |
| * port structure (struct uart_port or struct msm_hs_port) given |
| * the port index. msm_hs_get_uart port is called by clients. |
| * The function msm_hs_get_hs_port is for internal use |
| */ |
| |
| struct uart_port *msm_hs_get_uart_port(int port_index) |
| { |
| struct uart_state *state = msm_hs_driver.state + port_index; |
| |
| /* The uart_driver structure stores the states in an array. |
| * Thus the corresponding offset from the drv->state returns |
| * the state for the uart_port that is requested |
| */ |
| if (port_index == state->uart_port->line) |
| return state->uart_port; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(msm_hs_get_uart_port); |
| |
| static struct msm_hs_port *msm_hs_get_hs_port(int port_index) |
| { |
| struct uart_port *uport = msm_hs_get_uart_port(port_index); |
| if (uport) |
| return UARTDM_TO_MSM(uport); |
| return NULL; |
| } |
| |
| void toggle_wakeup_interrupt(struct msm_hs_port *msm_uport) |
| { |
| unsigned long flags; |
| struct uart_port *uport = &(msm_uport->uport); |
| |
| if (!is_use_low_power_wakeup(msm_uport)) |
| return; |
| if (msm_uport->wakeup.freed) |
| return; |
| |
| if (!(msm_uport->wakeup.enabled)) { |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_uport->wakeup.ignore = 1; |
| MSM_HS_DBG("%s(): Enable Wakeup IRQ", __func__); |
| enable_irq(msm_uport->wakeup.irq); |
| disable_irq(uport->irq); |
| msm_uport->wakeup.enabled = true; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } else { |
| disable_irq_nosync(msm_uport->wakeup.irq); |
| enable_irq(uport->irq); |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_uport->wakeup.enabled = false; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| MSM_HS_DBG("%s(): Disable Wakeup IRQ", __func__); |
| } |
| } |
| |
| void msm_hs_resource_off(struct msm_hs_port *msm_uport) |
| { |
| struct uart_port *uport = &(msm_uport->uport); |
| unsigned int data; |
| |
| MSM_HS_DBG("%s(): begin", __func__); |
| msm_hs_disable_flow_control(uport, false); |
| if (msm_uport->rx.flush == FLUSH_NONE) |
| msm_hs_disconnect_rx(uport); |
| |
| /* disable dlink */ |
| if (msm_uport->tx.flush == FLUSH_NONE) |
| wait_event_timeout(msm_uport->tx.wait, |
| msm_uport->tx.flush == FLUSH_STOP, 500); |
| |
| if (msm_uport->tx.flush != FLUSH_SHUTDOWN) { |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| data &= ~UARTDM_TX_BAM_ENABLE_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| sps_tx_disconnect(msm_uport); |
| } |
| if (!atomic_read(&msm_uport->client_req_state)) |
| msm_hs_enable_flow_control(uport, false); |
| } |
| |
| void msm_hs_resource_on(struct msm_hs_port *msm_uport) |
| { |
| struct uart_port *uport = &(msm_uport->uport); |
| unsigned int data; |
| unsigned long flags; |
| |
| if (msm_uport->rx.flush == FLUSH_SHUTDOWN || |
| msm_uport->rx.flush == FLUSH_STOP) { |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| data |= UARTDM_RX_BAM_ENABLE_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| } |
| |
| msm_hs_spsconnect_tx(msm_uport); |
| if (msm_uport->rx.flush == FLUSH_SHUTDOWN) { |
| msm_hs_spsconnect_rx(uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_start_rx_locked(uport); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| } |
| |
| /* Request to turn off uart clock once pending TX is flushed */ |
| void msm_hs_request_clock_off(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| /* Set the flag to disable flow control and wakeup irq */ |
| if (msm_uport->obs) |
| atomic_set(&msm_uport->client_req_state, 1); |
| msm_hs_resource_unvote(msm_uport); |
| } |
| EXPORT_SYMBOL(msm_hs_request_clock_off); |
| |
| void msm_hs_request_clock_on(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| msm_hs_resource_vote(UARTDM_TO_MSM(uport)); |
