blob: d85b5cfd1e1f0b713ace45e9e398851398b162c3 [file] [log] [blame]
/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "BMS: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/rtc.h>
#include <linux/power_supply.h>
#include <linux/fcntl.h>
#include <linux/uaccess.h>
#include <linux/spmi.h>
#include <linux/wakelock.h>
#include <linux/debugfs.h>
#include <linux/qpnp/power-on.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/of_batterydata.h>
#include <linux/batterydata-interface.h>
#include <linux/qpnp-revid.h>
#include <uapi/linux/vm_bms.h>
#define _BMS_MASK(BITS, POS) \
((unsigned char)(((1 << (BITS)) - 1) << (POS)))
#define BMS_MASK(LEFT_BIT_POS, RIGHT_BIT_POS) \
_BMS_MASK((LEFT_BIT_POS) - (RIGHT_BIT_POS) + 1, \
(RIGHT_BIT_POS))
/* Config / Data registers */
#define REVISION1_REG 0x0
#define STATUS1_REG 0x8
#define FSM_STATE_MASK BMS_MASK(5, 3)
#define FSM_STATE_SHIFT 3
#define STATUS2_REG 0x9
#define FIFO_CNT_SD_MASK BMS_MASK(7, 4)
#define FIFO_CNT_SD_SHIFT 4
#define MODE_CTL_REG 0x40
#define FORCE_S3_MODE BIT(0)
#define ENABLE_S3_MODE BIT(1)
#define FORCE_S2_MODE BIT(2)
#define ENABLE_S2_MODE BIT(3)
#define S2_MODE_MASK BMS_MASK(3, 2)
#define S3_MODE_MASK BMS_MASK(1, 0)
#define DATA_CTL1_REG 0x42
#define MASTER_HOLD_BIT BIT(0)
#define DATA_CTL2_REG 0x43
#define FIFO_CNT_SD_CLR_BIT BIT(2)
#define ACC_DATA_SD_CLR_BIT BIT(1)
#define ACC_CNT_SD_CLR_BIT BIT(0)
#define S3_OCV_TOL_CTL_REG 0x44
#define EN_CTL_REG 0x46
#define BMS_EN_BIT BIT(7)
#define FIFO_LENGTH_REG 0x47
#define S1_FIFO_LENGTH_MASK BMS_MASK(3, 0)
#define S2_FIFO_LENGTH_MASK BMS_MASK(7, 4)
#define S2_FIFO_LENGTH_SHIFT 4
#define S1_SAMPLE_INTVL_REG 0x55
#define S2_SAMPLE_INTVL_REG 0x56
#define S3_SAMPLE_INTVL_REG 0x57
#define S1_ACC_CNT_REG 0x5E
#define S2_ACC_CNT_REG 0x5F
#define ACC_CNT_MASK BMS_MASK(2, 0)
#define ACC_DATA0_SD_REG 0x63
#define ACC_CNT_SD_REG 0x67
#define OCV_DATA0_REG 0x6A
#define FIFO_0_LSB_REG 0xC0
#define BMS_SOC_REG 0xB0
#define BMS_OCV_REG 0xB1 /* B1 & B2 */
#define SOC_STORAGE_MASK 0xFE
#define CHARGE_INCREASE_STORAGE 0xB3
#define CHARGE_CYCLE_STORAGE_LSB 0xB4 /* B4 & B5 */
#define SEC_ACCESS 0xD0
#define QPNP_CHARGER_PRESENT BIT(7)
/* Constants */
#define OCV_TOL_LSB_UV 300
#define MAX_OCV_TOL_THRESHOLD (OCV_TOL_LSB_UV * 0xFF)
#define MAX_SAMPLE_COUNT 256
#define MAX_SAMPLE_INTERVAL 2550
#define BMS_READ_TIMEOUT 500
#define BMS_DEFAULT_TEMP 250
#define OCV_INVALID 0xFFFF
#define SOC_INVALID 0xFF
#define OCV_UNINITIALIZED 0xFFFF
#define VBATT_ERROR_MARGIN 20000
#define CV_DROP_MARGIN 10000
#define MIN_OCV_UV 2000000
#define TIME_PER_PERCENT_UUC 60
#define IAVG_SAMPLES 16
#define MIN_SOC_UUC 3
#define QPNP_VM_BMS_DEV_NAME "qcom,qpnp-vm-bms"
/* indicates the state of BMS */
enum {
IDLE_STATE,
S1_STATE,
S2_STATE,
S3_STATE,
S7_STATE,
};
enum {
WRKARND_PON_OCV_COMP = BIT(0),
};
struct bms_irq {
int irq;
unsigned long disabled;
};
struct bms_wakeup_source {
struct wakeup_source source;
unsigned long disabled;
};
struct temp_curr_comp_map {
int temp_decideg;
int current_ma;
};
struct bms_dt_cfg {
bool cfg_report_charger_eoc;
bool cfg_force_bms_active_on_charger;
bool cfg_force_s3_on_suspend;
bool cfg_ignore_shutdown_soc;
bool cfg_use_voltage_soc;
int cfg_v_cutoff_uv;
int cfg_max_voltage_uv;
int cfg_r_conn_mohm;
int cfg_shutdown_soc_valid_limit;
int cfg_low_soc_calc_threshold;
int cfg_low_soc_calculate_soc_ms;
int cfg_low_voltage_threshold;
int cfg_low_voltage_calculate_soc_ms;
int cfg_low_soc_fifo_length;
int cfg_calculate_soc_ms;
int cfg_voltage_soc_timeout_ms;
int cfg_s1_sample_interval_ms;
int cfg_s2_sample_interval_ms;
int cfg_s1_sample_count;
int cfg_s2_sample_count;
int cfg_s1_fifo_length;
int cfg_s2_fifo_length;
int cfg_disable_bms;
int cfg_s3_ocv_tol_uv;
int cfg_soc_resume_limit;
int cfg_low_temp_threshold;
int cfg_ibat_avg_samples;
int cfg_battery_aging_comp;
bool cfg_use_reported_soc;
};
struct qpnp_bms_chip {
struct device *dev;
struct spmi_device *spmi;
dev_t dev_no;
u16 base;
u8 revision[2];
u32 batt_pres_addr;
u32 chg_pres_addr;
/* status variables */
u8 current_fsm_state;
bool last_soc_invalid;
bool warm_reset;
bool bms_psy_registered;
bool battery_full;
bool bms_dev_open;
bool data_ready;
bool apply_suspend_config;
bool in_cv_state;
bool low_soc_fifo_set;
int battery_status;
int calculated_soc;
int current_now;
int prev_current_now;
int prev_voltage_based_soc;
int calculate_soc_ms;
int voltage_soc_uv;
int battery_present;
int last_soc;
int last_soc_unbound;
int last_soc_change_sec;
int charge_start_tm_sec;
int catch_up_time_sec;
int delta_time_s;
int uuc_delta_time_s;
int ocv_at_100;
int last_ocv_uv;
int s2_fifo_length;
int last_acc;
int hi_power_state;
unsigned int vadc_v0625;
unsigned int vadc_v1250;
unsigned long tm_sec;
unsigned long workaround_flag;
unsigned long uuc_tm_sec;
u32 seq_num;
u8 shutdown_soc;
bool shutdown_soc_invalid;
u16 last_ocv_raw;
u32 shutdown_ocv;
bool suspend_data_valid;
int iavg_num_samples;
unsigned int iavg_index;
int iavg_samples_ma[IAVG_SAMPLES];
int iavg_ma;
int prev_soc_uuc;
int eoc_reported;
u8 charge_increase;
u16 charge_cycles;
unsigned int start_soc;
unsigned int end_soc;
struct bms_battery_data *batt_data;
struct bms_dt_cfg dt;
struct dentry *debug_root;
struct bms_wakeup_source vbms_lv_wake_source;
struct bms_wakeup_source vbms_cv_wake_source;
struct bms_wakeup_source vbms_soc_wake_source;
wait_queue_head_t bms_wait_q;
struct delayed_work monitor_soc_work;
struct delayed_work voltage_soc_timeout_work;
struct mutex bms_data_mutex;
struct mutex bms_device_mutex;
struct mutex last_soc_mutex;
struct mutex state_change_mutex;
struct class *bms_class;
struct device *bms_device;
struct cdev bms_cdev;
struct qpnp_vm_bms_data bms_data;
struct qpnp_vadc_chip *vadc_dev;
struct qpnp_adc_tm_chip *adc_tm_dev;
struct pmic_revid_data *revid_data;
struct qpnp_adc_tm_btm_param vbat_monitor_params;
struct bms_irq fifo_update_done_irq;
struct bms_irq fsm_state_change_irq;
struct power_supply bms_psy;
struct power_supply *batt_psy;
struct power_supply *usb_psy;
bool reported_soc_in_use;
bool charger_removed_since_full;
bool charger_reinserted;
bool reported_soc_high_current;
int reported_soc;
int reported_soc_change_sec;
int reported_soc_delta;
};
static struct qpnp_bms_chip *the_chip;
static struct temp_curr_comp_map temp_curr_comp_lut[] = {
{-300, 15},
{250, 17},
{850, 28},
};
static void disable_bms_irq(struct bms_irq *irq)
{
if (!__test_and_set_bit(0, &irq->disabled)) {
disable_irq(irq->irq);
pr_debug("disabled irq %d\n", irq->irq);
}
}
static void bms_stay_awake(struct bms_wakeup_source *source)
{
if (__test_and_clear_bit(0, &source->disabled)) {
__pm_stay_awake(&source->source);
pr_debug("enabled source %s\n", source->source.name);
}
}
static void bms_relax(struct bms_wakeup_source *source)
{
if (!__test_and_set_bit(0, &source->disabled)) {
__pm_relax(&source->source);
pr_debug("disabled source %s\n", source->source.name);
}
}
static bool bms_wake_active(struct bms_wakeup_source *source)
{
return !source->disabled;
}
static int bound_soc(int soc)
{
soc = max(0, soc);
soc = min(100, soc);
return soc;
}
static char *qpnp_vm_bms_supplicants[] = {
"battery",
};
static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = chip->spmi;
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count);
if (rc)
pr_err("SPMI read failed rc=%d\n", rc);
return rc;
}
static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = chip->spmi;
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count);
if (rc)
pr_err("SPMI write failed rc=%d\n", rc);
return rc;
}
static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = qpnp_read_wrapper(chip, &reg, addr, 1);
if (rc) {
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = qpnp_write_wrapper(chip, &reg, addr, 1);
if (rc)
pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n",
addr, val, mask, reg, rc);
return rc;
}
static int qpnp_secure_write_wrapper(struct qpnp_bms_chip *chip, u8 *val,
u16 base)
{
int rc;
u8 reg;
reg = 0xA5;
rc = qpnp_write_wrapper(chip, &reg, chip->base + SEC_ACCESS, 1);
if (rc) {
pr_err("Error %d writing 0xA5 to 0x%x reg\n",
rc, SEC_ACCESS);
return rc;
}
rc = qpnp_write_wrapper(chip, val, base, 1);
if (rc)
pr_err("Error %d writing %d to 0x%x reg\n", rc, *val, base);
return rc;
}
static int backup_ocv_soc(struct qpnp_bms_chip *chip, int ocv_uv, int soc)
{
int rc;
u16 ocv_mv = ocv_uv / 1000;
rc = qpnp_write_wrapper(chip, (u8 *)&ocv_mv,
chip->base + BMS_OCV_REG, 2);
if (rc)
pr_err("Unable to backup OCV rc=%d\n", rc);
rc = qpnp_masked_write_base(chip, chip->base + BMS_SOC_REG,
SOC_STORAGE_MASK, (soc + 1) << 1);
if (rc)
pr_err("Unable to backup SOC rc=%d\n", rc);
pr_debug("ocv_mv=%d soc=%d\n", ocv_mv, soc);
return rc;
}
static int get_current_time(unsigned long *now_tm_sec)
{
struct rtc_time tm;
struct rtc_device *rtc;
int rc;
rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
if (rtc == NULL) {
pr_err("%s: unable to open rtc device (%s)\n",
__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
return -EINVAL;
}
rc = rtc_read_time(rtc, &tm);
if (rc) {
pr_err("Error reading rtc device (%s) : %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rc = rtc_valid_tm(&tm);
if (rc) {
pr_err("Invalid RTC time (%s): %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rtc_tm_to_time(&tm, now_tm_sec);
close_time:
rtc_class_close(rtc);
return rc;
}
static int calculate_delta_time(unsigned long *time_stamp, int *delta_time_s)
{
unsigned long now_tm_sec = 0;
/* default to delta time = 0 if anything fails */
*delta_time_s = 0;
if (get_current_time(&now_tm_sec)) {
pr_err("RTC read failed\n");
return 0;
}
*delta_time_s = (now_tm_sec - *time_stamp);
/* remember this time */
*time_stamp = now_tm_sec;
return 0;
}
static bool is_charger_present(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->usb_psy == NULL)
chip->usb_psy = power_supply_get_by_name("usb");
if (chip->usb_psy) {
chip->usb_psy->get_property(chip->usb_psy,
POWER_SUPPLY_PROP_PRESENT, &ret);
return ret.intval;
