blob: 8b7f80385b1bf5f372cb64fbb3d158f1f703f67a [file] [log] [blame]
/* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "CHG: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/spmi.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/interrupt.h>
#include <linux/power_supply.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/alarmtimer.h>
#include <linux/bitops.h>
#include <linux/leds.h>
#include <linux/debugfs.h>
#define CREATE_MASK(NUM_BITS, POS) \
((unsigned char) (((1 << (NUM_BITS)) - 1) << (POS)))
#define LBC_MASK(MSB_BIT, LSB_BIT) \
CREATE_MASK(MSB_BIT - LSB_BIT + 1, LSB_BIT)
/* Interrupt offsets */
#define INT_RT_STS_REG 0x10
#define FAST_CHG_ON_IRQ BIT(5)
#define OVERTEMP_ON_IRQ BIT(4)
#define BAT_TEMP_OK_IRQ BIT(1)
#define BATT_PRES_IRQ BIT(0)
/* USB CHARGER PATH peripheral register offsets */
#define USB_IN_VALID_MASK BIT(1)
#define USB_SUSP_REG 0x47
#define USB_SUSPEND_BIT BIT(0)
/* CHARGER peripheral register offset */
#define CHG_OPTION_REG 0x08
#define CHG_OPTION_MASK BIT(7)
#define CHG_STATUS_REG 0x09
#define CHG_VDD_LOOP_BIT BIT(1)
#define VINMIN_LOOP_BIT BIT(3)
#define CHG_VDD_MAX_REG 0x40
#define CHG_VDD_SAFE_REG 0x41
#define CHG_IBAT_MAX_REG 0x44
#define CHG_IBAT_SAFE_REG 0x45
#define CHG_VIN_MIN_REG 0x47
#define CHG_CTRL_REG 0x49
#define CHG_ENABLE BIT(7)
#define CHG_FORCE_BATT_ON BIT(0)
#define CHG_EN_MASK (BIT(7) | BIT(0))
#define CHG_FAILED_REG 0x4A
#define CHG_FAILED_BIT BIT(7)
#define CHG_VBAT_WEAK_REG 0x52
#define CHG_IBATTERM_EN_REG 0x5B
#define CHG_USB_ENUM_T_STOP_REG 0x4E
#define CHG_TCHG_MAX_EN_REG 0x60
#define CHG_TCHG_MAX_EN_BIT BIT(7)
#define CHG_TCHG_MAX_MASK LBC_MASK(6, 0)
#define CHG_TCHG_MAX_REG 0x61
#define CHG_WDOG_EN_REG 0x65
#define CHG_PERPH_RESET_CTRL3_REG 0xDA
#define CHG_COMP_OVR1 0xEE
#define CHG_VBAT_DET_OVR_MASK LBC_MASK(1, 0)
#define OVERRIDE_0 0x2
#define OVERRIDE_NONE 0x0
/* BATTIF peripheral register offset */
#define BAT_IF_PRES_STATUS_REG 0x08
#define BATT_PRES_MASK BIT(7)
#define BAT_IF_TEMP_STATUS_REG 0x09
#define BATT_TEMP_HOT_MASK BIT(6)
#define BATT_TEMP_COLD_MASK LBC_MASK(7, 6)
#define BATT_TEMP_OK_MASK BIT(7)
#define BAT_IF_VREF_BAT_THM_CTRL_REG 0x4A
#define VREF_BATT_THERM_FORCE_ON LBC_MASK(7, 6)
#define VREF_BAT_THM_ENABLED_FSM BIT(7)
#define BAT_IF_BPD_CTRL_REG 0x48
#define BATT_BPD_CTRL_SEL_MASK LBC_MASK(1, 0)
#define BATT_BPD_OFFMODE_EN BIT(3)
#define BATT_THM_EN BIT(1)
#define BATT_ID_EN BIT(0)
#define BAT_IF_BTC_CTRL 0x49
#define BTC_COMP_EN_MASK BIT(7)
#define BTC_COLD_MASK BIT(1)
#define BTC_HOT_MASK BIT(0)
#define BTC_COMP_OVERRIDE_REG 0xE5
/* MISC peripheral register offset */
#define MISC_REV2_REG 0x01
#define MISC_BOOT_DONE_REG 0x42
#define MISC_BOOT_DONE BIT(7)
#define MISC_TRIM3_REG 0xF3
#define MISC_TRIM3_VDD_MASK LBC_MASK(5, 4)
#define MISC_TRIM4_REG 0xF4
#define MISC_TRIM4_VDD_MASK BIT(4)
#define PERP_SUBTYPE_REG 0x05
#define SEC_ACCESS 0xD0
/* Linear peripheral subtype values */
#define LBC_CHGR_SUBTYPE 0x15
#define LBC_BAT_IF_SUBTYPE 0x16
#define LBC_USB_PTH_SUBTYPE 0x17
#define LBC_MISC_SUBTYPE 0x18
#define QPNP_CHG_I_MAX_MIN_90 90
/* Feature flags */
#define VDD_TRIM_SUPPORTED BIT(0)
#define QPNP_CHARGER_DEV_NAME "qcom,qpnp-linear-charger"
/* usb_interrupts */
struct qpnp_lbc_irq {
int irq;
unsigned long disabled;
bool is_wake;
};
enum {
USBIN_VALID = 0,
USB_OVER_TEMP,
USB_CHG_GONE,
BATT_PRES,
BATT_TEMPOK,
CHG_DONE,
CHG_FAILED,
CHG_FAST_CHG,
CHG_VBAT_DET_LO,
MAX_IRQS,
};
enum {
USER = BIT(0),
THERMAL = BIT(1),
CURRENT = BIT(2),
SOC = BIT(3),
PARALLEL = BIT(4),
};
enum bpd_type {
BPD_TYPE_BAT_ID,
BPD_TYPE_BAT_THM,
BPD_TYPE_BAT_THM_BAT_ID,
};
static const char * const bpd_label[] = {
[BPD_TYPE_BAT_ID] = "bpd_id",
[BPD_TYPE_BAT_THM] = "bpd_thm",
[BPD_TYPE_BAT_THM_BAT_ID] = "bpd_thm_id",
};
enum btc_type {
HOT_THD_25_PCT = 25,
HOT_THD_35_PCT = 35,
COLD_THD_70_PCT = 70,
COLD_THD_80_PCT = 80,
};
static u8 btc_value[] = {
[HOT_THD_25_PCT] = 0x0,
[HOT_THD_35_PCT] = BIT(0),
[COLD_THD_70_PCT] = 0x0,
[COLD_THD_80_PCT] = BIT(1),
};
static inline int get_bpd(const char *name)
{
int i = 0;
for (i = 0; i < ARRAY_SIZE(bpd_label); i++) {
if (strcmp(bpd_label[i], name) == 0)
return i;
}
return -EINVAL;
}
static enum power_supply_property msm_batt_power_props[] = {
POWER_SUPPLY_PROP_CHARGING_ENABLED,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_COOL_TEMP,
POWER_SUPPLY_PROP_WARM_TEMP,
POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL,
};
static char *pm_batt_supplied_to[] = {
"bms",
};
struct vddtrim_map {
int trim_uv;
int trim_val;
};
/*
* VDDTRIM is a 3 bit value which is split across two
* register TRIM3(bit 5:4) -> VDDTRIM bit(2:1)
* register TRIM4(bit 4) -> VDDTRIM bit(0)
*/
#define TRIM_CENTER 4
#define MAX_VDD_EA_TRIM_CFG 8
#define VDD_TRIM3_MASK LBC_MASK(2, 1)
#define VDD_TRIM3_SHIFT 3
#define VDD_TRIM4_MASK BIT(0)
#define VDD_TRIM4_SHIFT 4
#define AVG(VAL1, VAL2) ((VAL1 + VAL2) / 2)
/*
* VDDTRIM table containing map of trim voltage and
* corresponding trim value.
*/
struct vddtrim_map vddtrim_map[] = {
{36700, 0x00},
{28000, 0x01},
{19800, 0x02},
{10760, 0x03},
{0, 0x04},
{-8500, 0x05},
{-16800, 0x06},
{-25440, 0x07},
};
/*
* struct qpnp_lbc_chip - device information
* @dev: device pointer to access the parent
* @spmi: spmi pointer to access spmi information
* @chgr_base: charger peripheral base address
* @bat_if_base: battery interface peripheral base address
* @usb_chgpth_base: USB charge path peripheral base address
* @misc_base: misc peripheral base address
* @bat_is_cool: indicates that battery is cool
* @bat_is_warm: indicates that battery is warm
* @chg_done: indicates that charging is completed
* @usb_present: present status of USB
* @batt_present: present status of battery
* @cfg_charging_disabled: disable drawing current from USB.
* @cfg_use_fake_battery: flag to report default battery properties
* @fastchg_on: indicate charger in fast charge mode
* @cfg_btc_disabled: flag to disable btc (disables hot and cold
* irqs)
* @cfg_max_voltage_mv: the max volts the batt should be charged up to
* @cfg_min_voltage_mv: VIN_MIN configuration
* @cfg_batt_weak_voltage_uv: weak battery voltage threshold
* @cfg_warm_bat_chg_ma: warm battery maximum charge current in mA
* @cfg_cool_bat_chg_ma: cool battery maximum charge current in mA
* @cfg_safe_voltage_mv: safe voltage to which battery can charge
* @cfg_warm_bat_mv: warm temperature battery target voltage
* @cfg_warm_bat_mv: warm temperature battery target voltage
* @cfg_cool_bat_mv: cool temperature battery target voltage
* @cfg_soc_resume_limit: SOC at which battery resumes charging
* @cfg_float_charge: enable float charging
* @charger_disabled: maintain USB path state.
* @cfg_charger_detect_eoc: charger can detect end of charging
* @cfg_disable_vbatdet_based_recharge: keep VBATDET comparator overriden to
* low and VBATDET irq disabled.
* @cfg_chgr_led_support: support charger led work.
* @cfg_safe_current: battery safety current setting
* @cfg_hot_batt_p: hot battery threshold setting
* @cfg_cold_batt_p: eold battery threshold setting
* @cfg_warm_bat_decidegc: warm battery temperature in degree Celsius
* @cfg_cool_bat_decidegc: cool battery temperature in degree Celsius
* @fake_battery_soc: SOC value to be reported to userspace
* @cfg_tchg_mins: maximum allowed software initiated charge time
* @chg_failed_count: counter to maintained number of times charging
* failed
* @cfg_bpd_detection: battery present detection mechanism selection
* @cfg_thermal_levels: amount of thermal mitigation levels
* @cfg_thermal_mitigation: thermal mitigation level values
* @therm_lvl_sel: thermal mitigation level selection
* @jeita_configure_lock: lock to serialize jeita configuration request
* @hw_access_lock: lock to serialize access to charger registers
* @ibat_change_lock: lock to serialize ibat change requests from
* USB and thermal.