| |
| if (msm_uport->pm_state != MSM_HS_PM_ACTIVE) { |
| MSM_HS_WARN("%s(): %p runtime PM callback not invoked", |
| __func__, uport->dev); |
| msm_hs_pm_resume(uport->dev); |
| } |
| |
| /* Clear the flag */ |
| if (msm_uport->obs) |
| atomic_set(&msm_uport->client_req_state, 0); |
| } |
| EXPORT_SYMBOL(msm_hs_request_clock_on); |
| |
| void msm_hs_set_clock(int port_index, int on) |
| { |
| struct uart_port *uport = msm_hs_get_uart_port(port_index); |
| |
| MSM_HS_INFO("%s /dev/ttyHS%d clock: %s\n", __func__, port_index, on ? "ON" : "OFF"); |
| |
| if (on) { |
| msm_hs_request_clock_on(uport); |
| msm_hs_set_mctrl(uport, TIOCM_RTS); |
| } else { |
| msm_hs_set_mctrl(uport, 0); |
| msm_hs_request_clock_off(uport); |
| } |
| } |
| EXPORT_SYMBOL(msm_hs_set_clock); |
| |
| static irqreturn_t msm_hs_wakeup_isr(int irq, void *dev) |
| { |
| unsigned int wakeup = 0; |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev; |
| struct uart_port *uport = &msm_uport->uport; |
| struct tty_struct *tty = NULL; |
| |
| msm_hs_resource_vote(msm_uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| MSM_HS_DBG("%s(): ignore %d\n", __func__, |
| msm_uport->wakeup.ignore); |
| if (msm_uport->wakeup.ignore) |
| msm_uport->wakeup.ignore = 0; |
| else |
| wakeup = 1; |
| |
| if (wakeup) { |
| /* |
| * Port was clocked off during rx, wake up and |
| * optionally inject char into tty rx |
| */ |
| if (msm_uport->wakeup.inject_rx) { |
| tty = uport->state->port.tty; |
| tty_insert_flip_char(tty->port, |
| msm_uport->wakeup.rx_to_inject, |
| TTY_NORMAL); |
| MSM_HS_DBG("%s(): Inject 0x%x", __func__, |
| msm_uport->wakeup.rx_to_inject); |
| } |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_resource_unvote(msm_uport); |
| |
| if (wakeup && msm_uport->wakeup.inject_rx) |
| tty_flip_buffer_push(tty->port); |
| return IRQ_HANDLED; |
| } |
| |
| static const char *msm_hs_type(struct uart_port *port) |
| { |
| return "MSM HS UART"; |
| } |
| |
| /** |
| * msm_hs_unconfig_uart_gpios: Unconfigures UART GPIOs |
| * @uport: uart port |
| */ |
| static void msm_hs_unconfig_uart_gpios(struct uart_port *uport) |
| { |
| struct platform_device *pdev = to_platform_device(uport->dev); |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| |
| if (pdata) { |
| if (gpio_is_valid(pdata->uart_tx_gpio)) |
| gpio_free(pdata->uart_tx_gpio); |
| if (gpio_is_valid(pdata->uart_rx_gpio)) |
| gpio_free(pdata->uart_rx_gpio); |
| if (gpio_is_valid(pdata->uart_cts_gpio)) |
| gpio_free(pdata->uart_cts_gpio); |
| if (gpio_is_valid(pdata->uart_rfr_gpio)) |
| gpio_free(pdata->uart_rfr_gpio); |
| } else |
| MSM_HS_ERR("Error:Pdata is NULL.\n"); |
| } |
| |
| /** |
| * msm_hs_config_uart_gpios - Configures UART GPIOs |
| * @uport: uart port |
| */ |
| static int msm_hs_config_uart_gpios(struct uart_port *uport) |
| { |
| struct platform_device *pdev = to_platform_device(uport->dev); |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (!IS_ERR_OR_NULL(msm_uport->pinctrl)) { |
| MSM_HS_DBG("%s(): Using Pinctrl", __func__); |
| msm_uport->use_pinctrl = true; |
| ret = pinctrl_select_state(msm_uport->pinctrl, |
| msm_uport->gpio_state_active); |
| if (ret) |
| MSM_HS_ERR("%s(): Failed to pinctrl set_state", |
| __func__); |
| return ret; |
| } else if (pdata) { |
| /* Fall back to using gpio lib */ |
| if (gpio_is_valid(pdata->uart_tx_gpio)) { |
| ret = gpio_request(pdata->uart_tx_gpio, |
| "UART_TX_GPIO"); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("gpio request failed for:%d\n", |
| pdata->uart_tx_gpio); |
| goto exit_uart_config; |
| } |
| } |
| |
| if (gpio_is_valid(pdata->uart_rx_gpio)) { |
| ret = gpio_request(pdata->uart_rx_gpio, |