}
return false;
}
static bool is_battery_charging(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the type property */
chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_CHARGE_TYPE, &ret);
return ret.intval != POWER_SUPPLY_CHARGE_TYPE_NONE;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return false;
}
#define BAT_PRES_BIT BIT(7)
static bool is_battery_present(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
int rc;
u8 batt_pres;
/* first try to use the batt_pres register if given */
if (chip->batt_pres_addr) {
rc = qpnp_read_wrapper(chip, &batt_pres,
chip->batt_pres_addr, 1);
if (!rc && (batt_pres & BAT_PRES_BIT))
return true;
else
return false;
}
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the present property */
chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_PRESENT, &ret);
return ret.intval;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return false;
}
#define BAT_REMOVED_OFFMODE_BIT BIT(6)
static bool is_battery_replaced_in_offmode(struct qpnp_bms_chip *chip)
{
u8 batt_pres;
int rc;
if (chip->batt_pres_addr) {
rc = qpnp_read_wrapper(chip, &batt_pres,
chip->batt_pres_addr, 1);
pr_debug("offmode removed: %02x\n", batt_pres);
if (!rc && (batt_pres & BAT_REMOVED_OFFMODE_BIT))
return true;
}
return false;
}
static bool is_battery_taper_charging(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_CHARGE_TYPE, &ret);
return ret.intval == POWER_SUPPLY_CHARGE_TYPE_TAPER;
}
return false;
}
static int master_hold_control(struct qpnp_bms_chip *chip, bool enable)
{
u8 reg = 0;
int rc;
reg = enable ? MASTER_HOLD_BIT : 0;
rc = qpnp_secure_write_wrapper(chip, &reg,
chip->base + DATA_CTL1_REG);
if (rc)
pr_err("Unable to write reg=%x rc=%d\n", DATA_CTL1_REG, rc);
return rc;
}
static int force_fsm_state(struct qpnp_bms_chip *chip, u8 state)
{
int rc;
u8 mode_ctl = 0;
switch (state) {
case S2_STATE:
mode_ctl = (FORCE_S2_MODE | ENABLE_S2_MODE);
break;
case S3_STATE:
mode_ctl = (FORCE_S3_MODE | ENABLE_S3_MODE);
break;
default:
pr_debug("Invalid state %d\n", state);
return -EINVAL;
}
rc = qpnp_secure_write_wrapper(chip, &mode_ctl,
chip->base + MODE_CTL_REG);
if (rc) {
pr_err("Unable to write reg=%x rc=%d\n", MODE_CTL_REG, rc);
return rc;
}
/* delay for the FSM state to take affect in hardware */
usleep_range(500, 600);
pr_debug("force_mode=%d mode_cntl_reg=%x\n", state, mode_ctl);
return 0;
}
static int get_sample_interval(struct qpnp_bms_chip *chip,
u8 fsm_state, u32 *interval)
{
int rc;
u8 val = 0, reg;
*interval = 0;
switch (fsm_state) {
case S1_STATE:
reg = S1_SAMPLE_INTVL_REG;
break;
case S2_STATE:
reg = S2_SAMPLE_INTVL_REG;
break;
case S3_STATE:
reg = S3_SAMPLE_INTVL_REG;
break;
default:
pr_err("Invalid state %d\n", fsm_state);
return -EINVAL;
}
rc = qpnp_read_wrapper(chip, &val, chip->base + reg, 1);
if (rc) {
pr_err("Failed to get state(%d) sample_interval, rc=%d\n",
fsm_state, rc);
return rc;
}
*interval = val * 10;
return 0;
}
static int get_sample_count(struct qpnp_bms_chip *chip,
u8 fsm_state, u32 *count)
{
int rc;
u8 val = 0, reg;
*count = 0;
switch (fsm_state) {
case S1_STATE:
reg = S1_ACC_CNT_REG;
break;
case S2_STATE:
reg = S2_ACC_CNT_REG;
break;
default:
pr_err("Invalid state %d\n", fsm_state);
return -EINVAL;
}
rc = qpnp_read_wrapper(chip, &val, chip->base + reg, 1);
if (rc) {
pr_err("Failed to get state(%d) sample_count, rc=%d\n",
fsm_state, rc);
return rc;
}
val &= ACC_CNT_MASK;
*count = val ? (1 << (val + 1)) : 1;
return 0;
}
static int get_fifo_length(struct qpnp_bms_chip *chip,
u8 fsm_state, u32 *fifo_length)
{
int rc;
u8 val = 0, reg, mask = 0, shift = 0;
*fifo_length = 0;
switch (fsm_state) {
case S1_STATE:
reg = FIFO_LENGTH_REG;
mask = S1_FIFO_LENGTH_MASK;
shift = 0;
break;
case S2_STATE:
reg = FIFO_LENGTH_REG;
mask = S2_FIFO_LENGTH_MASK;
shift = S2_FIFO_LENGTH_SHIFT;
break;
default:
pr_err("Invalid state %d\n", fsm_state);
return -EINVAL;
}
rc = qpnp_read_wrapper(chip, &val, chip->base + reg, 1);
if (rc) {
pr_err("Failed to get state(%d) fifo_length, rc=%d\n",
fsm_state, rc);
return rc;
}
val &= mask;
val >>= shift;
*fifo_length = val;
return 0;
}
static int set_fifo_length(struct qpnp_bms_chip *chip,
u8 fsm_state, u32 fifo_length)
{
int rc;
u8 reg, mask = 0, shift = 0;
/* fifo_length of 1 is not supported due to a hardware issue */
if ((fifo_length <= 1) || (fifo_length > MAX_FIFO_REGS)) {
pr_err("Invalid FIFO length = %d\n", fifo_length);
return -EINVAL;
}
switch (fsm_state) {
case S1_STATE:
reg = FIFO_LENGTH_REG;
mask = S1_FIFO_LENGTH_MASK;
shift = 0;
break;
case S2_STATE:
reg = FIFO_LENGTH_REG;
mask = S2_FIFO_LENGTH_MASK;
shift = S2_FIFO_LENGTH_SHIFT;
break;
default:
pr_err("Invalid state %d\n", fsm_state);
return -EINVAL;
}
rc = master_hold_control(chip, true);
if (rc)
pr_err("Unable to apply master_hold rc=%d\n", rc);
rc = qpnp_masked_write_base(chip, chip->base + reg, mask,
fifo_length << shift);
if (rc)
pr_err("Unable to set fifo length rc=%d\n", rc);
rc = master_hold_control(chip, false);
if (rc)
pr_err("Unable to apply master_hold rc=%d\n", rc);
return rc;
}
static int get_fsm_state(struct qpnp_bms_chip *chip, u8 *state)
{
int rc;
/*
* To read the STATUS1 register, write a value(any) to this register,
* wait for 10ms and then read the register.
*/
*state = 0;
rc = qpnp_write_wrapper(chip, state, chip->base + STATUS1_REG, 1);
if (rc) {
pr_err("Unable to write STATUS1_REG rc=%d\n", rc);
return rc;
}
usleep_range(10000, 11000);
/* read the current FSM state */
rc = qpnp_read_wrapper(chip, state, chip->base + STATUS1_REG, 1);
if (rc) {
pr_err("Unable to read STATUS1_REG rc=%d\n", rc);
return rc;
}
*state = (*state & FSM_STATE_MASK) >> FSM_STATE_SHIFT;
return rc;
}
static int update_fsm_state(struct qpnp_bms_chip *chip)
{
u8 state = 0;
int rc;
mutex_lock(&chip->state_change_mutex);
rc = get_fsm_state(chip, &state);
if (rc) {
pr_err("Unable to get fsm_state rc=%d\n", rc);
goto fail_fsm;
}
chip->current_fsm_state = state;
fail_fsm:
mutex_unlock(&chip->state_change_mutex);
return rc;
}
static int backup_charge_cycle(struct qpnp_bms_chip *chip)
{
int rc = 0;
if (chip->charge_increase >= 0) {
rc = qpnp_write_wrapper(chip, &chip->charge_increase,
chip->base + CHARGE_INCREASE_STORAGE, 1);
if (rc)
pr_err("Unable to backup charge_increase rc=%d\n", rc);
}
if (chip->charge_cycles >= 0) {
rc = qpnp_write_wrapper(chip, (u8 *)&chip->charge_cycles,
chip->base + CHARGE_CYCLE_STORAGE_LSB, 2);
if (rc)
pr_err("Unable to backup charge_cycles rc=%d\n", rc);
}
pr_debug("%s storing charge_increase=%u charge_cycle=%u\n",
rc ? "Unable to" : "Sucessfully",
chip->charge_increase, chip->charge_cycles);
return rc;
}
static int read_chgcycle_data_from_backup(struct qpnp_bms_chip *chip)
{
int rc;
uint16_t temp_u16 = 0;
u8 temp_u8 = 0;
rc = qpnp_read_wrapper(chip, &temp_u8,
chip->base + CHARGE_INCREASE_STORAGE, 1);
if (rc) {
pr_err("Unable to read charge_increase rc=%d\n", rc);
return rc;
}
rc = qpnp_read_wrapper(chip, (u8 *)&temp_u16,
chip->base + CHARGE_CYCLE_STORAGE_LSB, 2);
if (rc) {
pr_err("Unable to read charge_cycle rc=%d\n", rc);
return rc;
}
if ((temp_u8 == 0xFF) || (temp_u16 == 0xFFFF)) {
chip->charge_cycles = 0;
chip->charge_increase = 0;
pr_info("rejecting aging data charge_increase=%u charge_cycle=%u\n",
temp_u8, temp_u16);
rc = backup_charge_cycle(chip);
if (rc)
pr_err("Unable to reset charge cycles rc=%d\n", rc);
} else {
chip->charge_increase = temp_u8;
chip->charge_cycles = temp_u16;
}
pr_debug("charge_increase=%u charge_cycle=%u\n",
chip->charge_increase, chip->charge_cycles);
return rc;
}
static int calculate_uuc_iavg(struct qpnp_bms_chip *chip)
{
int i;
int iavg_ma = chip->current_now / 1000;
/* only continue if ibat has changed */
if (chip->current_now == chip->prev_current_now)
goto ibat_unchanged;
else
chip->prev_current_now = chip->current_now;
chip->iavg_samples_ma[chip->iavg_index] = iavg_ma;
chip->iavg_index = (chip->iavg_index + 1) %
chip->dt.cfg_ibat_avg_samples;
chip->iavg_num_samples++;
if (chip->iavg_num_samples >= chip->dt.cfg_ibat_avg_samples)
chip->iavg_num_samples = chip->dt.cfg_ibat_avg_samples;
if (chip->iavg_num_samples) {
iavg_ma = 0;
/* maintain a 16 sample average of ibat */
for (i = 0; i < chip->iavg_num_samples; i++) {
pr_debug("iavg_samples_ma[%d] = %d\n", i,
chip->iavg_samples_ma[i]);
iavg_ma += chip->iavg_samples_ma[i];
}
chip->iavg_ma = DIV_ROUND_CLOSEST(iavg_ma,
chip->iavg_num_samples);
}
ibat_unchanged:
pr_debug("current_now_ma=%d averaged_iavg_ma=%d\n",
chip->current_now / 1000, chip->iavg_ma);
return chip->iavg_ma;
}
static int adjust_uuc(struct qpnp_bms_chip *chip, int soc_uuc)
{
int max_percent_change;
calculate_delta_time(&chip->uuc_tm_sec, &chip->uuc_delta_time_s);
/* make sure that the UUC changes 1% at a time */
max_percent_change = max(chip->uuc_delta_time_s
/ TIME_PER_PERCENT_UUC, 1);
if (chip->prev_soc_uuc == -EINVAL) {
/* start with a minimum UUC if the initial UUC is high */
if (soc_uuc > MIN_SOC_UUC)
chip->prev_soc_uuc = MIN_SOC_UUC;
else
chip->prev_soc_uuc = soc_uuc;
} else {
if (abs(chip->prev_soc_uuc - soc_uuc) <= max_percent_change)
chip->prev_soc_uuc = soc_uuc;
else if (soc_uuc > chip->prev_soc_uuc)
chip->prev_soc_uuc += max_percent_change;
else
chip->prev_soc_uuc -= max_percent_change;
}
pr_debug("soc_uuc=%d new_soc_uuc=%d\n", soc_uuc, chip->prev_soc_uuc);
return chip->prev_soc_uuc;
}
static int lookup_soc_ocv(struct qpnp_bms_chip *chip, int ocv_uv, int batt_temp)
{
int soc_ocv = 0, soc_cutoff = 0, soc_final = 0;
int fcc, acc, soc_uuc = 0, soc_acc = 0, iavg_ma = 0;
soc_ocv = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,
batt_temp, ocv_uv / 1000);
soc_cutoff = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,
batt_temp, chip->dt.cfg_v_cutoff_uv / 1000);
soc_final = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_cutoff),
(100 - soc_cutoff));
if (chip->batt_data->ibat_acc_lut) {
/* Apply ACC logic only if we discharging */
if (!is_battery_charging(chip) && chip->current_now > 0) {
/*
* IBAT averaging is disabled at low temp.