* @irq_lock lock to serialize enabling/disabling of irq
* @supported_feature_flag bitmask for all supported features
* @vddtrim_alarm alarm to schedule trim work at regular
* interval
* @vddtrim_work work to perform actual vddmax trimming
* @init_trim_uv initial trim voltage at bootup
* @delta_vddmax_uv current vddmax trim voltage
* @chg_enable_lock: lock to serialize charging enable/disable for
* SOC based resume charging
* @usb_psy: power supply to export information to
* userspace
* @bms_psy: power supply to export information to
* userspace
* @batt_psy: power supply to export information to
* userspace
*/
struct qpnp_lbc_chip {
struct device *dev;
struct spmi_device *spmi;
u16 chgr_base;
u16 bat_if_base;
u16 usb_chgpth_base;
u16 misc_base;
bool bat_is_cool;
bool bat_is_warm;
bool chg_done;
bool usb_present;
bool batt_present;
bool cfg_charging_disabled;
bool cfg_btc_disabled;
bool cfg_use_fake_battery;
bool fastchg_on;
bool cfg_use_external_charger;
bool cfg_chgr_led_support;
bool cfg_bms_controlled_charging;
unsigned int cfg_warm_bat_chg_ma;
unsigned int cfg_cool_bat_chg_ma;
unsigned int cfg_safe_voltage_mv;
unsigned int cfg_max_voltage_mv;
unsigned int cfg_min_voltage_mv;
unsigned int cfg_charger_detect_eoc;
unsigned int cfg_disable_vbatdet_based_recharge;
unsigned int cfg_batt_weak_voltage_uv;
unsigned int cfg_warm_bat_mv;
unsigned int cfg_cool_bat_mv;
unsigned int cfg_hot_batt_p;
unsigned int cfg_cold_batt_p;
unsigned int cfg_thermal_levels;
unsigned int therm_lvl_sel;
unsigned int *thermal_mitigation;
unsigned int cfg_safe_current;
unsigned int cfg_tchg_mins;
unsigned int chg_failed_count;
unsigned int supported_feature_flag;
int cfg_bpd_detection;
int cfg_warm_bat_decidegc;
int cfg_cool_bat_decidegc;
int fake_battery_soc;
int cfg_soc_resume_limit;
int cfg_float_charge;
int charger_disabled;
int prev_max_ma;
int usb_psy_ma;
int delta_vddmax_uv;
int init_trim_uv;
/* parallel-chg params */
int parallel_charging_enabled;
int lbc_max_chg_current;
int ichg_now;
struct alarm vddtrim_alarm;
struct work_struct vddtrim_work;
struct qpnp_lbc_irq irqs[MAX_IRQS];
struct mutex jeita_configure_lock;
struct mutex chg_enable_lock;
spinlock_t ibat_change_lock;
spinlock_t hw_access_lock;
spinlock_t irq_lock;
struct power_supply *usb_psy;
struct power_supply *bms_psy;
struct power_supply batt_psy;
struct qpnp_adc_tm_btm_param adc_param;
struct qpnp_vadc_chip *vadc_dev;
struct qpnp_adc_tm_chip *adc_tm_dev;
struct led_classdev led_cdev;
struct dentry *debug_root;
/* parallel-chg params */
struct power_supply parallel_psy;
struct delayed_work parallel_work;
};
static void qpnp_lbc_enable_irq(struct qpnp_lbc_chip *chip,
struct qpnp_lbc_irq *irq)
{
unsigned long flags;
spin_lock_irqsave(&chip->irq_lock, flags);
if (__test_and_clear_bit(0, &irq->disabled)) {
pr_debug("number = %d\n", irq->irq);
enable_irq(irq->irq);
if (irq->is_wake)
enable_irq_wake(irq->irq);
}
spin_unlock_irqrestore(&chip->irq_lock, flags);
}
static void qpnp_lbc_disable_irq(struct qpnp_lbc_chip *chip,
struct qpnp_lbc_irq *irq)
{
unsigned long flags;
spin_lock_irqsave(&chip->irq_lock, flags);
if (!__test_and_set_bit(0, &irq->disabled)) {
pr_debug("number = %d\n", irq->irq);
disable_irq_nosync(irq->irq);
if (irq->is_wake)
disable_irq_wake(irq->irq);
}
spin_unlock_irqrestore(&chip->irq_lock, flags);
}
static int __qpnp_lbc_read(struct spmi_device *spmi, u16 base,
u8 *val, int count)
{
int rc = 0;
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count);
if (rc)
pr_err("SPMI read failed base=0x%02x sid=0x%02x rc=%d\n",
base, spmi->sid, rc);
return rc;
}
static int __qpnp_lbc_write(struct spmi_device *spmi, u16 base,
u8 *val, int count)
{
int rc;
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val,
count);
if (rc)
pr_err("SPMI write failed base=0x%02x sid=0x%02x rc=%d\n",
base, spmi->sid, rc);
return rc;
}
static int __qpnp_lbc_secure_write(struct spmi_device *spmi, u16 base,
u16 offset, u8 *val, int count)
{
int rc;
u8 reg_val;
reg_val = 0xA5;
rc = __qpnp_lbc_write(spmi, base + SEC_ACCESS, &reg_val, 1);
if (rc) {
pr_err("SPMI read failed base=0x%02x sid=0x%02x rc=%d\n",
base + SEC_ACCESS, spmi->sid, rc);
return rc;
}
rc = __qpnp_lbc_write(spmi, base + offset, val, 1);
if (rc)
pr_err("SPMI write failed base=0x%02x sid=0x%02x rc=%d\n",
base + SEC_ACCESS, spmi->sid, rc);
return rc;
}
static int qpnp_lbc_read(struct qpnp_lbc_chip *chip, u16 base,
u8 *val, int count)
{
int rc = 0;
struct spmi_device *spmi = chip->spmi;
unsigned long flags;
if (base == 0) {
pr_err("base cannot be zero base=0x%02x sid=0x%02x rc=%d\n",
base, spmi->sid, rc);
return -EINVAL;
}
spin_lock_irqsave(&chip->hw_access_lock, flags);
rc = __qpnp_lbc_read(spmi, base, val, count);
spin_unlock_irqrestore(&chip->hw_access_lock, flags);
return rc;
}
static int qpnp_lbc_write(struct qpnp_lbc_chip *chip, u16 base,
u8 *val, int count)
{
int rc = 0;
struct spmi_device *spmi = chip->spmi;
unsigned long flags;
if (base == 0) {
pr_err("base cannot be zero base=0x%02x sid=0x%02x rc=%d\n",
base, spmi->sid, rc);
return -EINVAL;
}
spin_lock_irqsave(&chip->hw_access_lock, flags);
rc = __qpnp_lbc_write(spmi, base, val, count);
spin_unlock_irqrestore(&chip->hw_access_lock, flags);
return rc;
}
static int qpnp_lbc_masked_write(struct qpnp_lbc_chip *chip, u16 base,
u8 mask, u8 val)
{
int rc;
u8 reg_val;
struct spmi_device *spmi = chip->spmi;
unsigned long flags;
spin_lock_irqsave(&chip->hw_access_lock, flags);
rc = __qpnp_lbc_read(spmi, base, &reg_val, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n", base, rc);
goto out;
}
pr_debug("addr = 0x%x read 0x%x\n", base, reg_val);
reg_val &= ~mask;
reg_val |= val & mask;
pr_debug("writing to base=%x val=%x\n", base, reg_val);
rc = __qpnp_lbc_write(spmi, base, &reg_val, 1);
if (rc)
pr_err("spmi write failed: addr=%03X, rc=%d\n", base, rc);
out:
spin_unlock_irqrestore(&chip->hw_access_lock, flags);
return rc;
}
static int __qpnp_lbc_secure_masked_write(struct spmi_device *spmi, u16 base,
u16 offset, u8 mask, u8 val)
{
int rc;
u8 reg_val, reg_val1;
rc = __qpnp_lbc_read(spmi, base + offset, &reg_val, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n", base, rc);
return rc;
}
pr_debug("addr = 0x%x read 0x%x\n", base, reg_val);
reg_val &= ~mask;
reg_val |= val & mask;
pr_debug("writing to base=%x val=%x\n", base, reg_val);
reg_val1 = 0xA5;
rc = __qpnp_lbc_write(spmi, base + SEC_ACCESS, &reg_val1, 1);
if (rc) {
pr_err("SPMI read failed base=0x%02x sid=0x%02x rc=%d\n",
base + SEC_ACCESS, spmi->sid, rc);
return rc;
}
rc = __qpnp_lbc_write(spmi, base + offset, &reg_val, 1);
if (rc) {
pr_err("SPMI write failed base=0x%02x sid=0x%02x rc=%d\n",
base + offset, spmi->sid, rc);
return rc;
}
return rc;
}
static int qpnp_lbc_get_trim_voltage(u8 trim_reg)
{
int i;
for (i = 0; i < MAX_VDD_EA_TRIM_CFG; i++)
if (trim_reg == vddtrim_map[i].trim_val)
return vddtrim_map[i].trim_uv;
pr_err("Invalid trim reg reg_val=%x\n", trim_reg);
return -EINVAL;
}
static u8 qpnp_lbc_get_trim_val(struct qpnp_lbc_chip *chip)
{
int i, sign;
int delta_uv;
sign = (chip->delta_vddmax_uv >= 0) ? -1 : 1;
switch (sign) {
case -1:
for (i = TRIM_CENTER; i >= 0; i--) {
if (vddtrim_map[i].trim_uv > chip->delta_vddmax_uv) {
delta_uv = AVG(vddtrim_map[i].trim_uv,
vddtrim_map[i + 1].trim_uv);
if (chip->delta_vddmax_uv >= delta_uv)
return vddtrim_map[i].trim_val;
else
return vddtrim_map[i + 1].trim_val;
}
}
break;
case 1:
for (i = TRIM_CENTER; i <= 7; i++) {
if (vddtrim_map[i].trim_uv < chip->delta_vddmax_uv) {
delta_uv = AVG(vddtrim_map[i].trim_uv,
vddtrim_map[i - 1].trim_uv);
if (chip->delta_vddmax_uv >= delta_uv)
return vddtrim_map[i - 1].trim_val;
else
return vddtrim_map[i].trim_val;
}
}
break;
}
return vddtrim_map[i].trim_val;
}
static int qpnp_lbc_is_usb_chg_plugged_in(struct qpnp_lbc_chip *chip)
{
u8 usbin_valid_rt_sts;
int rc;
rc = qpnp_lbc_read(chip, chip->usb_chgpth_base + INT_RT_STS_REG,
&usbin_valid_rt_sts, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
chip->usb_chgpth_base + INT_RT_STS_REG, rc);
return rc;
}
pr_debug("rt_sts 0x%x\n", usbin_valid_rt_sts);
return (usbin_valid_rt_sts & USB_IN_VALID_MASK) ? 1 : 0;
}
static int qpnp_lbc_charger_enable(struct qpnp_lbc_chip *chip, int reason,
int enable)
{
int disabled = chip->charger_disabled;
u8 reg_val;
int rc = 0;
pr_debug("reason=%d requested_enable=%d disabled_status=%d\n",
reason, enable, disabled);
if (enable)
disabled &= ~reason;
else
disabled |= reason;
if (!!chip->charger_disabled == !!disabled)
goto skip;
reg_val = !!disabled ? CHG_FORCE_BATT_ON : CHG_ENABLE;
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + CHG_CTRL_REG,
CHG_EN_MASK, reg_val);
if (rc) {
pr_err("Failed to %s charger rc=%d\n",
reg_val ? "enable" : "disable", rc);
return rc;
}
skip:
chip->charger_disabled = disabled;
return rc;
}
static int qpnp_lbc_is_batt_present(struct qpnp_lbc_chip *chip)
{
u8 batt_pres_rt_sts;
int rc;
rc = qpnp_lbc_read(chip, chip->bat_if_base + INT_RT_STS_REG,
&batt_pres_rt_sts, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
chip->bat_if_base + INT_RT_STS_REG, rc);
return rc;
}
return (batt_pres_rt_sts & BATT_PRES_IRQ) ? 1 : 0;
}
static int qpnp_lbc_bat_if_configure_btc(struct qpnp_lbc_chip *chip)
{
u8 btc_cfg = 0, mask = 0, rc;
/* Do nothing if battery peripheral not present */
if (!chip->bat_if_base)
return 0;
if ((chip->cfg_hot_batt_p == HOT_THD_25_PCT)
|| (chip->cfg_hot_batt_p == HOT_THD_35_PCT)) {
btc_cfg |= btc_value[chip->cfg_hot_batt_p];
mask |= BTC_HOT_MASK;
}
if ((chip->cfg_cold_batt_p == COLD_THD_70_PCT) ||
(chip->cfg_cold_batt_p == COLD_THD_80_PCT)) {
btc_cfg |= btc_value[chip->cfg_cold_batt_p];
mask |= BTC_COLD_MASK;
}
if (!chip->cfg_btc_disabled) {
mask |= BTC_COMP_EN_MASK;
btc_cfg |= BTC_COMP_EN_MASK;
}
pr_debug("BTC configuration mask=%x\n", btc_cfg);
rc = qpnp_lbc_masked_write(chip,
chip->bat_if_base + BAT_IF_BTC_CTRL,
mask, btc_cfg);
if (rc)
pr_err("Failed to configure BTC rc=%d\n", rc);
return rc;
}
#define QPNP_LBC_VBATWEAK_MIN_UV 3000000
#define QPNP_LBC_VBATWEAK_MAX_UV 3581250
#define QPNP_LBC_VBATWEAK_STEP_UV 18750
static int qpnp_lbc_vbatweak_set(struct qpnp_lbc_chip *chip, int voltage)
{
u8 reg_val;
int rc;
if (voltage < QPNP_LBC_VBATWEAK_MIN_UV ||
voltage > QPNP_LBC_VBATWEAK_MAX_UV) {
rc = -EINVAL;
} else {
reg_val = (voltage - QPNP_LBC_VBATWEAK_MIN_UV) /
QPNP_LBC_VBATWEAK_STEP_UV;
pr_debug("VBAT_WEAK=%d setting %02x\n",
chip->cfg_batt_weak_voltage_uv, reg_val);
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_VBAT_WEAK_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to set VBAT_WEAK rc=%d\n", rc);
}
return rc;
}
#define QPNP_LBC_VBAT_MIN_MV 4000
#define QPNP_LBC_VBAT_MAX_MV 4775
#define QPNP_LBC_VBAT_STEP_MV 25
static int qpnp_lbc_vddsafe_set(struct qpnp_lbc_chip *chip, int voltage)
{
u8 reg_val;
int rc;
if (voltage < QPNP_LBC_VBAT_MIN_MV
|| voltage > QPNP_LBC_VBAT_MAX_MV) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
reg_val = (voltage - QPNP_LBC_VBAT_MIN_MV) / QPNP_LBC_VBAT_STEP_MV;
pr_debug("voltage=%d setting %02x\n", voltage, reg_val);
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_VDD_SAFE_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to set VDD_SAFE rc=%d\n", rc);
return rc;
}
static int qpnp_lbc_vddmax_set(struct qpnp_lbc_chip *chip, int voltage)
{
u8 reg_val;
int rc, trim_val;
unsigned long flags;
if (voltage < QPNP_LBC_VBAT_MIN_MV
|| voltage > QPNP_LBC_VBAT_MAX_MV) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
spin_lock_irqsave(&chip->hw_access_lock, flags);
reg_val = (voltage - QPNP_LBC_VBAT_MIN_MV) / QPNP_LBC_VBAT_STEP_MV;
pr_debug("voltage=%d setting %02x\n", voltage, reg_val);
rc = __qpnp_lbc_write(chip->spmi, chip->chgr_base + CHG_VDD_MAX_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to set VDD_MAX rc=%d\n", rc);
goto out;
}
/* Update trim value */
if (chip->supported_feature_flag & VDD_TRIM_SUPPORTED) {
trim_val = qpnp_lbc_get_trim_val(chip);
reg_val = (trim_val & VDD_TRIM3_MASK) << VDD_TRIM3_SHIFT;
rc = __qpnp_lbc_secure_masked_write(chip->spmi,
chip->misc_base, MISC_TRIM3_REG,
MISC_TRIM3_VDD_MASK, reg_val);
if (rc) {
pr_err("Failed to set MISC_TRIM3_REG rc=%d\n", rc);
goto out;
}
reg_val = (trim_val & VDD_TRIM4_MASK) << VDD_TRIM4_SHIFT;
rc = __qpnp_lbc_secure_masked_write(chip->spmi,
chip->misc_base, MISC_TRIM4_REG,
MISC_TRIM4_VDD_MASK, reg_val);
if (rc) {
pr_err("Failed to set MISC_TRIM4_REG rc=%d\n", rc);
goto out;
}
chip->delta_vddmax_uv = qpnp_lbc_get_trim_voltage(trim_val);
if (chip->delta_vddmax_uv == -EINVAL) {
pr_err("Invalid trim voltage=%d\n",
chip->delta_vddmax_uv);
rc = -EINVAL;
goto out;
}
pr_debug("VDD_MAX delta=%d trim value=%x\n",
chip->delta_vddmax_uv, trim_val);
}
out:
spin_unlock_irqrestore(&chip->hw_access_lock, flags);
return rc;
}
static int qpnp_lbc_set_appropriate_vddmax(struct qpnp_lbc_chip *chip)
{
int rc;
if (chip->bat_is_cool)
rc = qpnp_lbc_vddmax_set(chip, chip->cfg_cool_bat_mv);
else if (chip->bat_is_warm)
rc = qpnp_lbc_vddmax_set(chip, chip->cfg_warm_bat_mv);
else
rc = qpnp_lbc_vddmax_set(chip, chip->cfg_max_voltage_mv);
if (rc)
pr_err("Failed to set appropriate vddmax rc=%d\n", rc);
return rc;
}
#define QPNP_LBC_MIN_DELTA_UV 13000
static void qpnp_lbc_adjust_vddmax(struct qpnp_lbc_chip *chip, int vbat_uv)
{
int delta_uv, prev_delta_uv, rc;
prev_delta_uv = chip->delta_vddmax_uv;
delta_uv = (int)(chip->cfg_max_voltage_mv * 1000) - vbat_uv;
/*
* If delta_uv is positive, apply trim if delta_uv > 13mv
* If delta_uv is negative always apply trim.