| "UART_RX_GPIO"); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("gpio request failed for:%d\n", |
| pdata->uart_rx_gpio); |
| goto uart_tx_unconfig; |
| } |
| } |
| |
| if (gpio_is_valid(pdata->uart_cts_gpio)) { |
| ret = gpio_request(pdata->uart_cts_gpio, |
| "UART_CTS_GPIO"); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("gpio request failed for:%d\n", |
| pdata->uart_cts_gpio); |
| goto uart_rx_unconfig; |
| } |
| } |
| |
| if (gpio_is_valid(pdata->uart_rfr_gpio)) { |
| ret = gpio_request(pdata->uart_rfr_gpio, |
| "UART_RFR_GPIO"); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("gpio request failed for:%d\n", |
| pdata->uart_rfr_gpio); |
| goto uart_cts_unconfig; |
| } |
| } |
| } else { |
| MSM_HS_ERR("Pdata is NULL.\n"); |
| ret = -EINVAL; |
| } |
| return ret; |
| |
| uart_cts_unconfig: |
| if (gpio_is_valid(pdata->uart_cts_gpio)) |
| gpio_free(pdata->uart_cts_gpio); |
| uart_rx_unconfig: |
| if (gpio_is_valid(pdata->uart_rx_gpio)) |
| gpio_free(pdata->uart_rx_gpio); |
| uart_tx_unconfig: |
| if (gpio_is_valid(pdata->uart_tx_gpio)) |
| gpio_free(pdata->uart_tx_gpio); |
| exit_uart_config: |
| return ret; |
| } |
| |
| |
| static void msm_hs_get_pinctrl_configs(struct uart_port *uport) |
| { |
| struct pinctrl_state *set_state; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_uport->pinctrl = devm_pinctrl_get(uport->dev); |
| if (IS_ERR_OR_NULL(msm_uport->pinctrl)) { |
| MSM_HS_DBG("%s(): Pinctrl not defined", __func__); |
| } else { |
| MSM_HS_DBG("%s(): Using Pinctrl", __func__); |
| msm_uport->use_pinctrl = true; |
| |
| set_state = pinctrl_lookup_state(msm_uport->pinctrl, |
| PINCTRL_STATE_DEFAULT); |
| if (IS_ERR_OR_NULL(set_state)) { |
| dev_err(uport->dev, |
| "pinctrl lookup failed for default state"); |
| goto pinctrl_fail; |
| } |
| |
| MSM_HS_DBG("%s(): Pinctrl state active %p\n", __func__, |
| set_state); |
| msm_uport->gpio_state_active = set_state; |
| |
| set_state = pinctrl_lookup_state(msm_uport->pinctrl, |
| PINCTRL_STATE_SLEEP); |
| if (IS_ERR_OR_NULL(set_state)) { |
| dev_err(uport->dev, |
| "pinctrl lookup failed for sleep state"); |
| goto pinctrl_fail; |
| } |
| |
| MSM_HS_DBG("%s(): Pinctrl state sleep %p\n", __func__, |
| set_state); |
| msm_uport->gpio_state_suspend = set_state; |
| return; |
| } |
| pinctrl_fail: |
| msm_uport->pinctrl = NULL; |
| return; |
| } |
| |
| /* Called when port is opened */ |
| static int msm_hs_startup(struct uart_port *uport) |
| { |
| int ret; |
| int rfr_level; |
| unsigned long flags; |
| unsigned int data; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle_tx = tx->cons.pipe_handle; |
| struct sps_pipe *sps_pipe_handle_rx = rx->prod.pipe_handle; |
| |
| rfr_level = uport->fifosize; |
| if (rfr_level > 16) |
| rfr_level -= 16; |
| |
| tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE, |
| DMA_TO_DEVICE); |
| |
| /* turn on uart clk */ |
| msm_hs_resource_vote(msm_uport); |
| |
| if (is_use_low_power_wakeup(msm_uport)) { |
| ret = request_threaded_irq(msm_uport->wakeup.irq, NULL, |
| msm_hs_wakeup_isr, |
| IRQF_TRIGGER_FALLING | IRQF_ONESHOT, |
| "msm_hs_wakeup", msm_uport); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("%s():Err getting uart wakeup_irq %d\n", |
| __func__, ret); |
| goto unvote_exit; |
| } |
| |
| msm_uport->wakeup.freed = false; |
| disable_irq(msm_uport->wakeup.irq); |
| msm_uport->wakeup.enabled = false; |
| |
| ret = irq_set_irq_wake(msm_uport->wakeup.irq, 1); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("%s():Err setting wakeup irq\n", __func__); |
| goto free_uart_irq; |
| } |
| } |
| |
| |
| ret = msm_hs_config_uart_gpios(uport); |
| if (ret) { |
| MSM_HS_ERR("Uart GPIO request failed\n"); |
| goto deinit_ws; |
| } |
| |