* allowing the SOC to catcup quickly.
*/
if (batt_temp > chip->dt.cfg_low_temp_threshold)
iavg_ma = calculate_uuc_iavg(chip);
else
iavg_ma = chip->current_now / 1000;
fcc = interpolate_fcc(chip->batt_data->fcc_temp_lut,
batt_temp);
acc = interpolate_acc(chip->batt_data->ibat_acc_lut,
batt_temp, iavg_ma);
if (acc <= 0) {
if (chip->last_acc)
acc = chip->last_acc;
else
acc = fcc;
}
soc_uuc = ((fcc - acc) * 100) / fcc;
if (batt_temp > chip->dt.cfg_low_temp_threshold)
soc_uuc = adjust_uuc(chip, soc_uuc);
soc_acc = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_uuc),
(100 - soc_uuc));
pr_debug("fcc=%d acc=%d soc_final=%d soc_uuc=%d soc_acc=%d current_now=%d iavg_ma=%d\n",
fcc, acc, soc_final, soc_uuc,
soc_acc, chip->current_now / 1000, iavg_ma);
soc_final = soc_acc;
chip->last_acc = acc;
} else {
/* charging - reset all the counters */
chip->last_acc = 0;
chip->iavg_num_samples = 0;
chip->iavg_index = 0;
chip->iavg_ma = 0;
chip->prev_current_now = 0;
chip->prev_soc_uuc = -EINVAL;
}
}
soc_final = bound_soc(soc_final);
pr_debug("soc_final=%d soc_ocv=%d soc_cutoff=%d ocv_uv=%u batt_temp=%d\n",
soc_final, soc_ocv, soc_cutoff, ocv_uv, batt_temp);
return soc_final;
}
#define V_PER_BIT_MUL_FACTOR 97656
#define V_PER_BIT_DIV_FACTOR 1000
#define VADC_INTRINSIC_OFFSET 0x6000
static int vadc_reading_to_uv(int reading, bool vadc_bms)
{
int64_t value;
if (!vadc_bms) {
/*
* All the BMS H/W VADC values are pre-compensated
* for VADC_INTRINSIC_OFFSET, subtract this offset
* only if this reading is not obtained from BMS
*/
if (reading <= VADC_INTRINSIC_OFFSET)
return 0;
reading -= VADC_INTRINSIC_OFFSET;
}
value = (reading * V_PER_BIT_MUL_FACTOR);
return div_u64(value, (u32)V_PER_BIT_DIV_FACTOR);
}
static int get_calculation_delay_ms(struct qpnp_bms_chip *chip)
{
if (bms_wake_active(&chip->vbms_lv_wake_source))
return chip->dt.cfg_low_voltage_calculate_soc_ms;
if (chip->calculated_soc < chip->dt.cfg_low_soc_calc_threshold)
return chip->dt.cfg_low_soc_calculate_soc_ms;
else
return chip->dt.cfg_calculate_soc_ms;
}
#define VADC_CALIB_UV 625000
#define VBATT_MUL_FACTOR 3
static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv)
{
s64 numerator, denominator;
if (reading_uv == 0)
return 0;
/* don't adjust if not calibrated */
if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) {
pr_debug("No cal yet return %d\n",
VBATT_MUL_FACTOR * reading_uv);
return VBATT_MUL_FACTOR * reading_uv;
}
numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV;
denominator = (s64)chip->vadc_v1250 - chip->vadc_v0625;
if (denominator == 0)
return reading_uv * VBATT_MUL_FACTOR;
return (VADC_CALIB_UV + div_s64(numerator, denominator))
* VBATT_MUL_FACTOR;
}
static int calib_vadc(struct qpnp_bms_chip *chip)
{
int rc, raw_0625, raw_1250;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(chip->vadc_dev, REF_625MV, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
raw_0625 = result.adc_code;
rc = qpnp_vadc_read(chip->vadc_dev, REF_125V, &result);
if (rc) {
pr_debug("vadc read failed with rc = %d\n", rc);
return rc;
}
raw_1250 = result.adc_code;
chip->vadc_v0625 = vadc_reading_to_uv(raw_0625, false);
chip->vadc_v1250 = vadc_reading_to_uv(raw_1250, false);
pr_debug("vadc calib: 0625=%d raw (%d uv), 1250=%d raw (%d uv)\n",
raw_0625, chip->vadc_v0625, raw_1250, chip->vadc_v1250);
return 0;
}
static int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip,
u16 reading, bool is_pon_ocv)
{
int64_t uv, vbatt;
int rc;
uv = vadc_reading_to_uv(reading, true);
pr_debug("%u raw converted into %lld uv\n", reading, uv);
uv = adjust_vbatt_reading(chip, uv);
pr_debug("adjusted into %lld uv\n", uv);
vbatt = uv;
rc = qpnp_vbat_sns_comp_result(chip->vadc_dev, &uv, is_pon_ocv);
if (rc) {
pr_debug("Vbatt compensation failed rc = %d\n", rc);
uv = vbatt;
} else {
pr_debug("temp-compensated %lld into %lld uv\n", vbatt, uv);
}
return uv;
}
static void convert_and_store_ocv(struct qpnp_bms_chip *chip,
int batt_temp, bool is_pon_ocv)
{
int rc;
rc = calib_vadc(chip);
if (rc)
pr_err("Vadc reference voltage read failed, rc = %d\n", rc);
chip->last_ocv_uv = convert_vbatt_raw_to_uv(chip,
chip->last_ocv_raw, is_pon_ocv);
pr_debug("last_ocv_uv = %d\n", chip->last_ocv_uv);
}
static int read_and_update_ocv(struct qpnp_bms_chip *chip, int batt_temp,
bool is_pon_ocv)
{
int rc, ocv_uv;
u16 ocv_data = 0;
/* read the BMS h/w OCV */
rc = qpnp_read_wrapper(chip, (u8 *)&ocv_data,
chip->base + OCV_DATA0_REG, 2);
if (rc) {
pr_err("Error reading ocv: rc = %d\n", rc);
return -ENXIO;
}
/* check if OCV is within limits */
ocv_uv = convert_vbatt_raw_to_uv(chip, ocv_data, is_pon_ocv);
if (ocv_uv < MIN_OCV_UV) {
pr_err("OCV too low or invalid (%d)- rejecting it\n", ocv_uv);
return 0;
}
if ((chip->last_ocv_raw == OCV_UNINITIALIZED) ||
(chip->last_ocv_raw != ocv_data)) {
pr_debug("new OCV!\n");
chip->last_ocv_raw = ocv_data;
convert_and_store_ocv(chip, batt_temp, is_pon_ocv);
}
pr_debug("ocv_raw=0x%x last_ocv_raw=0x%x last_ocv_uv=%d\n",
ocv_data, chip->last_ocv_raw, chip->last_ocv_uv);
return 0;
}
static int get_battery_voltage(struct qpnp_bms_chip *chip, int *result_uv)
{
int rc;
struct qpnp_vadc_result adc_result;
rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &adc_result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
VBAT_SNS, rc);
return rc;
}
pr_debug("mvolts phy=%lld meas=0x%llx\n", adc_result.physical,
adc_result.measurement);
*result_uv = (int)adc_result.physical;
return 0;
}
static int get_battery_status(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
/* if battery has been registered, use the status property */
chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
return ret.intval;
}
/* Default to false if the battery power supply is not registered. */
pr_debug("battery power supply is not registered\n");
return POWER_SUPPLY_STATUS_UNKNOWN;
}
static int get_batt_therm(struct qpnp_bms_chip *chip, int *batt_temp)
{
int rc;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
LR_MUX1_BATT_THERM, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
result.physical, result.measurement);
*batt_temp = (int)result.physical;
return 0;
}
static int get_prop_bms_rbatt(struct qpnp_bms_chip *chip)
{
return chip->batt_data->default_rbatt_mohm;
}
static int get_rbatt(struct qpnp_bms_chip *chip, int soc, int batt_temp)
{
int rbatt_mohm, scalefactor;
rbatt_mohm = chip->batt_data->default_rbatt_mohm;
if (chip->batt_data->rbatt_sf_lut == NULL) {
pr_debug("RBATT = %d\n", rbatt_mohm);
return rbatt_mohm;
}
scalefactor = interpolate_scalingfactor(chip->batt_data->rbatt_sf_lut,
batt_temp, soc);
rbatt_mohm = (rbatt_mohm * scalefactor) / 100;
if (chip->dt.cfg_r_conn_mohm > 0)
rbatt_mohm += chip->dt.cfg_r_conn_mohm;
return rbatt_mohm;
}
static void charging_began(struct qpnp_bms_chip *chip)
{
int rc;
u8 state;
mutex_lock(&chip->last_soc_mutex);
chip->charge_start_tm_sec = 0;
chip->catch_up_time_sec = 0;
chip->start_soc = chip->last_soc;
/*
* reset ocv_at_100 to -EINVAL to indicate
* start of charging.
*/
chip->ocv_at_100 = -EINVAL;
mutex_unlock(&chip->last_soc_mutex);
/*
* If the BMS state is not in S2, force it in S2. Such
* a condition can only occur if we are coming out of
* suspend.