*/
if (delta_uv > 0 && delta_uv < QPNP_LBC_MIN_DELTA_UV) {
pr_debug("vbat is not low enough to increase vdd\n");
return;
}
pr_debug("vbat=%d current delta_uv=%d prev delta_vddmax_uv=%d\n",
vbat_uv, delta_uv, chip->delta_vddmax_uv);
chip->delta_vddmax_uv = delta_uv + chip->delta_vddmax_uv;
pr_debug("new delta_vddmax_uv %d\n", chip->delta_vddmax_uv);
rc = qpnp_lbc_set_appropriate_vddmax(chip);
if (rc) {
pr_err("Failed to set appropriate vddmax rc=%d\n", rc);
chip->delta_vddmax_uv = prev_delta_uv;
}
}
#define QPNP_LBC_VINMIN_MIN_MV 4200
#define QPNP_LBC_VINMIN_MAX_MV 5037
#define QPNP_LBC_VINMIN_STEP_MV 27
static int qpnp_lbc_vinmin_set(struct qpnp_lbc_chip *chip, int voltage)
{
u8 reg_val;
int rc;
if ((voltage < QPNP_LBC_VINMIN_MIN_MV)
|| (voltage > QPNP_LBC_VINMIN_MAX_MV)) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
reg_val = (voltage - QPNP_LBC_VINMIN_MIN_MV) / QPNP_LBC_VINMIN_STEP_MV;
pr_debug("VIN_MIN=%d setting %02x\n", voltage, reg_val);
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_VIN_MIN_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to set VIN_MIN rc=%d\n", rc);
return rc;
}
#define QPNP_LBC_IBATSAFE_MIN_MA 90
#define QPNP_LBC_IBATSAFE_MAX_MA 1440
#define QPNP_LBC_I_STEP_MA 90
static int qpnp_lbc_ibatsafe_set(struct qpnp_lbc_chip *chip, int safe_current)
{
u8 reg_val;
int rc;
if (safe_current < QPNP_LBC_IBATSAFE_MIN_MA
|| safe_current > QPNP_LBC_IBATSAFE_MAX_MA) {
pr_err("bad mA=%d asked to set\n", safe_current);
return -EINVAL;
}
reg_val = (safe_current - QPNP_LBC_IBATSAFE_MIN_MA)
/ QPNP_LBC_I_STEP_MA;
pr_debug("Ibate_safe=%d setting %02x\n", safe_current, reg_val);
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_IBAT_SAFE_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to set IBAT_SAFE rc=%d\n", rc);
return rc;
}
#define QPNP_LBC_IBATMAX_MIN 90
#define QPNP_LBC_IBATMAX_MAX 1440
/*
* Set maximum current limit from charger
* ibat = System current + charging current
*/
static int qpnp_lbc_ibatmax_set(struct qpnp_lbc_chip *chip, int chg_current)
{
u8 reg_val;
int rc;
if (chg_current > QPNP_LBC_IBATMAX_MAX)
pr_debug("bad mA=%d clamping current\n", chg_current);
chg_current = clamp(chg_current, QPNP_LBC_IBATMAX_MIN,
QPNP_LBC_IBATMAX_MAX);
reg_val = (chg_current - QPNP_LBC_IBATMAX_MIN) / QPNP_LBC_I_STEP_MA;
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_IBAT_MAX_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to set IBAT_MAX rc=%d\n", rc);
else
chip->prev_max_ma = chg_current;
return rc;
}
#define QPNP_LBC_TCHG_MIN 4
#define QPNP_LBC_TCHG_MAX 512
#define QPNP_LBC_TCHG_STEP 4
static int qpnp_lbc_tchg_max_set(struct qpnp_lbc_chip *chip, int minutes)
{
u8 reg_val = 0;
int rc;
/* Disable timer */
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + CHG_TCHG_MAX_EN_REG,
CHG_TCHG_MAX_EN_BIT, 0);
if (rc) {
pr_err("Failed to write tchg_max_en rc=%d\n", rc);
return rc;
}
/* If minutes is 0, just disable timer */
if (!minutes) {
pr_debug("Charger safety timer disabled\n");
return rc;
}
minutes = clamp(minutes, QPNP_LBC_TCHG_MIN, QPNP_LBC_TCHG_MAX);
reg_val = (minutes / QPNP_LBC_TCHG_STEP) - 1;
pr_debug("TCHG_MAX=%d mins setting %x\n", minutes, reg_val);
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + CHG_TCHG_MAX_REG,
CHG_TCHG_MAX_MASK, reg_val);
if (rc) {
pr_err("Failed to write tchg_max_reg rc=%d\n", rc);
return rc;
}
/* Enable timer */
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + CHG_TCHG_MAX_EN_REG,
CHG_TCHG_MAX_EN_BIT, CHG_TCHG_MAX_EN_BIT);
if (rc) {
pr_err("Failed to write tchg_max_en rc=%d\n", rc);
return rc;
}
return rc;
}
#define LBC_CHGR_LED 0x4D
#define CHGR_LED_ON BIT(0)
#define CHGR_LED_OFF 0x0
#define CHGR_LED_STAT_MASK LBC_MASK(1, 0)
static void qpnp_lbc_chgr_led_brightness_set(struct led_classdev *cdev,
enum led_brightness value)
{
struct qpnp_lbc_chip *chip = container_of(cdev, struct qpnp_lbc_chip,
led_cdev);
u8 reg;
int rc;
if (value > LED_FULL)
value = LED_FULL;
pr_debug("set the charger led brightness to value=%d\n", value);
reg = (value > LED_OFF) ? CHGR_LED_ON : CHGR_LED_OFF;
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + LBC_CHGR_LED,
CHGR_LED_STAT_MASK, reg);
if (rc)
pr_err("Failed to write charger led rc=%d\n", rc);
}
static enum
led_brightness qpnp_lbc_chgr_led_brightness_get(struct led_classdev *cdev)
{
struct qpnp_lbc_chip *chip = container_of(cdev, struct qpnp_lbc_chip,
led_cdev);
u8 reg_val, chgr_led_sts;
int rc;
rc = qpnp_lbc_read(chip, chip->chgr_base + LBC_CHGR_LED,
&reg_val, 1);
if (rc) {
pr_err("Failed to read charger led rc=%d\n", rc);
return rc;
}
chgr_led_sts = reg_val & CHGR_LED_STAT_MASK;
pr_debug("charger led brightness chgr_led_sts=%d\n", chgr_led_sts);
return (chgr_led_sts == CHGR_LED_ON) ? LED_FULL : LED_OFF;
}
static int qpnp_lbc_register_chgr_led(struct qpnp_lbc_chip *chip)
{
int rc;
chip->led_cdev.name = "red";
chip->led_cdev.brightness_set = qpnp_lbc_chgr_led_brightness_set;
chip->led_cdev.brightness_get = qpnp_lbc_chgr_led_brightness_get;
rc = led_classdev_register(chip->dev, &chip->led_cdev);
if (rc)
dev_err(chip->dev, "unable to register charger led, rc=%d\n",
rc);
return rc;
};
static int is_vinmin_set(struct qpnp_lbc_chip *chip)
{
u8 reg;
int rc;
rc = qpnp_lbc_read(chip, chip->chgr_base + CHG_STATUS_REG, &reg, 1);
if (rc) {
pr_err("Unable to read charger status rc=%d\n", rc);
return false;
}
pr_debug("chg_status=0x%x\n", reg);
return !!(reg & VINMIN_LOOP_BIT);
}
static int qpnp_lbc_vbatdet_override(struct qpnp_lbc_chip *chip, int ovr_val)
{
int rc;
u8 reg_val;
struct spmi_device *spmi = chip->spmi;
unsigned long flags;
spin_lock_irqsave(&chip->hw_access_lock, flags);
rc = __qpnp_lbc_read(spmi, chip->chgr_base + CHG_COMP_OVR1,
&reg_val, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
chip->chgr_base, rc);
goto out;
}
pr_debug("addr = 0x%x read 0x%x\n", chip->chgr_base, reg_val);
reg_val &= ~CHG_VBAT_DET_OVR_MASK;
reg_val |= ovr_val & CHG_VBAT_DET_OVR_MASK;
pr_debug("writing to base=%x val=%x\n", chip->chgr_base, reg_val);
rc = __qpnp_lbc_secure_write(spmi, chip->chgr_base, CHG_COMP_OVR1,
&reg_val, 1);
if (rc)
pr_err("spmi write failed: addr=%03X, rc=%d\n",
chip->chgr_base, rc);
out:
spin_unlock_irqrestore(&chip->hw_access_lock, flags);
return rc;
}
static int get_prop_battery_voltage_now(struct qpnp_lbc_chip *chip)
{
int rc = 0;
struct qpnp_vadc_result results;
rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &results);
if (rc) {
pr_err("Unable to read vbat rc=%d\n", rc);
return 0;
}
return results.physical;
}
static int get_prop_batt_present(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
rc = qpnp_lbc_read(chip, chip->bat_if_base + BAT_IF_PRES_STATUS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read battery status read failed rc=%d\n",
rc);
return 0;
}
return (reg_val & BATT_PRES_MASK) ? 1 : 0;
}
static int get_prop_batt_health(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
rc = qpnp_lbc_read(chip, chip->bat_if_base + BAT_IF_TEMP_STATUS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read battery health rc=%d\n", rc);
return POWER_SUPPLY_HEALTH_UNKNOWN;
}
if (BATT_TEMP_HOT_MASK & reg_val)
return POWER_SUPPLY_HEALTH_OVERHEAT;
if (!(BATT_TEMP_COLD_MASK & reg_val))
return POWER_SUPPLY_HEALTH_COLD;
if (chip->bat_is_cool)
return POWER_SUPPLY_HEALTH_COOL;
if (chip->bat_is_warm)
return POWER_SUPPLY_HEALTH_WARM;
return POWER_SUPPLY_HEALTH_GOOD;
}
static int get_prop_charge_type(struct qpnp_lbc_chip *chip)
{
int rc;
u8 reg_val;
if (!get_prop_batt_present(chip))
return POWER_SUPPLY_CHARGE_TYPE_NONE;
rc = qpnp_lbc_read(chip, chip->chgr_base + INT_RT_STS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read interrupt sts %d\n", rc);
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
if (reg_val & FAST_CHG_ON_IRQ)
return POWER_SUPPLY_CHARGE_TYPE_FAST;
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
static int get_prop_batt_status(struct qpnp_lbc_chip *chip)
{
int rc;
u8 reg_val;
if (qpnp_lbc_is_usb_chg_plugged_in(chip) && chip->chg_done)
return POWER_SUPPLY_STATUS_FULL;
rc = qpnp_lbc_read(chip, chip->chgr_base + INT_RT_STS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read interrupt sts rc= %d\n", rc);
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
if (reg_val & FAST_CHG_ON_IRQ)
return POWER_SUPPLY_STATUS_CHARGING;
return POWER_SUPPLY_STATUS_DISCHARGING;
}
static int get_prop_current_now(struct qpnp_lbc_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->bms_psy) {
chip->bms_psy->get_property(chip->bms_psy,
POWER_SUPPLY_PROP_CURRENT_NOW, &ret);
return ret.intval;
} else {
pr_debug("No BMS supply registered return 0\n");