| msm_hs_write(uport, UART_DM_DMEN, 0); |
| |
| /* Connect TX */ |
| sps_tx_disconnect(msm_uport); |
| ret = msm_hs_spsconnect_tx(msm_uport); |
| if (ret) { |
| MSM_HS_ERR("msm_serial_hs: SPS connect failed for TX"); |
| goto unconfig_uart_gpios; |
| } |
| |
| /* Connect RX */ |
| flush_kthread_worker(&msm_uport->rx.kworker); |
| if (rx->flush != FLUSH_SHUTDOWN) |
| disconnect_rx_endpoint(msm_uport); |
| ret = msm_hs_spsconnect_rx(uport); |
| if (ret) { |
| MSM_HS_ERR("msm_serial_hs: SPS connect failed for RX"); |
| goto sps_disconnect_tx; |
| } |
| |
| data = (UARTDM_BCR_TX_BREAK_DISABLE | UARTDM_BCR_STALE_IRQ_EMPTY | |
| UARTDM_BCR_RX_DMRX_LOW_EN | UARTDM_BCR_RX_STAL_IRQ_DMRX_EQL | |
| UARTDM_BCR_RX_DMRX_1BYTE_RES_EN); |
| msm_hs_write(uport, UART_DM_BCR, data); |
| |
| /* Set auto RFR Level */ |
| data = msm_hs_read(uport, UART_DM_MR1); |
| data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK; |
| data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK; |
| data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2)); |
| data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level); |
| msm_hs_write(uport, UART_DM_MR1, data); |
| |
| /* Make sure RXSTALE count is non-zero */ |
| data = msm_hs_read(uport, UART_DM_IPR); |
| if (!data) { |
| data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK; |
| msm_hs_write(uport, UART_DM_IPR, data); |
| } |
| |
| /* Assume no flow control, unless termios sets it */ |
| msm_uport->flow_control = false; |
| msm_hs_disable_flow_control(uport, true); |
| |
| |
| /* Reset TX */ |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS); |
| msm_hs_write(uport, UART_DM_CR, RESET_BREAK_INT); |
| msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT); |
| msm_hs_write(uport, UART_DM_CR, RESET_CTS); |
| msm_hs_write(uport, UART_DM_CR, RFR_LOW); |
| /* Turn on Uart Receiver */ |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_EN_BMSK); |
| |
| /* Turn on Uart Transmitter */ |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_EN_BMSK); |
| |
| tx->dma_in_flight = false; |
| MSM_HS_DBG("%s():desc usage flag 0x%lx", __func__, rx->queued_flag); |
| setup_timer(&(tx->tx_timeout_timer), |
| tx_timeout_handler, |
| (unsigned long) msm_uport); |
| |
| /* Enable reading the current CTS, no harm even if CTS is ignored */ |
| msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK; |
| |
| /* TXLEV on empty TX fifo */ |
| msm_hs_write(uport, UART_DM_TFWR, 4); |
| /* |
| * Complete all device write related configuration before |
| * queuing RX request. Hence mb() requires here. |
| */ |
| mb(); |
| |
| ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH, |
| "msm_hs_uart", msm_uport); |
| if (unlikely(ret)) { |
| MSM_HS_ERR("%s():Error getting uart irq\n", __func__); |
| goto sps_disconnect_rx; |
| } |
| |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| atomic_set(&msm_uport->ioctl_count, 0); |
| atomic_set(&msm_uport->client_req_state, 0); |
| msm_hs_start_rx_locked(uport); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| msm_hs_resource_unvote(msm_uport); |
| return 0; |
| |
| sps_disconnect_rx: |
| sps_disconnect(sps_pipe_handle_rx); |
| sps_disconnect_tx: |
| sps_disconnect(sps_pipe_handle_tx); |
| unconfig_uart_gpios: |
| msm_hs_unconfig_uart_gpios(uport); |
| deinit_ws: |
| wakeup_source_trash(&msm_uport->ws); |
| free_uart_irq: |
| free_irq(uport->irq, msm_uport); |
| unvote_exit: |
| msm_hs_resource_unvote(msm_uport); |
| MSM_HS_ERR("%s(): Error return\n", __func__); |
| return ret; |
| } |
| |
| /* Initialize tx and rx data structures */ |
| static int uartdm_init_port(struct uart_port *uport) |
| { |
| int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| |