*/
mutex_lock(&chip->state_change_mutex);
rc = get_fsm_state(chip, &state);
if (rc)
pr_err("Unable to get FSM state rc=%d\n", rc);
if (rc || (state != S2_STATE)) {
pr_debug("Forcing S2 state\n");
rc = force_fsm_state(chip, S2_STATE);
if (rc)
pr_err("Unable to set FSM state rc=%d\n", rc);
}
mutex_unlock(&chip->state_change_mutex);
}
static void charging_ended(struct qpnp_bms_chip *chip)
{
u8 state;
int rc, status = get_battery_status(chip);
mutex_lock(&chip->last_soc_mutex);
chip->charge_start_tm_sec = 0;
chip->catch_up_time_sec = 0;
chip->end_soc = chip->last_soc;
if (status == POWER_SUPPLY_STATUS_FULL)
chip->last_soc_invalid = true;
mutex_unlock(&chip->last_soc_mutex);
/*
* If the BMS state is not in S2, force it in S2. Such
* a condition can only occur if we are coming out of
* suspend.
*/
mutex_lock(&chip->state_change_mutex);
rc = get_fsm_state(chip, &state);
if (rc)
pr_err("Unable to get FSM state rc=%d\n", rc);
if (rc || (state != S2_STATE)) {
pr_debug("Forcing S2 state\n");
rc = force_fsm_state(chip, S2_STATE);
if (rc)
pr_err("Unable to set FSM state rc=%d\n", rc);
}
mutex_unlock(&chip->state_change_mutex);
/* Calculate charge accumulated and update charge cycle */
if (chip->dt.cfg_battery_aging_comp &&
(chip->end_soc > chip->start_soc)) {
chip->charge_increase += (chip->end_soc - chip->start_soc);
if (chip->charge_increase > 100) {
chip->charge_cycles++;
chip->charge_increase %= 100;
}
pr_debug("start_soc=%u end_soc=%u charge_cycles=%u charge_increase=%u\n",
chip->start_soc, chip->end_soc,
chip->charge_cycles, chip->charge_increase);
rc = backup_charge_cycle(chip);
if (rc)
pr_err("Unable to store charge cycles rc=%d\n", rc);
}
}
static int estimate_ocv(struct qpnp_bms_chip *chip)
{
int i, rc, vbatt = 0, vbatt_final = 0;
for (i = 0; i < 5; i++) {
rc = get_battery_voltage(chip, &vbatt);
if (rc) {
pr_err("Unable to read battery-voltage rc=%d\n", rc);
return rc;
}
/*
* Conservatively select the lowest vbatt to avoid reporting
* a higher ocv due to variations in bootup current.
*/
if (i == 0)
vbatt_final = vbatt;
else if (vbatt < vbatt_final)
vbatt_final = vbatt;
msleep(20);
}
/*
* TODO: Revisit the OCV calcuations to use approximate ibatt
* and rbatt.
*/
return vbatt_final;
}
static int scale_soc_while_chg(struct qpnp_bms_chip *chip, int chg_time_sec,
int catch_up_sec, int new_soc, int prev_soc)
{
int scaled_soc;
int numerator;
/*
* Don't report a high value immediately slowly scale the
* value from prev_soc to the new soc based on a charge time
* weighted average
*/
pr_debug("cts=%d catch_up_sec=%d\n", chg_time_sec, catch_up_sec);
if (catch_up_sec == 0)
return new_soc;
if (chg_time_sec > catch_up_sec)
return new_soc;
numerator = (catch_up_sec - chg_time_sec) * prev_soc
+ chg_time_sec * new_soc;
scaled_soc = numerator / catch_up_sec;
pr_debug("cts=%d new_soc=%d prev_soc=%d scaled_soc=%d\n",
chg_time_sec, new_soc, prev_soc, scaled_soc);
return scaled_soc;
}
static int report_eoc(struct qpnp_bms_chip *chip)
{
int rc = -EINVAL;
union power_supply_propval ret = {0,};
if (chip->batt_psy == NULL)
chip->batt_psy = power_supply_get_by_name("battery");
if (chip->batt_psy) {
rc = chip->batt_psy->get_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
if (rc) {
pr_err("Unable to get battery 'STATUS' rc=%d\n", rc);
} else if (ret.intval != POWER_SUPPLY_STATUS_FULL) {
pr_debug("Report EOC to charger\n");
ret.intval = POWER_SUPPLY_STATUS_FULL;
rc = chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
if (rc) {
pr_err("Unable to set 'STATUS' rc=%d\n", rc);
return rc;
}
chip->eoc_reported = true;
}
} else {
pr_err("battery psy not registered\n");
}
return rc;
}
static void check_recharge_condition(struct qpnp_bms_chip *chip)
{
int rc;
union power_supply_propval ret = {0,};
int status = get_battery_status(chip);
if (chip->last_soc > chip->dt.cfg_soc_resume_limit)
return;
if (status == POWER_SUPPLY_STATUS_UNKNOWN) {
pr_debug("Unable to read battery status\n");
return;
}
/* Report recharge to charger for SOC based resume of charging */
if ((status != POWER_SUPPLY_STATUS_CHARGING) && chip->eoc_reported) {
ret.intval = POWER_SUPPLY_STATUS_CHARGING;
rc = chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
if (rc < 0) {
pr_err("Unable to set battery property rc=%d\n", rc);
} else {
pr_info("soc dropped below resume_soc soc=%d resume_soc=%d, restart charging\n",
chip->last_soc,
chip->dt.cfg_soc_resume_limit);
chip->eoc_reported = false;
}
}
}
static void check_eoc_condition(struct qpnp_bms_chip *chip)
{
int rc;
int status = get_battery_status(chip);
union power_supply_propval ret = {0,};
if (status == POWER_SUPPLY_STATUS_UNKNOWN) {
pr_err("Unable to read battery status\n");
return;
}
/*
* Check battery status:
* if last_soc is 100 and battery status is still charging
* reset ocv_at_100 and force reporting of eoc to charger.
*/
if ((chip->last_soc == 100) &&
(status == POWER_SUPPLY_STATUS_CHARGING))
chip->ocv_at_100 = -EINVAL;
/*
* Store the OCV value at 100. If the new ocv is greater than
* ocv_at_100 (battery settles), update ocv_at_100. Else
* if the SOC drops, reset ocv_at_100.
*/
if (chip->ocv_at_100 == -EINVAL) {
if (chip->last_soc == 100) {
if (chip->dt.cfg_report_charger_eoc) {
rc = report_eoc(chip);
if (!rc) {
/*
* update ocv_at_100 only if EOC is
* reported successfully.
*/
chip->ocv_at_100 = chip->last_ocv_uv;
pr_debug("Battery FULL\n");
} else {
pr_err("Unable to report eoc rc=%d\n",
rc);
chip->ocv_at_100 = -EINVAL;
}
}
if (chip->dt.cfg_use_reported_soc) {
/* begin reported_soc process */
chip->reported_soc_in_use = true;
chip->charger_removed_since_full = false;
chip->charger_reinserted = false;
chip->reported_soc = 100;
pr_debug("Begin reported_soc process\n");
}
}
} else {
if (chip->last_ocv_uv >= chip->ocv_at_100) {
pr_debug("new_ocv(%d) > ocv_at_100(%d) maintaining SOC to 100\n",
chip->last_ocv_uv, chip->ocv_at_100);
chip->ocv_at_100 = chip->last_ocv_uv;
chip->last_soc = 100;
} else if (chip->last_soc != 100) {
/*
* Report that the battery is discharging.
* This gets called once when the SOC falls
* below 100.
*/
if (chip->reported_soc_in_use
&& chip->reported_soc == 100) {
pr_debug("reported_soc=100, last_soc=%d, do not send DISCHARING status\n",
chip->last_soc);
} else {
ret.intval = POWER_SUPPLY_STATUS_DISCHARGING;
chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
}
pr_debug("SOC dropped (%d) discarding ocv_at_100\n",
chip->last_soc);
chip->ocv_at_100 = -EINVAL;
}
}
}
static int report_voltage_based_soc(struct qpnp_bms_chip *chip)
{
pr_debug("Reported voltage based soc = %d\n",
chip->prev_voltage_based_soc);
return chip->prev_voltage_based_soc;
}
static int prepare_reported_soc(struct qpnp_bms_chip *chip)
{
if (chip->charger_removed_since_full == false) {
/*
* charger is not removed since full,
* keep reported_soc as 100 and calculate the delta soc
* between reported_soc and last_soc
*/
chip->reported_soc = 100;
chip->reported_soc_delta = 100 - chip->last_soc;
pr_debug("Keep at reported_soc 100, reported_soc_delta=%d, last_soc=%d\n",
chip->reported_soc_delta,
chip->last_soc);
} else {
/* charger is removed since full */
if (chip->charger_reinserted) {
/*
* charger reinserted, keep the reported_soc
* until it equals to last_soc.
*/
if (chip->reported_soc == chip->last_soc) {
chip->reported_soc_in_use = false;
chip->reported_soc_high_current = false;
pr_debug("reported_soc equals to last_soc, stop reported_soc process\n");
}
chip->reported_soc_change_sec = 0;
}
}
pr_debug("Reporting reported_soc=%d, last_soc=%d\n",
chip->reported_soc, chip->last_soc);
return chip->reported_soc;
}
#define SOC_CATCHUP_SEC_MAX 600
#define SOC_CATCHUP_SEC_PER_PERCENT 60
#define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX / SOC_CATCHUP_SEC_PER_PERCENT)
#define SOC_CHANGE_PER_SEC 5
static int report_vm_bms_soc(struct qpnp_bms_chip *chip)
{
int soc, soc_change, batt_temp, rc;
int time_since_last_change_sec = 0, charge_time_sec = 0;
unsigned long last_change_sec;
bool charging;
soc = chip->calculated_soc;
last_change_sec = chip->last_soc_change_sec;
calculate_delta_time(&last_change_sec, &time_since_last_change_sec);
charging = is_battery_charging(chip);
pr_debug("charging=%d last_soc=%d last_soc_unbound=%d\n",
charging, chip->last_soc, chip->last_soc_unbound);
/*
* account for charge time - limit it to SOC_CATCHUP_SEC to
* avoid overflows when charging continues for extended periods
*/
if (charging && chip->last_soc != -EINVAL) {
if (chip->charge_start_tm_sec == 0) {
/*
* calculating soc for the first time
* after start of chg. Initialize catchup time
*/
if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)
chip->catch_up_time_sec =
(soc - chip->last_soc)
* SOC_CATCHUP_SEC_PER_PERCENT;
else
chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX;
if (chip->catch_up_time_sec < 0)
chip->catch_up_time_sec = 0;
chip->charge_start_tm_sec = last_change_sec;
}
charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec
- chip->charge_start_tm_sec);
/* end catchup if calculated soc and last soc are same */
if (chip->last_soc == soc)
chip->catch_up_time_sec = 0;
}
if (chip->last_soc != -EINVAL) {
/*
* last_soc < soc ... if we have not been charging at all
* since the last time this was called, report previous SoC.
* Otherwise, scale and catch up.
*/
rc = get_batt_therm(chip, &batt_temp);
if (rc)
batt_temp = BMS_DEFAULT_TEMP;
if (chip->last_soc < soc && !charging)
soc = chip->last_soc;
else if (chip->last_soc < soc && soc != 100)
soc = scale_soc_while_chg(chip, charge_time_sec,
chip->catch_up_time_sec,
soc, chip->last_soc);
/*
* if the battery is close to cutoff or if the batt_temp
* is under the low-temp threshold allow bigger change
*/
if (bms_wake_active(&chip->vbms_lv_wake_source) ||
(batt_temp <= chip->dt.cfg_low_temp_threshold))
soc_change = min((int)abs(chip->last_soc - soc),
time_since_last_change_sec);
else
soc_change = min((int)abs(chip->last_soc - soc),
time_since_last_change_sec
/ SOC_CHANGE_PER_SEC);
if (chip->last_soc_unbound) {
chip->last_soc_unbound = false;
} else {
/*
* if soc have not been unbound by resume,
* only change reported SoC by 1.