}
return 0;
}
#define DEFAULT_CAPACITY 50
static int get_prop_capacity(struct qpnp_lbc_chip *chip)
{
union power_supply_propval ret = {0,};
int soc, battery_status, charger_in;
if (chip->fake_battery_soc >= 0)
return chip->fake_battery_soc;
if (chip->cfg_use_fake_battery || !get_prop_batt_present(chip))
return DEFAULT_CAPACITY;
if (chip->bms_psy) {
chip->bms_psy->get_property(chip->bms_psy,
POWER_SUPPLY_PROP_CAPACITY, &ret);
mutex_lock(&chip->chg_enable_lock);
if (chip->chg_done)
chip->bms_psy->get_property(chip->bms_psy,
POWER_SUPPLY_PROP_CAPACITY, &ret);
battery_status = get_prop_batt_status(chip);
charger_in = qpnp_lbc_is_usb_chg_plugged_in(chip);
/* reset chg_done flag if capacity not 100% */
if (ret.intval < 100 && chip->chg_done) {
chip->chg_done = false;
power_supply_changed(&chip->batt_psy);
}
if (battery_status != POWER_SUPPLY_STATUS_CHARGING
&& charger_in
&& !chip->cfg_charging_disabled
&& chip->cfg_soc_resume_limit
&& ret.intval <= chip->cfg_soc_resume_limit
&& !chip->cfg_bms_controlled_charging) {
pr_debug("resuming charging at %d%% soc\n",
ret.intval);
if (!chip->cfg_disable_vbatdet_based_recharge)
qpnp_lbc_vbatdet_override(chip, OVERRIDE_0);
qpnp_lbc_charger_enable(chip, SOC, 1);
}
mutex_unlock(&chip->chg_enable_lock);
soc = ret.intval;
if (soc == 0) {
if (!qpnp_lbc_is_usb_chg_plugged_in(chip))
pr_warn_ratelimited("Batt 0, CHG absent\n");
}
return soc;
} else {
pr_debug("No BMS supply registered return %d\n",
DEFAULT_CAPACITY);
}
/*
* Return default capacity to avoid userspace
* from shutting down unecessarily
*/
return DEFAULT_CAPACITY;
}
#define DEFAULT_TEMP 250
static int get_prop_batt_temp(struct qpnp_lbc_chip *chip)
{
int rc = 0;
struct qpnp_vadc_result results;
if (chip->cfg_use_fake_battery || !get_prop_batt_present(chip))
return DEFAULT_TEMP;
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &results);
if (rc) {
pr_debug("Unable to read batt temperature rc=%d\n", rc);
return DEFAULT_TEMP;
}
pr_debug("get_bat_temp %d, %lld\n", results.adc_code,
results.physical);
return (int)results.physical;
}
static void qpnp_lbc_set_appropriate_current(struct qpnp_lbc_chip *chip)
{
unsigned int chg_current = chip->usb_psy_ma;
if (chip->bat_is_cool && chip->cfg_cool_bat_chg_ma)
chg_current = min(chg_current, chip->cfg_cool_bat_chg_ma);
if (chip->bat_is_warm && chip->cfg_warm_bat_chg_ma)
chg_current = min(chg_current, chip->cfg_warm_bat_chg_ma);
if (chip->therm_lvl_sel != 0 && chip->thermal_mitigation)
chg_current = min(chg_current,
chip->thermal_mitigation[chip->therm_lvl_sel]);
pr_debug("setting charger current %d mA\n", chg_current);
qpnp_lbc_ibatmax_set(chip, chg_current);
}
static void qpnp_batt_external_power_changed(struct power_supply *psy)
{
struct qpnp_lbc_chip *chip = container_of(psy, struct qpnp_lbc_chip,
batt_psy);
union power_supply_propval ret = {0,};
int current_ma;
unsigned long flags;
spin_lock_irqsave(&chip->ibat_change_lock, flags);
if (!chip->bms_psy)
chip->bms_psy = power_supply_get_by_name("bms");
if (qpnp_lbc_is_usb_chg_plugged_in(chip)) {
chip->usb_psy->get_property(chip->usb_psy,
POWER_SUPPLY_PROP_CURRENT_MAX, &ret);
current_ma = ret.intval / 1000;
if (current_ma == chip->prev_max_ma)
goto skip_current_config;
/* Disable charger in case of reset or suspend event */
if (current_ma <= 2 && !chip->cfg_use_fake_battery
&& get_prop_batt_present(chip)) {
qpnp_lbc_charger_enable(chip, CURRENT, 0);
chip->usb_psy_ma = QPNP_CHG_I_MAX_MIN_90;
qpnp_lbc_set_appropriate_current(chip);
} else {
chip->usb_psy_ma = current_ma;
qpnp_lbc_set_appropriate_current(chip);
qpnp_lbc_charger_enable(chip, CURRENT, 1);
}
}
skip_current_config:
spin_unlock_irqrestore(&chip->ibat_change_lock, flags);
pr_debug("power supply changed batt_psy\n");
power_supply_changed(&chip->batt_psy);
}
static int qpnp_lbc_system_temp_level_set(struct qpnp_lbc_chip *chip,
int lvl_sel)
{
int rc = 0;
int prev_therm_lvl;
unsigned long flags;
if (!chip->thermal_mitigation) {
pr_err("Thermal mitigation not supported\n");
return -EINVAL;
}
if (lvl_sel < 0) {
pr_err("Unsupported level selected %d\n", lvl_sel);
return -EINVAL;
}
if (lvl_sel >= chip->cfg_thermal_levels) {
pr_err("Unsupported level selected %d forcing %d\n", lvl_sel,
chip->cfg_thermal_levels - 1);
lvl_sel = chip->cfg_thermal_levels - 1;
}
if (lvl_sel == chip->therm_lvl_sel)
return 0;
spin_lock_irqsave(&chip->ibat_change_lock, flags);
prev_therm_lvl = chip->therm_lvl_sel;
chip->therm_lvl_sel = lvl_sel;
if (chip->therm_lvl_sel == (chip->cfg_thermal_levels - 1)) {
/* Disable charging if highest value selected by */
rc = qpnp_lbc_charger_enable(chip, THERMAL, 0);
if (rc < 0)
dev_err(chip->dev,
"Failed to set disable charging rc %d\n", rc);
goto out;
}
qpnp_lbc_set_appropriate_current(chip);
if (prev_therm_lvl == chip->cfg_thermal_levels - 1) {
/*
* If previously highest value was selected charging must have
* been disabed. Enable charging.
*/
rc = qpnp_lbc_charger_enable(chip, THERMAL, 1);
if (rc < 0) {
dev_err(chip->dev,
"Failed to enable charging rc %d\n", rc);
}
}
out:
spin_unlock_irqrestore(&chip->ibat_change_lock, flags);
return rc;
}
#define MIN_COOL_TEMP -300
#define MAX_WARM_TEMP 1000
#define HYSTERISIS_DECIDEGC 20
static int qpnp_lbc_configure_jeita(struct qpnp_lbc_chip *chip,
enum power_supply_property psp, int temp_degc)
{
int rc = 0;
if ((temp_degc < MIN_COOL_TEMP) || (temp_degc > MAX_WARM_TEMP)) {
pr_err("Bad temperature request %d\n", temp_degc);
return -EINVAL;
}
mutex_lock(&chip->jeita_configure_lock);
switch (psp) {
case POWER_SUPPLY_PROP_COOL_TEMP:
if (temp_degc >=
(chip->cfg_warm_bat_decidegc - HYSTERISIS_DECIDEGC)) {
pr_err("Can't set cool %d higher than warm %d - hysterisis %d\n",
temp_degc,
chip->cfg_warm_bat_decidegc,
HYSTERISIS_DECIDEGC);
rc = -EINVAL;
goto mutex_unlock;
}
if (chip->bat_is_cool)
chip->adc_param.high_temp =
temp_degc + HYSTERISIS_DECIDEGC;
else if (!chip->bat_is_warm)
chip->adc_param.low_temp = temp_degc;
chip->cfg_cool_bat_decidegc = temp_degc;
break;
case POWER_SUPPLY_PROP_WARM_TEMP:
if (temp_degc <=
(chip->cfg_cool_bat_decidegc + HYSTERISIS_DECIDEGC)) {
pr_err("Can't set warm %d higher than cool %d + hysterisis %d\n",
temp_degc,
chip->cfg_warm_bat_decidegc,
HYSTERISIS_DECIDEGC);
rc = -EINVAL;
goto mutex_unlock;
}
if (chip->bat_is_warm)
chip->adc_param.low_temp =
temp_degc - HYSTERISIS_DECIDEGC;
else if (!chip->bat_is_cool)
chip->adc_param.high_temp = temp_degc;
chip->cfg_warm_bat_decidegc = temp_degc;
break;
default:
rc = -EINVAL;
goto mutex_unlock;
}
if (qpnp_adc_tm_channel_measure(chip->adc_tm_dev, &chip->adc_param))
pr_err("request ADC error\n");
mutex_unlock:
mutex_unlock(&chip->jeita_configure_lock);
return rc;
}
static int qpnp_batt_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CAPACITY:
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
case POWER_SUPPLY_PROP_COOL_TEMP:
case POWER_SUPPLY_PROP_VOLTAGE_MIN:
case POWER_SUPPLY_PROP_WARM_TEMP:
case POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL:
return 1;
default:
break;
}
return 0;
}
/*
* End of charge happens only when BMS reports the battery status as full. For
* charging to end the s/w must put the usb path in suspend. Note that there
* is no battery fet and usb path suspend is the only control to prevent any
* current going in to the battery (and the system)
* Charging can begin only when VBATDET comparator outputs 0. This indicates
* that the battery is a at a lower voltage than 4% of the vddmax value.
* S/W can override this comparator to output a favourable value - this is
* used while resuming charging when the battery hasnt fallen below 4% but
* the SOC has fallen below the resume threshold.
*
* In short, when SOC resume happens:
* a. overide the comparator to output 0
* b. enable charging
*
* When vbatdet based resume happens:
* a. enable charging
*
* When end of charge happens:
* a. disable the overrides in the comparator
* (may be from a previous soc resume)
* b. disable charging
*/
static int qpnp_batt_power_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct qpnp_lbc_chip *chip = container_of(psy, struct qpnp_lbc_chip,
batt_psy);
int rc = 0;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
mutex_lock(&chip->chg_enable_lock);
if (val->intval == POWER_SUPPLY_STATUS_FULL &&
!chip->cfg_float_charge) {
/* Disable charging */
rc = qpnp_lbc_charger_enable(chip, SOC, 0);
if (rc)
pr_err("Failed to disable charging rc=%d\n",
rc);
else
chip->chg_done = true;
/*
* Enable VBAT_DET based charging:
* To enable charging when VBAT falls below VBAT_DET
* and device stays suspended after EOC.