| init_waitqueue_head(&rx->wait); |
| init_waitqueue_head(&tx->wait); |
| init_waitqueue_head(&msm_uport->bam_disconnect_wait); |
| |
| /* Init kernel threads for tx and rx */ |
| |
| init_kthread_worker(&rx->kworker); |
| rx->task = kthread_run(kthread_worker_fn, |
| &rx->kworker, "msm_serial_hs_%d_rx_work", uport->line); |
| if (IS_ERR(rx->task)) { |
| MSM_HS_ERR("%s(): error creating task", __func__); |
| goto exit_lh_init; |
| } |
| init_kthread_work(&rx->kwork, msm_serial_hs_rx_work); |
| |
| init_kthread_worker(&tx->kworker); |
| tx->task = kthread_run(kthread_worker_fn, |
| &tx->kworker, "msm_serial_hs_%d_tx_work", uport->line); |
| if (IS_ERR(rx->task)) { |
| MSM_HS_ERR("%s(): error creating task", __func__); |
| goto exit_lh_init; |
| } |
| |
| init_kthread_work(&tx->kwork, msm_serial_hs_tx_work); |
| |
| rx->buffer = dma_alloc_coherent(uport->dev, |
| UART_DMA_DESC_NR * UARTDM_RX_BUF_SIZE, |
| &rx->rbuffer, GFP_KERNEL); |
| if (!rx->buffer) { |
| MSM_HS_ERR("%s(): cannot allocate rx->buffer", __func__); |
| ret = -ENOMEM; |
| goto exit_lh_init; |
| } |
| |
| /* Set up Uart Receive */ |
| msm_hs_write(uport, UART_DM_RFWR, 32); |
| /* Write to BADR explicitly to set up FIFO sizes */ |
| msm_hs_write(uport, UARTDM_BADR_ADDR, 64); |
| |
| INIT_DELAYED_WORK(&rx->flip_insert_work, flip_insert_work); |
| |
| return ret; |
| exit_lh_init: |
| kthread_stop(rx->task); |
| rx->task = NULL; |
| kthread_stop(tx->task); |
| tx->task = NULL; |
| return ret; |
| } |
| |
| struct msm_serial_hs_platform_data |
| *msm_hs_dt_to_pdata(struct platform_device *pdev) |
| { |
| struct device_node *node = pdev->dev.of_node; |
| struct msm_serial_hs_platform_data *pdata; |
| u32 rx_to_inject; |
| int ret; |
| |
| pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) { |
| MSM_HS_ERR("unable to allocate memory for platform data\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| pdev->id = of_alias_get_id(pdev->dev.of_node, "uart"); |
| /* UART TX GPIO */ |
| pdata->uart_tx_gpio = of_get_named_gpio(node, |
| "qcom,tx-gpio", 0); |
| if (pdata->uart_tx_gpio < 0) |
| MSM_HS_DBG("uart_tx_gpio is not available\n"); |
| |
| /* UART RX GPIO */ |
| pdata->uart_rx_gpio = of_get_named_gpio(node, |
| "qcom,rx-gpio", 0); |
| if (pdata->uart_rx_gpio < 0) |
| MSM_HS_DBG("uart_rx_gpio is not available\n"); |
| |
| /* UART CTS GPIO */ |
| pdata->uart_cts_gpio = of_get_named_gpio(node, |
| "qcom,cts-gpio", 0); |
| if (pdata->uart_cts_gpio < 0) |
| MSM_HS_DBG("uart_cts_gpio is not available\n"); |
| |
| /* UART RFR GPIO */ |
| pdata->uart_rfr_gpio = of_get_named_gpio(node, |
| "qcom,rfr-gpio", 0); |
| if (pdata->uart_rfr_gpio < 0) |
| MSM_HS_DBG("uart_rfr_gpio is not available\n"); |
| |
| pdata->no_suspend_delay = of_property_read_bool(node, |
| "qcom,no-suspend-delay"); |
| |
| pdata->obs = of_property_read_bool(node, |
| "qcom,msm-obs"); |
| if (pdata->obs) |
| MSM_HS_DBG("%s:Out of Band sleep flag is set\n", __func__); |
| |
| pdata->inject_rx_on_wakeup = of_property_read_bool(node, |
| "qcom,inject-rx-on-wakeup"); |
| |
| if (pdata->inject_rx_on_wakeup) { |
| ret = of_property_read_u32(node, "qcom,rx-char-to-inject", |
| &rx_to_inject); |
| if (ret < 0) { |
| MSM_HS_ERR("Error: Rx_char_to_inject not specified.\n"); |
| return ERR_PTR(ret); |
| } |
| pdata->rx_to_inject = (u8)rx_to_inject; |
| } |
| |
| ret = of_property_read_u32(node, "qcom,bam-tx-ep-pipe-index", |
| &pdata->bam_tx_ep_pipe_index); |
| if (ret < 0) { |
| MSM_HS_ERR("Error: Getting UART BAM TX EP Pipe Index.\n"); |
| return ERR_PTR(ret); |
| } |
| |
| if (!(pdata->bam_tx_ep_pipe_index >= BAM_PIPE_MIN && |
| pdata->bam_tx_ep_pipe_index <= BAM_PIPE_MAX)) { |