*/
soc_change = min(1, soc_change);
}
if (soc < chip->last_soc && soc != 0)
soc = chip->last_soc - soc_change;
if (soc > chip->last_soc && soc != 100)
soc = chip->last_soc + soc_change;
}
if (chip->last_soc != soc && !chip->last_soc_unbound)
chip->last_soc_change_sec = last_change_sec;
/*
* Check/update eoc under following condition:
* if there is change in soc:
* soc != chip->last_soc
* during bootup if soc is 100:
*/
soc = bound_soc(soc);
if ((soc != chip->last_soc) || (soc == 100)) {
chip->last_soc = soc;
check_eoc_condition(chip);
if ((chip->dt.cfg_soc_resume_limit > 0) && !charging)
check_recharge_condition(chip);
}
pr_debug("last_soc=%d calculated_soc=%d soc=%d time_since_last_change=%d\n",
chip->last_soc, chip->calculated_soc,
soc, time_since_last_change_sec);
/*
* Backup the actual ocv (last_ocv_uv) and not the
* last_soc-interpolated ocv. This makes sure that
* the BMS algorithm always uses the correct ocv and
* can catch up on the last_soc (across reboots).
* We do not want the algorithm to be based of a wrong
* initial OCV.
*/
backup_ocv_soc(chip, chip->last_ocv_uv, chip->last_soc);
if (chip->reported_soc_in_use)
return prepare_reported_soc(chip);
pr_debug("Reported SOC=%d\n", chip->last_soc);
return chip->last_soc;
}
static int report_state_of_charge(struct qpnp_bms_chip *chip)
{
int soc;
mutex_lock(&chip->last_soc_mutex);
if (chip->dt.cfg_use_voltage_soc)
soc = report_voltage_based_soc(chip);
else
soc = report_vm_bms_soc(chip);
mutex_unlock(&chip->last_soc_mutex);
return soc;
}
static void btm_notify_vbat(enum qpnp_tm_state state, void *ctx)
{
struct qpnp_bms_chip *chip = ctx;
int vbat_uv;
int rc;
rc = get_battery_voltage(chip, &vbat_uv);
if (rc) {
pr_err("error reading vbat_sns adc channel=%d, rc=%d\n",
VBAT_SNS, rc);
goto out;
}
pr_debug("vbat is at %d, state is at %d\n", vbat_uv, state);
if (state == ADC_TM_LOW_STATE) {
pr_debug("low voltage btm notification triggered\n");
if (vbat_uv <= (chip->vbat_monitor_params.low_thr
+ VBATT_ERROR_MARGIN)) {
if (!bms_wake_active(&chip->vbms_lv_wake_source))
bms_stay_awake(&chip->vbms_lv_wake_source);
chip->vbat_monitor_params.state_request =
ADC_TM_HIGH_THR_ENABLE;
} else {
pr_debug("faulty btm trigger, discarding\n");
goto out;
}
} else if (state == ADC_TM_HIGH_STATE) {
pr_debug("high voltage btm notification triggered\n");
if (vbat_uv > chip->vbat_monitor_params.high_thr) {
chip->vbat_monitor_params.state_request =
ADC_TM_LOW_THR_ENABLE;
if (bms_wake_active(&chip->vbms_lv_wake_source))
bms_relax(&chip->vbms_lv_wake_source);
} else {
pr_debug("faulty btm trigger, discarding\n");
goto out;
}
} else {
pr_debug("unknown voltage notification state: %d\n", state);
goto out;
}
if (chip->bms_psy_registered)
power_supply_changed(&chip->bms_psy);
out:
qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
}
static int reset_vbat_monitoring(struct qpnp_bms_chip *chip)
{
int rc;
chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_DISABLE;
rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
if (rc) {
pr_err("tm disable failed: %d\n", rc);
return rc;
}
if (bms_wake_active(&chip->vbms_lv_wake_source))
bms_relax(&chip->vbms_lv_wake_source);
return 0;
}
static int setup_vbat_monitoring(struct qpnp_bms_chip *chip)
{
int rc;
chip->vbat_monitor_params.low_thr =
chip->dt.cfg_low_voltage_threshold;
chip->vbat_monitor_params.high_thr =
chip->dt.cfg_low_voltage_threshold
+ VBATT_ERROR_MARGIN;
chip->vbat_monitor_params.state_request = ADC_TM_LOW_THR_ENABLE;
chip->vbat_monitor_params.channel = VBAT_SNS;
chip->vbat_monitor_params.btm_ctx = chip;
chip->vbat_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S;
chip->vbat_monitor_params.threshold_notification = &btm_notify_vbat;
pr_debug("set low thr to %d and high to %d\n",
chip->vbat_monitor_params.low_thr,
chip->vbat_monitor_params.high_thr);
rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->vbat_monitor_params);
if (rc) {
pr_err("adc-tm setup failed: %d\n", rc);
return rc;
}
pr_debug("vbat monitoring setup complete\n");
return 0;
}
static void very_low_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
{
if (!bms_wake_active(&chip->vbms_lv_wake_source)
&& (vbat_uv <= chip->dt.cfg_low_voltage_threshold)) {
pr_debug("voltage=%d holding low voltage ws\n", vbat_uv);
bms_stay_awake(&chip->vbms_lv_wake_source);
} else if (bms_wake_active(&chip->vbms_lv_wake_source)
&& (vbat_uv > chip->dt.cfg_low_voltage_threshold)) {
pr_debug("voltage=%d releasing low voltage ws\n", vbat_uv);
bms_relax(&chip->vbms_lv_wake_source);
}
}
static void cv_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
{
if (bms_wake_active(&chip->vbms_cv_wake_source)) {
if ((vbat_uv < (chip->dt.cfg_max_voltage_uv -
VBATT_ERROR_MARGIN + CV_DROP_MARGIN))
&& !is_battery_taper_charging(chip)) {
pr_debug("Fell below CV, releasing cv ws\n");
chip->in_cv_state = false;
bms_relax(&chip->vbms_cv_wake_source);
} else if (!is_battery_charging(chip)) {
pr_debug("charging stopped, releasing cv ws\n");
chip->in_cv_state = false;
bms_relax(&chip->vbms_cv_wake_source);
}
} else if (!bms_wake_active(&chip->vbms_cv_wake_source)
&& is_battery_charging(chip)
&& ((vbat_uv > (chip->dt.cfg_max_voltage_uv -
VBATT_ERROR_MARGIN))
|| is_battery_taper_charging(chip))) {
pr_debug("CC_TO_CV voltage=%d holding cv ws\n", vbat_uv);
chip->in_cv_state = true;
bms_stay_awake(&chip->vbms_cv_wake_source);
}
}
static void low_soc_check(struct qpnp_bms_chip *chip)
{
int rc;
if (chip->dt.cfg_low_soc_fifo_length < 1)
return;
mutex_lock(&chip->state_change_mutex);
if (chip->calculated_soc <= chip->dt.cfg_low_soc_calc_threshold) {
if (!chip->low_soc_fifo_set) {
pr_debug("soc=%d (low-soc) setting fifo_length to %d\n",
chip->calculated_soc,
chip->dt.cfg_low_soc_fifo_length);
rc = get_fifo_length(chip, S2_STATE,
&chip->s2_fifo_length);
if (rc) {
pr_err("Unable to get_fifo_length rc=%d", rc);
goto low_soc_exit;
}
rc = set_fifo_length(chip, S2_STATE,
chip->dt.cfg_low_soc_fifo_length);
if (rc) {
pr_err("Unable to set_fifo_length rc=%d", rc);
goto low_soc_exit;
}
chip->low_soc_fifo_set = true;
}
} else {
if (chip->low_soc_fifo_set) {
pr_debug("soc=%d setting back fifo_length to %d\n",
chip->calculated_soc,
chip->s2_fifo_length);
rc = set_fifo_length(chip, S2_STATE,
chip->s2_fifo_length);
if (rc) {
pr_err("Unable to set_fifo_length rc=%d", rc);
goto low_soc_exit;
}
chip->low_soc_fifo_set = false;
}
}
low_soc_exit:
mutex_unlock(&chip->state_change_mutex);
}
static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip)
{
int voltage_range_uv, voltage_remaining_uv, voltage_based_soc;
int rc, vbat_uv;
/* check if we have the averaged fifo data */
if (chip->voltage_soc_uv) {
vbat_uv = chip->voltage_soc_uv;
} else {
rc = get_battery_voltage(chip, &vbat_uv);
if (rc < 0) {
pr_err("adc vbat failed err = %d\n", rc);
return rc;
}
pr_debug("instant-voltage based voltage-soc\n");
}
voltage_range_uv = chip->dt.cfg_max_voltage_uv -
chip->dt.cfg_v_cutoff_uv;
voltage_remaining_uv = vbat_uv - chip->dt.cfg_v_cutoff_uv;
voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv;
voltage_based_soc = clamp(voltage_based_soc, 0, 100);
if (chip->prev_voltage_based_soc != voltage_based_soc
&& chip->bms_psy_registered) {
pr_debug("update bms_psy\n");
power_supply_changed(&chip->bms_psy);
}
chip->prev_voltage_based_soc = voltage_based_soc;
pr_debug("vbat used = %duv\n", vbat_uv);
pr_debug("Calculated voltage based soc=%d\n", voltage_based_soc);
if (voltage_based_soc == 100)
if (chip->dt.cfg_report_charger_eoc)
report_eoc(chip);
return 0;
}
static void calculate_reported_soc(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->reported_soc > chip->last_soc) {
/*send DISCHARGING status if the reported_soc drops from 100 */
if (chip->reported_soc == 100) {
ret.intval = POWER_SUPPLY_STATUS_DISCHARGING;
chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
pr_debug("Report discharging status, reported_soc=%d, last_soc=%d\n",
chip->reported_soc, chip->last_soc);
}
/*
* reported_soc_delta is used to prevent
* the big change in last_soc,
* this is not used in high current mode
*/
if (chip->reported_soc_delta > 0)
chip->reported_soc_delta--;
if (chip->reported_soc_high_current)
chip->reported_soc--;
else
chip->reported_soc = chip->last_soc
+ chip->reported_soc_delta;
pr_debug("New reported_soc=%d, last_soc is=%d\n",
chip->reported_soc, chip->last_soc);
} else {
chip->reported_soc_in_use = false;
chip->reported_soc_high_current = false;
pr_debug("reported_soc equals last_soc,stop reported_soc process\n");
}
pr_debug("bms power_supply_changed\n");
power_supply_changed(&chip->bms_psy);
}
static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc)
{
int rc, vbat_uv;
rc = get_battery_voltage(chip, &vbat_uv);
if (rc < 0) {
pr_err("adc vbat failed err = %d\n", rc);
return soc;
}
/* only clamp when discharging */
if (is_battery_charging(chip))
return soc;
if (soc <= 0 && vbat_uv > chip->dt.cfg_v_cutoff_uv) {
pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n",
vbat_uv, chip->dt.cfg_v_cutoff_uv);
return 1;
} else {
pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n",
soc, vbat_uv, chip->dt.cfg_v_cutoff_uv);
return soc;
}
}
#define UI_SOC_CATCHUP_TIME (60)
static void monitor_soc_work(struct work_struct *work)
{
struct qpnp_bms_chip *chip = container_of(work,
struct qpnp_bms_chip,
monitor_soc_work.work);
int rc, vbat_uv = 0, new_soc = 0, batt_temp;
bms_stay_awake(&chip->vbms_soc_wake_source);
calculate_delta_time(&chip->tm_sec, &chip->delta_time_s);
pr_debug("elapsed_time=%d\n", chip->delta_time_s);
mutex_lock(&chip->last_soc_mutex);
if (!is_battery_present(chip)) {
