blob: de38d969da4edd914d1f53a8e4f91c27f9258946 [file] [log] [blame]
/* Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/msm_thermal_ioctl.h>
#include <linux/msm_thermal.h>
#include <linux/uaccess.h>
#include <linux/cdev.h>
#include <linux/semaphore.h>
#include <linux/module.h>
struct msm_thermal_ioctl_dev {
struct semaphore sem;
struct cdev char_dev;
};
static int msm_thermal_major;
static struct class *thermal_class;
static struct msm_thermal_ioctl_dev *msm_thermal_dev;
static unsigned int freq_table_len[NR_CPUS], freq_table_set[NR_CPUS];
static unsigned int voltage_table_set[NR_CPUS];
static unsigned int *freq_table_ptr[NR_CPUS];
static uint32_t *voltage_table_ptr[NR_CPUS];
static int msm_thermal_ioctl_open(struct inode *node, struct file *filep)
{
int ret = 0;
struct msm_thermal_ioctl_dev *dev;
dev = container_of(node->i_cdev, struct msm_thermal_ioctl_dev,
char_dev);
filep->private_data = dev;
return ret;
}
static int msm_thermal_ioctl_release(struct inode *node, struct file *filep)
{
pr_debug("%s: IOCTL: release\n", KBUILD_MODNAME);
return 0;
}
static long validate_and_copy(unsigned int *cmd, unsigned long *arg,
struct msm_thermal_ioctl *query)
{
long ret = 0, err_val = 0;
if ((_IOC_TYPE(*cmd) != MSM_THERMAL_MAGIC_NUM) ||
(_IOC_NR(*cmd) >= MSM_CMD_MAX_NR)) {
ret = -ENOTTY;
goto validate_exit;
}
if (_IOC_DIR(*cmd) & _IOC_READ) {
err_val = !access_ok(VERIFY_WRITE, (void __user *)*arg,
_IOC_SIZE(*cmd));
} else if (_IOC_DIR(*cmd) & _IOC_WRITE) {
err_val = !access_ok(VERIFY_READ, (void __user *)*arg,
_IOC_SIZE(*cmd));
}
if (err_val) {
ret = -EFAULT;
goto validate_exit;
}
if (copy_from_user(query, (void __user *)(*arg),
sizeof(struct msm_thermal_ioctl))) {
ret = -EACCES;
goto validate_exit;
}
if (query->size != sizeof(struct msm_thermal_ioctl)) {
pr_err("%s: Invalid input argument size\n", __func__);
ret = -EINVAL;
goto validate_exit;
}
switch (*cmd) {
case MSM_THERMAL_SET_CPU_MAX_FREQUENCY:
case MSM_THERMAL_SET_CPU_MIN_FREQUENCY:
if (query->cpu_freq.cpu_num >= num_possible_cpus()) {
pr_err("%s: Invalid CPU number: %u\n", __func__,
query->cpu_freq.cpu_num);
ret = -EINVAL;
goto validate_exit;
}
break;
default:
break;
}
validate_exit:
return ret;
}
static long msm_thermal_process_freq_table_req(struct msm_thermal_ioctl *query,
unsigned long *arg)
{
long ret = 0;
uint32_t table_idx, idx = 0, cluster_id = query->clock_freq.cluster_num;
struct clock_plan_arg *clock_freq = &(query->clock_freq);
if (!freq_table_len[cluster_id]) {
ret = msm_thermal_get_freq_plan_size(cluster_id,
&freq_table_len[cluster_id]);
if (ret) {
pr_err("%s: Cluster%d freq table length get err:%ld\n",
KBUILD_MODNAME, cluster_id, ret);
goto process_freq_exit;
}
if (!freq_table_len[cluster_id]) {
pr_err("%s: Cluster%d freq table empty\n",
KBUILD_MODNAME, cluster_id);
ret = -EAGAIN;
goto process_freq_exit;
}
freq_table_set[cluster_id] = freq_table_len[cluster_id]
/ MSM_IOCTL_FREQ_SIZE;
if (freq_table_len[cluster_id] % MSM_IOCTL_FREQ_SIZE)
freq_table_set[cluster_id]++;
if (!freq_table_ptr[cluster_id]) {
freq_table_ptr[cluster_id] = kzalloc(
sizeof(unsigned int) *
freq_table_len[cluster_id], GFP_KERNEL);
if (!freq_table_ptr[cluster_id]) {
pr_err("%s: memory alloc failed\n",
KBUILD_MODNAME);
freq_table_len[cluster_id] = 0;
ret = -ENOMEM;
goto process_freq_exit;
}
}
ret = msm_thermal_get_cluster_freq_plan(cluster_id,
freq_table_ptr[cluster_id]);
if (ret) {
pr_err("%s: Error getting frequency table. err:%ld\n",