*/
if (!chip->cfg_disable_vbatdet_based_recharge) {
/* No override for VBAT_DET_LO comp */
rc = qpnp_lbc_vbatdet_override(chip,
OVERRIDE_NONE);
if (rc)
pr_err("Failed to override VBAT_DET rc=%d\n",
rc);
else
qpnp_lbc_enable_irq(chip,
&chip->irqs[CHG_VBAT_DET_LO]);
}
}
if (chip->cfg_bms_controlled_charging) {
switch (val->intval) {
case POWER_SUPPLY_STATUS_CHARGING:
chip->chg_done = false;
pr_debug("resuming charging by bms\n");
if (!chip->cfg_disable_vbatdet_based_recharge)
qpnp_lbc_vbatdet_override(chip,
OVERRIDE_0);
qpnp_lbc_charger_enable(chip, SOC, 1);
break;
case POWER_SUPPLY_STATUS_DISCHARGING:
chip->chg_done = false;
pr_debug("status = DISCHARGING chg_done = %d\n",
chip->chg_done);
break;
default:
break;
}
}
mutex_unlock(&chip->chg_enable_lock);
break;
case POWER_SUPPLY_PROP_COOL_TEMP:
rc = qpnp_lbc_configure_jeita(chip, psp, val->intval);
break;
case POWER_SUPPLY_PROP_WARM_TEMP:
rc = qpnp_lbc_configure_jeita(chip, psp, val->intval);
break;
case POWER_SUPPLY_PROP_CAPACITY:
chip->fake_battery_soc = val->intval;
pr_debug("power supply changed batt_psy\n");
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
chip->cfg_charging_disabled = !(val->intval);
rc = qpnp_lbc_charger_enable(chip, USER,
!chip->cfg_charging_disabled);
if (rc)
pr_err("Failed to disable charging rc=%d\n", rc);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN:
qpnp_lbc_vinmin_set(chip, val->intval / 1000);
break;
case POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL:
qpnp_lbc_system_temp_level_set(chip, val->intval);
break;
default:
return -EINVAL;
}
power_supply_changed(&chip->batt_psy);
return rc;
}
static int qpnp_batt_power_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct qpnp_lbc_chip *chip =
container_of(psy, struct qpnp_lbc_chip, batt_psy);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
val->intval = get_prop_batt_status(chip);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = get_prop_charge_type(chip);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = get_prop_batt_health(chip);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = get_prop_batt_present(chip);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
val->intval = chip->cfg_max_voltage_mv * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
val->intval = chip->cfg_min_voltage_mv * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = get_prop_battery_voltage_now(chip);
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = get_prop_batt_temp(chip);
break;
case POWER_SUPPLY_PROP_COOL_TEMP:
val->intval = chip->cfg_cool_bat_decidegc;
break;
case POWER_SUPPLY_PROP_WARM_TEMP:
val->intval = chip->cfg_warm_bat_decidegc;
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = get_prop_capacity(chip);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = get_prop_current_now(chip);
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
val->intval = !(chip->cfg_charging_disabled);
break;
case POWER_SUPPLY_PROP_SYSTEM_TEMP_LEVEL:
val->intval = chip->therm_lvl_sel;
break;
default:
return -EINVAL;
}
return 0;
}
#define VINMIN_DELAY msecs_to_jiffies(500)
static void qpnp_lbc_parallel_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct qpnp_lbc_chip *chip = container_of(dwork,
struct qpnp_lbc_chip, parallel_work);
if (is_vinmin_set(chip)) {
/* vinmin-loop triggered - stop ibat increase */
pr_debug("vinmin_loop triggered ichg_now=%d\n", chip->ichg_now);
goto exit_work;
} else {
int temp = chip->ichg_now + QPNP_LBC_I_STEP_MA;
if (temp > chip->lbc_max_chg_current) {
pr_debug("ichg_now=%d beyond max_chg_limit=%d - stopping\n",
temp, chip->lbc_max_chg_current);
goto exit_work;
}
chip->ichg_now = temp;
qpnp_lbc_ibatmax_set(chip, chip->ichg_now);
pr_debug("ichg_now increased to %d\n", chip->ichg_now);
}
schedule_delayed_work(&chip->parallel_work, VINMIN_DELAY);
return;
exit_work:
pm_relax(chip->dev);
}
static int qpnp_lbc_parallel_charging_config(struct qpnp_lbc_chip *chip,
int enable)
{
chip->parallel_charging_enabled = !!enable;
if (enable) {
/* Prevent sleep until charger is configured */
chip->ichg_now = QPNP_LBC_IBATMAX_MIN;
qpnp_lbc_ibatmax_set(chip, chip->ichg_now);
qpnp_lbc_charger_enable(chip, PARALLEL, 1);
pm_stay_awake(chip->dev);
schedule_delayed_work(&chip->parallel_work, VINMIN_DELAY);
} else {
cancel_delayed_work_sync(&chip->parallel_work);
pm_relax(chip->dev);
/* set minimum charging current and disable charging */
chip->ichg_now = 0;
chip->lbc_max_chg_current = 0;
qpnp_lbc_ibatmax_set(chip, 0);
qpnp_lbc_charger_enable(chip, PARALLEL, 0);
}
pr_debug("charging=%d ichg_now=%d max_chg_current=%d\n",
enable, chip->ichg_now, chip->lbc_max_chg_current);
return 0;
}
static enum power_supply_property qpnp_lbc_parallel_properties[] = {
POWER_SUPPLY_PROP_CHARGING_ENABLED,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_INPUT_VOLTAGE_REGULATION,
};
static int qpnp_lbc_parallel_set_property(struct power_supply *psy,
enum power_supply_property prop,
const union power_supply_propval *val)
{
int rc = 0;
struct qpnp_lbc_chip *chip = container_of(psy,
struct qpnp_lbc_chip, parallel_psy);
switch (prop) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
qpnp_lbc_parallel_charging_config(chip, !!val->intval);
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
chip->lbc_max_chg_current = val->intval / 1000;
pr_debug("lbc_max_current=%d\n", chip->lbc_max_chg_current);
break;
default:
return -EINVAL;
}
return rc;
}
static int qpnp_lbc_parallel_is_writeable(struct power_supply *psy,
enum power_supply_property prop)
{
int rc;
switch (prop) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
rc = 1;
break;
default:
rc = 0;
break;
}
return rc;
}
static int qpnp_lbc_parallel_get_property(struct power_supply *psy,
enum power_supply_property prop,
union power_supply_propval *val)
{
struct qpnp_lbc_chip *chip = container_of(psy,
struct qpnp_lbc_chip, parallel_psy);
switch (prop) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
val->intval = chip->parallel_charging_enabled;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
val->intval = chip->lbc_max_chg_current * 1000;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = chip->ichg_now * 1000;
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = get_prop_charge_type(chip);
break;
case POWER_SUPPLY_PROP_STATUS:
val->intval = get_prop_batt_status(chip);
break;
case POWER_SUPPLY_PROP_INPUT_VOLTAGE_REGULATION:
val->intval = is_vinmin_set(chip);
break;
default:
return -EINVAL;
}
return 0;
}
static void qpnp_lbc_jeita_adc_notification(enum qpnp_tm_state state, void *ctx)
{
struct qpnp_lbc_chip *chip = ctx;
bool bat_warm = 0, bat_cool = 0;
int temp;
unsigned long flags;
if (state >= ADC_TM_STATE_NUM) {
pr_err("invalid notification %d\n", state);
return;
}
temp = get_prop_batt_temp(chip);
pr_debug("temp = %d state = %s\n", temp,
state == ADC_TM_WARM_STATE ? "warm" : "cool");
if (state == ADC_TM_WARM_STATE) {
if (temp >= chip->cfg_warm_bat_decidegc) {
/* Normal to warm */
bat_warm = true;
bat_cool = false;
chip->adc_param.low_temp =
chip->cfg_warm_bat_decidegc
- HYSTERISIS_DECIDEGC;
chip->adc_param.state_request =
ADC_TM_COOL_THR_ENABLE;
} else if (temp >=
chip->cfg_cool_bat_decidegc + HYSTERISIS_DECIDEGC) {
/* Cool to normal */
bat_warm = false;
bat_cool = false;
chip->adc_param.low_temp =
chip->cfg_cool_bat_decidegc;
chip->adc_param.high_temp =
chip->cfg_warm_bat_decidegc;
chip->adc_param.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
}
} else {
if (temp <= chip->cfg_cool_bat_decidegc) {
/* Normal to cool */
bat_warm = false;
bat_cool = true;
chip->adc_param.high_temp =
chip->cfg_cool_bat_decidegc
+ HYSTERISIS_DECIDEGC;
chip->adc_param.state_request =
ADC_TM_WARM_THR_ENABLE;
} else if (temp <= (chip->cfg_warm_bat_decidegc -
HYSTERISIS_DECIDEGC)){
/* Warm to normal */
bat_warm = false;
bat_cool = false;
chip->adc_param.low_temp =
chip->cfg_cool_bat_decidegc;
chip->adc_param.high_temp =
chip->cfg_warm_bat_decidegc;
chip->adc_param.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
}
}
if (chip->bat_is_cool ^ bat_cool || chip->bat_is_warm ^ bat_warm) {
spin_lock_irqsave(&chip->ibat_change_lock, flags);
chip->bat_is_cool = bat_cool;
chip->bat_is_warm = bat_warm;
qpnp_lbc_set_appropriate_vddmax(chip);
qpnp_lbc_set_appropriate_current(chip);
spin_unlock_irqrestore(&chip->ibat_change_lock, flags);
}
pr_debug("warm %d, cool %d, low = %d deciDegC, high = %d deciDegC\n",
chip->bat_is_warm, chip->bat_is_cool,
chip->adc_param.low_temp, chip->adc_param.high_temp);
if (qpnp_adc_tm_channel_measure(chip->adc_tm_dev, &chip->adc_param))
pr_err("request ADC error\n");
}
#define IBAT_TERM_EN_MASK BIT(3)
static int qpnp_lbc_chg_init(struct qpnp_lbc_chip *chip)
{
int rc;
u8 reg_val;
qpnp_lbc_vbatweak_set(chip, chip->cfg_batt_weak_voltage_uv);
rc = qpnp_lbc_vinmin_set(chip, chip->cfg_min_voltage_mv);
if (rc) {
pr_err("Failed to set vin_min rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_vddsafe_set(chip, chip->cfg_safe_voltage_mv);
if (rc) {
pr_err("Failed to set vdd_safe rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_vddmax_set(chip, chip->cfg_max_voltage_mv);
if (rc) {
pr_err("Failed to set vdd_safe rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_ibatsafe_set(chip, chip->cfg_safe_current);
if (rc) {
pr_err("Failed to set ibat_safe rc=%d\n", rc);
return rc;
}
if (of_find_property(chip->spmi->dev.of_node, "qcom,tchg-mins", NULL)) {
rc = qpnp_lbc_tchg_max_set(chip, chip->cfg_tchg_mins);
if (rc) {
pr_err("Failed to set tchg_mins rc=%d\n", rc);
return rc;
}
}
/*
* Override VBAT_DET comparator to enable charging
* irrespective of VBAT above VBAT_DET.
*/
rc = qpnp_lbc_vbatdet_override(chip, OVERRIDE_0);
if (rc) {
pr_err("Failed to override comp rc=%d\n", rc);
return rc;
}
/*
* Disable iterm comparator of linear charger to disable charger
* detecting end of charge condition based on DT configuration
* and float charge configuration.
*/
if (!chip->cfg_charger_detect_eoc || chip->cfg_float_charge) {
rc = qpnp_lbc_masked_write(chip,
chip->chgr_base + CHG_IBATTERM_EN_REG,
IBAT_TERM_EN_MASK, 0);
if (rc) {
pr_err("Failed to disable EOC comp rc=%d\n", rc);
return rc;
}
}
/* Disable charger watchdog */
reg_val = 0;
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_WDOG_EN_REG,
&reg_val, 1);
return rc;
}
static int qpnp_lbc_bat_if_init(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
/* Select battery presence detection */
switch (chip->cfg_bpd_detection) {
case BPD_TYPE_BAT_THM:
reg_val = BATT_THM_EN;
break;
case BPD_TYPE_BAT_ID:
reg_val = BATT_ID_EN;
break;
case BPD_TYPE_BAT_THM_BAT_ID:
reg_val = BATT_THM_EN | BATT_ID_EN;
break;
default:
reg_val = BATT_THM_EN;
break;
}
rc = qpnp_lbc_masked_write(chip,
chip->bat_if_base + BAT_IF_BPD_CTRL_REG,
BATT_BPD_CTRL_SEL_MASK, reg_val);
if (rc) {
pr_err("Failed to choose BPD rc=%d\n", rc);
return rc;
}
/* Force on VREF_BAT_THM */
reg_val = VREF_BATT_THERM_FORCE_ON;
rc = qpnp_lbc_write(chip,
chip->bat_if_base + BAT_IF_VREF_BAT_THM_CTRL_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to force on VREF_BAT_THM rc=%d\n", rc);
return rc;
}
return 0;
}
static int qpnp_lbc_usb_path_init(struct qpnp_lbc_chip *chip)
{
int rc;
u8 reg_val;
if (qpnp_lbc_is_usb_chg_plugged_in(chip)) {
reg_val = 0;
rc = qpnp_lbc_write(chip,
chip->usb_chgpth_base + CHG_USB_ENUM_T_STOP_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to write enum stop rc=%d\n", rc);
return -ENXIO;
}
}
if (chip->cfg_charging_disabled) {
rc = qpnp_lbc_charger_enable(chip, USER, 0);
if (rc)
pr_err("Failed to disable charging rc=%d\n", rc);
/*
* Disable follow-on-reset if charging is explictly disabled,
* this forces the charging to be disabled across reset.