/* if battery is not preset report 100% SOC */
pr_debug("battery gone, reporting 100\n");
chip->last_soc_invalid = true;
chip->last_soc = -EINVAL;
new_soc = 100;
} else {
rc = get_battery_voltage(chip, &vbat_uv);
if (rc < 0) {
pr_err("Failed to read battery-voltage rc=%d\n", rc);
} else {
very_low_voltage_check(chip, vbat_uv);
cv_voltage_check(chip, vbat_uv);
}
if (chip->dt.cfg_use_voltage_soc) {
calculate_soc_from_voltage(chip);
} else {
rc = get_batt_therm(chip, &batt_temp);
if (rc < 0) {
pr_err("Unable to read batt temp rc=%d, using default=%d\n",
rc, BMS_DEFAULT_TEMP);
batt_temp = BMS_DEFAULT_TEMP;
}
if (chip->last_soc_invalid) {
chip->last_soc_invalid = false;
chip->last_soc = -EINVAL;
}
new_soc = lookup_soc_ocv(chip, chip->last_ocv_uv,
batt_temp);
/* clamp soc due to BMS hw/sw immaturities */
new_soc = clamp_soc_based_on_voltage(chip, new_soc);
if (chip->calculated_soc != new_soc) {
pr_debug("SOC changed! new_soc=%d prev_soc=%d\n",
new_soc, chip->calculated_soc);
chip->calculated_soc = new_soc;
if (chip->calculated_soc == 100)
/* update last_soc immediately */
report_vm_bms_soc(chip);
pr_debug("update bms_psy\n");
power_supply_changed(&chip->bms_psy);
} else if (chip->last_soc != chip->calculated_soc) {
pr_debug("update bms_psy\n");
power_supply_changed(&chip->bms_psy);
} else {
report_vm_bms_soc(chip);
}
}
/* low SOC configuration */
low_soc_check(chip);
}
/*
* schedule the work only if last_soc has not caught up with
* the calculated soc or if we are using voltage based soc
*/
if ((chip->last_soc != chip->calculated_soc) ||
chip->dt.cfg_use_voltage_soc)
schedule_delayed_work(&chip->monitor_soc_work,
msecs_to_jiffies(get_calculation_delay_ms(chip)));
if (chip->reported_soc_in_use && chip->charger_removed_since_full
&& !chip->charger_reinserted) {
/* record the elapsed time after last reported_soc change */
chip->reported_soc_change_sec += chip->delta_time_s;
pr_debug("reported_soc_change_sec=%d\n",
chip->reported_soc_change_sec);
/* above the catch up time, calculate new reported_soc */
if (chip->reported_soc_change_sec > UI_SOC_CATCHUP_TIME) {
calculate_reported_soc(chip);
chip->reported_soc_change_sec = 0;
}
}
mutex_unlock(&chip->last_soc_mutex);
bms_relax(&chip->vbms_soc_wake_source);
}
static void voltage_soc_timeout_work(struct work_struct *work)
{
struct qpnp_bms_chip *chip = container_of(work,
struct qpnp_bms_chip,
voltage_soc_timeout_work.work);
mutex_lock(&chip->bms_device_mutex);
if (!chip->bms_dev_open) {
pr_warn("BMS device not opened, using voltage based SOC\n");
chip->dt.cfg_use_voltage_soc = true;
}
mutex_unlock(&chip->bms_device_mutex);
}
static int get_prop_bms_capacity(struct qpnp_bms_chip *chip)
{
return report_state_of_charge(chip);
}
static bool is_hi_power_state_requested(struct qpnp_bms_chip *chip)
{
pr_debug("hi_power_state=0x%x\n", chip->hi_power_state);
if (chip->hi_power_state & VMBMS_IGNORE_ALL_BIT)
return false;
else
return !!chip->hi_power_state;
}
static int qpnp_vm_bms_config_power_state(struct qpnp_bms_chip *chip,
int usecase, bool hi_power_enable)
{
if (usecase < 0) {
pr_err("Invalid power-usecase %x\n", usecase);
return -EINVAL;
}
if (hi_power_enable)
chip->hi_power_state |= usecase;
else
chip->hi_power_state &= ~usecase;
pr_debug("hi_power_state=%x usecase=%x hi_power_enable=%d\n",
chip->hi_power_state, usecase, hi_power_enable);
return 0;
}
static int get_prop_bms_current_now(struct qpnp_bms_chip *chip)
{
return chip->current_now;
}
static enum power_supply_property bms_power_props[] = {
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_RESISTANCE,
POWER_SUPPLY_PROP_RESISTANCE_CAPACITIVE,
POWER_SUPPLY_PROP_RESISTANCE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_VOLTAGE_OCV,
POWER_SUPPLY_PROP_HI_POWER,
POWER_SUPPLY_PROP_LOW_POWER,
POWER_SUPPLY_PROP_BATTERY_TYPE,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_CYCLE_COUNT,
};
static int
qpnp_vm_bms_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
case POWER_SUPPLY_PROP_HI_POWER:
case POWER_SUPPLY_PROP_LOW_POWER:
return 1;
default:
break;
}
return 0;
}
static int qpnp_vm_bms_power_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct qpnp_bms_chip *chip = container_of(psy,
struct qpnp_bms_chip, bms_psy);
int value = 0, rc;
val->intval = 0;
switch (psp) {
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = get_prop_bms_capacity(chip);
break;
case POWER_SUPPLY_PROP_STATUS:
val->intval = chip->battery_status;
break;
case POWER_SUPPLY_PROP_RESISTANCE:
val->intval = get_prop_bms_rbatt(chip);
break;
case POWER_SUPPLY_PROP_RESISTANCE_CAPACITIVE:
if (chip->batt_data->rbatt_capacitive_mohm > 0)
val->intval = chip->batt_data->rbatt_capacitive_mohm;
if (chip->dt.cfg_r_conn_mohm > 0)
val->intval += chip->dt.cfg_r_conn_mohm;
break;
case POWER_SUPPLY_PROP_RESISTANCE_NOW:
rc = get_batt_therm(chip, &value);
if (rc < 0)
value = BMS_DEFAULT_TEMP;
val->intval = get_rbatt(chip, chip->calculated_soc, value);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = get_prop_bms_current_now(chip);
break;
case POWER_SUPPLY_PROP_BATTERY_TYPE:
val->strval = chip->batt_data->battery_type;
break;
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
val->intval = chip->last_ocv_uv;
break;
case POWER_SUPPLY_PROP_TEMP:
rc = get_batt_therm(chip, &value);
if (rc < 0)
value = BMS_DEFAULT_TEMP;
val->intval = value;
break;
case POWER_SUPPLY_PROP_HI_POWER:
val->intval = is_hi_power_state_requested(chip);
break;
case POWER_SUPPLY_PROP_LOW_POWER:
val->intval = !is_hi_power_state_requested(chip);
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
if (chip->dt.cfg_battery_aging_comp)
val->intval = chip->charge_cycles;
else
val->intval = -EINVAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int qpnp_vm_bms_power_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
int rc = 0;
struct qpnp_bms_chip *chip = container_of(psy,
struct qpnp_bms_chip, bms_psy);
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_NOW:
chip->current_now = val->intval;
pr_debug("IBATT = %d\n", val->intval);
break;
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
cancel_delayed_work_sync(&chip->monitor_soc_work);
chip->last_ocv_uv = val->intval;
pr_debug("OCV = %d\n", val->intval);
schedule_delayed_work(&chip->monitor_soc_work, 0);
break;
case POWER_SUPPLY_PROP_HI_POWER:
rc = qpnp_vm_bms_config_power_state(chip, val->intval, true);
if (rc)
pr_err("Unable to set power-state rc=%d\n", rc);
break;
case POWER_SUPPLY_PROP_LOW_POWER:
rc = qpnp_vm_bms_config_power_state(chip, val->intval, false);
if (rc)
pr_err("Unable to set power-state rc=%d\n", rc);
break;
default:
return -EINVAL;
}
return rc;
}
static void bms_new_battery_setup(struct qpnp_bms_chip *chip)
{
int rc;
mutex_lock(&chip->bms_data_mutex);
chip->last_soc_invalid = true;
/*
* disable and re-enable the BMS hardware to reset
* the realtime-FIFO data and restart accumulation
*/
rc = qpnp_masked_write_base(chip, chip->base + EN_CTL_REG,
BMS_EN_BIT, 0);
/* delay for the BMS hardware to reset its state */
msleep(200);
rc |= qpnp_masked_write_base(chip, chip->base + EN_CTL_REG,
BMS_EN_BIT, BMS_EN_BIT);
/* delay for the BMS hardware to re-start */
msleep(200);
if (rc)
pr_err("Unable to reset BMS rc=%d\n", rc);
chip->last_ocv_uv = estimate_ocv(chip);
memset(&chip->bms_data, 0, sizeof(chip->bms_data));
/* update the sequence number */
chip->bms_data.seq_num = chip->seq_num++;
/* signal the read thread */
chip->data_ready = 1;
wake_up_interruptible(&chip->bms_wait_q);
/* hold a wake lock until the read thread is scheduled */
if (chip->bms_dev_open)
pm_stay_awake(chip->dev);
mutex_unlock(&chip->bms_data_mutex);
/* reset aging variables */
if (chip->dt.cfg_battery_aging_comp) {
chip->charge_cycles = 0;
chip->charge_increase = 0;
rc = backup_charge_cycle(chip);
if (rc)
pr_err("Unable to reset aging data rc=%d\n", rc);
}
}
static void battery_insertion_check(struct qpnp_bms_chip *chip)
{
int present = (int)is_battery_present(chip);
if (chip->battery_present != present) {
pr_debug("shadow_sts=%d status=%d\n",
chip->battery_present, present);
if (chip->battery_present != -EINVAL) {
if (present) {
/* new battery inserted */
bms_new_battery_setup(chip);
setup_vbat_monitoring(chip);
pr_debug("New battery inserted!\n");
} else {
/* battery removed */
reset_vbat_monitoring(chip);
pr_debug("Battery removed\n");
}
}
chip->battery_present = present;
}
}
static void battery_status_check(struct qpnp_bms_chip *chip)
{
int status = get_battery_status(chip);
if (chip->battery_status != status) {
if (status == POWER_SUPPLY_STATUS_CHARGING) {
pr_debug("charging started\n");
charging_began(chip);
} else if (chip->battery_status ==
POWER_SUPPLY_STATUS_CHARGING) {
pr_debug("charging stopped\n");
charging_ended(chip);
}
if (status == POWER_SUPPLY_STATUS_FULL) {
pr_debug("battery full\n");
chip->battery_full = true;
} else if (chip->battery_status == POWER_SUPPLY_STATUS_FULL) {
pr_debug("battery not-full anymore\n");
chip->battery_full = false;
}
chip->battery_status = status;
}
}
#define HIGH_CURRENT_TH 2
static void reported_soc_check_status(struct qpnp_bms_chip *chip)
{
u8 present;
present = is_charger_present(chip);
pr_debug("usb_present=%d\n", present);
if (!present && !chip->charger_removed_since_full) {
chip->charger_removed_since_full = true;
pr_debug("reported_soc: charger removed since full\n");
return;
}
if (chip->reported_soc_high_current) {
pr_debug("reported_soc in high current mode, return\n");
return;
}
if ((chip->reported_soc - chip->last_soc) >
(100 - chip->dt.cfg_soc_resume_limit
+ HIGH_CURRENT_TH)) {
chip->reported_soc_high_current = true;