KBUILD_MODNAME, ret);
freq_table_len[cluster_id] = 0;
freq_table_set[cluster_id] = 0;
kfree(freq_table_ptr[cluster_id]);
freq_table_ptr[cluster_id] = NULL;
goto process_freq_exit;
}
}
if (!clock_freq->freq_table_len) {
clock_freq->freq_table_len = freq_table_len[cluster_id];
goto copy_and_return;
}
if (clock_freq->set_idx >= freq_table_set[cluster_id]) {
pr_err("%s: Invalid freq table set%d for cluster%d\n",
KBUILD_MODNAME, clock_freq->set_idx,
cluster_id);
ret = -EINVAL;
goto process_freq_exit;
}
table_idx = MSM_IOCTL_FREQ_SIZE * clock_freq->set_idx;
for (; table_idx < freq_table_len[cluster_id]
&& idx < MSM_IOCTL_FREQ_SIZE; idx++, table_idx++) {
clock_freq->freq_table[idx] =
freq_table_ptr[cluster_id][table_idx];
}
clock_freq->freq_table_len = idx;
copy_and_return:
ret = copy_to_user((void __user *)(*arg), query,
sizeof(struct msm_thermal_ioctl));
if (ret) {
pr_err("%s: copy_to_user error:%ld.\n", KBUILD_MODNAME, ret);
goto process_freq_exit;
}
process_freq_exit:
return ret;
}
static long msm_thermal_process_voltage_table_req(
struct msm_thermal_ioctl *query,
unsigned long *arg)
{
long ret = 0;
uint32_t table_idx = 0, idx = 0;
uint32_t cluster_id = query->voltage.cluster_num;
struct voltage_plan_arg *voltage = &(query->voltage);
if (!voltage_table_ptr[cluster_id]) {
if (!freq_table_len[cluster_id]) {
ret = msm_thermal_get_freq_plan_size(cluster_id,
&freq_table_len[cluster_id]);
if (ret) {
pr_err(
"%s: Cluster%d freq table len err:%ld\n",
KBUILD_MODNAME, cluster_id, ret);
goto process_volt_exit;
}
if (!freq_table_len[cluster_id]) {
pr_err("%s: Cluster%d freq table empty\n",
KBUILD_MODNAME, cluster_id);
ret = -EAGAIN;
goto process_volt_exit;
}
}
voltage_table_ptr[cluster_id] = kzalloc(
sizeof(uint32_t) *
freq_table_len[cluster_id], GFP_KERNEL);
if (!voltage_table_ptr[cluster_id]) {
pr_err("%s: memory alloc failed\n",
KBUILD_MODNAME);
ret = -ENOMEM;
goto process_volt_exit;
}
ret = msm_thermal_get_cluster_voltage_plan(cluster_id,
voltage_table_ptr[cluster_id]);
if (ret) {
pr_err("%s: Error getting voltage table. err:%ld\n",
KBUILD_MODNAME, ret);
kfree(voltage_table_ptr[cluster_id]);
voltage_table_ptr[cluster_id] = NULL;
goto process_volt_exit;
}
}
if (!voltage->voltage_table_len) {
voltage->voltage_table_len = freq_table_len[cluster_id];
goto copy_and_return;
}
voltage_table_set[cluster_id] = freq_table_len[cluster_id]
/ MSM_IOCTL_FREQ_SIZE;
if (freq_table_len[cluster_id] % MSM_IOCTL_FREQ_SIZE)
voltage_table_set[cluster_id]++;
if (voltage->set_idx >= voltage_table_set[cluster_id]) {
pr_err("%s: Invalid voltage table set%d for cluster%d\n",
KBUILD_MODNAME, voltage->set_idx,
cluster_id);
ret = -EINVAL;
goto process_volt_exit;
}
table_idx = MSM_IOCTL_FREQ_SIZE * voltage->set_idx;
for (; table_idx < freq_table_len[cluster_id]
&& idx < MSM_IOCTL_FREQ_SIZE; idx++, table_idx++) {
voltage->voltage_table[idx] =
voltage_table_ptr[cluster_id][table_idx];
}
copy_and_return:
ret = copy_to_user((void __user *)(*arg), query,
sizeof(struct msm_thermal_ioctl));
if (ret) {
pr_err("%s: copy_to_user error:%ld.\n", KBUILD_MODNAME, ret);
goto process_volt_exit;
}
process_volt_exit:
return ret;
}
static long msm_thermal_ioctl_process(struct file *filep, unsigned int cmd,
unsigned long arg)
{
long ret = 0;
struct msm_thermal_ioctl query;
pr_debug("%s: IOCTL: processing cmd:%u\n", KBUILD_MODNAME, cmd);
ret = validate_and_copy(&cmd, &arg, &query);
if (ret)
goto process_exit;
switch (cmd) {