| MSM_HS_ERR("Error: Invalid UART BAM TX EP Pipe Index.\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| ret = of_property_read_u32(node, "qcom,bam-rx-ep-pipe-index", |
| &pdata->bam_rx_ep_pipe_index); |
| if (ret < 0) { |
| MSM_HS_ERR("Error: Getting UART BAM RX EP Pipe Index.\n"); |
| return ERR_PTR(ret); |
| } |
| |
| if (!(pdata->bam_rx_ep_pipe_index >= BAM_PIPE_MIN && |
| pdata->bam_rx_ep_pipe_index <= BAM_PIPE_MAX)) { |
| MSM_HS_ERR("Error: Invalid UART BAM RX EP Pipe Index.\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| MSM_HS_DBG("tx_ep_pipe_index:%d rx_ep_pipe_index:%d\n" |
| "tx_gpio:%d rx_gpio:%d rfr_gpio:%d cts_gpio:%d", |
| pdata->bam_tx_ep_pipe_index, pdata->bam_rx_ep_pipe_index, |
| pdata->uart_tx_gpio, pdata->uart_rx_gpio, pdata->uart_cts_gpio, |
| pdata->uart_rfr_gpio); |
| |
| return pdata; |
| } |
| |
| |
| /** |
| * Deallocate UART peripheral's SPS endpoint |
| * @msm_uport - Pointer to msm_hs_port structure |
| * @ep - Pointer to sps endpoint data structure |
| */ |
| |
| static void msm_hs_exit_ep_conn(struct msm_hs_port *msm_uport, |
| struct msm_hs_sps_ep_conn_data *ep) |
| { |
| struct sps_pipe *sps_pipe_handle = ep->pipe_handle; |
| struct sps_connect *sps_config = &ep->config; |
| |
| dma_free_coherent(msm_uport->uport.dev, |
| sps_config->desc.size, |
| &sps_config->desc.phys_base, |
| GFP_KERNEL); |
| sps_free_endpoint(sps_pipe_handle); |
| } |
| |
| |
| /** |
| * Allocate UART peripheral's SPS endpoint |
| * |
| * This function allocates endpoint context |
| * by calling appropriate SPS driver APIs. |
| * |
| * @msm_uport - Pointer to msm_hs_port structure |
| * @ep - Pointer to sps endpoint data structure |
| * @is_produce - 1 means Producer endpoint |
| * - 0 means Consumer endpoint |
| * |
| * @return - 0 if successful else negative value |
| */ |
| |
| static int msm_hs_sps_init_ep_conn(struct msm_hs_port *msm_uport, |
| struct msm_hs_sps_ep_conn_data *ep, |
| bool is_producer) |
| { |
| int rc = 0; |
| struct sps_pipe *sps_pipe_handle; |
| struct sps_connect *sps_config = &ep->config; |
| struct sps_register_event *sps_event = &ep->event; |
| |
| /* Allocate endpoint context */ |
| sps_pipe_handle = sps_alloc_endpoint(); |
| if (!sps_pipe_handle) { |
| MSM_HS_ERR("%s(): sps_alloc_endpoint() failed!!\n" |
| "is_producer=%d", __func__, is_producer); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| /* Get default connection configuration for an endpoint */ |
| rc = sps_get_config(sps_pipe_handle, sps_config); |
| if (rc) { |
| MSM_HS_ERR("%s(): failed! pipe_handle=0x%p rc=%d", |
| __func__, sps_pipe_handle, rc); |
| goto get_config_err; |
| } |
| |
| /* Modify the default connection configuration */ |
| if (is_producer) { |
| /* For UART producer transfer, source is UART peripheral |
| where as destination is system memory */ |
| sps_config->source = msm_uport->bam_handle; |
| sps_config->destination = SPS_DEV_HANDLE_MEM; |
| sps_config->mode = SPS_MODE_SRC; |
| sps_config->src_pipe_index = msm_uport->bam_rx_ep_pipe_index; |
| sps_config->dest_pipe_index = 0; |
| sps_event->callback = msm_hs_sps_rx_callback; |
| } else { |
| /* For UART consumer transfer, source is system memory |
| where as destination is UART peripheral */ |
| sps_config->source = SPS_DEV_HANDLE_MEM; |
| sps_config->destination = msm_uport->bam_handle; |
| sps_config->mode = SPS_MODE_DEST; |
| sps_config->src_pipe_index = 0; |
| sps_config->dest_pipe_index = msm_uport->bam_tx_ep_pipe_index; |
| sps_event->callback = msm_hs_sps_tx_callback; |
| } |
| |
| sps_config->options = SPS_O_EOT | SPS_O_DESC_DONE | SPS_O_AUTO_ENABLE; |
| sps_config->event_thresh = 0x10; |
| |
| /* Allocate maximum descriptor fifo size */ |
| sps_config->desc.size = |
| (1 + UART_DMA_DESC_NR) * sizeof(struct sps_iovec); |