* Note: Explicitly disabling charging is only a debug/test
* configuration
*/
reg_val = 0x0;
rc = __qpnp_lbc_secure_write(chip->spmi, chip->chgr_base,
CHG_PERPH_RESET_CTRL3_REG, &reg_val, 1);
if (rc)
pr_err("Failed to configure PERPH_CTRL3 rc=%d\n", rc);
else
pr_debug("Charger is not following PMIC reset\n");
} else {
/*
* Enable charging explictly,
* because not sure the default behavior.
*/
reg_val = CHG_ENABLE;
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + CHG_CTRL_REG,
CHG_EN_MASK, reg_val);
if (rc)
pr_err("Failed to enable charger rc=%d\n", rc);
}
return rc;
}
#define LBC_MISC_DIG_VERSION_1 0x01
static int qpnp_lbc_misc_init(struct qpnp_lbc_chip *chip)
{
int rc;
u8 reg_val, reg_val1, trim_center;
/* Check if this LBC MISC version supports VDD trimming */
rc = qpnp_lbc_read(chip, chip->misc_base + MISC_REV2_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read VDD_EA TRIM3 reg rc=%d\n", rc);
return rc;
}
if (reg_val >= LBC_MISC_DIG_VERSION_1) {
chip->supported_feature_flag |= VDD_TRIM_SUPPORTED;
/* Read initial VDD trim value */
rc = qpnp_lbc_read(chip, chip->misc_base + MISC_TRIM3_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read VDD_EA TRIM3 reg rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_read(chip, chip->misc_base + MISC_TRIM4_REG,
&reg_val1, 1);
if (rc) {
pr_err("Failed to read VDD_EA TRIM3 reg rc=%d\n", rc);
return rc;
}
trim_center = ((reg_val & MISC_TRIM3_VDD_MASK)
>> VDD_TRIM3_SHIFT)
| ((reg_val1 & MISC_TRIM4_VDD_MASK)
>> VDD_TRIM4_SHIFT);
chip->init_trim_uv = qpnp_lbc_get_trim_voltage(trim_center);
chip->delta_vddmax_uv = chip->init_trim_uv;
pr_debug("Initial trim center %x trim_uv %d\n",
trim_center, chip->init_trim_uv);
}
pr_debug("Setting BOOT_DONE\n");
reg_val = MISC_BOOT_DONE;
rc = qpnp_lbc_write(chip, chip->misc_base + MISC_BOOT_DONE_REG,
&reg_val, 1);
return rc;
}
static int show_lbc_config(struct seq_file *m, void *data)
{
struct qpnp_lbc_chip *chip = m->private;
seq_printf(m, "cfg_charging_disabled\t=\t%d\n"
"cfg_btc_disabled\t=\t%d\n"
"cfg_use_fake_battery\t=\t%d\n"
"cfg_use_external_charger\t=\t%d\n"
"cfg_chgr_led_support\t=\t%d\n"
"cfg_bms_controlled_charging\t=\t%d\n"
"cfg_warm_bat_chg_ma\t=\t%d\n"
"cfg_cool_bat_chg_ma\t=\t%d\n"
"cfg_safe_voltage_mv\t=\t%d\n"
"cfg_max_voltage_mv\t=\t%d\n"
"cfg_min_voltage_mv\t=\t%d\n"
"cfg_charger_detect_eoc\t=\t%d\n"
"cfg_disable_vbatdet_based_recharge\t=\t%d\n"
"cfg_batt_weak_voltage_uv\t=\t%d\n"
"cfg_warm_bat_mv\t=\t%d\n"
"cfg_cool_bat_mv\t=\t%d\n"
"cfg_hot_batt_p\t=\t%d\n"
"cfg_cold_batt_p\t=\t%d\n"
"cfg_thermal_levels\t=\t%d\n"
"cfg_safe_current\t=\t%d\n"
"cfg_tchg_mins\t=\t%d\n"
"cfg_bpd_detection\t=\t%d\n"
"cfg_warm_bat_decidegc\t=\t%d\n"
"cfg_cool_bat_decidegc\t=\t%d\n"
"cfg_soc_resume_limit\t=\t%d\n"
"cfg_float_charge\t=\t%d\n",
chip->cfg_charging_disabled,
chip->cfg_btc_disabled,
chip->cfg_use_fake_battery,
chip->cfg_use_external_charger,
chip->cfg_chgr_led_support,
chip->cfg_bms_controlled_charging,
chip->cfg_warm_bat_chg_ma,
chip->cfg_cool_bat_chg_ma,
chip->cfg_safe_voltage_mv,
chip->cfg_max_voltage_mv,
chip->cfg_min_voltage_mv,
chip->cfg_charger_detect_eoc,
chip->cfg_disable_vbatdet_based_recharge,
chip->cfg_batt_weak_voltage_uv,
chip->cfg_warm_bat_mv,
chip->cfg_cool_bat_mv,
chip->cfg_hot_batt_p,
chip->cfg_cold_batt_p,
chip->cfg_thermal_levels,
chip->cfg_safe_current,
chip->cfg_tchg_mins,
chip->cfg_bpd_detection,
chip->cfg_warm_bat_decidegc,
chip->cfg_cool_bat_decidegc,
chip->cfg_soc_resume_limit,
chip->cfg_float_charge);
return 0;
}
static int qpnp_lbc_config_open(struct inode *inode, struct file *file)
{
struct qpnp_lbc_chip *chip = inode->i_private;
return single_open(file, show_lbc_config, chip);
}
static const struct file_operations qpnp_lbc_config_debugfs_ops = {
.owner = THIS_MODULE,
.open = qpnp_lbc_config_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define OF_PROP_READ(chip, prop, qpnp_dt_property, retval, optional) \
do { \
if (retval) \
break; \
\
retval = of_property_read_u32(chip->spmi->dev.of_node, \
"qcom," qpnp_dt_property, \
&chip->prop); \
\
if ((retval == -EINVAL) && optional) \
retval = 0; \
else if (retval) \
pr_err("Error reading " #qpnp_dt_property \
" property rc = %d\n", rc); \
} while (0)
static int qpnp_charger_read_dt_props(struct qpnp_lbc_chip *chip)
{
int rc = 0;
const char *bpd;
OF_PROP_READ(chip, cfg_max_voltage_mv, "vddmax-mv", rc, 0);
OF_PROP_READ(chip, cfg_safe_voltage_mv, "vddsafe-mv", rc, 0);
OF_PROP_READ(chip, cfg_min_voltage_mv, "vinmin-mv", rc, 0);
OF_PROP_READ(chip, cfg_safe_current, "ibatsafe-ma", rc, 0);
if (rc)
pr_err("Error reading required property rc=%d\n", rc);
OF_PROP_READ(chip, cfg_tchg_mins, "tchg-mins", rc, 1);
OF_PROP_READ(chip, cfg_warm_bat_decidegc, "warm-bat-decidegc", rc, 1);
OF_PROP_READ(chip, cfg_cool_bat_decidegc, "cool-bat-decidegc", rc, 1);
OF_PROP_READ(chip, cfg_hot_batt_p, "batt-hot-percentage", rc, 1);
OF_PROP_READ(chip, cfg_cold_batt_p, "batt-cold-percentage", rc, 1);
OF_PROP_READ(chip, cfg_batt_weak_voltage_uv, "vbatweak-uv", rc, 1);
OF_PROP_READ(chip, cfg_soc_resume_limit, "resume-soc", rc, 1);
if (rc) {
pr_err("Error reading optional property rc=%d\n", rc);
return rc;
}
rc = of_property_read_string(chip->spmi->dev.of_node,
"qcom,bpd-detection", &bpd);
if (rc) {
chip->cfg_bpd_detection = BPD_TYPE_BAT_THM;
rc = 0;
} else {
chip->cfg_bpd_detection = get_bpd(bpd);
if (chip->cfg_bpd_detection < 0) {
pr_err("Failed to determine bpd schema rc=%d\n", rc);
return -EINVAL;
}
}
/*
* Look up JEITA compliance parameters if cool and warm temp
* provided
*/
if (chip->cfg_cool_bat_decidegc || chip->cfg_warm_bat_decidegc) {
chip->adc_tm_dev = qpnp_get_adc_tm(chip->dev, "chg");
if (IS_ERR(chip->adc_tm_dev)) {
rc = PTR_ERR(chip->adc_tm_dev);
if (rc != -EPROBE_DEFER)
pr_err("Failed to get adc-tm rc=%d\n", rc);
return rc;
}
OF_PROP_READ(chip, cfg_warm_bat_chg_ma, "ibatmax-warm-ma",
rc, 1);
OF_PROP_READ(chip, cfg_cool_bat_chg_ma, "ibatmax-cool-ma",
rc, 1);
OF_PROP_READ(chip, cfg_warm_bat_mv, "warm-bat-mv", rc, 1);
OF_PROP_READ(chip, cfg_cool_bat_mv, "cool-bat-mv", rc, 1);
if (rc) {
pr_err("Error reading battery temp prop rc=%d\n", rc);
return rc;
}
}
/* Get the btc-disabled property */
chip->cfg_btc_disabled = of_property_read_bool(
chip->spmi->dev.of_node, "qcom,btc-disabled");
/* Get the charging-disabled property */
chip->cfg_charging_disabled =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,charging-disabled");
/* Get the fake-batt-values property */
chip->cfg_use_fake_battery =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,use-default-batt-values");
/* Get the float charging property */
chip->cfg_float_charge =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,float-charge");
/* Get the charger EOC detect property */
chip->cfg_charger_detect_eoc =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,charger-detect-eoc");
/* Get the vbatdet disable property */
chip->cfg_disable_vbatdet_based_recharge =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,disable-vbatdet-based-recharge");
/* Get the charger led support property */
chip->cfg_chgr_led_support =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,chgr-led-support");
chip->cfg_bms_controlled_charging =
of_property_read_bool(chip->spmi->dev.of_node,
"qcom,bms-controlled-charging");
/* Disable charging when faking battery values */
if (chip->cfg_use_fake_battery)
chip->cfg_charging_disabled = true;
chip->cfg_use_external_charger = of_property_read_bool(
chip->spmi->dev.of_node, "qcom,use-external-charger");
if (of_find_property(chip->spmi->dev.of_node,
"qcom,thermal-mitigation",
&chip->cfg_thermal_levels)) {
chip->thermal_mitigation = devm_kzalloc(chip->dev,
chip->cfg_thermal_levels,
GFP_KERNEL);
if (chip->thermal_mitigation == NULL) {
pr_err("thermal mitigation kzalloc() failed.\n");
return -ENOMEM;
}
chip->cfg_thermal_levels /= sizeof(int);
rc = of_property_read_u32_array(chip->spmi->dev.of_node,
"qcom,thermal-mitigation",
chip->thermal_mitigation,
chip->cfg_thermal_levels);
if (rc) {
pr_err("Failed to read threm limits rc = %d\n", rc);
return rc;
}
}
pr_debug("vddmax-mv=%d, vddsafe-mv=%d, vinmin-mv=%d, ibatsafe-ma=$=%d\n",
chip->cfg_max_voltage_mv,
chip->cfg_safe_voltage_mv,
chip->cfg_min_voltage_mv,
chip->cfg_safe_current);
pr_debug("warm-bat-decidegc=%d, cool-bat-decidegc=%d, batt-hot-percentage=%d, batt-cold-percentage=%d\n",
chip->cfg_warm_bat_decidegc,
chip->cfg_cool_bat_decidegc,
chip->cfg_hot_batt_p,
chip->cfg_cold_batt_p);
pr_debug("tchg-mins=%d, vbatweak-uv=%d, resume-soc=%d\n",
chip->cfg_tchg_mins,
chip->cfg_batt_weak_voltage_uv,
chip->cfg_soc_resume_limit);
pr_debug("bpd-detection=%d, ibatmax-warm-ma=%d, ibatmax-cool-ma=%d, warm-bat-mv=%d, cool-bat-mv=%d\n",
chip->cfg_bpd_detection,
chip->cfg_warm_bat_chg_ma,
chip->cfg_cool_bat_chg_ma,
chip->cfg_warm_bat_mv,
chip->cfg_cool_bat_mv);
pr_debug("btc-disabled=%d, charging-disabled=%d, use-default-batt-values=%d, float-charge=%d\n",
chip->cfg_btc_disabled,
chip->cfg_charging_disabled,
chip->cfg_use_fake_battery,
chip->cfg_float_charge);
pr_debug("charger-detect-eoc=%d, disable-vbatdet-based-recharge=%d, chgr-led-support=%d, bms-controlled-charging=%d\n",
chip->cfg_charger_detect_eoc,
chip->cfg_disable_vbatdet_based_recharge,
chip->cfg_chgr_led_support,
chip->cfg_bms_controlled_charging);
pr_debug("use-external-charger=%d, thermal_levels=%d\n",
chip->cfg_use_external_charger,
chip->cfg_thermal_levels);
return rc;
}
static irqreturn_t qpnp_lbc_usbin_valid_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
int usb_present;
unsigned long flags;
usb_present = qpnp_lbc_is_usb_chg_plugged_in(chip);
pr_debug("usbin-valid triggered: %d\n", usb_present);
if (chip->usb_present ^ usb_present) {
chip->usb_present = usb_present;
if (!usb_present) {
qpnp_lbc_charger_enable(chip, CURRENT, 0);
spin_lock_irqsave(&chip->ibat_change_lock, flags);
chip->usb_psy_ma = QPNP_CHG_I_MAX_MIN_90;
qpnp_lbc_set_appropriate_current(chip);
spin_unlock_irqrestore(&chip->ibat_change_lock,
flags);
} else {
/*
* Override VBAT_DET comparator to start charging
* even if VBAT > VBAT_DET.