case MSM_THERMAL_SET_CPU_MAX_FREQUENCY:
ret = msm_thermal_set_frequency(query.cpu_freq.cpu_num,
query.cpu_freq.freq_req, true);
break;
case MSM_THERMAL_SET_CPU_MIN_FREQUENCY:
ret = msm_thermal_set_frequency(query.cpu_freq.cpu_num,
query.cpu_freq.freq_req, false);
break;
case MSM_THERMAL_SET_CLUSTER_MAX_FREQUENCY:
ret = msm_thermal_set_cluster_freq(query.cpu_freq.cpu_num,
query.cpu_freq.freq_req, true);
break;
case MSM_THERMAL_SET_CLUSTER_MIN_FREQUENCY:
ret = msm_thermal_set_cluster_freq(query.cpu_freq.cpu_num,
query.cpu_freq.freq_req, false);
break;
case MSM_THERMAL_GET_CLUSTER_FREQUENCY_PLAN:
ret = msm_thermal_process_freq_table_req(&query, &arg);
break;
case MSM_THERMAL_GET_CLUSTER_VOLTAGE_PLAN:
ret = msm_thermal_process_voltage_table_req(&query, &arg);
break;
default:
ret = -ENOTTY;
goto process_exit;
}
process_exit:
return ret;
}
#ifdef CONFIG_COMPAT
static long msm_thermal_compat_ioctl_process(struct file *filep,
unsigned int cmd, unsigned long arg)
{
arg = (unsigned long)compat_ptr(arg);
return msm_thermal_ioctl_process(filep, cmd, arg);
}
#endif /* CONFIG_COMPAT */
static const struct file_operations msm_thermal_fops = {
.owner = THIS_MODULE,
.open = msm_thermal_ioctl_open,
.unlocked_ioctl = msm_thermal_ioctl_process,
#ifdef CONFIG_COMPAT
.compat_ioctl = msm_thermal_compat_ioctl_process,
#endif /* CONFIG_COMPAT */
.release = msm_thermal_ioctl_release,
};
int msm_thermal_ioctl_init()
{
int ret = 0;
dev_t thermal_dev;
struct device *therm_device;
ret = alloc_chrdev_region(&thermal_dev, 0, 1,
MSM_THERMAL_IOCTL_NAME);
if (ret < 0) {
pr_err("%s: Error in allocating char device region. Err:%d\n",
KBUILD_MODNAME, ret);
goto ioctl_init_exit;
}
msm_thermal_major = MAJOR(thermal_dev);
thermal_class = class_create(THIS_MODULE, "msm_thermal");
if (IS_ERR(thermal_class)) {
pr_err("%s: Error in creating class\n",
KBUILD_MODNAME);
ret = PTR_ERR(thermal_class);
goto ioctl_class_fail;
}
therm_device = device_create(thermal_class, NULL, thermal_dev, NULL,
MSM_THERMAL_IOCTL_NAME);
if (IS_ERR(therm_device)) {
pr_err("%s: Error in creating character device\n",
KBUILD_MODNAME);
ret = PTR_ERR(therm_device);
goto ioctl_dev_fail;
}
msm_thermal_dev = kmalloc(sizeof(struct msm_thermal_ioctl_dev),
GFP_KERNEL);
if (!msm_thermal_dev) {
pr_err("%s: Error allocating memory\n",
KBUILD_MODNAME);
ret = -ENOMEM;
goto ioctl_clean_all;
}
memset(msm_thermal_dev, 0, sizeof(struct msm_thermal_ioctl_dev));
sema_init(&msm_thermal_dev->sem, 1);
cdev_init(&msm_thermal_dev->char_dev, &msm_thermal_fops);
ret = cdev_add(&msm_thermal_dev->char_dev, thermal_dev, 1);
if (ret < 0) {
pr_err("%s: Error in adding character device\n",
KBUILD_MODNAME);
goto ioctl_clean_all;
}
return ret;
ioctl_clean_all:
device_destroy(thermal_class, thermal_dev);
ioctl_dev_fail:
class_destroy(thermal_class);
ioctl_class_fail:
unregister_chrdev_region(thermal_dev, 1);
ioctl_init_exit:
return ret;
}
void msm_thermal_ioctl_cleanup()
{
uint32_t idx = 0;
dev_t thermal_dev = MKDEV(msm_thermal_major, 0);
if (!msm_thermal_dev) {
pr_err("%s: Thermal IOCTL cleanup already done\n",
KBUILD_MODNAME);
return;
}
for (; idx < num_possible_cpus(); idx++) {
kfree(freq_table_ptr[idx]);
kfree(voltage_table_ptr[idx]);
}
device_destroy(thermal_class, thermal_dev);
class_destroy(thermal_class);
cdev_del(&msm_thermal_dev->char_dev);
unregister_chrdev_region(thermal_dev, 1);
kfree(msm_thermal_dev);
msm_thermal_dev = NULL;
thermal_class = NULL;
}