| sps_config->desc.base = dma_alloc_coherent(msm_uport->uport.dev, |
| sps_config->desc.size, |
| &sps_config->desc.phys_base, |
| GFP_KERNEL); |
| if (!sps_config->desc.base) { |
| rc = -ENOMEM; |
| MSM_HS_ERR("msm_serial_hs: dma_alloc_coherent() failed!!\n"); |
| goto get_config_err; |
| } |
| memset(sps_config->desc.base, 0x00, sps_config->desc.size); |
| |
| sps_event->mode = SPS_TRIGGER_CALLBACK; |
| |
| sps_event->options = SPS_O_DESC_DONE | SPS_O_EOT; |
| sps_event->user = (void *)msm_uport; |
| |
| /* Now save the sps pipe handle */ |
| ep->pipe_handle = sps_pipe_handle; |
| MSM_HS_DBG("msm_serial_hs: success !! %s: pipe_handle=0x%p\n" |
| "desc_fifo.phys_base=0x%pa\n", |
| is_producer ? "READ" : "WRITE", |
| sps_pipe_handle, &sps_config->desc.phys_base); |
| return 0; |
| |
| get_config_err: |
| sps_free_endpoint(sps_pipe_handle); |
| out: |
| return rc; |
| } |
| |
| /** |
| * Initialize SPS HW connected with UART core |
| * |
| * This function register BAM HW resources with |
| * SPS driver and then initialize 2 SPS endpoints |
| * |
| * msm_uport - Pointer to msm_hs_port structure |
| * |
| * @return - 0 if successful else negative value |
| */ |
| |
| static int msm_hs_sps_init(struct msm_hs_port *msm_uport) |
| { |
| int rc = 0; |
| struct sps_bam_props bam = {0}; |
| unsigned long bam_handle; |
| |
| rc = sps_phy2h(msm_uport->bam_mem, &bam_handle); |
| if (rc || !bam_handle) { |
| bam.phys_addr = msm_uport->bam_mem; |
| bam.virt_addr = msm_uport->bam_base; |
| /* |
| * This event thresold value is only significant for BAM-to-BAM |
| * transfer. It's ignored for BAM-to-System mode transfer. |
| */ |
| bam.event_threshold = 0x10; /* Pipe event threshold */ |
| bam.summing_threshold = 1; /* BAM event threshold */ |
| |
| /* SPS driver wll handle the UART BAM IRQ */ |
| bam.irq = (u32)msm_uport->bam_irq; |
| bam.manage = SPS_BAM_MGR_DEVICE_REMOTE; |
| |
| MSM_HS_DBG("msm_serial_hs: bam physical base=0x%pa\n", |
| &bam.phys_addr); |
| MSM_HS_DBG("msm_serial_hs: bam virtual base=0x%p\n", |
| bam.virt_addr); |
| |
| /* Register UART Peripheral BAM device to SPS driver */ |
| rc = sps_register_bam_device(&bam, &bam_handle); |
| if (rc) { |
| MSM_HS_ERR("%s: BAM device register failed\n", |
| __func__); |
| return rc; |
| } |
| MSM_HS_DBG("%s:BAM device registered. bam_handle=0x%lx", |
| __func__, msm_uport->bam_handle); |
| } |
| msm_uport->bam_handle = bam_handle; |
| |
| rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->rx.prod, |
| UART_SPS_PROD_PERIPHERAL); |
| if (rc) { |
| MSM_HS_ERR("%s: Failed to Init Producer BAM-pipe", __func__); |
| goto deregister_bam; |
| } |
| |
| rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->tx.cons, |
| UART_SPS_CONS_PERIPHERAL); |
| if (rc) { |
| MSM_HS_ERR("%s: Failed to Init Consumer BAM-pipe", __func__); |
| goto deinit_ep_conn_prod; |
| } |
| return 0; |
| |
| deinit_ep_conn_prod: |
| msm_hs_exit_ep_conn(msm_uport, &msm_uport->rx.prod); |
| deregister_bam: |
| sps_deregister_bam_device(msm_uport->bam_handle); |
| return rc; |
| } |
| |
| |
| static bool deviceid[UARTDM_NR] = {0}; |
| /* |
| * The mutex synchronizes grabbing next free device number |
| * both in case of an alias being used or not. When alias is |
| * used, the msm_hs_dt_to_pdata gets it and the boolean array |
| * is accordingly updated with device_id_set_used. If no alias |
| * is used, then device_id_grab_next_free sets that array. |
| */ |
| static DEFINE_MUTEX(mutex_next_device_id); |
| |
| static int device_id_grab_next_free(void) |
| { |
| int i; |
| int ret = -ENODEV; |
| mutex_lock(&mutex_next_device_id); |
| for (i = 0; i < UARTDM_NR; i++) |
| if (!deviceid[i]) { |
| ret = i; |
| deviceid[i] = true; |