*/
if (!chip->cfg_disable_vbatdet_based_recharge)
qpnp_lbc_vbatdet_override(chip, OVERRIDE_0);
/*
* Enable SOC based charging to make sure
* charging gets enabled on USB insertion
* irrespective of battery SOC above resume_soc.
*/
qpnp_lbc_charger_enable(chip, SOC, 1);
}
pr_debug("Updating usb_psy PRESENT property\n");
power_supply_set_present(chip->usb_psy, chip->usb_present);
}
return IRQ_HANDLED;
}
static int qpnp_lbc_is_batt_temp_ok(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
rc = qpnp_lbc_read(chip, chip->bat_if_base + INT_RT_STS_REG,
&reg_val, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
chip->bat_if_base + INT_RT_STS_REG, rc);
return rc;
}
return (reg_val & BAT_TEMP_OK_IRQ) ? 1 : 0;
}
static irqreturn_t qpnp_lbc_batt_temp_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
int batt_temp_good;
batt_temp_good = qpnp_lbc_is_batt_temp_ok(chip);
pr_debug("batt-temp triggered: %d\n", batt_temp_good);
pr_debug("power supply changed batt_psy\n");
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
static irqreturn_t qpnp_lbc_batt_pres_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
int batt_present;
batt_present = qpnp_lbc_is_batt_present(chip);
pr_debug("batt-pres triggered: %d\n", batt_present);
if (chip->batt_present ^ batt_present) {
chip->batt_present = batt_present;
pr_debug("power supply changed batt_psy\n");
power_supply_changed(&chip->batt_psy);
if ((chip->cfg_cool_bat_decidegc
|| chip->cfg_warm_bat_decidegc)
&& batt_present) {
pr_debug("enabling vadc notifications\n");
if (qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->adc_param))
pr_err("request ADC error\n");
} else if ((chip->cfg_cool_bat_decidegc
|| chip->cfg_warm_bat_decidegc)
&& !batt_present) {
qpnp_adc_tm_disable_chan_meas(chip->adc_tm_dev,
&chip->adc_param);
pr_debug("disabling vadc notifications\n");
}
}
return IRQ_HANDLED;
}
static irqreturn_t qpnp_lbc_chg_failed_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
int rc;
u8 reg_val = CHG_FAILED_BIT;
pr_debug("chg_failed triggered count=%u\n", ++chip->chg_failed_count);
rc = qpnp_lbc_write(chip, chip->chgr_base + CHG_FAILED_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to write chg_fail clear bit rc=%d\n", rc);
if (chip->bat_if_base) {
pr_debug("power supply changed batt_psy\n");
power_supply_changed(&chip->batt_psy);
}
return IRQ_HANDLED;
}
static int qpnp_lbc_is_fastchg_on(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
rc = qpnp_lbc_read(chip, chip->chgr_base + INT_RT_STS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read interrupt status rc=%d\n", rc);
return rc;
}
pr_debug("charger status %x\n", reg_val);
return (reg_val & FAST_CHG_ON_IRQ) ? 1 : 0;
}
#define TRIM_PERIOD_NS (50LL * NSEC_PER_SEC)
static irqreturn_t qpnp_lbc_fastchg_irq_handler(int irq, void *_chip)
{
ktime_t kt;
struct qpnp_lbc_chip *chip = _chip;
bool fastchg_on = false;
fastchg_on = qpnp_lbc_is_fastchg_on(chip);
pr_debug("FAST_CHG IRQ triggered, fastchg_on: %d\n", fastchg_on);
if (chip->fastchg_on ^ fastchg_on) {
chip->fastchg_on = fastchg_on;
if (fastchg_on) {
mutex_lock(&chip->chg_enable_lock);
chip->chg_done = false;
mutex_unlock(&chip->chg_enable_lock);
/*
* Start alarm timer to periodically calculate
* and update VDD_MAX trim value.
*/
if (chip->supported_feature_flag &
VDD_TRIM_SUPPORTED) {
kt = ns_to_ktime(TRIM_PERIOD_NS);
alarm_start_relative(&chip->vddtrim_alarm,
kt);
}
}
if (chip->bat_if_base) {
pr_debug("power supply changed batt_psy\n");
power_supply_changed(&chip->batt_psy);
}
}
return IRQ_HANDLED;
}
static irqreturn_t qpnp_lbc_chg_done_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
pr_debug("charging done triggered\n");
chip->chg_done = true;
pr_debug("power supply changed batt_psy\n");
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
static irqreturn_t qpnp_lbc_vbatdet_lo_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
int rc;
pr_debug("vbatdet-lo triggered\n");
/*
* Disable vbatdet irq to prevent interrupt storm when VBAT is
* close to VBAT_DET.
*/
qpnp_lbc_disable_irq(chip, &chip->irqs[CHG_VBAT_DET_LO]);
/*
* Override VBAT_DET comparator to 0 to fix comparator toggling
* near VBAT_DET threshold.
*/
qpnp_lbc_vbatdet_override(chip, OVERRIDE_0);
/*
* Battery has fallen below the vbatdet threshold and it is
* time to resume charging.
*/
rc = qpnp_lbc_charger_enable(chip, SOC, 1);
if (rc)
pr_err("Failed to enable charging\n");
return IRQ_HANDLED;
}
static int qpnp_lbc_is_overtemp(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
rc = qpnp_lbc_read(chip, chip->usb_chgpth_base + INT_RT_STS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read interrupt status rc=%d\n", rc);
return rc;
}
pr_debug("OVERTEMP rt status %x\n", reg_val);
return (reg_val & OVERTEMP_ON_IRQ) ? 1 : 0;
}
static irqreturn_t qpnp_lbc_usb_overtemp_irq_handler(int irq, void *_chip)
{
struct qpnp_lbc_chip *chip = _chip;
int overtemp = qpnp_lbc_is_overtemp(chip);
pr_warn_ratelimited("charger %s temperature limit !!!\n",
overtemp ? "exceeds" : "within");
return IRQ_HANDLED;
}
static int qpnp_disable_lbc_charger(struct qpnp_lbc_chip *chip)
{
int rc;
u8 reg;
reg = CHG_FORCE_BATT_ON;
rc = qpnp_lbc_masked_write(chip, chip->chgr_base + CHG_CTRL_REG,
CHG_EN_MASK, reg);
/* disable BTC */
rc |= qpnp_lbc_masked_write(chip, chip->bat_if_base + BAT_IF_BTC_CTRL,
BTC_COMP_EN_MASK, 0);
/* Enable BID and disable THM based BPD */
reg = BATT_ID_EN | BATT_BPD_OFFMODE_EN;
rc |= qpnp_lbc_write(chip, chip->bat_if_base + BAT_IF_BPD_CTRL_REG,
&reg, 1);
return rc;
}
#define SPMI_REQUEST_IRQ(chip, idx, rc, irq_name, threaded, flags, wake)\
do { \
if (rc) \
break; \
if (chip->irqs[idx].irq) { \
if (threaded) \
rc = devm_request_threaded_irq(chip->dev, \
chip->irqs[idx].irq, NULL, \
qpnp_lbc_##irq_name##_irq_handler, \
flags, #irq_name, chip); \
else \
rc = devm_request_irq(chip->dev, \
chip->irqs[idx].irq, \
qpnp_lbc_##irq_name##_irq_handler, \
flags, #irq_name, chip); \
if (rc < 0) { \
pr_err("Unable to request " #irq_name " %d\n", \
rc); \
} else { \
rc = 0; \
if (wake) { \
enable_irq_wake(chip->irqs[idx].irq); \
chip->irqs[idx].is_wake = true; \
} \
} \
} \
} while (0)
#define SPMI_GET_IRQ_RESOURCE(chip, rc, resource, idx, name) \
do { \
if (rc) \
break; \
\
rc = spmi_get_irq_byname(chip->spmi, resource, #name); \
if (rc < 0) { \
pr_err("Unable to get irq resource " #name "%d\n", rc); \
} else { \
chip->irqs[idx].irq = rc; \
rc = 0; \
} \
} while (0)
static int qpnp_lbc_request_irqs(struct qpnp_lbc_chip *chip)
{
int rc = 0;
SPMI_REQUEST_IRQ(chip, CHG_FAILED, rc, chg_failed, 0,
IRQF_TRIGGER_RISING, 1);
SPMI_REQUEST_IRQ(chip, CHG_FAST_CHG, rc, fastchg, 1,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING
| IRQF_ONESHOT, 1);
SPMI_REQUEST_IRQ(chip, CHG_DONE, rc, chg_done, 0,
IRQF_TRIGGER_RISING, 0);
SPMI_REQUEST_IRQ(chip, CHG_VBAT_DET_LO, rc, vbatdet_lo, 0,
IRQF_TRIGGER_FALLING, 1);
SPMI_REQUEST_IRQ(chip, BATT_PRES, rc, batt_pres, 1,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING
| IRQF_ONESHOT, 1);
SPMI_REQUEST_IRQ(chip, BATT_TEMPOK, rc, batt_temp, 0,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 1);
SPMI_REQUEST_IRQ(chip, USBIN_VALID, rc, usbin_valid, 0,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 1);
SPMI_REQUEST_IRQ(chip, USB_OVER_TEMP, rc, usb_overtemp, 0,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 0);
return 0;
}
static int qpnp_lbc_get_irqs(struct qpnp_lbc_chip *chip, u8 subtype,
struct spmi_resource *spmi_resource)
{
int rc = 0;
switch (subtype) {
case LBC_CHGR_SUBTYPE:
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
CHG_FAST_CHG, fast-chg-on);
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
CHG_FAILED, chg-failed);
if (!chip->cfg_disable_vbatdet_based_recharge)
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
CHG_VBAT_DET_LO, vbat-det-lo);
if (chip->cfg_charger_detect_eoc)
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
CHG_DONE, chg-done);
break;
case LBC_BAT_IF_SUBTYPE:
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
BATT_PRES, batt-pres);
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
BATT_TEMPOK, bat-temp-ok);
break;
case LBC_USB_PTH_SUBTYPE:
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
USBIN_VALID, usbin-valid);
SPMI_GET_IRQ_RESOURCE(chip, rc, spmi_resource,
USB_OVER_TEMP, usb-over-temp);
break;
};
return 0;
}
/* Get/Set initial state of charger */
static void determine_initial_status(struct qpnp_lbc_chip *chip)
{
chip->usb_present = qpnp_lbc_is_usb_chg_plugged_in(chip);
power_supply_set_present(chip->usb_psy, chip->usb_present);
/*
* Set USB psy online to avoid userspace from shutting down if battery
* capacity is at zero and no chargers online.