chip->charger_removed_since_full = true;
chip->charger_reinserted = false;
pr_debug("reported_soc enters high current mode\n");
return;
}
if (present && chip->charger_removed_since_full) {
chip->charger_reinserted = true;
pr_debug("reported_soc: charger reinserted\n");
}
if (!present && chip->charger_removed_since_full) {
chip->charger_reinserted = false;
pr_debug("reported_soc: charger removed again\n");
}
}
static void qpnp_vm_bms_ext_power_changed(struct power_supply *psy)
{
struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
bms_psy);
pr_debug("Triggered!\n");
battery_status_check(chip);
battery_insertion_check(chip);
if (chip->reported_soc_in_use)
reported_soc_check_status(chip);
}
static void dump_bms_data(const char *func, struct qpnp_bms_chip *chip)
{
int i;
pr_debug("%s: fifo_count=%d acc_count=%d seq_num=%d\n",
func, chip->bms_data.num_fifo,
chip->bms_data.acc_count,
chip->bms_data.seq_num);
for (i = 0; i < chip->bms_data.num_fifo; i++)
pr_debug("fifo=%d fifo_uv=%d sample_interval=%d sample_count=%d\n",
i, chip->bms_data.fifo_uv[i],
chip->bms_data.sample_interval_ms,
chip->bms_data.sample_count);
pr_debug("avg_acc_data=%d\n", chip->bms_data.acc_uv);
}
static int read_and_populate_fifo_data(struct qpnp_bms_chip *chip)
{
u8 fifo_count = 0, val = 0;
u8 fifo_data_raw[MAX_FIFO_REGS * 2];
u16 fifo_data;
int rc, i, j;
int64_t voltage_soc_avg = 0;
/* read the completed FIFO count */
rc = qpnp_read_wrapper(chip, &val, chip->base + STATUS2_REG, 1);
if (rc) {
pr_err("Unable to read STATUS2 register rc=%d\n", rc);
return rc;
}
fifo_count = (val & FIFO_CNT_SD_MASK) >> FIFO_CNT_SD_SHIFT;
pr_debug("fifo_count=%d\n", fifo_count);
if (!fifo_count) {
pr_debug("No data in FIFO\n");
return 0;
} else if (fifo_count > MAX_FIFO_REGS) {
pr_err("Invalid fifo-length %d rejecting data\n", fifo_count);
chip->bms_data.num_fifo = 0;
return 0;
}
/* read the FIFO data */
for (i = 0; i < fifo_count * 2; i++) {
rc = qpnp_read_wrapper(chip, &fifo_data_raw[i],
chip->base + FIFO_0_LSB_REG + i, 1);
if (rc) {
pr_err("Unable to read FIFO register(%d) rc=%d\n",
i, rc);
return rc;
}
}
/* populate the structure */
chip->bms_data.num_fifo = fifo_count;
rc = get_sample_interval(chip, chip->current_fsm_state,
&chip->bms_data.sample_interval_ms);
if (rc) {
pr_err("Unable to read state=%d sample_interval rc=%d\n",
chip->current_fsm_state, rc);
return rc;
}
rc = get_sample_count(chip, chip->current_fsm_state,
&chip->bms_data.sample_count);
if (rc) {
pr_err("Unable to read state=%d sample_count rc=%d\n",
chip->current_fsm_state, rc);
return rc;
}
for (i = 0, j = 0; i < fifo_count * 2; i = i + 2, j++) {
fifo_data = fifo_data_raw[i] | (fifo_data_raw[i + 1] << 8);
chip->bms_data.fifo_uv[j] = convert_vbatt_raw_to_uv(chip,
fifo_data, 0);
voltage_soc_avg += chip->bms_data.fifo_uv[j];
}
/* store the fifo average for voltage-based-soc */
chip->voltage_soc_uv = div_u64(voltage_soc_avg, fifo_count);
return 0;
}
static int read_and_populate_acc_data(struct qpnp_bms_chip *chip)
{
int rc;
u32 acc_data_sd = 0, acc_count_sd = 0, avg_acc_data = 0;
/* read ACC SD count */
rc = qpnp_read_wrapper(chip, (u8 *)&acc_count_sd,
chip->base + ACC_CNT_SD_REG, 1);
if (rc) {
pr_err("Unable to read ACC_CNT_SD_REG rc=%d\n", rc);
return rc;
}
if (!acc_count_sd) {
pr_debug("No data in accumulator\n");
return 0;
}
/* read ACC SD data */
rc = qpnp_read_wrapper(chip, (u8 *)&acc_data_sd,
chip->base + ACC_DATA0_SD_REG, 3);
if (rc) {
pr_err("Unable to read ACC_DATA0_SD_REG rc=%d\n", rc);
return rc;
}
avg_acc_data = div_u64(acc_data_sd, acc_count_sd);
chip->bms_data.acc_uv = convert_vbatt_raw_to_uv(chip,
avg_acc_data, 0);
chip->bms_data.acc_count = acc_count_sd;
rc = get_sample_interval(chip, chip->current_fsm_state,
&chip->bms_data.sample_interval_ms);
if (rc) {
pr_err("Unable to read state=%d sample_interval rc=%d\n",
chip->current_fsm_state, rc);
return rc;
}
rc = get_sample_count(chip, chip->current_fsm_state,
&chip->bms_data.sample_count);
if (rc) {
pr_err("Unable to read state=%d sample_count rc=%d\n",
chip->current_fsm_state, rc);
return rc;
}
return 0;
}
static int clear_fifo_acc_data(struct qpnp_bms_chip *chip)
{
int rc;
u8 reg = 0;
reg = FIFO_CNT_SD_CLR_BIT | ACC_DATA_SD_CLR_BIT | ACC_CNT_SD_CLR_BIT;
rc = qpnp_masked_write_base(chip, chip->base + DATA_CTL2_REG, reg, reg);
if (rc)
pr_err("Unable to write DATA_CTL2_REG rc=%d\n", rc);
return rc;
}
static irqreturn_t bms_fifo_update_done_irq_handler(int irq, void *_chip)
{
int rc;
struct qpnp_bms_chip *chip = _chip;
pr_debug("fifo_update_done triggered\n");
mutex_lock(&chip->bms_data_mutex);
if (chip->suspend_data_valid) {
pr_debug("Suspend data not processed yet\n");
goto fail_fifo;
}
rc = calib_vadc(chip);
if (rc)
pr_err("Unable to calibrate vadc rc=%d\n", rc);
/* clear old data */
memset(&chip->bms_data, 0, sizeof(chip->bms_data));
/*
* 1. Read FIFO and populate the bms_data
* 2. Clear FIFO data
* 3. Notify userspace
*/
rc = update_fsm_state(chip);
if (rc) {
pr_err("Unable to read FSM state rc=%d\n", rc);
goto fail_fifo;
}
pr_debug("fsm_state=%d\n", chip->current_fsm_state);
rc = read_and_populate_fifo_data(chip);
if (rc) {
pr_err("Unable to read FIFO data rc=%d\n", rc);
goto fail_fifo;
}
rc = clear_fifo_acc_data(chip);
if (rc)
pr_err("Unable to clear FIFO/ACC data rc=%d\n", rc);
/* update the sequence number */
chip->bms_data.seq_num = chip->seq_num++;
dump_bms_data(__func__, chip);
/* signal the read thread */
chip->data_ready = 1;
wake_up_interruptible(&chip->bms_wait_q);
/* hold a wake lock until the read thread is scheduled */
if (chip->bms_dev_open)
pm_stay_awake(chip->dev);
fail_fifo:
mutex_unlock(&chip->bms_data_mutex);
return IRQ_HANDLED;
}
static irqreturn_t bms_fsm_state_change_irq_handler(int irq, void *_chip)
{
int rc;
struct qpnp_bms_chip *chip = _chip;
pr_debug("fsm_state_changed triggered\n");
mutex_lock(&chip->bms_data_mutex);
if (chip->suspend_data_valid) {
pr_debug("Suspend data not processed yet\n");
goto fail_state;
}
rc = calib_vadc(chip);
if (rc)
pr_err("Unable to calibrate vadc rc=%d\n", rc);
/* clear old data */
memset(&chip->bms_data, 0, sizeof(chip->bms_data));
/*
* 1. Read FIFO and ACC_DATA and populate the bms_data
* 2. Clear FIFO & ACC data
* 3. Notify userspace
*/
pr_debug("prev_fsm_state=%d\n", chip->current_fsm_state);
rc = read_and_populate_fifo_data(chip);
if (rc) {
pr_err("Unable to read FIFO data rc=%d\n", rc);
goto fail_state;
}
/* read accumulator data */
rc = read_and_populate_acc_data(chip);
if (rc) {
pr_err("Unable to read ACC_SD data rc=%d\n", rc);
goto fail_state;
}
rc = update_fsm_state(chip);
if (rc) {
pr_err("Unable to read FSM state rc=%d\n", rc);
goto fail_state;
}
rc = clear_fifo_acc_data(chip);
if (rc)
pr_err("Unable to clear FIFO/ACC data rc=%d\n", rc);
/* update the sequence number */
chip->bms_data.seq_num = chip->seq_num++;
dump_bms_data(__func__, chip);
/* signal the read thread */
chip->data_ready = 1;
wake_up_interruptible(&chip->bms_wait_q);
/* hold a wake lock until the read thread is scheduled */
if (chip->bms_dev_open)
pm_stay_awake(chip->dev);
fail_state:
mutex_unlock(&chip->bms_data_mutex);
return IRQ_HANDLED;
}
static int read_shutdown_ocv_soc(struct qpnp_bms_chip *chip)
{
u8 stored_soc = 0;
u16 stored_ocv = 0;
int rc;
rc = qpnp_read_wrapper(chip, (u8 *)&stored_ocv,
chip->base + BMS_OCV_REG, 2);
if (rc) {
pr_err("failed to read addr = %d %d\n",
chip->base + BMS_OCV_REG, rc);
return -EINVAL;
}
/* if shutdwon ocv is invalid, reject shutdown soc too */
if (!stored_ocv || (stored_ocv == OCV_INVALID)) {
pr_debug("shutdown OCV %d - invalid\n", stored_ocv);
chip->shutdown_ocv = OCV_INVALID;
chip->shutdown_soc = SOC_INVALID;
return -EINVAL;
}
chip->shutdown_ocv = stored_ocv * 1000;
/*
* The previous SOC is stored in the first 7 bits of the register as
* (Shutdown SOC + 1). This allows for register reset values of both
* 0x00 and 0xFF.
*/
rc = qpnp_read_wrapper(chip, &stored_soc, chip->base + BMS_SOC_REG, 1);
if (rc) {
pr_err("failed to read addr = %d %d\n",
chip->base + BMS_SOC_REG, rc);
return -EINVAL;
}
if (!stored_soc || stored_soc == SOC_INVALID) {
chip->shutdown_soc = SOC_INVALID;
chip->shutdown_ocv = OCV_INVALID;
return -EINVAL;
} else {
chip->shutdown_soc = (stored_soc >> 1) - 1;
}
pr_debug("shutdown_ocv=%d shutdown_soc=%d\n",
chip->shutdown_ocv, chip->shutdown_soc);
return 0;
}
static int interpolate_current_comp(int die_temp)
{
int i;
int num_rows = ARRAY_SIZE(temp_curr_comp_lut);
if (die_temp <= (temp_curr_comp_lut[0].temp_decideg))
return temp_curr_comp_lut[0].current_ma;
if (die_temp >= (temp_curr_comp_lut[num_rows - 1].temp_decideg))
return temp_curr_comp_lut[num_rows - 1].current_ma;
for (i = 0; i < num_rows - 1; i++)
if (die_temp <= (temp_curr_comp_lut[i].temp_decideg))
break;
if (die_temp == (temp_curr_comp_lut[i].temp_decideg))
return temp_curr_comp_lut[i].current_ma;
return linear_interpolate(
temp_curr_comp_lut[i - 1].current_ma,
temp_curr_comp_lut[i - 1].temp_decideg,
temp_curr_comp_lut[i].current_ma,
temp_curr_comp_lut[i].temp_decideg,
die_temp);
}
static void adjust_pon_ocv(struct qpnp_bms_chip *chip, int batt_temp)
{
int rc, current_ma, rbatt_mohm, die_temp, delta_uv, pc;
struct qpnp_vadc_result result;
rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);
if (rc) {
pr_err("error reading adc channel=%d, rc=%d\n", DIE_TEMP, rc);
} else {
pc = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,
batt_temp, chip->last_ocv_uv / 1000);
/*
* For pc < 2, use the rbatt of pc = 2. This is to avoid
* the huge rbatt values at pc < 2 which can disrupt the pon_ocv
* calculations.