| break; |
| } |
| mutex_unlock(&mutex_next_device_id); |
| return ret; |
| } |
| |
| static int device_id_set_used(int index) |
| { |
| int ret = 0; |
| mutex_lock(&mutex_next_device_id); |
| if (deviceid[index]) |
| ret = -ENODEV; |
| else |
| deviceid[index] = true; |
| mutex_unlock(&mutex_next_device_id); |
| return ret; |
| } |
| |
| static void msm_hs_pm_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct msm_hs_port *msm_uport = get_matching_hs_port(pdev); |
| int ret; |
| |
| if (!msm_uport) |
| goto err_suspend; |
| |
| /* For OBS, don't use wakeup interrupt, set gpio to suspended state */ |
| if (msm_uport->obs) { |
| ret = pinctrl_select_state(msm_uport->pinctrl, |
| msm_uport->gpio_state_suspend); |
| if (ret) |
| MSM_HS_ERR("%s(): Error selecting suspend state", |
| __func__); |
| } |
| |
| msm_uport->pm_state = MSM_HS_PM_SUSPENDED; |
| msm_hs_resource_off(msm_uport); |
| msm_hs_clk_bus_unvote(msm_uport); |
| if (!atomic_read(&msm_uport->client_req_state)) |
| toggle_wakeup_interrupt(msm_uport); |
| MSM_HS_DBG("%s(): return suspend\n", __func__); |
| return; |
| err_suspend: |
| MSM_HS_ERR("%s(): invalid uport", __func__); |
| return; |
| } |
| |
| static int msm_hs_pm_resume(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct msm_hs_port *msm_uport = get_matching_hs_port(pdev); |
| int ret; |
| |
| if (!msm_uport) |
| goto err_resume; |
| if (msm_uport->pm_state == MSM_HS_PM_ACTIVE) |
| return 0; |
| if (!atomic_read(&msm_uport->client_req_state)) |
| toggle_wakeup_interrupt(msm_uport); |
| msm_hs_clk_bus_vote(msm_uport); |
| msm_uport->pm_state = MSM_HS_PM_ACTIVE; |
| msm_hs_resource_on(msm_uport); |
| |
| /* For OBS, don't use wakeup interrupt, set gpio to active state */ |
| if (msm_uport->obs) { |
| ret = pinctrl_select_state(msm_uport->pinctrl, |
| msm_uport->gpio_state_active); |
| if (ret) |
| MSM_HS_ERR("%s(): Error selecting active state", |
| __func__); |
| } |
| |
| MSM_HS_DBG("%s(): return resume\n", __func__); |
| return 0; |
| err_resume: |
| MSM_HS_ERR("%s(): invalid uport", __func__); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int msm_hs_pm_sys_suspend_noirq(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct msm_hs_port *msm_uport = get_matching_hs_port(pdev); |
| enum msm_hs_pm_state prev_pwr_state; |
| struct uart_port *uport; |
| |
| if (IS_ERR_OR_NULL(msm_uport)) |
| return -ENODEV; |
| |
| MSM_HS_DBG("%s(): suspending", __func__); |
| prev_pwr_state = msm_uport->pm_state; |
| uport = &(msm_uport->uport); |
| mutex_lock(&msm_uport->mtx); |
| msm_uport->pm_state = MSM_HS_PM_SYS_SUSPENDED; |
| mutex_unlock(&msm_uport->mtx); |
| |
| if (prev_pwr_state == MSM_HS_PM_ACTIVE) { |
| msm_hs_pm_suspend(dev); |
| /* |
| * Synchronize runtime pm and system pm states: |
| * at this point we are already suspended. However |
| * the RT PM framework still thinks that we are active. |
| * The calls below let RT PM know that we are suspended |
| * without re-invoking the suspend callback |
| */ |
| pm_runtime_disable(uport->dev); |
| pm_runtime_set_suspended(uport->dev); |
| pm_runtime_enable(uport->dev); |
| } |
| return 0; |
| }; |
| |
| static int msm_hs_pm_sys_resume_noirq(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct msm_hs_port *msm_uport = get_matching_hs_port(pdev); |
| |
| if (IS_ERR_OR_NULL(msm_uport)) |
| return -ENODEV; |
| /* |
| * Note system-pm resume and update the state |
| * variable. Resource activation will be done |
| * when transfer is requested. |
| */ |
| MSM_HS_DBG("%s(): system resume", __func__); |
| msm_uport->pm_state = MSM_HS_PM_SUSPENDED; |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM_RUNTIME |
| static void msm_serial_hs_rt_init(struct uart_port *u
|