*/
if (chip->usb_present)
power_supply_set_online(chip->usb_psy, 1);
}
#define IBAT_TRIM -300
static void qpnp_lbc_vddtrim_work_fn(struct work_struct *work)
{
int rc, vbat_now_uv, ibat_now;
u8 reg_val;
ktime_t kt;
struct qpnp_lbc_chip *chip = container_of(work, struct qpnp_lbc_chip,
vddtrim_work);
vbat_now_uv = get_prop_battery_voltage_now(chip);
ibat_now = get_prop_current_now(chip) / 1000;
pr_debug("vbat %d ibat %d capacity %d\n",
vbat_now_uv, ibat_now, get_prop_capacity(chip));
/*
* Stop trimming under following condition:
* USB removed
* Charging Stopped
*/
if (!qpnp_lbc_is_fastchg_on(chip) ||
!qpnp_lbc_is_usb_chg_plugged_in(chip)) {
pr_debug("stop trim charging stopped\n");
goto exit;
} else {
rc = qpnp_lbc_read(chip, chip->chgr_base + CHG_STATUS_REG,
&reg_val, 1);
if (rc) {
pr_err("Failed to read chg status rc=%d\n", rc);
goto out;
}
/*
* Update VDD trim voltage only if following conditions are
* met:
* If charger is in VDD loop AND
* If ibat is between 0 ma and -300 ma
*/
if ((reg_val & CHG_VDD_LOOP_BIT) &&
((ibat_now < 0) && (ibat_now > IBAT_TRIM)))
qpnp_lbc_adjust_vddmax(chip, vbat_now_uv);
}
out:
kt = ns_to_ktime(TRIM_PERIOD_NS);
alarm_start_relative(&chip->vddtrim_alarm, kt);
exit:
pm_relax(chip->dev);
}
static enum alarmtimer_restart vddtrim_callback(struct alarm *alarm,
ktime_t now)
{
struct qpnp_lbc_chip *chip = container_of(alarm, struct qpnp_lbc_chip,
vddtrim_alarm);
pm_stay_awake(chip->dev);
schedule_work(&chip->vddtrim_work);
return ALARMTIMER_NORESTART;
}
static int qpnp_lbc_parallel_charger_init(struct qpnp_lbc_chip *chip)
{
u8 reg_val;
int rc;
rc = qpnp_lbc_vinmin_set(chip, chip->cfg_min_voltage_mv);
if (rc) {
pr_err("Failed to set vin_min rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_vddsafe_set(chip, chip->cfg_max_voltage_mv);
if (rc) {
pr_err("Failed to set vdd_safe rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_vddmax_set(chip, chip->cfg_max_voltage_mv);
if (rc) {
pr_err("Failed to set vdd_max rc=%d\n", rc);
return rc;
}
/* set the minimum charging current */
rc = qpnp_lbc_ibatmax_set(chip, 0);
if (rc) {
pr_err("Failed to set IBAT_MAX to 0 rc=%d\n", rc);
return rc;
}
/* disable charging */
rc = qpnp_lbc_charger_enable(chip, PARALLEL, 0);
if (rc) {
pr_err("Unable to disable charging rc=%d\n", rc);
return 0;
}
/* Enable BID and disable THM based BPD */
reg_val = BATT_ID_EN | BATT_BPD_OFFMODE_EN;
rc = qpnp_lbc_write(chip, chip->bat_if_base + BAT_IF_BPD_CTRL_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to override BPD configuration rc=%d\n", rc);
/* Disable and override BTC */
reg_val = 0x2A;
rc = __qpnp_lbc_secure_write(chip->spmi, chip->bat_if_base,
BTC_COMP_OVERRIDE_REG, &reg_val, 1);
if (rc)
pr_err("Failed to disable BTC override rc=%d\n", rc);
reg_val = 0;
rc = qpnp_lbc_write(chip,
chip->bat_if_base + BAT_IF_BTC_CTRL, &reg_val, 1);
if (rc)
pr_err("Failed to disable BTC rc=%d\n", rc);
/* override VBAT_DET */
rc = qpnp_lbc_vbatdet_override(chip, OVERRIDE_0);
if (rc)
pr_err("Failed to override VBAT_DET rc=%d\n", rc);
/* Set BOOT_DONE and ENUM complete */
reg_val = 0;
rc = qpnp_lbc_write(chip,
chip->usb_chgpth_base + CHG_USB_ENUM_T_STOP_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to stop enum-timer rc=%d\n", rc);
reg_val = MISC_BOOT_DONE;
rc = qpnp_lbc_write(chip, chip->misc_base + MISC_BOOT_DONE_REG,
&reg_val, 1);
if (rc)
pr_err("Failed to set boot-done rc=%d\n", rc);
return rc;
}
static int qpnp_lbc_parse_resources(struct qpnp_lbc_chip *chip)
{
u8 subtype;
int rc = 0;
struct resource *resource;
struct spmi_resource *spmi_resource;
struct spmi_device *spmi = chip->spmi;
spmi_for_each_container_dev(spmi_resource, spmi) {
if (!spmi_resource) {
pr_err("spmi resource absent\n");
return -ENXIO;
}
resource = spmi_get_resource(spmi, spmi_resource,
IORESOURCE_MEM, 0);
if (!(resource && resource->start)) {
pr_err("node %s IO resource absent!\n",
spmi->dev.of_node->full_name);
return -ENXIO;
}
rc = qpnp_lbc_read(chip, resource->start + PERP_SUBTYPE_REG,
&subtype, 1);
if (rc) {
pr_err("Peripheral subtype read failed rc=%d\n", rc);
return rc;
}
switch (subtype) {
case LBC_CHGR_SUBTYPE:
chip->chgr_base = resource->start;
rc = qpnp_lbc_get_irqs(chip, subtype, spmi_resource);
if (rc) {
pr_err("Failed to get CHGR irqs rc=%d\n", rc);
return rc;
}
break;
case LBC_USB_PTH_SUBTYPE:
chip->usb_chgpth_base = resource->start;
rc = qpnp_lbc_get_irqs(chip, subtype, spmi_resource);
if (rc) {
pr_err("Failed to get USB_PTH irqs rc=%d\n",
rc);
return rc;
}
break;
case LBC_BAT_IF_SUBTYPE:
chip->bat_if_base = resource->start;
rc = qpnp_lbc_get_irqs(chip, subtype, spmi_resource);
if (rc) {
pr_err("Failed to get BAT_IF irqs rc=%d\n", rc);
return rc;
}
break;
case LBC_MISC_SUBTYPE:
chip->misc_base = resource->start;
break;
default:
pr_err("Invalid peripheral subtype=0x%x\n", subtype);
rc = -EINVAL;
}
}
pr_debug("chgr_base=%x usb_chgpth_base=%x bat_if_base=%x misc_base=%x\n",
chip->chgr_base, chip->usb_chgpth_base,
chip->bat_if_base, chip->misc_base);
return rc;
}
static int qpnp_lbc_parallel_probe(struct spmi_device *spmi)
{
int rc = 0;
struct qpnp_lbc_chip *chip;
chip = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_lbc_chip),
GFP_KERNEL);
if (!chip) {
pr_err("memory allocation failed.\n");
return -ENOMEM;
}
chip->dev = &spmi->dev;
chip->spmi = spmi;
dev_set_drvdata(&spmi->dev, chip);
device_init_wakeup(&spmi->dev, 1);
spin_lock_init(&chip->hw_access_lock);
spin_lock_init(&chip->ibat_change_lock);
INIT_DELAYED_WORK(&chip->parallel_work, qpnp_lbc_parallel_work);
OF_PROP_READ(chip, cfg_max_voltage_mv, "vddmax-mv", rc, 0);
if (rc)
return rc;
OF_PROP_READ(chip, cfg_min_voltage_mv, "vinmin-mv", rc, 0);
if (rc)
return rc;
rc = qpnp_lbc_parse_resources(chip);
if (rc) {
pr_err("Unable to parse LBC(parallel) resources rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_parallel_charger_init(chip);
if (rc) {
pr_err("Unable to initialize LBC(parallel) rc=%d\n", rc);
return rc;
}
chip->parallel_psy.name = "usb-parallel";
chip->parallel_psy.type = POWER_SUPPLY_TYPE_USB_PARALLEL;
chip->parallel_psy.get_property = qpnp_lbc_parallel_get_property;
chip->parallel_psy.set_property = qpnp_lbc_parallel_set_property;
chip->parallel_psy.properties = qpnp_lbc_parallel_properties;
chip->parallel_psy.property_is_writeable
= qpnp_lbc_parallel_is_writeable;
chip->parallel_psy.num_properties
= ARRAY_SIZE(qpnp_lbc_parallel_properties);
rc = power_supply_register(chip->dev, &chip->parallel_psy);
if (rc < 0) {
pr_err("Unable to register LBC parallel_psy rc = %d\n", rc);
return rc;
}
pr_info("LBC (parallel) registered successfully!\n");
return 0;
}
static int qpnp_lbc_main_probe(struct spmi_device *spmi)
{
ktime_t kt;
struct qpnp_lbc_chip *chip;
struct power_supply *usb_psy;
int rc = 0;
usb_psy = power_supply_get_by_name("usb");
if (!usb_psy) {
pr_err("usb supply not found deferring probe\n");
return -EPROBE_DEFER;
}
chip = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_lbc_chip),
GFP_KERNEL);
if (!chip) {
pr_err("memory allocation failed.\n");
return -ENOMEM;
}
chip->usb_psy = usb_psy;
chip->dev = &spmi->dev;
chip->spmi = spmi;
chip->fake_battery_soc = -EINVAL;
dev_set_drvdata(&spmi->dev, chip);
device_init_wakeup(&spmi->dev, 1);
mutex_init(&chip->jeita_configure_lock);
mutex_init(&chip->chg_enable_lock);
spin_lock_init(&chip->hw_access_lock);
spin_lock_init(&chip->ibat_change_lock);
spin_lock_init(&chip->irq_lock);
INIT_WORK(&chip->vddtrim_work, qpnp_lbc_vddtrim_work_fn);
alarm_init(&chip->vddtrim_alarm, ALARM_REALTIME, vddtrim_callback);
/* Get all device-tree properties */
rc = qpnp_charger_read_dt_props(chip);
if (rc) {
pr_err("Failed to read DT properties rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_parse_resources(chip);
if (rc) {
pr_err("Unable to parse LBC resources rc=%d\n", rc);
goto fail_chg_enable;
}
if (chip->cfg_use_external_charger) {
pr_warn("Disabling Linear Charger (e-external-charger = 1)\n");
rc = qpnp_disable_lbc_charger(chip);
if (rc)
pr_err("Unable to disable charger rc=%d\n", rc);
return -ENODEV;
}
chip->vadc_dev = qpnp_get_vadc(chip->dev, "chg");
if (IS_ERR(chip->vadc_dev)) {
rc = PTR_ERR(chip->vadc_dev);
if (rc != -EPROBE_DEFER)
pr_err("vadc prop missing rc=%d\n",
rc);
goto fail_chg_enable;
}
/* Initialize h/w */
rc = qpnp_lbc_misc_init(chip);
if (rc) {
pr_err("unable to initialize LBC MISC rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_chg_init(chip);
if (rc) {
pr_err("unable to initialize LBC charger rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_bat_if_init(chip);
if (rc) {
pr_err("unable to initialize LBC BAT_IF rc=%d\n", rc);
return rc;
}
rc = qpnp_lbc_usb_path_init(chip);
if (rc) {
pr_err("unable to initialize LBC USB path rc=%d\n", rc);
return rc;
}
if (chip->cfg_chgr_led_support) {
rc = qpnp_lbc_register_chgr_led(chip);
if (rc) {
pr_err("unable to register charger led rc=%d\n", rc);
return rc;
}
}
if (chip->bat_if_base) {
chip->batt_present = qpnp_lbc_is_batt_present(chip);
chip->batt_psy.name = "battery";
chip->batt_psy.type = POWER_SUPPLY_TYPE_BATTERY;
chip->batt_psy.properties = msm_batt_power_props;
chip->batt_psy.num_properties =
ARRAY_SIZE(msm_batt_power_props);
chip->batt_psy.get_property = qpnp_batt_power_get_property;
chip->batt_psy.set_property = qpnp_batt_power_set_property;
chip->batt_psy.property_is_writeable =
qpnp_batt_property_is_writeable;
chip->batt_psy.external_power_changed =
qpnp_batt_external_power_changed;
chip->batt_psy.supplied_to = pm_batt_supplied_to;
chip->batt_psy.num_supplicants =
ARRAY_SIZE(pm_batt_supplied_to);
rc = power_supply_register(chip->dev, &chip->batt_psy);
if (rc < 0) {
pr_err("batt failed to register rc=%d\n", rc);
goto fail_chg_enable;
}
}
if ((chip->cfg_cool_bat_decidegc || chip->cfg_warm_bat_decidegc)
&& chip->bat_if_base) {
chip->adc_param.low_temp = chip->cfg_cool_bat_decidegc;
chip->adc_param.high_temp = chip->cfg_warm_bat_decidegc;
chip->adc_param.timer_interval = ADC_MEAS1_INTERVAL_1S;
chip->adc_param.state_request = ADC_TM_HIGH_LOW_THR_ENABLE;
chip->adc_param.btm_ctx = chip;
chip->adc_param.threshold_notification =
qpnp_lbc_jeita_adc_notification;
chip->adc_param.channel = LR_MUX1_BATT_THERM;