*/
if (pc < 2)
pc = 2;
rbatt_mohm = get_rbatt(chip, pc, batt_temp);
/* convert die_temp to DECIDEGC */
die_temp = (int)result.physical / 100;
current_ma = interpolate_current_comp(die_temp);
delta_uv = rbatt_mohm * current_ma;
pr_debug("PON OCV changed from %d to %d pc=%d rbatt=%d current_ma=%d die_temp=%d batt_temp=%d delta_uv=%d\n",
chip->last_ocv_uv, chip->last_ocv_uv + delta_uv, pc,
rbatt_mohm, current_ma, die_temp, batt_temp, delta_uv);
chip->last_ocv_uv += delta_uv;
}
}
static int calculate_initial_soc(struct qpnp_bms_chip *chip)
{
int rc, batt_temp = 0, est_ocv = 0;
rc = get_batt_therm(chip, &batt_temp);
if (rc < 0) {
pr_err("Unable to read batt temp, using default=%d\n",
BMS_DEFAULT_TEMP);
batt_temp = BMS_DEFAULT_TEMP;
}
rc = read_and_update_ocv(chip, batt_temp, true);
if (rc) {
pr_err("Unable to read PON OCV rc=%d\n", rc);
return rc;
}
rc = read_shutdown_ocv_soc(chip);
if (rc < 0 || chip->dt.cfg_ignore_shutdown_soc)
chip->shutdown_soc_invalid = true;
if (chip->warm_reset) {
/*
* if we have powered on from warm reset -
* Always use shutdown SOC. If shudown SOC is invalid then
* estimate OCV
*/
if (chip->shutdown_soc_invalid) {
pr_debug("Estimate OCV\n");
est_ocv = estimate_ocv(chip);
if (est_ocv <= 0) {
pr_err("Unable to estimate OCV rc=%d\n",
est_ocv);
return -EINVAL;
}
chip->last_ocv_uv = est_ocv;
chip->calculated_soc = lookup_soc_ocv(chip, est_ocv,
batt_temp);
} else {
chip->last_ocv_uv = chip->shutdown_ocv;
chip->last_soc = chip->shutdown_soc;
chip->calculated_soc = lookup_soc_ocv(chip,
chip->shutdown_ocv, batt_temp);
pr_debug("Using shutdown SOC\n");
}
} else {
/*
* In PM8916 2.0 PON OCV calculation is delayed due to
* change in the ordering of power-on sequence of LDO6.
* Adjust PON OCV to include current during PON.
*/
if (chip->workaround_flag & WRKARND_PON_OCV_COMP)
adjust_pon_ocv(chip, batt_temp);
/* !warm_reset use PON OCV only if shutdown SOC is invalid */
chip->calculated_soc = lookup_soc_ocv(chip,
chip->last_ocv_uv, batt_temp);
if (!chip->shutdown_soc_invalid &&
(abs(chip->shutdown_soc - chip->calculated_soc) <
chip->dt.cfg_shutdown_soc_valid_limit)) {
chip->last_ocv_uv = chip->shutdown_ocv;
chip->last_soc = chip->shutdown_soc;
chip->calculated_soc = lookup_soc_ocv(chip,
chip->shutdown_ocv, batt_temp);
pr_debug("Using shutdown SOC\n");
} else {
chip->shutdown_soc_invalid = true;
pr_debug("Using PON SOC\n");
}
}
/* store the start-up OCV for voltage-based-soc */
chip->voltage_soc_uv = chip->last_ocv_uv;
pr_info("warm_reset=%d est_ocv=%d shutdown_soc_invalid=%d shutdown_ocv=%d shutdown_soc=%d last_soc=%d calculated_soc=%d last_ocv_uv=%d\n",
chip->warm_reset, est_ocv, chip->shutdown_soc_invalid,
chip->shutdown_ocv, chip->shutdown_soc, chip->last_soc,
chip->calculated_soc, chip->last_ocv_uv);
return 0;
}
static int calculate_initial_aging_comp(struct qpnp_bms_chip *chip)
{
int rc;
bool battery_removed = is_battery_replaced_in_offmode(chip);
if (battery_removed || chip->shutdown_soc_invalid) {
pr_info("Clearing aging data battery_removed=%d shutdown_soc_invalid=%d\n",
battery_removed, chip->shutdown_soc_invalid);
chip->charge_cycles = 0;
chip->charge_increase = 0;
rc = backup_charge_cycle(chip);
if (rc)
pr_err("Unable to reset aging data rc=%d\n", rc);
} else {
rc = read_chgcycle_data_from_backup(chip);
if (rc)
pr_err("Unable to read aging data rc=%d\n", rc);
}
pr_debug("Initial aging data charge_cycles=%u charge_increase=%u\n",
chip->charge_cycles, chip->charge_increase);
return rc;
}
static int bms_load_hw_defaults(struct qpnp_bms_chip *chip)
{
u8 val, state, bms_en = 0;
u32 interval[2], count[2], fifo[2];
int rc;
/* S3 OCV tolerence threshold */
if (chip->dt.cfg_s3_ocv_tol_uv >= 0 &&
chip->dt.cfg_s3_ocv_tol_uv <= MAX_OCV_TOL_THRESHOLD) {
val = chip->dt.cfg_s3_ocv_tol_uv / OCV_TOL_LSB_UV;
rc = qpnp_masked_write_base(chip,
chip->base + S3_OCV_TOL_CTL_REG, 0xFF, val);
if (rc) {
pr_err("Unable to write s3_ocv_tol_threshold rc=%d\n",
rc);
return rc;
}
}
/* S1 accumulator threshold */
if (chip->dt.cfg_s1_sample_count >= 1 &&
chip->dt.cfg_s1_sample_count <= MAX_SAMPLE_COUNT) {
val = (chip->dt.cfg_s1_sample_count > 1) ?
(ilog2(chip->dt.cfg_s1_sample_count) - 1) : 0;
rc = qpnp_masked_write_base(chip,
chip->base + S1_ACC_CNT_REG,
ACC_CNT_MASK, val);
if (rc) {
pr_err("Unable to write s1 sample count rc=%d\n", rc);
return rc;
}
}
/* S2 accumulator threshold */
if (chip->dt.cfg_s2_sample_count >= 1 &&
chip->dt.cfg_s2_sample_count <= MAX_SAMPLE_COUNT) {
val = (chip->dt.cfg_s2_sample_count > 1) ?
(ilog2(chip->dt.cfg_s2_sample_count) - 1) : 0;
rc = qpnp_masked_write_base(chip,
chip->base + S2_ACC_CNT_REG,
ACC_CNT_MASK, val);
if (rc) {
pr_err("Unable to write s2 sample count rc=%d\n", rc);
return rc;
}
}
if (chip->dt.cfg_s1_sample_interval_ms >= 0 &&
chip->dt.cfg_s1_sample_interval_ms <= MAX_SAMPLE_INTERVAL) {
val = chip->dt.cfg_s1_sample_interval_ms / 10;
rc = qpnp_write_wrapper(chip, &val,
chip->base + S1_SAMPLE_INTVL_REG, 1);
if (rc) {
pr_err("Unable to write s1 sample inteval rc=%d\n", rc);
return rc;
}
}
if (chip->dt.cfg_s2_sample_interval_ms >= 0 &&
chip->dt.cfg_s2_sample_interval_ms <= MAX_SAMPLE_INTERVAL) {
val = chip->dt.cfg_s2_sample_interval_ms / 10;
rc = qpnp_write_wrapper(chip, &val,
chip->base + S2_SAMPLE_INTVL_REG, 1);
if (rc) {
pr_err("Unable to write s2 sample inteval rc=%d\n", rc);
return rc;
}
}
if (chip->dt.cfg_s1_fifo_length >= 0 &&
chip->dt.cfg_s1_fifo_length <= MAX_FIFO_REGS) {
rc = qpnp_masked_write_base(chip, chip->base + FIFO_LENGTH_REG,
S1_FIFO_LENGTH_MASK,
chip->dt.cfg_s1_fifo_length);
if (rc) {
pr_err("Unable to write s1 fifo length rc=%d\n", rc);
return rc;
}
}
if (chip->dt.cfg_s2_fifo_length >= 0 &&
chip->dt.cfg_s2_fifo_length <= MAX_FIFO_REGS) {
rc = qpnp_masked_write_base(chip, chip->base +
FIFO_LENGTH_REG, S2_FIFO_LENGTH_MASK,
chip->dt.cfg_s2_fifo_length
<< S2_FIFO_LENGTH_SHIFT);
if (rc) {
pr_err("Unable to write s2 fifo length rc=%d\n", rc);
return rc;
}
}
get_sample_interval(chip, S1_STATE, &interval[0]);
get_sample_interval(chip, S2_STATE, &interval[1]);
get_sample_count(chip, S1_STATE, &count[0]);
get_sample_count(chip, S2_STATE, &count[1]);
get_fifo_length(chip, S1_STATE, &fifo[0]);
get_fifo_length(chip, S2_STATE, &fifo[1]);
/* Force the BMS state to S2 at boot-up */
rc = get_fsm_state(chip, &state);
if (rc)
pr_err("Unable to get FSM state rc=%d\n", rc);
if (rc || (state != S2_STATE)) {
pr_debug("Forcing S2 state\n");
rc = force_fsm_state(chip, S2_STATE);
if (rc)
pr_err("Unable to set FSM state rc=%d\n", rc);
}
rc = qpnp_read_wrapper(chip, &bms_en, chip->base + EN_CTL_REG, 1);
if (rc) {
pr_err("Unable to read BMS_EN state rc=%d\n", rc);
return rc;
}
rc = update_fsm_state(chip);
if (rc) {
pr_err("Unable to read FSM state rc=%d\n", rc);
return rc;
}
pr_info("BMS_EN=%d Sample_Interval-S1=[%d]S2=[%d] Sample_Count-S1=[%d]S2=[%d] Fifo_Length-S1=[%d]S2=[%d] FSM_state=%d\n",
!!bms_en, interval[0], interval[1], count[0],
count[1], fifo[0], fifo[1],
chip->current_fsm_state);
return 0;
}
static ssize_t vm_bms_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
int rc;
struct qpnp_bms_chip *chip = file->private_data;
if (!chip->data_ready && (file->f_flags & O_NONBLOCK)) {
rc = -EAGAIN;
goto fail_read;
}
rc = wait_event_interruptible(chip->bms_wait_q, chip->data_ready);
if (rc) {
pr_debug("wait failed! rc=%d\n", rc);
goto fail_read;
}
if (!chip->data_ready) {
pr_debug("No Data, false wakeup\n");
rc = -EFAULT;
goto fail_read;
}
mutex_lock(&chip->bms_data_mutex);
if (copy_to_user(buf, &chip->bms_data, sizeof(chip->bms_data))) {
pr_err("Failed in copy_to_user\n");
mutex_unlock(&chip->bms_data_mutex);
rc = -EFAULT;
goto fail_read;
}
pr_debug("Data copied!!\n");
chip->data_ready = 0;
mutex_unlock(&chip->bms_data_mutex);
/* wakelock-timeout for userspace to pick up */
pm_wakeup_event(chip->dev, BMS_READ_TIMEOUT);
return sizeof(chip->bms_data);
fail_read: